51
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
52
|
Samineni L, Acharya B, Behera H, Oh H, Kumar M, Chowdhury R. Protein engineering of pores for separation, sensing, and sequencing. Cell Syst 2023; 14:676-691. [PMID: 37591205 DOI: 10.1016/j.cels.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function. Recent studies have demonstrated the ability to redesign/alter natural proteins for applications in industrial processes of interest and to make customized, novel synthetic proteins in the laboratory through protein engineering. We comprehensively review the successes in engineering pore-forming proteins and correlate the amino acid-level biochemistry of different pore modification strategies to the intended applications limited to nucleotide/peptide sequencing, single-molecule sensing, and precise molecular separations.
Collapse
Affiliation(s)
- Laxmicharan Samineni
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Bibek Acharya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
53
|
Xing Y, Rottensteiner A, Ciccone J, Howorka S. Functional Nanopores Enabled with DNA. Angew Chem Int Ed Engl 2023; 62:e202303103. [PMID: 37186432 DOI: 10.1002/anie.202303103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Membrane-spanning nanopores are used in label-free single-molecule sensing and next-generation portable nucleic acid sequencing, and as powerful research tools in biology, biophysics, and synthetic biology. Naturally occurring protein and peptide pores, as well as synthetic inorganic nanopores, are used in these applications, with their limitations. The structural and functional repertoire of nanopores can be considerably expanded by functionalising existing pores with DNA strands and by creating an entirely new class of nanopores with DNA nanotechnology. This review outlines progress in this area of functional DNA nanopores and outlines developments to open up new applications.
Collapse
Affiliation(s)
- Yongzheng Xing
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Alexia Rottensteiner
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Jonah Ciccone
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
54
|
Sun R, Lv J, Xue X, Yu S, Tan Z. Chemical Sensors using Single-Molecule Electrical Measurements. Chem Asian J 2023; 18:e202300181. [PMID: 37080926 DOI: 10.1002/asia.202300181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Driven by the digitization and informatization of contemporary society, electrical sensors are developing toward minimal structure, intelligent function, and high detection resolution. Single-molecule electrical measurement techniques have been proven to be capable of label-free molecular recognition and detection, which opens a new strategy for the design of efficient single-molecule detection sensors. In this review, we outline the main advances and potentials of single-molecule electronics for qualitative identification and recognition assays at the single-molecule level. Strategies for single-molecule electro-sensing and its main applications are reviewed, mainly in the detection of ions, small molecules, oligomers, genetic materials, and proteins. This review summarizes the remaining challenges in the current development of single-molecule electrical sensing and presents some potential perspectives for this field.
Collapse
Affiliation(s)
- Ruiqin Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jieyao Lv
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xinyi Xue
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Shiyong Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhibing Tan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
55
|
Wang F, Zhao C, Zhao P, Chen F, Qiao D, Feng J. MoS 2 nanopore identifies single amino acids with sub-1 Dalton resolution. Nat Commun 2023; 14:2895. [PMID: 37210427 DOI: 10.1038/s41467-023-38627-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
The sequencing of single protein molecules using nanopores is faced with a huge challenge due to the lack of resolution needed to resolve single amino acids. Here we report the direct experimental identification of single amino acids in nanopores. With atomically engineered regions of sensitivity comparable to the size of single amino acids, MoS2 nanopores provide a sub-1 Dalton resolution for discriminating the chemical group difference of single amino acids, including recognizing the amino acid isomers. This ultra-confined nanopore system is further used to detect the phosphorylation of individual amino acids, demonstrating its capability for reading post-translational modifications. Our study suggests that a sub-nanometer engineered pore has the potential to be applied in future chemical recognition and de novo protein sequencing at the single-molecule level.
Collapse
Affiliation(s)
- Fushi Wang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Pinlong Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Dan Qiao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, 310027, Hangzhou, China.
- Research Center for Quantum Sensing, Research Institute of Intelligent Sensing, Zhejiang Lab, 311121, Hangzhou, China.
| |
Collapse
|
56
|
Xi G, Wu L, Meng H, Li F, Ge Q, Tu J. Discriminating Single Nucleotide Variations in Solid-State Nanopores by Evaluating the Combination Efficiency between DNA Polymerase and Its Substrate. J Phys Chem B 2023. [PMID: 37197998 DOI: 10.1021/acs.jpcb.3c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A single nucleotide variant present between two otherwise identical nucleic acids will have unexpected functional consequences frequently. Here, a neoteric single nucleotide variation (SNV) detection assay that integrates two complementary nanotechnology systems, nanoassembly technology and an ingenious nanopore biosensing platform, has been applied to this research. Specifically, we set up a detection system to reflect the binding efficiency of the polymerase and nanoprobe through the difference of nanopore signals and then explore the effect of base mutation at the binding site. In addition, machine learning based on support vector machines is used to automatically classify characteristic events mapped by nanopore signals. Our system reliably discriminates single nucleotide variants at binding sites, even possessing the recognition among transitions, transversions, and hypoxanthine (base I). Our results demonstrate the potential of solid-state nanopore detection for SNV and provide some ideas for expanding solid-state nanopore detection platforms.
Collapse
Affiliation(s)
- Guohao Xi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingzhi Wu
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
| | - Hao Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fuyao Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
57
|
Yu C, Wang Y, Wu R, Li B. Single Molecular Nanopores as a Label-Free Method for Homogeneous Conformation Investigation and Anti-Interference Molecular Analysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23602-23612. [PMID: 37141628 DOI: 10.1021/acsami.3c01884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this paper, we propose a "reciprocal strategy" that, on the one hand, explores the ability of solid-state nanopores in a homogeneous high-fidelity characterization of nucleic acid assembly and, on the other hand, the formed nucleic acid assembly with a large size serves as an amplifier to provide a highly distinguished and anti-interference signal for molecular sensing. Four-hairpin hybridization chain reaction (HCR) with G-rich tail tags is taken as the proof-of-concept demonstration. G-rich tail tags are commonly used to form G-quadruplex signal probes on the side chain of HCR duplex concatemers. When such G-tailed HCR concatemers translocate the nanopore, abnormal, much higher nanopore signals over normal duplexes can be observed. Combined with atomic force microscopy, we reveal the G-rich tail may easily induce the "intermolecular interaction" between HCR concatemers to form "branched assembly structure (BAS)". To the best of our knowledge, this is the first evidence for the formation BAS of the G tailed HCR concatemers in a homogeneous solution. Systematic nanopore measurements further suggest the formation of these BASs is closely related to the types of salt ions, the amount of G, the concentration of substrate hairpins, the reaction time, and so forth. Under optimized conditions, these BASs can be grown to just the right size without being too large to block the pores, while producing a current 14 times that of conventional double-stranded chains. Here, these very abnormal large current blockages have, in turn, been taken as an anti-interference signal indicator for small targets in order to defend the high noises resulting from co-existing big species (e.g., enzymes or other long double-stranded DNA).
Collapse
Affiliation(s)
- Chunmiao Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yesheng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruiping Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
58
|
Yu RJ, Li Q, Liu SC, Ma H, Ying YL, Long YT. Simultaneous observation of the spatial and temporal dynamics of single enzymatic catalysis using a solid-state nanopore. NANOSCALE 2023; 15:7261-7266. [PMID: 37038732 DOI: 10.1039/d2nr06361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We developed a bipolar SiNx nanopore for the observation of single-molecule heterogeneous enzymatic dynamics. Single glucose oxidase was immobilized inside the nanopore and its electrocatalytic behaviour was real-time monitored via continuous recording of ionic flux amplification. The temporal heterogeneity in enzymatic properties and its spatial dynamic orientations were observed simultaneously, and these two properties were found to be closely correlated. We anticipate that this method offers new perspectives on the correlation of protein structure and function at the single-molecule level.
Collapse
Affiliation(s)
- Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiao Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
59
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
60
|
Siwy ZS, Bruening ML, Howorka S. Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact. Chem Soc Rev 2023; 52:1983-1994. [PMID: 36794856 DOI: 10.1039/d2cs00894g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications.
Collapse
Affiliation(s)
- Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, USA.
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, USA.
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, UK.
| |
Collapse
|
61
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
62
|
Chowdhury T, Cressiot B, Parisi C, Smolyakov G, Thiébot B, Trichet L, Fernandes FM, Pelta J, Manivet P. Circulating Tumor Cells in Cancer Diagnostics and Prognostics by Single-Molecule and Single-Cell Characterization. ACS Sens 2023; 8:406-426. [PMID: 36696289 DOI: 10.1021/acssensors.2c02308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating tumor cells (CTCs) represent an interesting source of biomarkers for diagnosis, prognosis, and the prediction of cancer recurrence, yet while they are extensively studied in oncobiology research, their diagnostic utility has not yet been demonstrated and validated. Their scarcity in human biological fluids impedes the identification of dangerous CTC subpopulations that may promote metastatic dissemination. In this Perspective, we discuss promising techniques that could be used for the identification of these metastatic cells. We first describe methods for isolating patient-derived CTCs and then the use of 3D biomimetic matrixes in their amplification and analysis, followed by methods for further CTC analyses at the single-cell and single-molecule levels. Finally, we discuss how the elucidation of mechanical and morphological properties using techniques such as atomic force microscopy and molecular biomarker identification using nanopore-based detection could be combined in the future to provide patients and their healthcare providers with a more accurate diagnosis.
Collapse
Affiliation(s)
- Tafsir Chowdhury
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Cleo Parisi
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Georges Smolyakov
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | | | - Léa Trichet
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Juan Pelta
- CY Cergy Paris Université, CNRS, LAMBE, 95000 Cergy, France.,Université Paris-Saclay, Université d'Evry, CNRS, LAMBE, 91190 Evry, France
| | - Philippe Manivet
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France.,Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| |
Collapse
|
63
|
Guan X, Li H, Chen L, Qi G, Jin Y. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection. ACS Sens 2023; 8:427-442. [PMID: 36670058 DOI: 10.1021/acssensors.2c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass capillary-based nanopore (G-nanopore), due to its tapered tip, easy tunability in orifice size, and especially its flexible surface modifications that can be tailored to effectively capture and enhance the ionic current signal of single entities (single molecules, single cells, and single particles), offers a powerful and nanoconfined sensing platform for diverse biological measurements of single cells and single molecules. Compared with other artificial two-dimensional solid-state nanopores, its conical tip and high spatial and temporal resolution characteristics facilitate noninvasive single molecule and selected area (subcellular) single cell detections (e.g., DNA mutations, highly expressed proteins, and small molecule markers that reflect the change characteristics of the tumor), as a small G-nanopore (≤100 nm) does negligible damage to cell functions and cell membrane integrity when inserted through the cell membrane. In this brief review, we summarize the preparation of G-nanopores and discuss the advantages of them as solid-state sensing platforms for single molecule and single cell detection applications as well as for cancer diagnosis and treatment applications. We also describe the current bottlenecks that limit the widespread use of G-nanopores in clinical applications and provide an outlook on future developments. The brief review will provide the reader with a quick survey of this field and facilitate the rapid development of a G-nanopore sensing platform for future tumor diagnosis and personalized medicine based on single-molecule/single-cell bioassay.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
64
|
Yang L, Sun Z, Zhang S, Sun Y, Li H. Chiral Transport in Nanochannel Based Artificial Drug Transporters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205274. [PMID: 36464638 DOI: 10.1002/smll.202205274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The precise regulation of chiral drug transmembrane transport can be achieved through drug transporters in living organisms. However, implementing this process in vitro is still a formidable challenge due to the complexity of the biological systems that control drug enantiomeric transport. Herein, a facile and feasible strategy is employed to construct chiral L-tyrosine-modified nanochannels (L-Tyr nanochannels) based on polyethylene terephthalate film, which could enhance the chiral recognition of propranolol isomers (R-/S-PPL) for transmembrane transport. Moreover, conventional fluorescence spectroscopy, patch-clamp technology, laser scanning confocal microscopy, and picoammeter technology are employed to evaluate the performance of nanochannels. The results show that the L-Tyr nanochannel have better chiral selectivity for R-/S-PPL compared with the L-tryptophan (L-Trp) channel, and the chiral selectivity coefficient is improved by about 4.21-fold. Finally, a detailed theoretical analysis of the chirality selectivity mechanism is carried out. The findings would not only enrich the basic theory research related to chiral drug transmembrane transport, but also provide a new idea for constructing artificial channels to separate chiral drugs.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhongyue Sun
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, P. R. China
| | - Siyun Zhang
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
65
|
Laucirica G, Toum Terrones Y, Wagner MFP, Cayón VM, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Electrochemically addressed FET-like nanofluidic channels with dynamic ion-transport regimes. NANOSCALE 2023; 15:1782-1793. [PMID: 36602003 DOI: 10.1039/d2nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanofluidic channels in which the ionic transport can be modulated by the application of an external voltage to the nanochannel walls have been described as nanofluidic field effect transistors (nFETs) because of their analogy with electrolyte-gated field effect transistors. The creation of nFETs is attracting increasing attention due to the possibility of controlling ion transport by using an external voltage as a non-invasive stimulus. In this work, we show that it is possible to extend the actuation range of nFETs by using the supporting electrolyte as a "chemical effector". For this aim, a gold-coated poly(ethylene terephthalate) (PET) membrane was modified with electroactive poly-o-aminophenol. By exploiting the interaction between the electroactive poly-o-aminophenol and the ions in the electrolyte solution, the magnitude and surface charge of the nanochannels were fine-tuned. In this way, by setting the electrolyte nature it has been possible to set different ion transport regimes, i.e.: cation-selective or anion-selective ion transport, whereas the rectification efficiency of the ionic transport was controlled by the gate voltage applied to the electroactive polymer layer. Remarkably, under both regimes, the platform displays a reversible and rapid response. We believe that this strategy to preset the actuation range of nFETs by using the supporting electrolyte as a chemical effector can be extended to other devices, thus offering new opportunities for the development of stimulus-responsive solid-state nanochannels.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Yamili Toum Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Michael F P Wagner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - María Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287 Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
66
|
Takashima Y, Komoto Y, Ohshiro T, Nakatani K, Taniguchi M. Quantitative Microscopic Observation of Base-Ligand Interactions via Hydrogen Bonds by Single-Molecule Counting. J Am Chem Soc 2023; 145:1310-1318. [PMID: 36597667 DOI: 10.1021/jacs.2c11260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chemical properties have been based on statistical averages since the introduction of Avogadro's number. The lack of suitable methods for counting identified single molecules has posed challenges to counting statistics. The selectivity, affinity, and mode of hydrogen bonding between base and small molecules that make up DNA, which is vital for living organisms, have not yet been revealed at the single molecule level. Here, we show the quantitation of the above-mentioned parameters via single-molecule counting based on the combination of single-molecule electrical measurements and AI. The binding selectivity values of five ligands to four different base molecules were evaluated quantitatively by determining the ratio of the number of aggregates in a solution mixture of base molecules and a ligand. In addition, we show the ligand dependence of the mode and number of microscopic hydrogen bonds via single-molecule counting and quantum chemical calculations.
Collapse
Affiliation(s)
- Yusuke Takashima
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Yuki Komoto
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan.,Artificial Intelligence Research Center, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), OsakaUniversity, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Takahito Ohshiro
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | - Kazuhiko Nakatani
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka567-0047, Japan
| | | |
Collapse
|
67
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
68
|
Offenbartl‐Stiegert D, Rottensteiner A, Dorey A, Howorka S. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202210886. [PMID: 36318092 PMCID: PMC10098474 DOI: 10.1002/anie.202210886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Controlling biological molecular processes with light is of interest in biological research and biomedicine, as light allows precise and selective activation in a non-invasive and non-toxic manner. A molecular process benefitting from light control is the transport of cargo across biological membranes, which is conventionally achieved by membrane-puncturing barrel-shaped nanopores. Yet, there is also considerable gain in constructing more complex gated pores. Here, we pioneer a synthetic light-gated nanostructure which regulates transport across membranes via a controllable lid. The light-triggered nanopore is self-assembled from six pore-forming DNA strands and a lid strand carrying light-switchable azobenzene molecules. Exposure to light opens the pore to allow small-molecule transport across membranes. Our light-triggered pore advances biomimetic chemistry and DNA nanotechnology and may be used in biotechnology, biosensing, targeted drug release, or synthetic cells.
Collapse
Affiliation(s)
- Daniel Offenbartl‐Stiegert
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Alexia Rottensteiner
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Adam Dorey
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| | - Stefan Howorka
- Department of ChemistryInstitute for Structural and Molecular BiologyUniversity College LondonWC1H0AJLondonUK
| |
Collapse
|
69
|
Cao M, Zhang L, Tang H, Qiu X, Li Y. Single-Molecule Investigation of the Protein-Aptamer Interactions and Sensing Application Inside the Single Glass Nanopore. Anal Chem 2022; 94:17405-17412. [PMID: 36475604 DOI: 10.1021/acs.analchem.2c02660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid-state nanopores offer a nanoconfined space for a single-molecule sensing strategy. Evaluating the behavior of proteins and protein-related interactions at the single-molecule level is becoming more and more important for a better understanding of biological processes and diseases. In this work, the aptamer-functionalized nanopore was prepared as the sensing platform for kinetic analysis of the carcinoembryonic antigen (CEA) with its aptamers, which is an important cancer biomarker. CEA molecules were captured by the aptamers immobilized on the inner surface of the nanopore, and there was a complicated interaction between the CEA molecules and the aptamer, which is the process of association and dissociation. This could be used to measure the dynamics of aptamer-protein interactions without labeling. The kinetic analysis could be evaluated at the single-molecule level to interpret the dissociation constants of the binding and dissociation processes. Results showed that the translocation of CEA molecules in a functionalized nanopore had a deep blockades degree and long duration compared with nanopore modified with bare gold, which could be used for CEA sensing. This protein and protein-related interaction we designed provides new insights for evaluating the binding affinity, which will be beneficial for protein sensing and immunoassays.
Collapse
Affiliation(s)
- Mengya Cao
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Lijun Zhang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241000, People's Republic of China
| |
Collapse
|
70
|
Hu G, Xi G, Yan H, Gao Z, Wu Z, Lu Z, Tu J. A molecular dynamics investigation of Taq DNA polymerase and its complex with a DNA substrate using a solid-state nanopore biosensor. Phys Chem Chem Phys 2022; 24:29977-29987. [PMID: 36472131 DOI: 10.1039/d2cp03993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins have a small volume difference by the diversity of amino acids, which make protein detection and identification a great challenge. Solid-state nanopore as label-free biosensors has attracted attention with high sensitivity. In this work, we investigated the Taq DNA polymerase before and after combining it with a DNA substrate on a solid-state nanopore through molecular dynamics. In simulation, we analyzed the contribution source of nanopore current blockage. In addition to considering the traditional physical exclusion volume model, the non-covalent interaction between the protein molecules and the pore wall also showed to affect the current blockage in the nanopore. When choosing pores of comparable size to protein molecules, the two states of Taq DNA polymerase produce differentiated non-covalent interactions with the pore wall, which enhanced the amplitude difference in current blockage. As a result, the two DNA polymerases can be distinguished through the distinct current blockage. However, when applying additional pulling force or increasing the pore size of the nanopore, the differences between the current blockages are not significant enough to distinguish. The introduction of the non-covalent interaction makes it clear to understand the current blockage differences, which guide the mechanism between molecules with similar structures or volumes.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
71
|
Pompa-García I, Castilla R, Metzler R, Dagdug L. First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results. Phys Rev E 2022; 106:064137. [PMID: 36671151 DOI: 10.1103/physreve.106.064137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
We study the crossing time statistic of diffusing point particles between the two ends of expanding and narrowing two-dimensional conical channels under a transverse external gravitational field. The theoretical expression for the mean first-passage time for such a system is derived under the assumption that the axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately described as a one-dimensional diffusion in an entropic potential with position-dependent effective diffusivity in terms of the modified Fick-Jacobs equation. We analyze the channel crossing dynamics in terms of the mean first-passage time, combining our analytical results with extensive two-dimensional Brownian dynamics simulations, allowing us to find the range of applicability of the one-dimensional approximation. We find that the effective particle diffusivity decreases with increasing amplitude of the external potential. Remarkably, the mean first-passage time for crossing the channel is shown to assume a minimum at finite values of the potential amplitude.
Collapse
Affiliation(s)
- Ivan Pompa-García
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México, 09340, México
| | - Rodrigo Castilla
- Engineering Faculty, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México, 09340, México
| |
Collapse
|
72
|
Yang F, Zhu Y, Zhang C, Yang Z, Yuan J, Zhu Q, Ding S. A highly sensitive and selective artificial nanochannel for in situ detection of hydroxyl radicals in single living cell. Anal Chim Acta 2022; 1235:340537. [DOI: 10.1016/j.aca.2022.340537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
|
73
|
Yan H, Xi G, Meng H, Fu J, Hu G, Lu Z, Tu J. The Mechanism of Overflow Amplitude in Nanopore Experiments and Its Application in Molecule Detection. J Phys Chem B 2022; 126:9261-9270. [PMID: 36321852 DOI: 10.1021/acs.jpcb.2c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The investigation of abnormal experimental phenomena observed in nanopore research improves our understanding of nanopores. In this article, we report and explore the unusual phenomenon that the amplitude of current blockage decreases beyond zero baseline (overflow amplitudes), which was observed in the translocation behavior of 100 bp double-stranded DNA molecules through SiNx nanopores. In our experiments, the overflow amplitude decreases with the increase of salt concentration and also decreases when the dwell time is shortened as the normalized amplitude of the overflow current showed a reduction with the increase of voltage. Upon analyzing the electric double layer meanwhile, the overflow amplitudes were shown to be positively correlated with the depth of the electric double layer and the duration of interaction between biological molecules. The formation of overflow amplitude can be attributed to the double electric layer ionic perturbation and reconfiguration, which are the results of the interaction between the biomolecule and the electric bilayer. The validation of the assumption using biomolecules containing different charges demonstrated that the overflow amplitude increased with the increase of the charge. It was concluded that proteins that pass through the nanopore with different orientation were differentiated based on their different overflow amplitude patterns. The investigation of overflow amplitude helps to enhance the understanding and the performance of nanopores.
Collapse
Affiliation(s)
- Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Hao Meng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| |
Collapse
|
74
|
Sharma A, Kapri R, Chaudhuri A. Driven translocation of a semiflexible polymer through a conical channel in the presence of attractive surface interactions. Sci Rep 2022; 12:19081. [PMID: 36351960 PMCID: PMC9646819 DOI: 10.1038/s41598-022-21845-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
We study the translocation of a semiflexible polymer through a conical channel with attractive surface interactions and a driving force which varies spatially inside the channel. Using the results of the translocation dynamics of a flexible polymer through an extended channel as control, we first show that the asymmetric shape of the channel gives rise to non-monotonic features in the total translocation time as a function of the apex angle of the channel. The waiting time distributions of individual monomer beads inside the channel show unique features strongly dependent on the driving force and the surface interactions. Polymer stiffness results in longer translocation times for all angles of the channel. Further, non-monotonic features in the translocation time as a function of the channel angle changes substantially as the polymer becomes stiffer, which is reflected in the changing features of the waiting time distributions. We construct a free energy description of the system incorporating entropic and energetic contributions in the low force regime to explain the simulation results.
Collapse
Affiliation(s)
- Andri Sharma
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| | - Rajeev Kapri
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| | - Abhishek Chaudhuri
- grid.458435.b0000 0004 0406 1521Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, Mohali, 140306 Punjab India
| |
Collapse
|
75
|
Yang J, Tu B, Fang M, Li L, Tang Z. Nanoscale Pore-Pore Coupling Effect on Ion Transport through Ordered Porous Monolayers. ACS NANO 2022; 16:13294-13300. [PMID: 35969205 DOI: 10.1021/acsnano.2c05907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinct from the conventional view that nanopores are considered independent channels for mass transport, recent study on the covalent organic framework (COF)-based monolayers characteristic of an ordered nanopore array exhibits a series of interesting properties originating from the strong interactions between adjacent pores. These interactions are determined to be highly dependent on interpore distance and pose a significant influence on the ion transport, accounting for the exceptional membrane performance including both selectivity and conductance. In this Perspective, we discuss the recently discovered nanoscale pore-pore coupling as well as the exciting features of porous nanostructures. We also look at the challenges and future opportunities of ion transport in ordered porous monolayers in the aspects of both fundamental research and practical use.
Collapse
Affiliation(s)
- Jinlei Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Munan Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
76
|
Trebel N, Höltzel A, Tallarek U. Confinement Effects on Distribution and Transport of Neutral Solutes in a Small Hydrophobic Nanopore. J Phys Chem B 2022; 126:7781-7795. [PMID: 36149739 DOI: 10.1021/acs.jpcb.2c04924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular dynamics simulations are used to study confinement effects in small cylindrical silica pores with extended hydrophobic surface functionalization as realized, for example, in reversed-phase liquid chromatography (RPLC) columns. In particular, we use a 6 nm cylindrical and a 10 nm slit pore bearing the same C18 stationary phase to compare the conditions inside the smaller-than-average pores within an RPLC column to column-averaged properties. Two small, neutral, apolar to moderately polar solutes are used to assess the consequences of spatial confinement for typical RPLC analytes with water (W)-acetonitrile (ACN) mobile phases at W/ACN ratios between 70/30 and 10/90 (v/v). The simulated data show that true bulk liquid behavior, as observed over an extended center region in the 10 nm slit pore, is not recovered within the 6 nm cylindrical pore. Instead, the ACN-enriched solvent layer around the C18 chain ends (the ACN ditch), a general feature of hydrophobic interfaces equilibrated with aqueous-organic liquids, extends over the entire pore lumen of the small cylindrical pore. This renders the entire pore a highly hydrophobic environment, where, contrary to column-averaged behavior, neither the local nor the pore-averaged sorption and diffusion of analytes scales directly with the W/ACN ratio of the mobile phase. Additionally, the solute polarity-related discrimination between analytes is enhanced. The consequences of local ACN ditch overlap in RPLC columns are reminiscent of ion transport in porous media with charged surfaces, where electrical double-layer overlap occurring locally in smaller pores leads to discrimination between co- and counterionic species.
Collapse
Affiliation(s)
- Nicole Trebel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
77
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
78
|
Yang L, Hu J, Li MC, Xu M, Gu ZY. Solid-state nanopore: chemical modifications, interactions, and functionalities. Chem Asian J 2022; 17:e202200775. [PMID: 36071031 DOI: 10.1002/asia.202200775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Nanopore technology is a burgeoning detection technology for single-molecular sensing and ion rectification. Solid-state nanopores have attracted more and more attention because of their higher stability and tunability than biological nanopores. However, solid-state nanopores still suffer the drawbacks of low signal-to-noise ratio and low resolution, which hinders their practical applications. Thus, developing operatical and useful methods to overcome the shortages of solid-state nanopores is urgently needed. Here, we summarize the recent research on nanopore modification to achieve this goal. Modifying solid-state nanopores with different coating molecules can improve the selectivity, sensitivity, and stability of nanopores. The modified molecules can introduce different functions into the nanopores, greatly expanding the applications of this novel detection technology. We hope that this review of nanopore modification will provide new ideas for this field.
Collapse
Affiliation(s)
- Lei Yang
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Jun Hu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Min-Chao Li
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Ming Xu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Zhi-Yuan Gu
- Nanjing Normal University, College of Chemistry and Materials Science, 1 Wenyuan Rd, 210023, Nanjing, CHINA
| |
Collapse
|
79
|
Li Y, Gao Q, Xu X, Li P, Zhao S. Solvent-evolution-coupled single ion diffusion into charged nanopores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
80
|
Huang G, Voorspoels A, Versloot RCA, van der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022; 61:e202206227. [PMID: 35759385 PMCID: PMC9541544 DOI: 10.1002/anie.202206227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/04/2023]
Abstract
The real‐time identification of protein biomarkers is crucial for the development of point‐of‐care and portable devices. Here, we use a PlyAB biological nanopore to detect haemoglobin (Hb) variants. Adult haemoglobin (HbA) and sickle cell anaemia haemoglobin (HbS), which differ by just one amino acid, were distinguished in a mixture with more than 97 % accuracy based on individual blockades. Foetal Hb, which shows a larger sequence variation, was distinguished with near 100 % accuracy. Continuum and Brownian dynamics simulations revealed that Hb occupies two energy minima, one near the inner constriction and one at the trans entry of the nanopore. Thermal fluctuations, the charge of the protein, and the external bias influence the dynamics of Hb within the nanopore, which in turn generates the unique ionic current signal in the Hb variants. Finally, Hb was counted from blood samples, demonstrating that direct discrimination and quantification of Hb from blood using nanopores, is feasible.
Collapse
Affiliation(s)
- Gang Huang
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Aderik Voorspoels
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Nieck Jordy van der Heide
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Enrico Carlon
- Soft Matter and Biophysics Unit, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | | | - Giovanni Maglia
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
81
|
Dagdug L, Skvortsov AT, Berezhkovskii AM, Bezrukov SM. Blocker Effect on Diffusion Resistance of a Membrane Channel: Dependence on the Blocker Geometry. J Phys Chem B 2022; 126:6016-6025. [PMID: 35944244 DOI: 10.1021/acs.jpcb.2c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Being motivated by recent progress in nanopore sensing, we develop a theory of the effect of large analytes, or blockers, trapped within the nanopore confines, on diffusion flow of small solutes. The focus is on the nanopore diffusion resistance which is the ratio of the solute concentration difference in the reservoirs connected by the nanopore to the solute flux driven by this difference. Analytical expressions for the diffusion resistance are derived for a cylindrically symmetric blocker whose axis coincides with the axis of a cylindrical nanopore in two limiting cases where the blocker radius changes either smoothly or abruptly. Comparison of our theoretical predictions with the results obtained from Brownian dynamics simulations shows good agreement between the two.
Collapse
Affiliation(s)
- Leonardo Dagdug
- Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico.,Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Alexander M Berezhkovskii
- Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sergey M Bezrukov
- Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
82
|
Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
83
|
Dynamic rotation featured translocations of human serum albumin with a conical glass nanopore. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Huang G, Voorspoels A, Versloot RCA, Van Der Heide NJ, Carlon E, Willems K, Maglia G. PlyAB Nanopores Detect Single Amino Acid Differences in Folded Haemoglobin from Blood. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Huang
- University of Groningen: Rijksuniversiteit Groningen Chemical Biology NETHERLANDS
| | - Aderik Voorspoels
- KU Leuven: Katholieke Universiteit Leuven Soft Matter and Biophysics BELGIUM
| | | | | | - Enrico Carlon
- KU Leuven University: Katholieke Universiteit Leuven Soft Matter and Biophysics NETHERLANDS
| | - Kherim Willems
- Imec Integrated photonics for microscopy and biomedical imaging BELGIUM
| | - Giovanni Maglia
- Rijksuniversiteit Groningen Chemical Biology Nijenborgh 7 9747 AG Groningen NETHERLANDS
| |
Collapse
|
85
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
86
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
87
|
A Nanopore Sensing Assay Resolves Cascade Reactions in a Multienzyme System. Angew Chem Int Ed Engl 2022; 61:e202200866. [DOI: 10.1002/anie.202200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 11/07/2022]
|
88
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
89
|
Wang X, Stevens KC, Ting JM, Marras AE, Rezvan G, Wei X, Taheri-Qazvini N, Tirrell MV, Liu C. Translocation Behaviors of Synthetic Polyelectrolytes through Alpha-Hemolysin (α-HL) and Mycobacterium smegmatis Porin A (MspA) Nanopores. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:057510. [PMID: 35599744 PMCID: PMC9121822 DOI: 10.1149/1945-7111/ac6c55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
DNAs have been used as probes for nanopore sensing of noncharged biomacromolecules due to its negative phosphate backbone. Inspired by this, we explored the potential of diblock synthetic polyelectrolytes as more flexible and inexpensive nanopore sensing probes by investigating translocation behaviors of PEO-b-PSS and PEO-b-PVBTMA through commonly used alpha-hemolysin (α-HL) and Mycobacterium smegmatis porin A (MspA) nanopores. Translocation recordings in different configurations of pore orientation and testing voltage indicated efficient PEO-b-PSS translocations through α-HL and PEO-b-PVBTMA translocations through MspA. This work provides insight into synthetic polyelectrolyte-based probes to expand probe selection and flexibility for nanopore sensing.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Kaden C. Stevens
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey M. Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander E. Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
90
|
Chen F, Athreya N, Zhao C, Xiong M, Tan H, Leburton JP, Feng J. Ion Density-Dependent Dynamic Conductance Switching in Biomimetic Graphene Nanopores. J Phys Chem Lett 2022; 13:3602-3608. [PMID: 35426690 DOI: 10.1021/acs.jpclett.2c00715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gating in ion transport is at the center of many vital living-substance transmission processes, and understanding how gating works at an atomic level is essential but intricate. However, our understanding and finite experimental findings of subcontinuum ion transport in subnanometer nanopores are still limited, which is out of reach of the classical continuum nanofluidics. Moreover, the influence of ion density on subcontinuum ion transport is poorly understood. Here we report the ion density-dependent dynamic conductance switching process in biomimetic graphene nanopores and explain the phenomenon by a reversible ion absorption mechanism. Our molecular dynamics simulations demonstrate that the cations near the graphene nanopore can interact with the surface charges on the nanopore, thereby realizing the switching of high- and low-conductance states. This work has deepened the understanding of gating in ion transport.
Collapse
Affiliation(s)
- Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Haojing Tan
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Zhejiang Lab, Hangzhou 310000, China
| |
Collapse
|
91
|
Wang X, Dutt S, Notthoff C, Kiy A, Mota-Santiago P, Mudie ST, Toimil-Molares ME, Liu F, Wang Y, Kluth P. SAXS data modelling for the characterisation of ion tracks in polymers. Phys Chem Chem Phys 2022; 24:9345-9359. [PMID: 35383785 DOI: 10.1039/d1cp05813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197Au and 238U with energies between 185 MeV and 2.0 GeV. Transmission SAXS measurements were performed at the Australian Synchrotron. SAXS data were analysed using two new models that describe the tracks by a cylindrical structure composed of a highly damaged core with a gradual transition to the undamaged material. First, we investigate the 'Soft Cylinder Model', which assumes a smooth function to describe the transition region by a gradual change in density from a core to a matrix. As a simplified and computational less expensive version of the 'Soft Cylinder Model', the 'Core Transition Model' was developed to enable fast fitting. This model assumes a linear increase in density from the core to the matrix. Both models yield superior fits to the experimental SAXS data compared with the often-used simple 'Hard Cylinder Model' assuming a constant density with an abrupt transition.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China.,Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Shankar Dutt
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Christian Notthoff
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Alexander Kiy
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| | - Pablo Mota-Santiago
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Stephen T Mudie
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Maria E Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, D-64291, Darmstadt, Germany
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China.,Center for Quantitative Biology, Peking University, Beijing 100871, People's Republic of China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Patrick Kluth
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
92
|
Cardoch S, Timneanu N, Caleman C, Scheicher RH. Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study. ACS NANOSCIENCE AU 2022; 2:119-127. [PMID: 37101662 PMCID: PMC10125149 DOI: 10.1021/acsnanoscienceau.1c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.
Collapse
Affiliation(s)
- Sebastian Cardoch
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ralph H. Scheicher
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
93
|
Asandei A, Mereuta L, Bucataru IC, Park Y, Luchian T. A single-molecule insight into the ionic strength dependent, cationic peptide nucleic acids - oligonucleotides interactions. Chem Asian J 2022; 17:e202200261. [PMID: 35419929 DOI: 10.1002/asia.202200261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Indexed: 11/08/2022]
Abstract
To alleviate solubility-related shortcomings associated with the use of neutral peptide nucleic acids (PNA), a powerful strategy is incorporate various charged sidechains onto the PNA structure. Here we employ a single-molecule technique and prove that the ionic current blockade signature of free poly(Arg)-PNAs and their corresponding duplexes with target ssDNAs interacting with a single a-hemolysin (a-HL) nanopore is highly ionic strength dependent, with high salt-containing electrolytes facilitating both capture and isolation of such complexes. Our data illustrate the effect of low ionic strength in reducing the effective volume of free poly(Arg)-PNAs and augmentation of their electrophoretic mobility while traversing the nanopore. We found that unlike in high salt electrolytes, the specific hybridization of cationic moiety-containing PNAs with complementary negatively charged ssDNAs in a salt concentration as low as 0.5 M is dramatically impeded. We suggest a scenario in which reduced charge screening by counterions in low salt electrolytes enables non-specific, electrostatic interactions with the anionic backbone of polynucleotides, thus reducing the ability of PNA-DNA complementary association via hydrogen bonding patterns. We applied an experimental strategy with spatially-separated poly(Arg)-PNAs and ssDNAs, and present evidence at the single-molecule level suggestive of the real-time, long-range interactions-driven formation of poly(Arg)-PNA-DNA complexes, as individual strands entering the nanopore from opposite directions collide inside a nanocavity.
Collapse
Affiliation(s)
- Alina Asandei
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, ICI, ROMANIA
| | - Loredana Mereuta
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Ioana C Bucataru
- Alexandru Ioan Cuza University: Universitatea Alexandru Ioan Cuza, Physics, ROMANIA
| | - Yoonkyung Park
- Chosun University, Department of Biomedical Science, ROMANIA
| | - Tudor Luchian
- Alexandru I. Cuza University, Physics, Blvd. Carol I, no. 11, 700506, Iasi, ROMANIA
| |
Collapse
|
94
|
A smart biosensing nanochannel system: opening the black box of the inner nanochannels for detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
95
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
96
|
Bakshloo MA, Yahiaoui S, Ouldali H, Pastoriza-Gallego M, Piguet F, Oukhaled A. On possible trypsin-induced biases in peptides analysis with Aerolysin nanopore. Proteomics 2022; 22:e2100056. [PMID: 35357771 DOI: 10.1002/pmic.202100056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Nanopore-based single-molecule analysis technique is a promising approach in the field of proteomics. In this Technical Brief, the interaction between the biological nanopore of Aerolysin (AeL) and peptides is investigated, focusing on potential biases depending on the AeL activation protocol. Our results reveal that residual trypsin, which may be unintentionally introduced in analyte solution when using a classical AeL activation protocol, can induce a significant formation of shorter peptides by enzymatic degradation of longer ones, which may lead to unwanted effects and/or misinterpretations. AeL free-trypsin activation protocol eliminates this bias and appears more appropriate for peptide/proteins analysis, specifically in the perspective of nanopore-based molecular fingerprinting or of low-abundance species characterization. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mazdak Afshar Bakshloo
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Safia Yahiaoui
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Hadjer Ouldali
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Manuela Pastoriza-Gallego
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Abdelghani Oukhaled
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, France.,Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| |
Collapse
|
97
|
Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
98
|
Lu J, Jiang Y, Yu P, Jiang W, Mao L. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels. Chem Asian J 2022; 17:e202200158. [PMID: 35324076 DOI: 10.1002/asia.202200158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Indexed: 11/10/2022]
Abstract
Biological nanochannels perfectly operate in organisms and exquisitely control mass transmembrane transport for complex life process. Inspired by biological nanochannels, plenty of intelligent artificial solid-state nanopores and nanochannels are constructed based on various materials and methods with the development of nanotechnology. Specially, the light-controlled nanopores/nanochannels have attracted much attention due to the unique advantages in terms of that ion and molecular transport can be regulated remotely, spatially and temporally. According to the structure and function of biological ion channels, light-controlled solid-state nanopores/nanochannels can be divided into light-regulated ion channels with ion gating and ion rectification functions, and light-driven ion pumps with active ion transport property. In this review, we present a systematic overview of light-controlled ion channels and ion pumps according to the photo-responsive components in the system. Then, the related applications of solid-state nanopores/nanochannels for molecular sensing, water purification and energy conversion are discussed. Finally, a brief conclusion and short outlook are offered for future development of the nanopore/nanochannel field.
Collapse
Affiliation(s)
- Jiahao Lu
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yanan Jiang
- Beijing Normal University, College of Chemistry, CHINA
| | - Ping Yu
- Chinese Academy of Sciences, Institute of Chemistry, CHINA
| | - Wei Jiang
- Shandong University, School of Chemistry and Chemical Engineering, CHINA
| | - Lanqun Mao
- Beijing Normal University, College of Chemistry, No.19, Xinjiekouwai St, Haidian District, 100875, Beijing, CHINA
| |
Collapse
|
99
|
Sheng Y, Zhou K, Liu L, Wu HC. A Nanopore Sensing Assay Resolves Cascade Reactions in a Multienzyme System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yingying Sheng
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key laboratory of Analytical Chemistry for Living Biosystems 100191 Beijing CHINA
| | - Ke Zhou
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems 100191 Beijing CHINA
| | - Lei Liu
- Institute of High Energy Physics Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CHINA
| | - Hai-Chen Wu
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
100
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|