51
|
Chamberlain CA, Bennett EP, Kverneland AH, Svane IM, Donia M, Met Ö. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol Ther Oncolytics 2022; 24:417-428. [PMID: 35141398 PMCID: PMC8807971 DOI: 10.1016/j.omto.2022.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
Adoptive T cell therapy (ACT) with expanded tumor-infiltrating lymphocytes (TIL) can induce durable responses in cancer patients from multiple histologies, with response rates of up to 50%. Antibodies blocking the engagement of the inhibitory receptor programmed cell death protein 1 (PD-1) have been successful across a variety of cancer diagnoses. We hypothesized that these approaches could be combined by using CRISPR-Cas9 gene editing to knock out PD-1 in TILs from metastatic melanoma and head-and-neck, thyroid, and colorectal cancer. Non-viral, non-plasmid-based PD-1 knockout was carried out immediately prior to the traditional 14-day TIL-based ACT rapid-expansion protocol. A median 87.53% reduction in cell surface PD-1 expression was observed post-expansion and confirmed at the genomic level. No off-target editing was detected, and PD-1 knockout had no effect on final fold expansion. Edited cells exhibited few phenotypic differences and matched control functionality. Pre-clinical-scale results were confirmed at a clinical scale by generating a PD-1-deficient TIL product using the good manufacturing practice facilities, equipment, procedures, and starting material used for standard patient treatment. Our results demonstrate that simple, non-viral, non-plasmid-based CRISPR-Cas9 methods can be feasibly adopted into a TIL-based ACT protocol to produce treatment products deficient in molecules such as PD-1, without any evident negative effects.
Collapse
Affiliation(s)
- Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Eric Paul Bennett
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N, Denmark.,Department for RNA & Gene Therapy, Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Anders Handrup Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Borgmester Ib Juuls Vej 25C, 2730 Herlev, Denmark.,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
52
|
Rasul MF, Hussen BM, Salihi A, Ismael BS, Jalal PJ, Zanichelli A, Jamali E, Baniahmad A, Ghafouri-Fard S, Basiri A, Taheri M. Strategies to overcome the main challenges of the use of CRISPR/Cas9 as a replacement for cancer therapy. Mol Cancer 2022; 21:64. [PMID: 35241090 PMCID: PMC8892709 DOI: 10.1186/s12943-021-01487-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) shows the opportunity to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing processes that target disease-causing genes or mutant genes have been greatly accelerated in recent years as a consequence of improvements in sequence-specific nuclease technology. However, the therapeutic promise of genome editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we highlighted the main challenges facing CRISPR/Cas9-based treatments and proposed strategies to overcome these limitations, for further enhancing this revolutionary novel therapeutics to improve long-term treatment outcome human health.
Collapse
Affiliation(s)
- Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq.,Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar Saleh Ismael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Kurdistan region, Erbil, Iraq
| | - Paywast Jamal Jalal
- Biology Department, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Anna Zanichelli
- Department of Biomedical Sciences, University of Westminster, London, UK
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Rathbone T, Ates I, Fernando L, Addlestone E, Lee CM, Richards VP, Cottle RN. Electroporation-mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes. CRISPR J 2022; 5:397-409. [PMID: 35238624 PMCID: PMC9233506 DOI: 10.1089/crispr.2021.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus vectors are the most used delivery method for liver-directed gene editing. Still, they are associated with significant disadvantages that can compromise the safety and efficacy of therapies. Here, we investigate the effects of electroporating CRISPR-Cas9 as mRNA and ribonucleoproteins (RNPs) into primary hepatocytes regarding on-target activity, specificity, and cell viability. We observed a transfection efficiency of >60% and on-target insertions/deletions (indels) of up to 95% in primary mouse hepatocytes electroporated with Cas9 RNPs targeting Hpd, the gene encoding hydroxyphenylpyruvate dioxygenase. In primary human hepatocytes, we observed on-target indels of 52.4% with Cas9 RNPs and >65% viability after electroporation. These results establish the impact of using electroporation to deliver Cas9 RNPs into primary hepatocytes as a highly efficient and potentially safe approach for therapeutic liver-directed gene editing and the production of liver disease models.
Collapse
Affiliation(s)
- Tanner Rathbone
- Department of Bioengineering, University College Cork, Cork, Ireland
| | - Ilayda Ates
- Department of Bioengineering, University College Cork, Cork, Ireland
| | - Lawrence Fernando
- Department of Bioengineering, University College Cork, Cork, Ireland
| | - Ethan Addlestone
- Department of Bioengineering, University College Cork, Cork, Ireland
| | - Ciaran M Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina; and University College Cork, Cork, Ireland
| | - Renee N Cottle
- Department of Bioengineering, University College Cork, Cork, Ireland
| |
Collapse
|
54
|
Wu Y, Huang Z, Harrison R, Liu L, Zhu L, Situ Y, Wang Y. Engineering CAR T cells for enhanced efficacy and safety. APL Bioeng 2022; 6:011502. [PMID: 35071966 PMCID: PMC8769768 DOI: 10.1063/5.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety. We also highlight the development of different types of inducible CAR T cells that can be controlled by environmental cues and/or external stimuli. These advancements are bringing CAR T therapy one step closer to safer and wider applications, especially for solid tumors.
Collapse
Affiliation(s)
- Yiqian Wu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ziliang Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Reed Harrison
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Longwei Liu
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Linshan Zhu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yinglin Situ
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
55
|
Bernard BE, Landmann E, Jeker LT, Schumann K. CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunol Lett 2022; 245:18-28. [DOI: 10.1016/j.imlet.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
|
56
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
57
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
58
|
Johansen KH. How CRISPR/Cas9 Gene Editing Is Revolutionizing T Cell Research. DNA Cell Biol 2022; 41:53-57. [PMID: 34939826 PMCID: PMC8787706 DOI: 10.1089/dna.2021.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 allows for precise gene targeting in mammalian cells, including T cells, allowing scientists to disrupt or edit specific genes of interest. This has enabled immunologists to investigate T cell functions as well as opened the path for novel therapeutics involving gene editing of T cells ex vivo before transferring these back to patients to increase T cell efficacy. This review outlines how CRISPR/Cas9 has transformed T cell research allowing immunologists to rapidly probe the roles of genes in T cells thus paving the way for novel therapeutics. Furthermore, this review describes how these tools reduce the requirement for genetic mouse models, while increasing the translational potential of T cell research.
Collapse
Affiliation(s)
- Kristoffer Haurum Johansen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
59
|
Zou Y, Liu B, Li L, Yin Q, Tang J, Jing Z, Huang X, Zhu X, Chi T. IKZF3 deficiency potentiates chimeric antigen receptor T cells targeting solid tumors. Cancer Lett 2022; 524:121-130. [PMID: 34687790 DOI: 10.1016/j.canlet.2021.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has been successful in treating hematological malignancy, but solid tumors remain refractory. Here, we demonstrated that knocking out transcription factor IKZF3 in HER2-specific CAR T cells targeting breast cancer cells did not affect CAR expression or CAR T cell differentiation, but markedly enhanced killing of the cancer cells in vitro and in a xenograft model, which was associated with increased T cell activation and proliferation. Furthermore, IKZF3 KO had similar effects on the CD133-specific CAR T cells targeting glioblastoma cells. AlphaLISA and RNA-seq analyses indicate that IKZF3 KO increased the expression of genes involved in cytokine signaling, chemotaxis and cytotoxicity. Our results suggest a general strategy for enhancing CAR T efficacy on solid tumors.
Collapse
Affiliation(s)
- Yan Zou
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Long Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Qinan Yin
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Jiaxing Tang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Zhengyu Jing
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuekai Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Tian Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Immunobiology, Yale University Medical School, New Haven, CT, USA.
| |
Collapse
|
60
|
Park H, Kim D, Cho B, Byun J, Kim YS, Ahn Y, Hur J, Oh YK, Kim J. In vivo therapeutic genome editing via CRISPR/Cas9 magnetoplexes for myocardial infarction. Biomaterials 2021; 281:121327. [PMID: 34952262 DOI: 10.1016/j.biomaterials.2021.121327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9-mediated gene-editing technology has gained attention as a new therapeutic method for intractable diseases. However, the use of CRISPR/Cas9 for cardiac conditions such as myocardial infarction remains challenging due to technical and biological barriers, particularly difficulties in delivering the system and targeting genes in the heart. In the present study, we demonstrated the in vivo efficacy of the CRISPR/Cas9 magnetoplexes system for therapeutic genome editing in myocardial infarction. First, we developed CRISPR/Cas9 magnetoplexes that magnetically guided CRISPR/Cas9 system to the heart for efficient in vivo therapeutic gene targeting during heart failures. We then demonstrated that the in vivo gene targeting of miR34a via these CRISPR/Cas9 magnetoplexes in a mouse model of myocardial infarction significantly improved cardiac repair and regeneration to facilitate improvements in cardiac function. These results indicated that CRISPR/Cas9 magnetoplexes represent an effective in vivo therapeutic gene-targeting platform in the myocardial infarction of heart, and that this strategy may be applicable for the treatment of a broad range of cardiac failures.
Collapse
Affiliation(s)
- Hanseul Park
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea
| | - Dongyoon Kim
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea
| | - Byounggook Cho
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea
| | - Junho Byun
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy, Seoul National University, 1 Kwanak-ro, Seoul, 08826, Republic of Korea.
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 100715, Republic of Korea.
| |
Collapse
|
61
|
Baptista B, Carapito R, Laroui N, Pichon C, Sousa F. mRNA, a Revolution in Biomedicine. Pharmaceutics 2021; 13:2090. [PMID: 34959371 PMCID: PMC8707022 DOI: 10.3390/pharmaceutics13122090] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The perspective of using messenger RNA (mRNA) as a therapeutic molecule first faced some uncertainties due to concerns about its instability and the feasibility of large-scale production. Today, given technological advances and deeper biomolecular knowledge, these issues have started to be addressed and some strategies are being exploited to overcome the limitations. Thus, the potential of mRNA has become increasingly recognized for the development of new innovative therapeutics, envisioning its application in immunotherapy, regenerative medicine, vaccination, and gene editing. Nonetheless, to fully potentiate mRNA therapeutic application, its efficient production, stabilization and delivery into the target cells are required. In recent years, intensive research has been carried out in this field in order to bring new and effective solutions towards the stabilization and delivery of mRNA. Presently, the therapeutic potential of mRNA is undoubtedly recognized, which was greatly reinforced by the results achieved in the battle against the COVID-19 pandemic, but there are still some issues that need to be improved, which are critically discussed in this review.
Collapse
Affiliation(s)
- Bruno Baptista
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| | - Nabila Laroui
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Chantal Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS, University of Orléans, 45071 Orléans, France;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (B.B.); (R.C.)
| |
Collapse
|
62
|
The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. J Adv Res 2021; 40:135-152. [PMID: 36100322 PMCID: PMC9481961 DOI: 10.1016/j.jare.2021.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases. Researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. The treatment of ocular diseases by Cas9 has entered into clinical phases.
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is derived from the bacterial innate immune system and engineered as a robust gene-editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9, it has been widely applied to many genetic and non-genetic disease, including cancers, genetic hemolytic diseases, acquired immunodeficiency syndrome, cardiovascular diseases, ocular diseases, and neurodegenerative diseases, and some X-linked diseases. Furthermore, in terms of the therapeutic strategy of cancers, many researchers used the CRISPR/Cas9 technique to cure or alleviate cancers through different approaches, such as gene therapy and immune therapy. Aim of Review Here, we conclude the recent application and clinical trials of CRISPR/Cas9 in non-cancerous diseases and cancers and pointed out some of the problems to be solved. Key Scientific Concepts of Review CRISPR/Cas9, derived from the microbial innate immune system, is developed as a robust gene-editing tool and has been applied widely. Due to its high accuracy and efficiency, CRISPR/Cas9 techniques may provide a great chance to treat some gene-related diseases by disrupting, inserting, correcting, replacing, or blocking genes for clinical application with gene therapy.
Collapse
|
63
|
Murty T, Mackall CL. Gene editing to enhance the efficacy of cancer cell therapies. Mol Ther 2021; 29:3153-3162. [PMID: 34673274 PMCID: PMC8571170 DOI: 10.1016/j.ymthe.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Adoptive T cell therapies have shown impressive signals of activity, but their clinical impact could be enhanced by technologies to increase T cell potency and diminish the cost and labor involved in manufacturing these products. Gene editing platforms are under study in this arena to (1) enhance immune cell potency by knocking out molecules that inhibit immune responses; (2) deliver genetic payloads into precise genomic locations and thereby enhance safety and/or improve the gene expression profile by leveraging physiologic promoters, enhancers, and repressors; and (3) enable off-the-shelf therapies by preventing alloreactivity and immune rejection. This review discusses gene editing approaches that have been the best studied in the context of human T cells and adoptive T cell therapies, summarizing their current status and near-term potential for translation.
Collapse
Affiliation(s)
- Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Program in Biophysics, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
64
|
Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021; 369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy has become one of the most promising strategies in cancer therapies. Among the therapeutic alternatives, genetically engineered NK/T cell therapies have emerged as powerful and innovative therapeutic modalities for cancer patients with precise targeting and impressive efficacy. Nonetheless, this approach still faces multiple challenges, such as immunosuppressive tumor microenvironment, exhaustion of immune effector cells in tumors, off-target effects manufacturing complexity, and poor infiltration of effector cells, all of which need to be overcome for further utilization to cancers. Recently, CRISPR/Cas9 genome editing technology, with the goal of enhancing the efficacy and increasing the availability of engineered effector cell therapies, has shown considerable potential in the novel strategies and options to overcome these limitations. Here we review the current progress of the applications of CRISPR in cancer immunotherapy. Furthermore, we discuss issues related to the NK/T cell applications, gene delivery methods, efficiency, challenges, and implications of CRISPR/Cas9.
Collapse
Affiliation(s)
- Lingtong Zhi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Xin Su
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Meichen Yin
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zikang Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Hui Lu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Zhiyuan Niu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Changjiang Guo
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Wuling Zhu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Xuan Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
65
|
Lakshmanan VK, Jindal S, Packirisamy G, Ojha S, Lian S, Kaushik A, Alzarooni AIMA, Metwally YAF, Thyagarajan SP, Do Jung Y, Chouaib S. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther 2021; 28:911-923. [PMID: 33558704 DOI: 10.1038/s41417-021-00299-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
The combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. The development of cancer nanomedicine has posthaste ratified the outcomes of immunotherapy to the subsequent stage in the current era of medical research. This review focuses on key findings with respect to the effectiveness of nanomedicine-based cancer immunotherapies and their applications, which include i) immune checkpoint inhibitors and nanomedicine, ii) CRISPR-Cas nanoparticles (NPs) in cancer immunotherapy, iii) combination cancer immunotherapy with core-shell nanoparticles, iv) biomimetic NPs for cancer immunotherapy, and v) CAR-T cells and cancer nanoimmunotherapy. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
Affiliation(s)
- Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India. .,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Shlok Jindal
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India. .,Centre for Nanotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ajeet Kaushik
- NanoBio Tech Laboratory, Health System Engineering, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, USA
| | | | - Yasser Abdelraouf Farahat Metwally
- Department of Urology, H.H. Sheikh Khalifa General Hospital, Al Salama, Opp. Ministry of Community Development, Umm Al Quwain, United Arab Emirates
| | - Sadras Panchatcharam Thyagarajan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, South Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
66
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J Exp Clin Cancer Res 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
67
|
Mensali N, Dillard P, Fayzullin A, Köksal H, Gaudernack G, Kvalheim G, Inderberg EM, Wälchli S. "Built-in" PD-1 blocker to rescue NK-92 activity from PD-L1-mediated tumor escape mechanisms. FASEB J 2021; 35:e21750. [PMID: 34424568 DOI: 10.1096/fj.202100025r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene. We here present an alternative strategy to equip therapeutic cells with a truncated PD-1 (tPD-1) to abrogate PD-1/PD-L1 inhibition. We show that engagement of tPD-1 with PD-L1-positive tumor unleashes NK-92 activity in vitro. Furthermore, this binding was sufficiently strong to induce killing of targets otherwise not recognized by NK-92, thus increasing the range of targets. In vivo treatment with NK-92 tPD-1 cells led to reduced tumor growth and improved survival. Importantly, tPD-1 did not interfere with tumor recognition in PD-L1 negative conditions. Thus, tPD-1 represents a straightforward method for improving antitumor immunity and revealing new targets through PD-L1 positivity.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Artem Fayzullin
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hakan Köksal
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
68
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
69
|
Marotte L, Simon S, Vignard V, Dupre E, Gantier M, Cruard J, Alberge JB, Hussong M, Deleine C, Heslan JM, Shaffer J, Beauvais T, Gaschet J, Scotet E, Fradin D, Jarry A, Nguyen T, Labarriere N. Increased antitumor efficacy of PD-1-deficient melanoma-specific human lymphocytes. J Immunother Cancer 2021; 8:jitc-2019-000311. [PMID: 32001504 PMCID: PMC7057432 DOI: 10.1136/jitc-2019-000311] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments. Methods Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain’s sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR. Results Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model. Conclusion The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.
Collapse
Affiliation(s)
- Lucine Marotte
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Sylvain Simon
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Virginie Vignard
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Emilie Dupre
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Malika Gantier
- LabEx IGO, Université de Nantes, Nantes, France.,Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Jonathan Cruard
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | | | - Melanie Hussong
- NGS Assay Research & Development, Qiagen Sciences, Frederick, Maryland, United States
| | - Cecile Deleine
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Jean-Marie Heslan
- LabEx IGO, Université de Nantes, Nantes, France.,Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Jonathan Shaffer
- NGS Assay Research & Development, Qiagen Sciences, Frederick, Maryland, United States
| | - Tiffany Beauvais
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Joelle Gaschet
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Emmanuel Scotet
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Delphine Fradin
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Anne Jarry
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France.,LabEx IGO, Université de Nantes, Nantes, France
| | - Tuan Nguyen
- Université de Nantes, Inserm, CRTI, F-44000 Nantes, France
| | - Nathalie Labarriere
- Université de Nantes, Inserm, CRCINA, F-44000 Nantes, France .,LabEx IGO, Université de Nantes, Nantes, France
| |
Collapse
|
70
|
Salinas VH, Stüve O. Systems Approaches to Unravel T Cell Function and Therapeutic Potential in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2021; 206:669-675. [PMID: 33526601 DOI: 10.4049/jimmunol.2000954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Producing Ag-specific immune responses constrained to target tissues or cells that can be engaged or disengaged at will is predicated on understanding the network of genes governing immune cell function, defining the rules underlying Ag specificity, and synthesizing the tools to engineer them. The successes and limitations of chimeric Ag receptor (CAR) T cells emphasize this goal, and advances in high-throughput sequencing, large-scale genomic screens, single-cell profiling, and genetic modification are providing the necessary data to bring it to fruition-including a broader application into the treatment of autoimmune diseases. In this review, we delve into the implementation of these developments, survey the relevant works, and propose a framework for generating the next generation of synthetic T cells informed by the principles learned from these systems approaches.
Collapse
Affiliation(s)
- Victor H Salinas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390; and .,Neurology Section, Medical Service, U.S. Department of Veterans Affairs, North Texas Health Care System, Dallas, TX 75216
| |
Collapse
|
71
|
Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Curr Med Sci 2021; 41:420-430. [PMID: 34218353 DOI: 10.1007/s11596-021-2391-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is the novel treatment strategy for hematological malignancies such as acute lymphoblastic leukemia (ALL), lymphoma and multiple myeloma. However, treatment-related toxicities such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) have become significant hurdles to CAR-T treatment. Multiple strategies were established to alter the CAR structure on the genomic level to improve efficacy and reduce toxicities. Recently, the innovative gene-editing technology-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease9 (Cas9) system, which particularly exhibits preponderance in knock-in and knockout at specific sites, is widely utilized to manufacture CAR-T products. The application of CRISPR/Cas9 to CAR-T cell therapy has shown promising clinical results with minimal toxicity. In this review, we summarized the past achievements of CRISPR/Cas9 in CAR-T therapy and focused on the potential CAR-T targets.
Collapse
|
72
|
Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A. IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Front Mol Biosci 2021; 8:675179. [PMID: 34179083 PMCID: PMC8220804 DOI: 10.3389/fmolb.2021.675179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Adoptive immunotherapy using CAR-T cells is a promising curative treatment strategy for hematological malignancies. Current manufacture of clinical-grade CAR-T cells based on lentiviral/retrovirus transfection of T cells followed by anti-CD3/CD28 activation supplemented with IL-2 has been associated with low transfection efficiency and usually based on the use of terminally differentiated effector T cells. Thus, improving the quality and the quantity of CAR-T cells are essential for optimizing the CAR-T cell preparation. In our study, we focus on the role of IL-21 in the γc cytokine conditions for CAR-T cell preparation. We found for the first time that the addition of IL-21 in the CAR-T preparation improved T cell transfection efficiency through the reduction of IFN-γ expression 24-48 h after T cell activation. We also confirmed that IL-21 enhanced the enrichment and expansion of less differentiated CAR-T cells. Finally, we validated that IL-21 improved the CAR-T cell cytotoxicity, which was related to increased secretion of effector cytokines. Together, these findings can be used to optimize the CAR-T cell preparation.
Collapse
Affiliation(s)
- Li Du
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yaru Nai
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tingting Li
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
73
|
Ou X, Ma Q, Yin W, Ma X, He Z. CRISPR/Cas9 Gene-Editing in Cancer Immunotherapy: Promoting the Present Revolution in Cancer Therapy and Exploring More. Front Cell Dev Biol 2021; 9:674467. [PMID: 34095145 PMCID: PMC8172808 DOI: 10.3389/fcell.2021.674467] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has showed fantastic promise in pioneering and accelerating the field of cancer therapy and embraces unprecedented breakthroughs in clinical practice. The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, as a versatile gene-editing technology, lays a robust foundation to efficiently innovate cancer research and cancer therapy. Here, we summarize recent approaches based on CRISPR/Cas9 system for construction of chimeric antigen receptor T (CAR-T) cells and T cell receptor T (TCR-T) cells. Besides, we review the applications of CRISPR/Cas9 in inhibiting immune checkpoint signaling pathways and highlight the feasibility of CRISPR/Cas9 based engineering strategies to screen novel cancer immunotherapy targets. Conclusively, we discuss the perspectives, potential challenges and possible solutions in this vivid growing field.
Collapse
Affiliation(s)
- Xuejin Ou
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yin
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyao He
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
74
|
Zhang W, Yin Q, Huang H, Lu J, Qin H, Chen S, Zhang W, Su X, Sun W, Dong Y, Li Q. Personal Neoantigens From Patients With NSCLC Induce Efficient Antitumor Responses. Front Oncol 2021; 11:628456. [PMID: 33928024 PMCID: PMC8076796 DOI: 10.3389/fonc.2021.628456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Objective To develop a neoantigen-targeted personalized cancer treatment for non-small cell lung cancer (NSCLC), neoantigens were obtained from collected human lung cancer samples, and the utility of neoantigen and neoantigen-reactive T cells (NRTs) was assessed. Methods Tumor specimens from three patients with NSCLC were obtained and analyzed by whole-exome sequencing, and neoantigens were predicted accordingly. Dendritic cells and T lymphocytes were isolated, NRTs were elicited and IFN-γ ELISPOT tests were conducted. HLA-A2.1/Kb transgenic mice were immunized with peptides from HLA-A*02:01+patient with high immunogenicity, and NRTs were subjected to IFN-γ, IL-2 and TNF-α ELISPOT as well as time-resolved fluorescence assay for cytotoxicity assays to verify the immunogenicity in vitro. The HLA-A*02:01+lung cancer cell line was transfected with minigene and inoculated into the flanks of C57BL/6nu/nu mice and the NRTs induced by the immunogenic polypeptides from autologous HLA-A2.1/Kb transgenic mice were adoptively transfused to verify their immunogenicity in vivo. Results Multiple putative mutation-associated neoantigens with strong affinity for HLA were selected from each patient. Immunogenic neoantigen were identified in all three NSCLC patients, the potency of ACAD8-T105I, BCAR1-G23V and PLCG1-M425L as effective neoantigen to active T cells in suppressing tumor growth was further proven both in vitro and in vivo using HLA-A2.1/Kb transgenic mice and tumor-bearing mouse models. Conclusion Neoantigens with strong immunogenicity can be screened from NSCLC patients through the whole-exome sequencing of patient specimens and machine-learning-based neoantigen predictions. NRTs shown efficient antitumor responses in transgenic mice and tumor-bearing mouse models. Our results indicate that the development of neoantigen-based personalized immunotherapies in NSCLC is possible. Precis Neoantigens with strong immunogenicity were screened from NSCLC patients. This research provides evidence suggesting that neoantigen-based therapy might serve as feasible treatment for NSCLC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Haidong Huang
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hao Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Wenjun Zhang
- Department of Emergency, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou Tea Mountain Higher Education Park, Wenzhou, China
| | - Weihong Sun
- Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital, Qingdao University, Qingdao, China
| | - Yuchao Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
75
|
Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol 2021; 12:626193. [PMID: 33868244 PMCID: PMC8047316 DOI: 10.3389/fimmu.2021.626193] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and heterogeneous autoimmune disease with symmetrical polyarthritis as its critical clinical manifestation. The basic cause of autoimmune diseases is the loss of tolerance to self or harmless antigens. The loss or functional deficiency of key immune cells, regulatory T (Treg) cells, has been confirmed in human autoimmune diseases. The pathogenesis of RA is complex, and the dysfunction of Tregs is one of the proposed mechanisms underlying the breakdown of self-tolerance leading to the progression of RA. Treg cells are a vital component of peripheral immune tolerance, and the transcription factor Foxp3 plays a major immunosuppressive role. Clinical treatment for RA mainly utilizes drugs to alleviate the progression of disease and relieve disease activity, and the ideal treatment strategy should be to re-induce self-tolerance before obvious tissue injury. Treg cells are one of the ideal options. This review will introduce the classification, mechanism of action, and characteristics of Treg cells in RA, which provides insights into clinical RA treatment.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Liu
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
76
|
Yu Y, Zhang J, Ni L, Zhu Y, Yu H, Teng Y, Lin L, Xue Z, Xue X, Shen X, Song H, Su X, Sun W, Cai Z. Neoantigen-reactive T cells exhibit effective anti-tumor activity against colorectal cancer. Hum Vaccin Immunother 2021; 18:1-11. [PMID: 33689574 PMCID: PMC8920255 DOI: 10.1080/21645515.2021.1891814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neoantigens play a crucial role in cancer immunotherapy. However, the effectiveness and safety of neoantigen-based immunotherapies in patients with colorectal cancer (CRC), particularly in the Chinese population, have not been well studied. This study explored the feasibility and effectiveness of neoantigens in the treatment of CRC. Whole-exome sequencing (WES) and transcriptome sequencing were used to identify somatic mutations, RNA expression, and human leukocyte antigen (HLA) alleles. Neoantigen candidates were predicted, and immunogenicity was assessed. The neoantigens TSHZ3-L523P, RARA-R83H, TP53-R248W, EYA2-V333I, and NRAS-G12D from Patient 4 (PW4); TASP1-P161L, RAP1GAP-S215R, MOSPD1-V63I, and NAV2-D1973N from Patient 10 (PW10); and HAVCR2-F39V, SEC11A-R11L, SMPDL3B-T452M, LRFN3-R118Q, and ULK1-S248L from Patient 11 (HLA-A0201+PW11) induced a heightened neoantigen-reactive T cell (NRT) response as compared with the controls in peripheral blood lymphocytes (PBLs) isolated from patients with CRC. In addition, we identified neoantigen-containing peptides SEC11A-R11L and ULK1-S248L from HLA-A0201+PW11, which more effectively elicited specific CTL responses than the corresponding native peptides in PBLs isolated from HLA-A0201+PW11 as well as in HLA-A2.1/Kb transgenic mice. Importantly, adoptive transfer of NRTs induced by vaccination with two mutant peptides could effectively inhibit tumor growth in tumor-bearing mouse models. These data indicate that neoantigen-containing peptides with high immunogenicity represent promising candidates for peptide-mediated personalized therapy. Abbreviations: CRC: colorectal cancer; DCs: dendritic cells; ELISPOT: enzyme-linked immunosorbent spot; E:T: effector:target; HLA: human leukocyte antigen; MHC: major histocompatibility complex; Mut: mutant type; NGS: next-generation sequencing; NRTs: neoantigen-reactive T cells; PBMCs: peripheral blood mononuclear cells; STR: short tandem repeat; PBLs: peripheral blood lymphocytes; PBS: phosphate-buffered saline; PD-1: programmed cell death protein 1; TILs: tumor-infiltrating lymphocytes; RNA-seq: RNA sequencing; Tg: transgenic; TMGs: tandem minigenes; WES: whole-exome sequencing; WT: wild-type.
Collapse
Affiliation(s)
- Yaojun Yu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leyi Ni
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuesheng Zhu
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hejie Yu
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Teng
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Limiao Lin
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhanxiong Xue
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Department of Oncology, Wenzhou Medical University School of Basic Medicine, Wenzhou, Zhejiang, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiping Song
- Department of Oncology, Qingdao Central Hospital, The Second Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiaoping Su
- Department of Oncology, Wenzhou Medical University School of Basic Medicine, Wenzhou, Zhejiang, China
| | - Weihong Sun
- Department of Oncology, Biotherapy Center, Qingdao Central Hospital, The Second Affiliated Hospital, Qingdao University, Qingdao, China
| | - Zhenzhai Cai
- Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
77
|
|
78
|
Fix SM, Jazaeri AA, Hwu P. Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer. Cancer Discov 2021; 11:560-574. [PMID: 33563662 PMCID: PMC8193798 DOI: 10.1158/2159-8290.cd-20-1083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Adoptive cell therapy (ACT) for cancer shows tremendous potential; however, several challenges preclude its widespread use. These include poor T-cell function in hostile tumor microenvironments, a lack of tumor-specific target antigens, and the high cost and poor scalability of cell therapy manufacturing. Creative genome-editing strategies are beginning to emerge to address each of these limitations, which has initiated the next generation of cell therapy products now entering clinical trials. CRISPR is at the forefront of this revolution, offering a simple and versatile platform for genetic engineering. This review provides a comprehensive overview of CRISPR applications that have advanced ACT. SIGNIFICANCE: The clinical impact of ACT for cancer can be expanded by implementing specific genetic modifications that enhance the potency, safety, and scalability of cellular products. Here we provide a detailed description of such genetic modifications, highlighting avenues to enhance the therapeutic efficacy and accessibility of ACT for cancer. Furthermore, we review high-throughput CRISPR genetic screens that have unveiled novel targets for cell therapy enhancement.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- CRISPR-Cas Systems
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Clinical Trials as Topic
- Combined Modality Therapy
- Disease Management
- Drug Evaluation, Preclinical
- Gene Editing/methods
- Genetic Engineering
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Samantha M Fix
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
79
|
Freen-van Heeren JJ. Using CRISPR to enhance T cell effector function for therapeutic applications. Cytokine X 2021; 3:100049. [PMID: 33604565 PMCID: PMC7885876 DOI: 10.1016/j.cytox.2020.100049] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.
Collapse
Key Words
- AP-1, activator protein 1
- ARE, AU-rich element
- ARE-Del, deletion of the 3′UTR AREs from the Ifng/IFNG gene
- CAR T cells
- CAR, Chimeric Antigen Receptor
- CRISPR
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- CRS, cytokine release syndrome
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cas, CRISPR-associated
- Cas9
- Cytokines
- DGK, Diacylglycerol kinase
- DHX37, DEAH-box helicase 37
- EBV, Epstein Barr virus
- FOXP3, Forkhead box P3
- GATA, GATA binding protein
- Genome editing
- IFN, interferon
- IL, interleukin
- LAG-3, Lymphocyte Activating 3
- NF-κB, nuclear factor of activated B cells
- PD-1, Programmed cell Death 1
- PD-L1, Programmed Death Ligand 1
- PTPN2, Protein Tyrosine Phosphatase Non-Receptor 2
- Pdia3, Protein Disulfide Isomerase Family A Member 3
- RBP, RNA-binding protein
- RNP, ribonuclear protein
- T cell effector function
- T cells
- TCR, T cell receptor
- TGF, transforming growth factor
- TIL, Tumor Infiltrating Lymphocyte
- TLRs, Toll-like receptors
- TNF, tumor necrosis factor
- TRAC, TCR-α chain
- TRBC, TCR-β chain
- UTR, untranslated region
- tTCR, transgenic TCR
Collapse
|
80
|
Randhawa S. CRISPR-Cas9 in cancer therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:129-163. [PMID: 34127191 DOI: 10.1016/bs.pmbts.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a disease mainly caused by an accumulation of mutations in cells. Consequently, correcting those genetic aberrations could be a potential treatment strategy. The traditional route for cancer drug development is tedious, laborious, and time-consuming. Due to target identification, drug formulation, pre-clinical testing, clinical testing, and regulatory hurdles, on average, it takes 10-15 years for a cancer drug to go from target discovery to a marketable oncology drug. The advent of CRISPR-Cas9 technology has greatly expedited this procedure. CRISPR-Cas9 has single-handedly accelerated target identification and pre-clinical testing. Furthermore, CRISPR-Cas9 has also been used in ex vivo editing of T-cells to specifically target tumor cells. In this chapter, we will discuss the various ways in which CRISPR-Cas9 has been used for the betterment of the cancer drug development process. Additionally, we will discuss various ways in which it is currently being used as therapy and the drawbacks which restrict the use of this groundbreaking technology as direct therapy.
Collapse
|
81
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
82
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
83
|
Abstract
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.
Collapse
Affiliation(s)
- Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjoon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
84
|
Kamali E, Rahbarizadeh F, Hojati Z, Frödin M. CRISPR/Cas9-mediated knockout of clinically relevant alloantigenes in human primary T cells. BMC Biotechnol 2021; 21:9. [PMID: 33514392 PMCID: PMC7844963 DOI: 10.1186/s12896-020-00665-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background The ability of CRISPR/Cas9 to mutate any desired genomic locus is being increasingly explored in the emerging area of cancer immunotherapy. In this respect, current efforts are mostly focused on the use of autologous (i.e. patient-derived) T cells. The autologous approach, however, has drawbacks in terms of manufacturing time, cost, feasibility and scalability that can affect therapeutic outcome or wider clinical application. The use of allogeneic T cells from healthy donors may overcome these limitations. For this strategy to work, the endogenous T cell receptor (TCR) needs to be knocked out in order to reduce off-tumor, graft-versus-host-disease (GvHD). Furthermore, CD52 may be knocked out in the donor T cells, since this leaves them resistant to the commonly used anti-CD52 monoclonal antibody lymphodepletion regimen aiming to suppress rejection of the infused T cells by the recipient. Despite the great prospect, genetic manipulation of human T cells remains challenging, in particular how to deliver the engineering reagents: virus-mediated delivery entails the inherent risk of altering cancer gene expression by the genomically integrated CRISPR/Cas9. This is avoided by delivery of CRISPR/Cas9 as ribonucleoproteins, which, however, are fragile and technically demanding to produce. Electroporation of CRISPR/Cas9 expression plasmids would bypass the above issues, as this approach is simple, the reagents are robust and easily produced and delivery is transient. Results Here, we tested knockout of either TCR or CD52 in human primary T cells, using electroporation of CRISPR/Cas9 plasmids. After validating the CRISPR/Cas9 constructs in human 293 T cells by Tracking of Indels by Decomposition (TIDE) and Indel Detection by Amplicon Analysis (IDAA) on-target genomic analysis, we evaluated their efficacy in primary T cells. Four days after electroporation with the constructs, genomic analysis revealed a knockout rate of 12–14% for the two genes, which translated into 7–8% of cells showing complete loss of surface expression of TCR and CD52 proteins, as determined by flow cytometry analysis. Conclusion Our results demonstrate that genomic knockout by electroporation of plasmids encoding CRISPR/Cas9 is technically feasible in human primary T cells, albeit at low efficiency.
Collapse
Affiliation(s)
- Elahe Kamali
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zohreh Hojati
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
85
|
Boland J, Nedelcu E. CRISPR/Cas9 for the Clinician: Current uses of gene editing and applications for new therapeutics in oncology. Perm J 2021; 24:1-3. [PMID: 33482972 DOI: 10.7812/tpp/20.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise genomic editing has given rise to treatments in previously untreatable genetic diseases and has led to revolutions in treatment for cancer. In the past decade, the discovery and development of clustered regularly interspaced short palindromic repeats (CRISPR) technologies has led to advances across medicine and biotechnology. Specifically, the CRISPR/Cas9 system has improved translational discovery and therapeutics for oncology across tumor types. In this review, we briefly summarize the history and development of CRISPR, explain CRISPR-Cas systems and CRISPR gene editing tools, highlight the development and application of CRISPR technologies for translational and therapeutic purposes in different oncologic tumors, and review novel treatment paradigms using CRISPR in immuno-oncology, including checkpoint inhibitors and chimeric antigen receptor T cell therapy.
Collapse
Affiliation(s)
- Julia Boland
- Drexel University College of Medicine, Philadelphia, PA.,George Washington University Hospital, Washington, DC 20037
| | - Elena Nedelcu
- University of California San Francisco Laboratory Medicine, San Francisco, CA
| |
Collapse
|
86
|
Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci 2021; 269:119087. [PMID: 33476633 DOI: 10.1016/j.lfs.2021.119087] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Cancer treatment has been always considered one of the most critical and vital themes of clinical issues. Many approaches have been developed, depending on the type and the stage of tumor. Gene therapy has the potential to revolutionize different cancer therapy. With the advent of recent bioinformatics technologies and genetic science, it become possible to identify, diagnose and determine the potential treatment using the technology of gene delivery. Several approaches have been developed and experimented in vitro and vivo for cancer therapy including: naked nucleic acids based therapy, targeting micro RNAs, oncolytic virotherapy, suicide gene based therapy, targeting telomerase, cell mediated gene therapy, and CRISPR/Cas9 based therapy. In this review, we present a straightforward introduction to cancer biology and occurrence, highlighting different viral and non-viral gene delivery systems for gene therapy and critically discussed the current and various strategies for cancer gene therapy.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | | |
Collapse
|
87
|
Song X, Liu C, Wang N, Huang H, He S, Gong C, Wei Y. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168:158-180. [PMID: 32360576 DOI: 10.1016/j.addr.2020.04.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/19/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems are efficient and versatile gene editing tools, which offer enormous potential to treat cancer by editing genome, transcriptome or epigenome of tumor cells and/or immune cells. A large body of works have been done with CRISPR/Cas systems for genetic modification, and 16 clinical trials were conducted to treat cancer by ex vivo or in vivo gene editing approaches. Now, promising preclinical works have begun using CRISPR/Cas systems in vivo. However, efficient and safe delivery of CRISPR/Cas systems in vivo is still a critical challenge for their clinical applications. This article summarizes delivery of CRISPR/Cas systems by physical methods, viral vectors and non-viral vectors for cancer gene therapy and immunotherapy. The prospects for the development of physical methods, viral vectors and non-viral vectors for delivery of CRISPR/Cas systems are reviewed, and promising advances in cancer treatment using CRISPR/Cas systems are discussed.
Collapse
Affiliation(s)
- Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Siyan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
88
|
Kim S, Hupperetz C, Lim S, Kim CH. Genome editing of immune cells using CRISPR/Cas9. BMB Rep 2021; 54:59-69. [PMID: 33298251 PMCID: PMC7851445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 03/31/2024] Open
Abstract
The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/ Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells. [BMB Reports 2021; 54(1): 59-69].
Collapse
Affiliation(s)
- Segi Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Cedric Hupperetz
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjoon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chan Hyuk Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
89
|
Liu G, Zhang Q, Li D, Zhang L, Gu Z, Liu J, Liu G, Yang M, Gu J, Cui X, Pan Y, Tian X. PD-1 silencing improves anti-tumor activities of human mesothelin-targeted CAR T cells. Hum Immunol 2020; 82:130-138. [PMID: 33341289 DOI: 10.1016/j.humimm.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor T (CAR T) cell therapy is a new pillar in cancer therapeutics, and has been successfully used for the treatment of cancers, including acute lymphoblastic leukemia and solid cancers. Following immune attack, many tumors upregulate inhibitory ligands which bind to inhibitory receptors on T cells. For example, the interaction between programmed cell death protein 1 (PD-1) on activated T cells and its ligands (widely known as PD-L1) on a target tumor limits the efficacy of CAR T cells therapy against poorly responding tumors. Here, we use mesothelin (MSLN)-expressing human ovarian cancer cells (SKOV3) and human colon cancer cells (HCT116) to investigate whether PD-1-mediated T cell exhaustion affects the anti-tumor activity of MSLN-targeted CAR T cells. We utilized cell-intrinsic PD-1-targeting shRNA overexpression strategy, resulting in a significant PD-1 silencing in CAR T cells. The reduction of PD-1 expression on T cell surface strongly augmented CAR T cell cytokine production and cytotoxicity towards PD-L1-expressing cancer cells in vitro. This study indicates the enhanced anti-tumor efficacy of PD-1-silencing MSLN-targeted CAR T cells against several cancers and suggests the potential of other specific gene silencing on the immune checkpoints to enhance the CAR T cell therapies against human tumors.
Collapse
Affiliation(s)
- Guodi Liu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Qian Zhang
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Dehua Li
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Linsong Zhang
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Zhangjie Gu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Jibin Liu
- Institute of Tumor of Nantong Tumor Hospital, No. 30, North Tongyang Road, Pingchao Town, Tongzhou District, Nantong City, Jiangsu Province 226361, China
| | - Guoping Liu
- Department of General Surgery, Changhai Hospital, Shanghai 200433, China
| | - Mu Yang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jinwei Gu
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Xingbing Cui
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Yingjiao Pan
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China
| | - Xiaoli Tian
- Shanghai Yihao Biological Technology Co, Ltd, Shanghai 200231, China.
| |
Collapse
|
90
|
Hazafa A, Mumtaz M, Farooq MF, Bilal S, Chaudhry SN, Firdous M, Naeem H, Ullah MO, Yameen M, Mukhtiar MS, Zafar F. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions. Life Sci 2020; 263:118525. [PMID: 33031826 PMCID: PMC7533657 DOI: 10.1016/j.lfs.2020.118525] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of death and a major public health problem, universally. According to accumulated data, annually, approximately 8.5 million people died because of the lethality of cancer. Recently, a novel RNA domain-containing endonuclease-based genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) have been proved as a powerful technique in the treatment of cancer cells due to its multifunctional properties including high specificity, accuracy, time reducing and cost-effective strategies with minimum off-target effects. The present review investigates the overview of recent studies on the newly developed genome-editing strategy, CRISPR/Cas9, as an excellent pre-clinical therapeutic option in the reduction and identification of new tumor target genes in the solid tumors. Based on accumulated data, we revealed that CRISPR/Cas9 significantly inhibited the robust tumor cell growth (breast, lung, liver, colorectal, and prostate) by targeting the oncogenes, tumor-suppressive genes, genes associated to therapies by inhibitors, genes associated to chemotherapies drug resistance, and suggested that CRISPR/Cas9 could be a potential therapeutic target in inhibiting the tumor cell growth by suppressing the cell-proliferation, metastasis, invasion and inducing the apoptosis during the treatment of malignancies in the near future. The present review also discussed the current challenges and barriers, and proposed future recommendations for a better understanding.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Muhammad Mumtaz
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Fras Farooq
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Bilal
- Department of Agronomy, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Musfira Firdous
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Huma Naeem
- Department of Computer Science, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Obaid Ullah
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Yameen
- Department of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Shahid Mukhtiar
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Zafar
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
91
|
Gene Augmentation and Editing to Improve TCR Engineered T Cell Therapy against Solid Tumors. Vaccines (Basel) 2020; 8:vaccines8040733. [PMID: 33287413 PMCID: PMC7761868 DOI: 10.3390/vaccines8040733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Recent developments in gene engineering technologies have drastically improved the therapeutic treatment options for cancer patients. The use of effective chimeric antigen receptor T (CAR-T) cells and recombinant T cell receptor engineered T (rTCR-T) cells has entered the clinic for treatment of hematological malignancies with promising results. However, further fine-tuning, to improve functionality and safety, is necessary to apply these strategies for the treatment of solid tumors. The immunosuppressive microenvironment, the surrounding stroma, and the tumor heterogeneity often results in poor T cell reactivity, functionality, and a diminished infiltration rates, hampering the efficacy of the treatment. The focus of this review is on recent advances in rTCR-T cell therapy, to improve both functionality and safety, for potential treatment of solid tumors and provides an overview of ongoing clinical trials. Besides selection of the appropriate tumor associated antigen, efficient delivery of an optimized recombinant TCR transgene into the T cells, in combination with gene editing techniques eliminating the endogenous TCR expression and disrupting specific inhibitory pathways could improve adoptively transferred T cells. Armoring the rTCR-T cells with specific cytokines and/or chemokines and their receptors, or targeting the tumor stroma, can increase the infiltration rate of the immune cells within the solid tumors. On the other hand, clinical “off-tumor/on-target” toxicities are still a major potential risk and can lead to severe adverse events. Incorporation of safety switches in rTCR-T cells can guarantee additional safety. Recent clinical trials provide encouraging data and emphasize the relevance of gene therapy and gene editing tools for potential treatment of solid tumors.
Collapse
|
92
|
Li Z, Fei T. Improving Cancer Immunotherapy with CRISPR-Based Technology. ACTA ACUST UNITED AC 2020; 4:e1900253. [PMID: 33245213 DOI: 10.1002/adbi.201900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/29/2019] [Indexed: 12/19/2022]
Abstract
The rapidly evolving field of immunotherapy has attracted great attention in the field of cancer research and already revolutionized the clinical practice standard for treating cancer. Genetically engineered T cells expressing either T cell receptors or chimeric antigen receptors represent novel treatment modalities and are considered powerful weapons to fight cancer. The immune checkpoint blockade, which harnesses the negative control signaling behind the anti-tumor immune response with therapeutic antibodies by blocking cytotoxic T lymphocyte-associated protein 4 or the programmed cell death 1 pathways are another mainstream direction for cancer immunotherapy. In addition to cytotoxic T cells, other immune cell types such as nature killer cells and macrophages also possess the ability to eradicate cancer cells, which may serve as the basis to develop novel cancer immunotherapies. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced palindromic repeats (CRISPR)-based tools, has greatly expedited many biomedical research areas, including cancer immunology and immunotherapy. In this review, the contribution of current CRISPR techniques to basic and translational cancer immunology research is discussed, and the future for cancer immunotherapy in the age of CRISPR is predicted.
Collapse
Affiliation(s)
- Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China.,Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, 110819, P. R. China
| |
Collapse
|
93
|
Kotowski M, Sharma S. CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods Protoc 2020; 3:mps3040079. [PMID: 33217926 PMCID: PMC7720142 DOI: 10.3390/mps3040079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022] Open
Abstract
While clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing techniques have been widely adapted for use in immortalised immune cells, efficient manipulation of primary T cells has proved to be more challenging. Nonetheless, the rapid expansion of the CRISPR toolbox accompanied by the development of techniques for delivery of CRISPR components into primary T cells now affords the possibility to genetically manipulate primary T cells both with precision and at scale. Here, we review the key features of the techniques for primary T cell editing and discuss how the new generation of CRISPR-based tools may advance genetic engineering of these immune cells. This improved ability to genetically manipulate primary T cells will further enhance our fundamental understanding of cellular signalling and transcriptional networks in T cells and more importantly has the potential to revolutionise T cell-based therapies.
Collapse
|
94
|
Qi T, Fu J, Zhang W, Cui W, Xu X, Yue J, Wang Q, Tian X. Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Transl Cancer Res 2020; 9:6811-6819. [PMID: 35117290 PMCID: PMC8798335 DOI: 10.21037/tcr-20-2118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/09/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1), as an immune checkpoint cell membrane receptor, negatively regulates T cell activation via its immune receptor, the tyrosine-based switch motif (ITSM). The purpose of this research was to evaluate the antitumor activity T cells with the ITSM mutation of PD-1 on non-small cell lung cancer (NSCLC) in vitro and in vivo. METHODS In this study, the tyrosine of ITSM in cytotoxic T cells was mutated using the adenine base editor (ABE)-xCas9 system to evaluate its effect on the antitumor activity of T cells against NSCLC. RESULTS Results showed that the PD-1-deficient T cells enhanced the death of the cocultured NSCLC cells compared with the normal T cells and saline solution. PD-1-deficient T cells also changed the interleukin 2(IL-2), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion of T cells compared with those of the normal T cells. The effectiveness of ITSM mutation in enhancing the antitumor activity of PD-1-deficient T cells was verified in vivo by using a mouse xenograft model. The xenografted mice treated with PD-1-deficient T cells demonstrated repressed tumor growth of the NSCLC cells compared with those treated with normal T cells and saline solution. CONCLUSIONS The mutation of ITSM in cytotoxic T cell via the ABE-xCas9 system can significantly enhance the antitumor activity of T cells.
Collapse
Affiliation(s)
- Tongbing Qi
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Juan Fu
- Shandong Bio-focus Gene Science and Technology Ltd., Zibo, China
| | - Wen Zhang
- Clinical laboratory of Zibo Central Hospital, Zibo, China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Xiaosong Xu
- Shandong Bio-focus Gene Science and Technology Ltd., Zibo, China
| | - Jianmei Yue
- Department of Endocrinology, the First Hospital of Zibo City, Qilu Medical University, Zibo, China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Xuewen Tian
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
95
|
Rosell R, Filipska M, Chaib I, Lligé D, Laguia F. Commentary: Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Front Oncol 2020; 10:1726. [PMID: 33014853 PMCID: PMC7511626 DOI: 10.3389/fonc.2020.01726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Martyna Filipska
- Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Imane Chaib
- Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - David Lligé
- Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Fernando Laguia
- Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| |
Collapse
|
96
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, Carmona MD, Herrera C, Martin F, Benabdellah K. Using Gene Editing Approaches to Fine-Tune the Immune System. Front Immunol 2020; 11:570672. [PMID: 33117361 PMCID: PMC7553077 DOI: 10.3389/fimmu.2020.570672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies not only provide unprecedented opportunities to study basic cellular system functionality but also improve the outcomes of several clinical applications. In this review, we analyze various gene editing techniques used to fine-tune immune systems from a basic research and clinical perspective. We discuss recent advances in the development of programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases. We also discuss the use of programmable nucleases and their derivative reagents such as base editing tools to engineer immune cells via gene disruption, insertion, and rewriting of T cells and other immune components, such natural killers (NKs) and hematopoietic stem and progenitor cells (HSPCs). In addition, with regard to chimeric antigen receptors (CARs), we describe how different gene editing tools enable healthy donor cells to be used in CAR T therapy instead of autologous cells without risking graft-versus-host disease or rejection, leading to reduced adoptive cell therapy costs and instant treatment availability for patients. We pay particular attention to the delivery of therapeutic transgenes, such as CARs, to endogenous loci which prevents collateral damage and increases therapeutic effectiveness. Finally, we review creative innovations, including immune system repurposing, that facilitate safe and efficient genome surgery within the framework of clinical cancer immunotherapies.
Collapse
Affiliation(s)
- Kristina Pavlovic
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pedro Justicia-Lirio
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- LentiStem Biotech, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - M. Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
98
|
Rafia C, Harly C, Scotet E. Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunol Rev 2020; 298:117-133. [DOI: 10.1111/imr.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Chirine Rafia
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
- ImCheck Therapeutics Marseille France
| | - Christelle Harly
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| | - Emmanuel Scotet
- INSERMCNRSCRCINAUniversité de Nantes Nantes France
- LabEx IGO “Immunotherapy, Graft, Oncology” Nantes France
| |
Collapse
|
99
|
Ates I, Rathbone T, Stuart C, Bridges PH, Cottle RN. Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes (Basel) 2020; 11:E1113. [PMID: 32977396 PMCID: PMC7597956 DOI: 10.3390/genes11101113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.
Collapse
Affiliation(s)
- Ilayda Ates
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Tanner Rathbone
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - Callie Stuart
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| | - P. Hudson Bridges
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Renee N. Cottle
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (I.A.); (T.R.); (C.S.)
| |
Collapse
|
100
|
Ernst MPT, Broeders M, Herrero-Hernandez P, Oussoren E, van der Ploeg AT, Pijnappel WWMP. Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Mol Ther Methods Clin Dev 2020; 18:532-557. [PMID: 32775490 PMCID: PMC7393410 DOI: 10.1016/j.omtm.2020.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
Collapse
Affiliation(s)
- Martijn P T Ernst
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Pablo Herrero-Hernandez
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Esmee Oussoren
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, the Netherlands
| |
Collapse
|