51
|
Goos JACM, Davydova M, Dilling TR, Cho A, Cornejo MA, Gupta A, Price WS, Puttick S, Whittaker MR, Quinn JF, Davis TP, Lewis JS. Design and preclinical evaluation of nanostars for the passive pretargeting of tumor tissue. Nucl Med Biol 2020; 84-85:63-72. [PMID: 32135473 PMCID: PMC7253331 DOI: 10.1016/j.nucmedbio.2020.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pretargeting strategies that do not rely on the expression of molecular targets have expanded imaging and therapy options for cancer patients. Nanostars with designed multivalency and which highly accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect may therefore be the ideal vectors for the development of a passive pretargeting approach. METHODS Nanostars were synthesized, consisting of 7-8 center-cross-linked arms that were modified with trans-cyclooctene (TCO) using poly(ethylene glycol) (PEG) linkers of 12 or 106 monomer units or without linker. The bioorthogonal click reaction with radiofluorinated 2,2'-(7-(2-(tetrazine-poly(ethyleneglycol)11-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-PEG11-NODA) or 2,2'-(7-(2-(tetrazine-amino)-2-oxoethyl)-1,4,7-triazonane-1,4-diyl)diacetic acid ([18F]F-Tz-NODA) was measured by ex vivo biodistribution studies and positron emission tomography (PET) in mice bearing tumors with high EPR characteristics. Bioorthogonal masking was performed using a tetrazine-functionalized dextran polymer (Tz-DP). RESULTS Highest tumor accumulation of [18F]F-Tz-PEG11-NODA was observed for nanostars functionalized with TCO without linker, with a tumor uptake of 3.2 ± 0.4%ID/g and a tumor-to-muscle ratio of 12.8 ± 4.2, tumor-to-large intestine ratio of 0.5 ± 0.3 and tumor-to-kidney ratio of 2.0 ± 0.3, being significantly higher than for nanostars functionalized with TCO-PEG12 (P < 0.05) or TCO-PEG106 (P < 0.05). Tumor uptake and tumor-to-tissue ratios did not improve upon bioorthogonal masking with Tz-DP or when using a smaller, more lipophilic tetrazine([18F]F-Tz-NODA). CONCLUSIONS A pretargeting strategy was developed based on the passive delivery of TCO-functionalized nanostars. Such a strategy would allow for the imaging and treatment of tumors with apparent EPR characteristics, with high radioactive tumor doses and minimal doses to off-target tissues.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; MedTechLabs, Stockholm, Sweden.
| | - Maria Davydova
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Andrew Cho
- Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
| | - Mike A Cornejo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - William S Price
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith, Australia
| | - Simon Puttick
- Probing Biosystems Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Herston, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Radiology, the Molecular Pharmacology Program and the Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, USA; Department of Radiology, Weill Cornell Medical College, New York, USA; Department Pharmacology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
52
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
53
|
Au KM, Wang AZ, Park SI. Pretargeted delivery of PI3K/mTOR small-molecule inhibitor-loaded nanoparticles for treatment of non-Hodgkin's lymphoma. SCIENCE ADVANCES 2020; 6:eaaz9798. [PMID: 32270047 PMCID: PMC7112753 DOI: 10.1126/sciadv.aaz9798] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/08/2020] [Indexed: 05/08/2023]
Abstract
Overactivation of the PI3K/mTOR signaling has been identified in non-Hodgkin's lymphoma. BEZ235 is an effective dual PI3K/mTOR inhibitor, but it was withdrawn from early-phase clinical trials owing to poor solubility and on-target/off-tumor toxicity. Here, we developed a nanoparticle (NP)-based pretargeted system for the therapeutic delivery of BEZ235 to CD20- and HLA-DR-expressing lymphoma cells for targeted therapy. The pretargeted system is composed of dibenzocyclooctyne-functionalized anti-CD20 and anti-Lym1 antibodies as the tumor-targeting components and azide-functionalized BEZ235-encapsulated NPs as the effector drug carrier. Using lymphoma cell lines with different CD20 and HLA-DR antigen densities as examples, we demonstrate that the dual antibody pretargeted strategy effectively raises the number of NPs retained on the target tumor cells and improves the in vitro and in vivo antitumor activity of BEZ235 through the inhibition of the PI3K/mTOR pathway. Our data demonstrate that the NP-based pretargeted system improves the therapeutic window of small-molecule kinase inhibitor.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven I. Park
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Levine Cancer Institute, Atrium Health, Division of Hematology and Oncology, 1021 Morehead Medical Dr, Suite 20121, Charlotte, NC 28025, USA
| |
Collapse
|
54
|
Chen Z, Chen M, Zhou K, Rao J. Pre‐targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Min Chen
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry Molecular Imaging Program at Stanford Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
55
|
Chen Z, Chen M, Zhou K, Rao J. Pre-targeted Imaging of Protease Activity through In Situ Assembly of Nanoparticles. Angew Chem Int Ed Engl 2020; 59:7864-7870. [PMID: 32056345 DOI: 10.1002/anie.201916352] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Indexed: 02/06/2023]
Abstract
The pre-targeted imaging of enzyme activity has not been reported, likely owing to the lack of a mechanism to retain the injected substrate in the first step for subsequent labeling. Herein, we report the use of two bioorthogonal reactions-the condensation reaction of aromatic nitriles and aminothiols and the inverse-electron demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO)-to develop a novel strategy for pre-targeted imaging of the activity of proteases. The substrate probe (TCO-C-SNAT4) can be selectively activated by an enzyme target (e.g. caspase-3/7), which triggers macrocyclization and subsequent in situ self-assembly into nanoaggregates retained at the target site. The tetrazine-imaging tag conjugate labels TCO in the nanoaggregates to generate selective signal retention for imaging in vitro, in cells, and in mice. Owing to the decoupling of enzyme activation and imaging tag immobilization, TCO-C-SNAT4 can be repeatedly injected to generate and accumulate more TCO-nanoaggregates for click labeling.
Collapse
Affiliation(s)
- Zixin Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Min Chen
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kaixiang Zhou
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
56
|
Abstract
Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g., peptide, antibody fragment) and a γ-radiation-emitting radionuclide (e.g., 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design, these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.
Collapse
|
57
|
Ruivo E, Adhikari K, Elvas F, Fissers J, Vangestel C, Staelens S, Stroobants S, Van der Veken P, Wyffels L, Augustyns K. Improved stability of a novel fluorine-18 labeled TCO analogue for pretargeted PET imaging. Nucl Med Biol 2019; 76-77:36-42. [PMID: 31707309 DOI: 10.1016/j.nucmedbio.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Biorthogonal pretargeted imaging using the inverse electron demand Diels Alder (IEDDA) reaction between tetrazine (Tz) and trans-cyclooctene (TCO) is one of the most attractive strategies in molecular imaging. It allows the use of short-lived radioisotopes such as fluorine-18 for imaging of long circulating vectors with improved imaging contrast and reduced radiation dose. Here we aim to develop a novel 18F-labeled trans-cyclooctene (TCO) with improved metabolic stability and assess its potential usefulness in a pretargeted PET imaging approach. METHODS We have synthetized a new TCO-analogue containing a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) chelator, allowing radiolabeling by chelation with aluminum fluoride (Al[18F]F). Stability and pharmacokinetic profile of Al[18F]F-NOTA-TCO ([18F]MICA-205) were evaluated in healthy animals at different timepoints after injection of the radiotracer. To assess the potential use of this new PET tracer for tumor targeting, in vivo pretargeted PET imaging was performed in LS174T tumor-bearing mice pre-treated with a tetrazine-modified anti-TAG-72 monoclonal antibody (CC49). RESULTS The radiotracer was obtained with a radiochemical yield (RCY) of 12.8 ± 2.8% and a radiochemical purity (RCP) of ≥95%. It also showed a promising in vivo stability with 51.9 ± 5.16% of radiotracer remaining intact after 1 h. The biodistribution in healthy mice demonstrated mixed hepatobiliary and renal clearance, with a rapid blood clearance and low uptake in other tissues. The low bone uptake indicated lack of tracer defluorination. Interestingly, a pretargeted PET imaging experiment showed a significantly increased radiotracer uptake (0.67 ± 0.16%ID/g, p < 0.001) in the tumors of mice pre-treated with CC49-tetrazine compared to the CC49 alone (0.16 ± 0.08%ID/g). CONCLUSIONS [18F]MICA-205 represents a large improvement in in vivo metabolic stability compared to previous reported 18F-labeled TCOs, allowing a clear visualization of tumor tissue in a small-animal pretargeted PET imaging experiment. Despite the favorable in vivo stability and image contrast obtained with [18F]MICA-205, the development of next-generation derivatives with increased absolute tumor uptake is warranted for future pretargeting applications.
Collapse
Affiliation(s)
- Eduardo Ruivo
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Filipe Elvas
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium; University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jens Fissers
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Sigrid Stroobants
- University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | | | - Leonie Wyffels
- University Hospital Antwerp, Department of Nuclear Medicine, Edegem, Belgium; Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
58
|
Parker CL, McSweeney MD, Lucas AT, Jacobs TM, Wadsworth D, Zamboni WC, Lai SK. Pretargeted delivery of PEG-coated drug carriers to breast tumors using multivalent, bispecific antibody against polyethylene glycol and HER2. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102076. [PMID: 31394261 PMCID: PMC7224238 DOI: 10.1016/j.nano.2019.102076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Abstract
Pretargeting is an increasingly explored strategy to improve nanoparticle targeting, in which pretargeting molecules that bind both selected epitopes on target cells and nanocarriers are first administered, followed by the drug-loaded nanocarriers. Bispecific antibodies (bsAb) represent a promising class of pretargeting molecules, but how different bsAb formats may impact the efficiency of pretargeting remains poorly understood, in particular Fab valency and Fc receptor (FcR)-binding of bsAb. We found the tetravalent bsAb markedly enhanced PEGylated nanoparticle binding to target HER2+ cells relative to the bivalent bsAb in vitro. Pretargeting with tetravalent bsAb with abrogated FcR binding increased tumor accumulation of PEGylated liposomal doxorubicin (PLD) 3-fold compared to passively targeted PLD alone, and 5-fold vs pretargeting with tetravalent bsAb with normal FcR binding in vivo. Our work demonstrates that multivalency and elimination of FcRn recycling are both important features of pretargeting molecules, and further supports pretargeting as a promising nanoparticle delivery strategy.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Drug Carriers/chemistry
- Drug Carriers/pharmacology
- Female
- Humans
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Xenograft Model Antitumor Assays
- omega-Chloroacetophenone
Collapse
Affiliation(s)
- Christina L Parker
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Timothy M Jacobs
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - Daniel Wadsworth
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States; Carolina Center for Nanotechnology Excellence, University of North Carolina at Chapel Hill, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
59
|
Therapeutic Applications of Pretargeting. Pharmaceutics 2019; 11:pharmaceutics11090434. [PMID: 31480515 PMCID: PMC6781323 DOI: 10.3390/pharmaceutics11090434] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted therapies, such as radioimmunotherapy (RIT), present a promising treatment option for the eradication of tumor lesions. RIT has shown promising results especially for hematologic malignancies, but the therapeutic efficacy is limited by unfavorable tumor-to-background ratios resulting in high radiotoxicity. Pretargeting strategies can play an important role in addressing the high toxicity profile of RIT. Key to pretargeting is the concept of decoupling the targeting vehicle from the cytotoxic agent and administrating them separately. Studies have shown that this approach has the ability to enhance the therapeutic index as it can reduce side effects caused by off-target irradiation and thereby increase curative effects due to higher tolerated doses. Pretargeted RIT (PRIT) has been explored for imaging and treatment of different cancer types over the years. This review will give an overview of the various targeted therapies in which pretargeting has been applied, discussing PRIT with alpha- and beta-emitters and as part of combination therapy, plus its use in drug delivery systems.
Collapse
|
60
|
Fingernagel J, Boye S, Kietz A, Höbel S, Wozniak K, Moreno S, Janke A, Lederer A, Aigner A, Temme A, Voit B, Appelhans D. Mono- and Polyassociation Processes of Pentavalent Biotinylated PEI Glycopolymers for the Fabrication of Biohybrid Structures with Targeting Properties. Biomacromolecules 2019; 20:3408-3424. [DOI: 10.1021/acs.biomac.9b00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Fingernagel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - André Kietz
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sabrina Höbel
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Katarzyna Wozniak
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Achim Aigner
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Achim Temme
- Experimental Neurosurgery/Tumor Immunology, TU Dresden, D-01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
61
|
Dong P, Wang X, Zheng J, Zhang X, Li Y, Wu H, Li L. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr Med Chem 2019; 27:3924-3943. [PMID: 31267851 DOI: 10.2174/1386207322666190702105829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyi Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
62
|
Cauteruccio S, Panigati M, Veronese L, Zaffaroni N, Folini M, Licandro E. Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis, chemico-physical and biological characterization. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
63
|
Abstract
Molecular conjugation refers to methods used in biomedicine, advanced materials and nanotechnology to link two partners - from small molecules to large and sometimes functionally complex biopolymers. The methods ideally have a broad structural scope, proceed under very mild conditions (including in H2O), occur at a rapid rate and in quantitative yield with no by-products, enable bioorthogonal reactivity and have zero toxicity. Over the past two decades, the field of click chemistry has emerged to afford us new and efficient methods of molecular conjugation. These methods are based on chemical reactions that produce permanently linked conjugates, and we refer to this field here as covalent click chemistry. Alternatively, if molecular conjugation is undertaken using a pair of complementary molecular recognition partners that associate strongly and selectively to form a thermodynamically stable non-covalent complex, then we refer to this strategy as non-covalent click chemistry. This Perspective is concerned with this latter approach and highlights two distinct applications of non-covalent click chemistry in molecular conjugation: the pre-assembly of molecular conjugates or surface-coated nanoparticles and the in situ capture of tagged biomolecular targets for imaging or analysis.
Collapse
Affiliation(s)
- Cynthia L Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
64
|
Site-specific conjugation of recognition tags to trastuzumab for peptide nucleic acid-mediated radionuclide HER2 pretargeting. Biomaterials 2019; 203:73-85. [PMID: 30877838 DOI: 10.1016/j.biomaterials.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023]
Abstract
Pretargeting is a promising strategy to reach high imaging contrast in a shorter time than by targeting with directly radiolabeled monoclonal antibodies (mAbs). One of problems in pretargeting is a site-specific, reproducible and uniform conjugation of recognition tags to mAbs. To solve this issue we propose a photoconjugation to covalently couple a recognition tag to a mAb via a photoactivatable Z domain. The Z-domain, a 58-amino acid protein derived from the IgG-binding B-domain of Staphylococcus aureus protein A, has a well-characterized binding site in the Fc portion of IgG. We tested the feasibility of this approach using pretargeting based on hybridization between peptide nucleic acids (PNAs). We have used photoconjugation to couple trastuzumab with the PNA-based hybridization probe, HP1. A complementary [57Co]Co-labeled PNA hybridization probe ([57Co]Co-HP2) was used as the secondary targeting probe. In vitro studies demonstrated that trastuzumab-ZHP1 bound specifically to human epidermal growth factor receptor 2 (HER2)-expressing cells with nanomolar affinity. The binding of the secondary [57Co]Co-HP2 probe to trastuzumab-PNA-pretreated cells was in the picomolar affinity range. A two-fold increase in SKOV-3 tumor targeting was achieved when [57Co]Co-HP2 (0.7 nmol) was injected 48 h after injection of trastuzumab-ZHP1 (0.5 nmol) compared with trastuzumab-ZHP1 alone (0.8 ± 0.2 vs. 0.33 ± 0.06 %ID/g). Tumor accumulation of [57Co]Co-HP2 was significantly reduced by pre-saturation with trastuzumab or when no trastuzumab-ZHP1 was preinjected. A tumor-to-blood uptake ratio of 1.5 ± 0.3 was achieved resulting in a clear visualization of HER2-expressing xenografts as confirmed by SPECT imaging. In conclusion, the feasibility of stable site-specific coupling of a PNA-based recognition tag to trastuzumab and successful pretargeting has been demonstrated. This approach can hopefully be used for a broad range of mAbs and recognition tags.
Collapse
|
65
|
Strebl MG, Yang J, Isaacs L, Hooker JM. Adamantane/Cucurbituril: A Potential Pretargeted Imaging Strategy in Immuno-PET. Mol Imaging 2019; 17:1536012118799838. [PMID: 30354934 PMCID: PMC6204619 DOI: 10.1177/1536012118799838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging with biological macromolecules greatly expands the possibilities of molecular imaging. There are, however, practical aspects limiting the potential of the approach, including the dosimetric consequences of the slow kinetics of radiolabeled biomacromolecules. Pretargeting strategies have led to impactful improvements in the field but are themselves limited by shortcomings of available bioconjugation methodology. We report our initial findings concerning the suitability of the adamantane/cucurbit[7]uril system for pretargeted immuno-PET imaging and provide proof-of-concept PET/computed tomography imaging experiments to establish the stability and rapid formation of host–guest complexes in vivo. The adamantane/cucurbit[7]uril system itself without antibody conjugation has shown remarkably fast association kinetics and clearance in vivo. We further demonstrate the modulation of biodistribution achievable by cucurbituril complexation with relevance for pharmaceutical formulation as well as the radiosynthetic access to relevant reporter molecules labeled with 11C or 18F. This work, an early proof-of-concept, supports the notion that the adamantane/cucurbit[7]uril system warrants further exploration in pretargeted PET imaging applications.
Collapse
Affiliation(s)
- Martin G Strebl
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jane Yang
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lyle Isaacs
- 2 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jacob M Hooker
- 1 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
66
|
Yao M, Ma X, Zhang X, Shi L, Liu T, Liang X, Zhao H, Li X, Li L, Gao H, Jia B, Wang F. Lectin-Mediated pH-Sensitive Doxorubicin Prodrug for Pre-Targeted Chemotherapy of Colorectal Cancer with Enhanced Efficacy and Reduced Side Effects. Am J Cancer Res 2019; 9:747-760. [PMID: 30809306 PMCID: PMC6376480 DOI: 10.7150/thno.29989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) has been clinically used as a broad-spectrum chemotherapeutic agent for decades, but its clinical application is hindered by the lack of tumour specificity, severe cardiotoxicity and haematotoxicity. Pre-targeted strategies are highly tumour-specific, therapeutic approaches. Herein, a novel pre-targeted system was constructed, aiming to enhance anticancer efficacy of DOX and maximally reduce its side effects. Methods: The DOX prodrug (bDOX) was first synthesized by conjugating DOX with mini-PEGylated (mPEGylated) biotin through a pH-sensitive bond. During the pre-targeted treatment, avidin was first administrated. After an optimized interval, bDOX was second administrated. The nontoxic prodrug bDOX was eventually transformed into the toxic anticancer form (DOX) by a pH-triggered cleavage specifically in tumour cells. The drug efficacy and side effect of the two-step, pre-targeted treatment were fully compared with free DOX in vitro and in vivo. Results: The prodrug bDOX was quite stable under neutral conditions and nearly nontoxic, but was immediately transformed into the toxic anticancer form (DOX) under acidic conditions. Compared to free DOX, the pre-targeted bDOX exhibited a higher cellular uptake by human colorectal tumour cells (LS180 and HT-29 cells). In vivo evaluation performed on LS180 xenograft animal model demonstrated that the pre-targeted bDOX achieved a much more significant tumour inhibition than free DOX. The largely decreased, unwanted bystander toxicity was demonstrated by changes in body weight, cardiomyocyte apoptosis, blood routine examination and splenic pathological changes. Conclusion: The high therapeutic efficacy, together with the minimal side effects, of this easily synthesized, pre-targeted system exhibited immense potentiality for the clinical application of DOX delivery.
Collapse
|
67
|
Richard M, Truillet C, Tran VL, Liu H, Porte K, Audisio D, Roche M, Jego B, Cholet S, Fenaille F, Kuhnast B, Taran F, Specklin S. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone–cycloalkyne click reaction. Chem Commun (Camb) 2019; 55:10400-10403. [DOI: 10.1039/c9cc05486c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PET pretargeting approach using strain-promoted sydnone–alkyne cycloaddition.
Collapse
Affiliation(s)
- Mylène Richard
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Charles Truillet
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Vu Long Tran
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Hui Liu
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Karine Porte
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Mélanie Roche
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Benoit Jego
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Sophie Cholet
- Service de Pharmacologie et d’Immunoanalyse (SPI)
- CEA/DRF/JOLIOT
- Université Paris Saclay
- F-91191 Gif-sur-Yvette
- France
| | - François Fenaille
- Service de Pharmacologie et d’Immunoanalyse (SPI)
- CEA/DRF/JOLIOT
- Université Paris Saclay
- F-91191 Gif-sur-Yvette
- France
| | - Bertrand Kuhnast
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM
- CEA, Université Paris-Saclay
- 91191 Gif-sur-Yvette
- France
| | - Simon Specklin
- UMR 1023 IMIV
- Service Hospitalier Frédéric Joliot (SHFJ)
- CEA, Inserm
- Université Paris Sud, CNRS
- Université Paris-Saclay
| |
Collapse
|
68
|
Guo X, Wong RCH, Zhou Y, Ng DKP, Lo PC. A novel distyryl boron dipyrromethene with two functional tags for site-specific bioorthogonal photosensitisation towards targeted photodynamic therapy. Chem Commun (Camb) 2019; 55:13518-13521. [DOI: 10.1039/c9cc07460k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sequential “tag-and-click” process for targeted delivery of photosensitisers for photodynamic therapy.
Collapse
Affiliation(s)
- Xuejiao Guo
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
| | - Roy C. H. Wong
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Yimin Zhou
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin
- China
| | - Pui-Chi Lo
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
- Shenzhen Research Institute of City University of Hong Kong
| |
Collapse
|
69
|
Smith WJ, Wang G, Gaikwad H, Vu VP, Groman E, Bourne DWA, Simberg D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS NANO 2018; 12:12523-12532. [PMID: 30516974 PMCID: PMC6472973 DOI: 10.1021/acsnano.8b07003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long blood half-life is one of the advantages of antibodies over small molecule drugs. At the same time, prolonged half-life is a problem for imaging applications or in the case of antibody-induced toxicities. There is a substantial need for antidotes that can quickly clear antibodies from systemic circulation and peripheral tissues. Engineered nanoparticles exhibit intrinsic affinity for clearance organs (mainly liver and spleen). trans-Cyclooctene (TCO) and methyltetrazine (MTZ) are versatile copper-free click chemistry components that are extensively being used for in vivo bioorthogonal couplings. To test the ability of nanoparticles to eliminate antibodies, we prepared a set of click-modified, clinically relevant antidotes based on several classes of drug carriers: phospholipid-PEG micelles, bovine serum albumin (BSA), and cross-linked dextran iron oxide (CLIO) nanoparticles. Mice were injected with IRDye 800CW-labeled, click-modified IgG followed by a click-modified antidote or PBS (control), and the levels of the IgG were monitored up to 72 h postinjection. Long-circulating lipid micelles produced a spike in IgG levels at 1 h, decreased IgG levels at 24 h, and did not decrease the area under the curve (AUC) and IgG accumulation in main organs. Long-circulating BSA decreased IgG levels at 1 and 24 h, decreased the AUC, but did not significantly decrease organ accumulation. Long-circulating CLIO nanoworms increased IgG levels at 1 h, decreased IgG levels at 24 h, did not decrease the AUC, and did not decrease the organ accumulation. On the other hand, short-circulating CLIO nanoparticles decreased IgG levels at 1 and 24 h, significantly decreasing the AUC and accumulation in the main organs. Multiple doses of CLIO and BSA were not able to completely eliminate the antibody from blood, despite the click reactivity of the residual IgG, likely due to exchange of IgG between blood and tissue compartments. Pharmacokinetic modeling suggests that short antidote half-life and fast click reaction rate should result in higher IgG depletion efficiency. Short-circulating click-modified nanocarriers are the most effective antidotes for elimination of antibodies from blood. This study sets a stage for future development of antidotes based on nanomedicine.
Collapse
Affiliation(s)
- Weston J. Smith
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Vivian P. Vu
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Ernest Groman
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David W. A. Bourne
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author: .
| |
Collapse
|
70
|
Zhang P, Jiang T, Li Y, Zhao Z, Gong P, Cai L, Kwok RTK, Lam JWY, Gu X, Tang BZ. Bio‐orthogonal AIE Dots Based on Polyyne‐Bridged Red‐emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chem Asian J 2018; 14:770-774. [DOI: 10.1002/asia.201801609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Pengfei Zhang
- HKUST Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P.R. China
| | - Tao Jiang
- HKUST Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan Shenzhen 518057 China
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P.R. China
- Department of Pharmaceutical Sciences, Nanfang HospitalSouthern Medical University 1838 North Guangzhou Avenue Guangzhou P.R. China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for MedicineInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P.R. China
| | - Ryan T. K. Kwok
- HKUST Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jacky Wing Yip Lam
- HKUST Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and ReconstructionInstitute for Advanced Study, Institute of Molecular Functional Materials, State Key Laboratory of Molecular Neuroscience, Division of Life ScienceHong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
71
|
Cai J, Miao YQ, Li L, Fan HM. Facile Preparation of Gold-Decorated Fe₃O₄ Nanoparticles for CT and MR Dual-Modal Imaging. Int J Mol Sci 2018; 19:ijms19124049. [PMID: 30558166 PMCID: PMC6321430 DOI: 10.3390/ijms19124049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 12/25/2022] Open
Abstract
The development of a multifunctional nanoprobe capable of non-invasive multimodal imaging is crucial for precise tumour diagnosis. Herein, we report a facile polymer-assisted method to produce Au-Fe3O4 nanocomposites (NCPs) for the dual-modal magnetic resonance (MR) and X-ray computed tomography (CT) imaging of tumours. In this approach, amino-functionalized Au nanospheres were first obtained by surface modification of the bifunctional polymer SH-PEG-NH2. Hydrophilic and carboxyl-functionalized Fe3O4 nanoparticles were produced by phase transfer of reverse micelle oxidation in our previous work. The Au nanoparticles were conjugated with hydrophilic Fe3O4 nanoparticles through an amide reaction. The obtained Au-Fe3O4 nanocomposites display a high r2 relativity (157.92 mM−1 s−1) and a Hounsfield units (HU) value (270 HU) at Au concentration of 8 mg/mL and could be applied as nanoprobes for the dual-modal MR/CT imaging of a xenografted tumour model. Our work provides a facile method to prepare Au-Fe3O4 nanocomposites for dual-modal MR/CT imaging, and this method can be extended to prepare other multifunctional nanoparticles for multimodal bioimaging.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Yu Qing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Li Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Hai Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
72
|
Ni JS, Zhang P, Jiang T, Chen Y, Su H, Wang D, Yu ZQ, Kwok RTK, Zhao Z, Lam JWY, Tang BZ. Red/NIR-Emissive Benzo[d]imidazole-Cored AIEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805220. [PMID: 30318706 DOI: 10.1002/adma.201805220] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregation-induced emission (AIE) luminogens (AIEgens) with red/near-infrared (NIR) emissions are appealing for applications in optoelectronics and biomedical engineering owing to their intrinsic advantages of efficient solid-state emission, low background, and deep tissue penetration. In this context, an AIEgen with long-wavelength emission is synthesized by introducing tetraphenylethene (TPE) to the periphery of electron-deficient spiro-benzo[d]imidazole-2,1'-cyclohexane (BI). The resulting AIEgen, abbreviated as 2TPE-BI, adopts a donor-acceptor structure and shows bathochromic absorption and emission with a larger Stokes shift of 157 nm in acetonitrile than that based on benzo[c][1,2,5]thiadiazole. It also exhibits a high solid-state fluorescence quantum yield of 56.6%. By further insertion of thiophene to its molecular structure generates 2TPE-2T-BI with higher conjugation and NIR emission. 2TPE-2T-BI can be fabricated into AIE dots for in vivo metabolic labeling through bio-orthogonal click chemistry. These results open a new approach for facile construction of long-wavelength emissive AIEgens based on the BI core.
Collapse
Affiliation(s)
- Jen-Shyang Ni
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
| | - Pengfei Zhang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Jiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Huifang Su
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhen-Qiang Yu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ryan T K Kwok
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zujin Zhao
- SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Shenzhen, 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
73
|
Pretargeted Imaging with Gallium-68-Improving the Binding Capability by Increasing the Number of Tetrazine Motifs. Pharmaceuticals (Basel) 2018; 11:ph11040102. [PMID: 30314332 PMCID: PMC6316846 DOI: 10.3390/ph11040102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.
Collapse
|
74
|
Cheal SM, Xu H, Guo HF, Patel M, Punzalan B, Fung EK, Lee SG, Bell M, Singh M, Jungbluth AA, Zanzonico PB, Piersigilli A, Larson SM, Cheung NKV. Theranostic pretargeted radioimmunotherapy of internalizing solid tumor antigens in human tumor xenografts in mice: Curative treatment of HER2-positive breast carcinoma. Am J Cancer Res 2018; 8:5106-5125. [PMID: 30429889 PMCID: PMC6217068 DOI: 10.7150/thno.26585] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
In recent reports, we have shown that optimized pretargeted radioimmunotherapy (PRIT) based on molecularly engineered antibody conjugates and 177Lu-DOTA chelate (DOTA-PRIT) can be used to cure mice bearing human solid tumor xenografts using antitumor antibodies to minimally internalizing membrane antigens, GPA33 (colon) and GD2 (neuroblastoma). However, many solid tumor membrane antigens are internalized after antibody binding and it is generally believed that internalizing tumor membrane antigens are not suitable targets for PRIT. In this study, we tested the hypothesis that DOTA-PRIT can be performed successfully to target HER2, an internalizing membrane antigen widely expressed in breast, ovarian, and gastroesophageal junction cancers. Methods: DOTA-PRIT was carried out in athymic nude mice bearing BT-474 xenografts, a HER2-expressing human breast cancer, using a three-step dosing regimen consisting of sequential intravenous administrations of: 1) a bispecific IgG-scFv (210 kD) format (BsAb) carrying the IgG sequence of the anti-HER2 antibody trastuzumab and the scFv “C825” with high-affinity, hapten-binding antibody for Bn-DOTA (metal) (BsAb: anti-HER2-C825), 2) a 500 kD dextran-based clearing agent, followed by 3) 177Lu-DOTA-Bn. At the time of treatment, athymic nude mice bearing established subcutaneous BT-474 tumors (medium- and smaller-sized tumors with tumor volumes of 209 ± 101 mm3 and ranging from palpable to 30 mm3, respectively), were studied along with controls. We studied single- and multi-dose regimens. For groups receiving fractionated treatment, we verified quantitative tumor targeting during each treatment cycle using non-invasive imaging with single-photon emission computed tomography/computed tomography (SPECT/CT). Results: We achieved high therapeutic indices (TI, the ratio of radiation-absorbed dose in tumor to radiation-absorbed dose to critical organs, such as bone marrow) for targeting in blood (TI = 28) and kidney (TI = 7), while delivering average radiation-absorbed doses of 39.9 cGy/MBq to tumor. Based on dosimetry estimates, we implemented a curative fractionated therapeutic regimen for medium-sized tumors that would deliver approximately 70 Gy to tumors, which required treatment with a total of 167 MBq 177Lu-DOTA-Bn/mouse (estimated absorbed tumor dose: 66 Gy). This regimen was well tolerated and achieved 100% complete responses (CRs; defined herein as tumor volume equal to or smaller than 4.2 mm3), including 62.5% histologic cure (5/8) and 37.5% microscopic residual disease (3/8) at 85 days (d). Treatment controls showed tumor progression to 207 ± 201% of pre-treatment volume at 85 d and no CRs. Finally, we show that treatment with this curative 177Lu regimen leads to a very low incidence of histopathologic abnormalities in critical organs such as bone marrow and kidney among survivors compared with non-treated controls. Conclusion: Contrary to popular belief, we demonstrate that DOTA-PRIT can be successfully adapted to an internalizing antigen-antibody system such as HER2, with sufficient TIs and absorbed tumor doses to achieve a high probability of cures of established human breast cancer xenografts while sparing critical organs of significant radiotoxicity.
Collapse
|
75
|
Mandikian D, Rafidi H, Adhikari P, Venkatraman P, Nazarova L, Fung G, Figueroa I, Ferl GZ, Ulufatu S, Ho J, McCaughey C, Lau J, Yu SF, Prabhu S, Sadowsky J, Boswell CA. Site-specific conjugation allows modulation of click reaction stoichiometry for pretargeted SPECT imaging. MAbs 2018; 10:1269-1280. [PMID: 30199303 PMCID: PMC6284555 DOI: 10.1080/19420862.2018.1521132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibody pretargeting is a promising strategy for improving molecular imaging, wherein the separation in time of antibody targeting and radiolabeling can lead to rapid attainment of high contrast, potentially increased sensitivity, and reduced patient radiation exposure. The inverse electron demand Diels-Alder ‘click’ reaction between trans-cyclooctene (TCO) conjugated antibodies and radiolabeled tetrazines presents an ideal platform for pretargeted imaging due to rapid reaction kinetics, bioorthogonality, and potential for optimization of both slow and fast clearing components. Herein, we evaluated a series of anti-human epidermal growth factor receptor 2 (HER2) pretargeting antibodies containing distinct molar ratios of site-specifically incorporated TCO. The effect of stoichiometry on tissue distribution was assessed for pretargeting TCO-modified antibodies (monitored by 125I) and subsequent accumulation of an 111In-labeled tetrazine in a therapeutically relevant HER2+tumor-bearing mouse model. Single photon emission computed tomography (SPECT) imaging was also employed to assess tumor imaging at various TCO-to-monoclonal antibody (mAb) ratios. Increasing TCO-to-mAb molar ratios correlated with increased in vivo click reaction efficiency evident by increased tumor distribution and systemic exposure of 111In-labeled tetrazines. The pharmacokinetics of TCO-modified antibodies did not vary with stoichiometry. Pretargeted SPECT imaging of HER2-expressing tumors using 111In-labeled tetrazine demonstrated robust click reaction with circulating antibody at ~2 hours and good tumor delineation for both the 2 and 6 TCO-to-mAb ratio variants at 24 hours, consistent with a limited cell-surface pool of pretargeted antibody and benefit from further distribution and internalization. To our knowledge, this represents the first reported systematic analysis of how pretargeted imaging is affected solely by variation in click reaction stoichiometry through site-specific conjugation chemistry.
Collapse
Affiliation(s)
- Danielle Mandikian
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Hanine Rafidi
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Pragya Adhikari
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - Priya Venkatraman
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Lidia Nazarova
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gabriel Fung
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Isabel Figueroa
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Gregory Z Ferl
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Sheila Ulufatu
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jason Ho
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Cynthia McCaughey
- c In Vivo Studies , Genentech Research and Early Development , South San Francisco , CA , USA
| | - Jeffrey Lau
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Shang-Fan Yu
- d Translational Oncology , Genentech Inc ., South San Francisco , CA , USA
| | - Saileta Prabhu
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| | - Jack Sadowsky
- b Protein Chemistry , Genentech Inc ., South San Francisco , CA , USA
| | - C Andrew Boswell
- a Preclinical and Translational Pharmacokinetics , Genentech Inc ., South San Francisco , CA , USA
| |
Collapse
|
76
|
Pal S, Ganesan K, Eswaran S. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). IUBMB Life 2018; 70:947-960. [DOI: 10.1002/iub.1916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Shreya Pal
- Amity University Haryana; Manesar Haryana India
| | | | - Sambasivan Eswaran
- Regional Centre for Biotechnology (Established by DBT, Govt. of India under the auspices of UNESCO); NCR Biotech Science Cluster; Faridabad Haryana India
| |
Collapse
|
77
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
78
|
Lowe PT, Dall'Angelo S, Devine A, Zanda M, O'Hagan D. Enzymatic Fluorination of Biotin and Tetrazine Conjugates for Pretargeting Approaches to Positron Emission Tomography Imaging. Chembiochem 2018; 19:1969-1978. [PMID: 29966048 DOI: 10.1002/cbic.201800234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 12/15/2022]
Abstract
The use of radiolabelled antibodies and antibody-derived recombinant constructs has shown promise for both imaging and therapeutic use. In this context, the biotin-avidin/streptavidin pairing, along with the inverse-electron-demand Diels-Alder (iEDDA) reaction, have found application in pretargeting approaches for positron emission tomography (PET). This study reports the fluorinase-mediated transhalogenation [5'-chloro-5'-deoxyadenosine (ClDA) substrates to 5'-fluoro-5'-deoxyadenosine (FDA) products] of two antibody pretargeting tools, a FDA-PEG-tetrazine and a [18 F]FDA-PEG-biotin, and each is assessed either for its compatibility towards iEDDA ligation to trans-cyclooctene or for its affinity to avidin. A protocol to avoid radiolytically promoted oxidation of biotin during the synthesis of [18 F]FDA-PEG-biotin was developed. The study adds to the repertoire of conjugates for use in fluorinase-catalysed radiosynthesis for PET and shows that the fluorinase will accept a wide range of ClDA substrates tethered at C-2 of the adenine ring with a PEGylated cargo. The method is exceptional because the nucleophilic reaction with [18 F]fluoride takes place in water at neutral pH and at ambient temperature.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Sergio Dall'Angelo
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Andrew Devine
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Matteo Zanda
- John Mallard Scottish PET Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David O'Hagan
- School of Chemistry and Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
79
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
80
|
Spa SJ, Welling MM, van Oosterom MN, Rietbergen DDD, Burgmans MC, Verboom W, Huskens J, Buckle T, van Leeuwen FWB. A Supramolecular Approach for Liver Radioembolization. Theranostics 2018; 8:2377-2386. [PMID: 29721086 PMCID: PMC5928896 DOI: 10.7150/thno.23567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Hepatic radioembolization therapies can suffer from discrepancies between diagnostic planning (scout-scan) and the therapeutic delivery itself, resulting in unwanted side-effects such as pulmonary shunting. We reasoned that a nanotechnology-based pre-targeting strategy could help overcome this shortcoming by directly linking pre-interventional diagnostics to the local delivery of therapy. Methods: The host-guest interaction between adamantane and cyclodextrin was employed in an in vivo pre-targeting set-up. Adamantane (guest)-functionalized macro albumin aggregates (MAA-Ad; d = 18 μm) and (radiolabeled) Cy5 and β-cyclodextrin (host)-containing PIBMA polymers (99mTc-Cy50.5CD10PIBMA39; MW ~ 18.8 kDa) functioned as the reactive pair. Following liver or lung embolization with (99mTc)-MAA-Ad or (99mTc)-MAA (control), the utility of the pre-targeting concept was evaluated after intravenous administration of 99mTc-Cy50.5CD10PIBMA39. Results: Interactions between MAA-Ad and Cy50.5CD10PIBMA39 could be monitored in solution using confocal microscopy and were quantified by radioisotope-based binding experiments. In vivo the accumulation of the MAA-Ad particles in the liver or lungs yielded an approximate ten-fold increase in accumulation of 99mTc-Cy50.5CD10PIBMA39 in these organs (16.2 %ID/g and 10.5 %ID/g, respectively) compared to the control. Pre-targeting with MAA alone was shown to be only half as efficient. Uniquely, for the first time, this data demonstrates that the formation of supramolecular interactions between cyclodextrin and adamantane can be used to drive complex formation in the chemically challenging in vivo environment. Conclusion: The in vivo distribution pattern of the cyclodextrin host could be guided by the pre-administration of the adamantane guest, thereby creating a direct link between the scout-scan (MAA-Ad) and delivery of therapy.
Collapse
Affiliation(s)
- Silvia J. Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Agrotechnology and Food services, subdivision BioNanoTechnology, Wageningen University, Wageningen, The Netherlands
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D. D. Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Nuclear Medicine Section, Leiden University Medical Center, Leiden The Netherlands
| | - Mark C. Burgmans
- Interventional Radiology, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem Verboom
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Agrotechnology and Food services, subdivision BioNanoTechnology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
81
|
Au KM, Tripathy A, Lin CPI, Wagner K, Hong S, Wang AZ, Park SI. Bespoke Pretargeted Nanoradioimmunotherapy for the Treatment of Non-Hodgkin Lymphoma. ACS NANO 2018; 12:1544-1563. [PMID: 29361211 PMCID: PMC6713228 DOI: 10.1021/acsnano.7b08122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Non-Hodgkin lymphoma (NHL) is one of the most common types of hematologic malignancies. Pretargeted radioimmunotherapy (PRIT), the sequential administration of a bispecific antibody-based primary tumor-targeting component followed by a radionucleotide-labeled treatment effector, has been developed to improve the treatment efficacy and to reduce the side effects of conventional RIT. Despite the preclinical success of PRIT, clinical trials revealed that the immunogenicity of the bispecific antibody as well as the presence of competing endogenous effector molecules often compromised the treatment. One strategy to improve PRIT is to utilize bio-orthogonal ligation reactions to minimize immunogenicity and improve targeting. Herein, we report a translatable pretargeted nanoradioimmunotherapy strategy for the treatment of NHL. This pretargeting system is composed of a dibenzylcyclooctyne (DBCO)-functionalized anti-CD20 antibody (α-CD20) tumor-targeting component and an azide- and yttrium-90-(90Y) dual-functionalized dendrimer. The physicochemical properties of both pretargeting components have been extensively studied. We demonstrated that an optimized dual-functionalized dendrimer can undergo rapid strain-promoted azide-alkyne cycloaddition with the DBCO-functionalized α-CD20 at the physiological conditions. The treatment effector in our pretargeting system can not only selectively deliver radionucleotides to the target tumor cells but also increase the complement-dependent cytotoxicity of α-CD20 and thus enhance the antitumor effects, as justified by comprehensive in vitro and in vivo studies in mouse NHL xenograft and disseminated models.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, UNC Marcomolecular Interactions Facility, 1124 Genome Science Building, 250 Bell Tower Drive, Chapel Hill, North Carolina 27599, United States
| | - Carolina Pe-I Lin
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kyle Wagner
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Steven I. Park
- Division of Hematology and Oncology, Levine Cancer Institute, Carolinas Health Care System, 100 Medical Park Dr, Suite 110, Concord, North Carolina 28025, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
82
|
Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy. Pharm Res 2018; 35:63. [DOI: 10.1007/s11095-017-2338-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022]
|
83
|
Shi X, Gao K, Huang H, Gao R. Pretargeted Immuno-PET Based on Bioorthogonal Chemistry for Imaging EGFR Positive Colorectal Cancer. Bioconjug Chem 2018; 29:250-254. [DOI: 10.1021/acs.bioconjchem.8b00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xudong Shi
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Kai Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Hao Huang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical Collage (PUMC), No. 5 Panjiayuan Nanli, Chaoyang District, Beijing 10021, PR China
| |
Collapse
|
84
|
Dai Q, Bertleff‐Zieschang N, Braunger JA, Björnmalm M, Cortez‐Jugo C, Caruso F. Particle Targeting in Complex Biological Media. Adv Healthc Mater 2018; 7. [PMID: 28809092 DOI: 10.1002/adhm.201700575] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/04/2017] [Indexed: 12/22/2022]
Abstract
Over the past few decades, nanoengineered particles have gained increasing interest for applications in the biomedical realm, including diagnosis, imaging, and therapy. When functionalized with targeting ligands, these particles have the potential to interact with specific cells and tissues, and accumulate at desired target sites, reducing side effects and improve overall efficacy in applications such as vaccination and drug delivery. However, when targeted particles enter a complex biological environment, the adsorption of biomolecules and the formation of a surface coating (e.g., a protein corona) changes the properties of the carriers and can render their behavior unpredictable. For this reason, it is of importance to consider the potential challenges imposed by the biological environment at the early stages of particle design. This review describes parameters that affect the targeting ability of particulate drug carriers, with an emphasis on the effect of the protein corona. We highlight strategies for exploiting the protein corona to improve the targeting ability of particles. Finally, we provide suggestions for complementing current in vitro assays used for the evaluation of targeting and carrier efficacy with new and emerging techniques (e.g., 3D models and flow-based technologies) to advance fundamental understanding in bio-nano science and to accelerate the development of targeted particles for biomedical applications.
Collapse
Affiliation(s)
- Qiong Dai
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Nadja Bertleff‐Zieschang
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Julia A. Braunger
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Christina Cortez‐Jugo
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
85
|
Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, Hoeben FJM, Quinn TP. Metal-Free Cycloaddition Chemistry Driven Pretargeted Radioimmunotherapy Using α-Particle Radiation. Bioconjug Chem 2017; 28:3007-3015. [DOI: 10.1021/acs.bioconjchem.7b00612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Manankumar A. Shah
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| | - Xiuli Zhang
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Geert
Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Marc S. Robillard
- Tagworks Pharmaceuticals, Geert
Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Darrell R. Fisher
- Versant Medical Physics and Radiation Safety, Richland, Washington 99354, United States
| | - Tyler Bueltmann
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Thomas P. Quinn
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Harry S. Truman Veterans Administration Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
86
|
Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging Bio-Nano Science and Cancer Nanomedicine. ACS NANO 2017; 11:9594-9613. [PMID: 28926225 DOI: 10.1021/acsnano.7b04855] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The interface of bio-nano science and cancer medicine is an area experiencing much progress but also beset with controversy. Core concepts of the field-e.g., the enhanced permeability and retention (EPR) effect, tumor targeting and accumulation, and even the purpose of "nano" in cancer medicine-are hotly debated. In parallel, considerable advances in neighboring fields are occurring rapidly, including the recent progress of "immuno-oncology" and the fundamental impact it is having on our understanding and the clinical treatment of the group of diseases collectively known as cancer. Herein, we (i) revisit how cancer is commonly treated in the clinic and how this relates to nanomedicine; (ii) examine the ongoing debate on the relevance of the EPR effect and tumor targeting; (iii) highlight ways to improve the next-generation of nanomedicines; and (iv) discuss the emerging concept of working with (and not against) biology. While discussing these controversies, challenges, emerging concepts, and opportunities, we explore new directions for the field of cancer nanomedicine.
Collapse
Affiliation(s)
- Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Kristofer J Thurecht
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The Australian Institute for Bioengineering and Nanotechnology and The Centre for Advanced Imaging, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Michael Michael
- Division of Cancer Medicine, Peter MacCallum Cancer Centre , Melbourne, Victoria 3000, Australia
- The Peter MacCallum Department of Oncology, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University , Melbourne, Victoria 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Hospital , Heidelberg, Victoria 3084, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
87
|
Mu X, Yan C, Tian Q, Lin J, Yang S. BSA-assisted synthesis of ultrasmall gallic acid-Fe(III) coordination polymer nanoparticles for cancer theranostics. Int J Nanomedicine 2017; 12:7207-7223. [PMID: 29042770 PMCID: PMC5633299 DOI: 10.2147/ijn.s146064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein-related nanotheranostic agents hold great promise as tools to serve many clinical applications. Proteins such as BSA are used to regulate the synthesis of nondegradable inorganic nanoparticles (NPs). To fully employ the potential of such proteins, a new type of biosafe nanotheranostic agent must be designed to optimize BSA as a biomineralization agent. Here, a straightforward BSA-assisted biomineralization method was developed to prepare gallic acid (GA)-Fe(III) coordination polymer NPs. BSA-coated GA-Fe (GA-Fe@BSA) NPs were ultrasmall (3.5 nm) and showed good biocompatibility, a lower r2:r1 ratio (1.06), and strong absorption in the visible near-infrared region. T1-weighted magnetic resonance imaging of tumor-bearing mice before and after intratumoral injection with GA-Fe@BSA NPs definitively demonstrated positive change. In a subsequent in vivo study, antitumor activity was precipitated by intratumoral injection of GA-Fe@BSA NPs combined with laser treatment, suggesting excellent outcomes with this treatment method. These results describe a successful protocol in which BSA regulated the synthesis of benign organic polymer NPs. GA-Fe@BSA NPs have the potential to be ideal agents to be used in clinical theranostic nanoplatforms.
Collapse
Affiliation(s)
- Xueling Mu
- Key Laboratory of Resource Chemistry
- Key Laboratory of Rare Earth Functional Materials
- Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, China
| | - Chenglin Yan
- Key Laboratory of Resource Chemistry
- Key Laboratory of Rare Earth Functional Materials
- Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, China
| | - Qiwei Tian
- Key Laboratory of Resource Chemistry
- Key Laboratory of Rare Earth Functional Materials
- Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, China
| | - Jiaomin Lin
- Key Laboratory of Resource Chemistry
- Key Laboratory of Rare Earth Functional Materials
- Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, China
| | - Shiping Yang
- Key Laboratory of Resource Chemistry
- Key Laboratory of Rare Earth Functional Materials
- Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai, China
| |
Collapse
|
88
|
Brand C, Iacono P, Pérez-Medina C, Mulder WJM, Kircher MF, Reiner T. Specific Binding of Liposomal Nanoparticles through Inverse Electron-Demand Diels-Alder Click Chemistry. ChemistryOpen 2017; 6:615-619. [PMID: 29046855 PMCID: PMC5641912 DOI: 10.1002/open.201700105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
Here, we report a method to specifically bind liposomal radiopharmaceuticals to a CoCrMo alloy, which can be used in arterial stents, via an irreversible inverse electron‐demand Diels–Alder reaction. Inspired by recent accomplishments in pre‐targeted imaging using tetrazine‐trans‐cyclooctene click chemistry, we synthesized 89Zr‐labeled trans‐cyclooctene‐functionalized liposomal nanoparticles, which were validated on a tetrazine‐appended polydopamine‐coated CoCrMo surface. In efforts to ultimately translate this new material to biomedical applications, we compared the ability of 89Zr‐TCO–liposomal nanoparticles (89Zr‐TCO‐LNP) to be immobilized on the tetrazine surface to the control suspensions of non‐TCO functionalized 89Zr‐liposomal nanoparticles. Ultimately, this platform technology could result in a systemic decrease of the radiotherapeutic dose deposited in non‐targeted tissues by specific removal of long‐circulating liposomal radiopharmaceuticals from the blood pool.
Collapse
Affiliation(s)
- Christian Brand
- Department of Radiology Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA
| | - Pasquale Iacono
- Department of Radiology Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount Sinai 1470 Madison Ave New York NY 10029 USA
| | - Willem J M Mulder
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount Sinai 1470 Madison Ave New York NY 10029 USA.,Department of Medical Biochemistry Academic Medical Center Meibergdreef 91105 AZ Amsterdam The Netherlands
| | - Moritz F Kircher
- Department of Radiology Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA.,Department of Radiology Weill Cornell Medical College 1300 York Avenue New York NY 10065 USA.,Center for Molecular Imaging & Nanotechnology (CMINT) Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA.,Molecular Pharmacology Program Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA
| | - Thomas Reiner
- Department of Radiology Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA.,Department of Radiology Weill Cornell Medical College 1300 York Avenue New York NY 10065 USA.,Center for Molecular Imaging & Nanotechnology (CMINT) Memorial Sloan Kettering Cancer Center 1275 York Avenue New York NY 10065 USA
| |
Collapse
|
89
|
Piontek A, Witte C, May Rose H, Eichner M, Protze J, Krause G, Piontek J, Schröder L. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells. Ann N Y Acad Sci 2017. [PMID: 28636798 DOI: 10.1111/nyas.13363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Christopher Witte
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Honor May Rose
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| | - Miriam Eichner
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Structural Bioinformatics and Protein Design, Berlin, Germany
| | - Jörg Piontek
- Institute of Clinical Physiology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Schröder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Molecular Imaging, Berlin, Germany
| |
Collapse
|
90
|
Wang T, Yuan C, Dai B, Liu Y, Li M, Feng Z, Jiang Q, Xu Z, Zhao N, Gu N, Yang F. Click-Chemistry-Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. Chembiochem 2017; 18:1364-1368. [PMID: 28426149 DOI: 10.1002/cbic.201700068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tuantuan Wang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Chuxiao Yuan
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Bingyang Dai
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Yang Liu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Mingxi Li
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Zhenqiang Feng
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery; Drum Tower Hospital; School of Medical; Nanjing University; Zhongshan Road 321 Nanjing Jiangsu 210008 China
| | - Ningwei Zhao
- Shimadzu Biomedical Research Laboratory; West Huaihai Road 570 Shanghai 200052 China
| | - Ning Gu
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| | - Fang Yang
- State Key Laboratory of Bioelectronics; Jiangsu Key Laboratory for Biomaterials and Devices; School of Biological Sciences and Medical Engineering; Southeast University; Sipailou 2 Nanjing Jiangsu 210009 China
| |
Collapse
|
91
|
Lee E, Mari C, Gel M, Gardiner J, Gasser G, Haylock D. Immobilisation of Multiple Ligands Using Peptide Nucleic Acids: A Strategy to Prepare the Microenvironment for Cell Culture. ChemistrySelect 2017. [DOI: 10.1002/slct.201700541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun‐ju Lee
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - Cristina Mari
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Murat Gel
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - James Gardiner
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - Gilles Gasser
- Chimie ParisTech PSL Research University Laboratory for Inorganic Chemical Biology F-75005 Paris France
| | - David Haylock
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton, Victoria 3168 Australia
| |
Collapse
|
92
|
Abstract
Biotin/(strept)avidin self-assembly is a powerful platform for nanoscale fabrication and capture with many different applications in science, medicine, and nanotechnology. However, biotin/(strept)avidin self-assembly has several well-recognized drawbacks that limit performance in certain technical areas and there is a need for synthetic mimics that can either become superior replacements or operational partners with bio-orthogonal recognition properties. The goal of this tutorial review is to describe the recent progress in making high affinity synthetic association partners that operate in water or biological media. The review starts with a background summary of biotin/(strept)avidin self-assembly and the current design rules for creating synthetic mimics. A series of case studies are presented that describe recent success using synthetic derivatives of cyclodextrins, cucurbiturils, and various organic cyclophanes such as calixarenes, deep cavitands, pillararenes, and tetralactams. In some cases, two complementary partners associate to produce a nanoscale complex and in other cases a ditopic host molecule is used to link two partners. The article concludes with a short discussion of future directions and likely challenges.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Soumen K. Samanta
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
93
|
Schubert M, Bergmann R, Förster C, Sihver W, Vonhoff S, Klussmann S, Bethge L, Walther M, Schlesinger J, Pietzsch J, Steinbach J, Pietzsch HJ. Novel Tumor Pretargeting System Based on Complementary l-Configured Oligonucleotides. Bioconjug Chem 2017; 28:1176-1188. [PMID: 28222590 DOI: 10.1021/acs.bioconjchem.7b00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unnatural mirror image l-configured oligonucleotides (L-ONs) are a convenient substance class for the application as complementary in vivo recognition system between a tumor specific antibody and a smaller radiolabeled effector molecule in pretargeting approaches. The high hybridization velocity and defined melting conditions are excellent preconditions of the L-ON based methodology. Their high metabolic stability and negligible unspecific binding to endogenous targets are superior characteristics in comparison to their d-configured analogs. In this study, a radiopharmacological evaluation of a new l-ONs based pretargeting system using the epidermal growth factor receptor (EGFR) specific antibody cetuximab (C225) as target-seeking component is presented. An optimized PEGylated 17mer-L-DNA was conjugated with p-SCN-Bn-NOTA (NOTA') to permit radiolabeling with the radionuclide 64Cu. C225 was modified with the complementary 17mer-L-DNA (c-L-DNA) strand as well as with NOTA' for radiolabeling and use for positron emission tomography (PET). Two C225 conjugates were coupled with 1.5 and 5.0 c-L-DNA molecules, respectively. In vitro characterization was done with respect to hybridization studies, competition and saturation binding assays in EGFR expressing squamous cell carcinoma cell lines A431 and FaDu. The modified C225 derivatives exhibited high binding affinities in the low nanomolar range to the EGFR. PET and biodistribution experiments on FaDu tumor bearing mice with directly 64Cu-labeled NOTA'3-C225-(c-L-DNA)1.5 conjugate revealed that a pretargeting interval of 24 h might be a good compromise between tumor accumulation, internalization, blood background, and liver uptake of the antibody. Despite internalization of the antibody in vivo pretargeting experiments showed an adequate hybridization of 64Cu-radiolabeled NOTA'-L-DNA to the tumor located antibody and a good tumor-to-muscle ratio of about 11 resulting in a clearly visible image of the tumor after 24 h up to 72 h. Furthermore, low accumulation of radioactivity in organs responsible for metabolism and excretion was determined. The presented results indicate a high potential of complementary L-ONs for the pretargeting approach which can also be applied to therapeutic radionuclides such as 177Lu, 90Y, 186Re, or 188Re.
Collapse
Affiliation(s)
- Maik Schubert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Christian Förster
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | | | | | | | - Martin Walther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jörn Schlesinger
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden , School of Science, Department of Chemistry and Food Chemistry, 01062 Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany.,Technische Universität Dresden , School of Science, Department of Chemistry and Food Chemistry, 01062 Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research , Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
94
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|