51
|
Ruocco N, Costantini M, Santella L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci Rep 2016; 6:32157. [PMID: 27562248 PMCID: PMC4999890 DOI: 10.1038/srep32157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022] Open
Abstract
The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.,Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Luigia Santella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
52
|
Singh N, Sharpley AL, Emir UE, Masaki C, Herzallah MM, Gluck MA, Sharp T, Harmer CJ, Vasudevan SR, Cowen PJ, Churchill GC. Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans. Neuropsychopharmacology 2016; 41:1768-78. [PMID: 26593266 PMCID: PMC4770517 DOI: 10.1038/npp.2015.343] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 01/09/2023]
Abstract
Lithium remains the gold standard in treating bipolar disorder but has unwanted toxicity and side effects. We previously reported that ebselen inhibits inositol monophosphatase (IMPase) and exhibits lithium-like effects in animal models through lowering of inositol. Ebselen has been tested in clinical trials for other disorders, enabling us to determine for the first time the effect of a blood-brain barrier-penetrant IMPase inhibitor on human central nervous system (CNS) function. We now report that in a double-blind, placebo-controlled trial with healthy participants, acute oral ebselen reduced brain myo-inositol in the anterior cingulate cortex, consistent with CNS target engagement. Ebselen decreased slow-wave sleep and affected emotional processing by increasing recognition of some emotions, decreasing latency time in the acoustic startle paradigm, and decreasing the reinforcement of rewarding stimuli. In summary, ebselen affects the phosphoinositide cycle and has CNS effects on surrogate markers that may be relevant to the treatment of bipolar disorder that can be tested in future clinical trials.
Collapse
Affiliation(s)
- Nisha Singh
- Department of Pharmacology, University of Oxford, Oxford, UK,Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Ann L Sharpley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Uzay E Emir
- The Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Charles Masaki
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Mohammad M Herzallah
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA,Palestinian Neuroscience Initiative, Faculty of Medicine, Al-Quds University, Abu Dis, Jerusalem, Palestine
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Oxford, UK,Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK, Tel: +44 (0)1865 271 635, Fax: +44 (0)1865 271 853, E-mail:
| |
Collapse
|
53
|
Fabrizi C, Pompili E, Somma F, De Vito S, Ciraci V, Artico M, Lenzi P, Fornai F, Fumagalli L. Lithium limits trimethyltin-induced cytotoxicity and proinflammatory response in microglia without affecting the concurrent autophagy impairment. J Appl Toxicol 2016; 37:207-213. [PMID: 27226005 DOI: 10.1002/jat.3344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Trimethyltin (TMT) is a highly toxic molecule present as an environmental contaminant causing neurodegeneration particularly of the limbic system both in humans and in rodents. We recently described the occurrence of impairment in the late stages of autophagy in TMT-intoxicated astrocytes. Here we show that similarly to astrocytes also in microglia, TMT induces the precocious block of autophagy indicated by the accumulation of the autophagosome marker, microtubule associated protein light chain 3. Consistent with autophagy impairment we observe in TMT-treated microglia the accumulation of p62/SQSTM1, a protein specifically degraded through this pathway. Lithium has been proved effective in limiting neurodegenerations and, in particular, in ameliorating symptoms of TMT intoxication in rodents. In our in vitro model, lithium displays a pro-survival and anti-inflammatory action reducing both cell death and the proinflammatory response of TMT-treated microglia. In particular, lithium exerts these activities without reducing TMT-induced accumulation of light chain 3 protein. In fact, the autophagic block imposed by TMT is unaffected by lithium administration. These results are of interest as defects in the execution of autophagy are frequently observed in neurodegenerative diseases and lithium is considered a promising therapeutic agent for these pathologies. Thus, it is relevant that this cation can still maintain its pro-survival and anti-inflammatory role in conditions of autophagy block. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Francesca Somma
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Stefania De Vito
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Viviana Ciraci
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University, Rome, Italy
| | - Paola Lenzi
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, Rome, Italy
| |
Collapse
|
54
|
Pandey MK, DeGrado TR. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging. Am J Cancer Res 2016; 6:571-93. [PMID: 26941849 PMCID: PMC4775866 DOI: 10.7150/thno.14334] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed.
Collapse
|
55
|
A significant risk locus on 19q13 for bipolar disorder identified using a combined genome-wide linkage and copy number variation analysis. BioData Min 2015; 8:42. [PMID: 26692414 PMCID: PMC4683747 DOI: 10.1186/s13040-015-0076-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Background The genetic background to bipolar disorder (BPD) has been attributed to different genetic and genomic risk factors. In the present study we hypothesized that inherited copy number variations (CNVs) contribute to susceptibility of BPD. We screened 637 BP-pedigrees from the NIMH Genetic Initiative and gave priority to 46 pedigrees. In this subsample we performed parametric and non-parametric genome-wide linkage analyses using ~21,000 SNP-markers. We developed an algorithm to test for linkage restricted to regions with CNVs that are shared within and across families. Results For the combined CNV and linkage analysis, one region on 19q13 survived correction for multiple comparisons and replicates a previous BPD risk locus. The shared CNV map to the pregnancy-specific glycoprotein (PSG) gene, a gene-family not previously implicated in BPD etiology. Two SNPs in the shared CNV are likely transcription factor binding sites and are linked to expression of an F-box binding gene, a key regulator of neuronal pathways suggested to be involved in BPD etiology. Conclusions Our CNV-weighted linkage approach identifies a risk locus for BPD on 19q13 and forms a useful tool to future studies to unravel part of the genetic vulnerability to BPD. Electronic supplementary material The online version of this article (doi:10.1186/s13040-015-0076-y) contains supplementary material, which is available to authorized users.
Collapse
|
56
|
McCammon JM, Sive H. Addressing the Genetics of Human Mental Health Disorders in Model Organisms. Annu Rev Genomics Hum Genet 2015; 16:173-97. [DOI: 10.1146/annurev-genom-090314-050048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmine M. McCammon
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
57
|
Aloni E, Shapira M, Eldar-Finkelman H, Barnea A. GSK-3β Inhibition Affects Singing Behavior and Neurogenesis in Adult Songbirds. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:233-44. [PMID: 26065821 DOI: 10.1159/000382029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/01/2015] [Indexed: 11/19/2022]
Abstract
GSK-3 (glycogen synthase kinase-3) is a serine/threonine kinase which is a critical regulator in neuronal signaling, cognition, and behavior. We have previously shown that unlike other vertebrates that harbor both α and β GSK-3 genes, the α gene is missing in birds. Therefore, birds can be used as a new animal model to study the roles of GSK-3β in behavior and in regulating adult neurogenesis. In the present study, we inhibited GSK-3β in brains of adult male zebra finches (Taeniopygia guttata) and accordingly investigated how this inhibition affects behavior and cell proliferation. Our results show that GSK-3 inhibition: (1) affects specific aspects of singing behavior, which might be related to social interactions in birds, and (2) differentially affects cell proliferation in various parts of the ventricular zone. Taken together, our study demonstrates a role of GSK-3β in regulating singing behavior and neuronal proliferation in birds and highlights the importance of GSK-3β in modulating cognitive abilities as well as social behavior.
Collapse
Affiliation(s)
- Etay Aloni
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
58
|
Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 2015; 20:661-70. [PMID: 25687772 PMCID: PMC5125816 DOI: 10.1038/mp.2015.4] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/22/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023]
Abstract
After decades of research, the mechanism of action of lithium in preventing recurrences of bipolar disorder remains only partially understood. Lithium research is complicated by the absence of suitable animal models of bipolar disorder and by having to rely on in vitro studies of peripheral tissues. A number of distinct hypotheses emerged over the years, but none has been conclusively supported or rejected. The common theme emerging from pharmacological and genetic studies is that lithium affects multiple steps in cellular signaling, usually enhancing basal and inhibiting stimulated activities. Some of the key nodes of these regulatory networks include GSK3 (glycogen synthase kinase 3), CREB (cAMP response element-binding protein) and Na(+)-K(+) ATPase. Genetic and pharmacogenetic studies are starting to generate promising findings, but remain limited by small sample sizes. As full responders to lithium seem to represent a unique clinical population, there is inherent value and need for studies of lithium responders. Such studies will be an opportunity to uncover specific effects of lithium in those individuals who clearly benefit from the treatment.
Collapse
|
59
|
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, van der Ven K, Hsu J, Wolf P, Fleishman M, O’Dushlaine C, Rose S, Chambert K, Lau FH, Ahfeldt T, Rueckert EH, Sheridan SD, Fass DM, Nemesh J, Mullen TE, Daheron L, McCarroll S, Sklar P, Perlis RH, Haggarty SJ. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015; 20:703-17. [PMID: 25733313 PMCID: PMC4440839 DOI: 10.1038/mp.2015.7] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
Collapse
Affiliation(s)
- Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| | - Fen Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aparna Nigam
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ali Hussain
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Douglas D. Barker
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Karlijn van der Ven
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenny Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pavlina Wolf
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Sam Rose
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Frank H. Lau
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Tim Ahfeldt
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Erroll H. Rueckert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven D. Sheridan
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E. Mullen
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laurence Daheron
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Steve McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Roy H. Perlis
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| |
Collapse
|
60
|
Pardo M, King MK, Perez-Costas E, Melendez-Ferro M, Martinez A, Beurel E, Jope RS. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3. Front Behav Neurosci 2015; 9:55. [PMID: 25788881 PMCID: PMC4349180 DOI: 10.3389/fnbeh.2015.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 01/09/2023] Open
Abstract
Brain glycogen synthase kinase-3 (GSK3) is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC). To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type (WT) mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with WT mice. Environmental enrichment (EE) increased NPC proliferation in male, but not female, GSK3 knockin mice and WT mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched WT mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 h pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.
Collapse
Affiliation(s)
- Marta Pardo
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Margaret K King
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Emma Perez-Costas
- Department of Psychiatry, University of Alabama at Birmingham Birmingham, AL, USA
| | | | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC Madrid, Spain
| | - Eleonore Beurel
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Richard S Jope
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| |
Collapse
|
61
|
Nørregaard R, Tao S, Nilsson L, Woodgett JR, Kakade V, Yu ASL, Howard C, Rao R. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice. Am J Physiol Renal Physiol 2015; 308:F650-60. [PMID: 25608967 DOI: 10.1152/ajprenal.00516.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li(+) in LiCl-induced nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shixin Tao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Line Nilsson
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; and
| | - Vijayakumar Kakade
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Christiana Howard
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Reena Rao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
62
|
Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 2014; 148:114-31. [PMID: 25435019 DOI: 10.1016/j.pharmthera.2014.11.016] [Citation(s) in RCA: 1239] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinase-3 (GSK3) may be the busiest kinase in most cells, with over 100 known substrates to deal with. How does GSK3 maintain control to selectively phosphorylate each substrate, and why was it evolutionarily favorable for GSK3 to assume such a large responsibility? GSK3 must be particularly adaptable for incorporating new substrates into its repertoire, and we discuss the distinct properties of GSK3 that may contribute to its capacity to fulfill its roles in multiple signaling pathways. The mechanisms regulating GSK3 (predominantly post-translational modifications, substrate priming, cellular trafficking, protein complexes) have been reviewed previously, so here we focus on newly identified complexities in these mechanisms, how each of these regulatory mechanism contributes to the ability of GSK3 to select which substrates to phosphorylate, and how these mechanisms may have contributed to its adaptability as new substrates evolved. The current understanding of the mechanisms regulating GSK3 is reviewed, as are emerging topics in the actions of GSK3, particularly its interactions with receptors and receptor-coupled signal transduction events, and differential actions and regulation of the two GSK3 isoforms, GSK3α and GSK3β. Another remarkable characteristic of GSK3 is its involvement in many prevalent disorders, including psychiatric and neurological diseases, inflammatory diseases, cancer, and others. We address the feasibility of targeting GSK3 therapeutically, and provide an update of its involvement in the etiology and treatment of several disorders.
Collapse
Affiliation(s)
- Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
63
|
Lüchtenborg AM, Katanaev VL. Lack of evidence of the interaction of the Aβ peptide with the Wnt signaling cascade in Drosophila models of Alzheimer's disease. Mol Brain 2014; 7:81. [PMID: 25387847 PMCID: PMC4232725 DOI: 10.1186/s13041-014-0081-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the leading form of dementia worldwide. The Aβ-peptide is believed to be the major pathogenic compound of the disease. Since several years it is hypothesized that Aβ impacts the Wnt signaling cascade and therefore activation of this signaling pathway is proposed to rescue the neurotoxic effect of Aβ. Findings Expression of the human Aβ42 in the Drosophila nervous system leads to a drastically shortened life span. We found that the action of Aβ42 specifically in the glutamatergic motoneurons is responsible for the reduced survival. However, we find that the morphology of the glutamatergic larval neuromuscular junctions, which are widely used as the model for mammalian central nervous system synapses, is not affected by Aβ42 expression. We furthermore demonstrate that genetic activation of the Wnt signal transduction pathway in the nervous system is not able to rescue the shortened life span or a rough eye phenotype in Drosophila. Conclusions Our data confirm that the life span is a useful readout of Aβ42 induced neurotoxicity in Drosophila; the neuromuscular junction seems however not to be an appropriate model to study AD in flies. Additionally, our results challenge the hypothesis that Wnt signaling might be implicated in Aβ42 toxicity and might serve as a drug target against AD.
Collapse
Affiliation(s)
- Anne-Marie Lüchtenborg
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland.
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, Lausanne, 1005, Switzerland.
| |
Collapse
|
64
|
Gomez-Sintes R, Bortolozzi A, Artigas F, Lucas JJ. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice. Eur Neuropsychopharmacol 2014; 24:1524-33. [PMID: 25088904 DOI: 10.1016/j.euroneuro.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 06/07/2014] [Accepted: 07/11/2014] [Indexed: 11/17/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity.
Collapse
Affiliation(s)
- Raquel Gomez-Sintes
- Centro de Biología Molecular "Severo Ochoa" (CBM"SO"), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Analia Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, IIBB - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - José J Lucas
- Centro de Biología Molecular "Severo Ochoa" (CBM"SO"), CSIC/UAM, 28049 Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
65
|
Zhang Y, Welzig CM, Picard KL, Du C, Wang B, Pan JQ, Kyriakis JM, Aronovitz MJ, Claycomb WC, Blanton RM, Park HJ, Galper JB. Glycogen synthase kinase-3β inhibition ameliorates cardiac parasympathetic dysfunction in type 1 diabetic Akita mice. Diabetes 2014; 63:2097-113. [PMID: 24458356 PMCID: PMC4030105 DOI: 10.2337/db12-1459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Decreased heart rate variability (HRV) is a major risk factor for sudden death and cardiovascular disease. We previously demonstrated that parasympathetic dysfunction in the heart of the Akita type 1 diabetic mouse was due to a decrease in the level of the sterol response element-binding protein (SREBP-1). Here we demonstrate that hyperactivity of glycogen synthase kinase-3β (GSK3β) in the atrium of the Akita mouse results in decreased SREBP-1, attenuation of parasympathetic modulation of heart rate, measured as a decrease in the high-frequency (HF) fraction of HRV in the presence of propranolol, and a decrease in expression of the G-protein coupled inward rectifying K(+) (GIRK4) subunit of the acetylcholine (ACh)-activated inward-rectifying K(+) channel (IKACh), the ion channel that mediates the heart rate response to parasympathetic stimulation. Treatment of atrial myocytes with the GSK3β inhibitor Kenpaullone increased levels of SREBP-1 and expression of GIRK4 and IKACh, whereas a dominant-active GSK3β mutant decreased SREBP-1 and GIRK4 expression. In Akita mice treated with GSK3β inhibitors Li(+) and/or CHIR-99021, Li(+) increased IKACh, and Li(+) and CHIR-99021 both partially reversed the decrease in HF fraction while increasing GIRK4 and SREBP-1 expression. These data support the conclusion that increased GSK3β activity in the type 1 diabetic heart plays a critical role in parasympathetic dysfunction through an effect on SREBP-1, supporting GSK3β as a new therapeutic target for diabetic autonomic neuropathy.
Collapse
Affiliation(s)
- Yali Zhang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Charles M Welzig
- Departments of Neurology and Physiology, Medical College of Wisconsin, Milwaukee, WIDepartment of Medicine, Tufts University School of Medicine, Boston, MA
| | - Kristen L Picard
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Chuang Du
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA
| | - Bo Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - William C Claycomb
- Department of Biochemistry & Molecular Biology, Louisiana State University School of Medicine, New Orleans, LA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MADepartment of Medicine, Tufts University School of Medicine, Boston, MA
| | - Ho-Jin Park
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jonas B Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MADepartment of Medicine, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
66
|
|
67
|
Matsuda S, Nakanishi A, Wada Y, Kitagishi Y. Roles of PI3K/AKT/PTEN Pathway as a Target for Pharmaceutical Therapy. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2013; 7:23-9. [PMID: 24222802 PMCID: PMC3821079 DOI: 10.2174/1874104501307010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/23/2013] [Accepted: 10/05/2013] [Indexed: 12/11/2022]
Abstract
Multiple enzymes participate in the phosphorylation of a group of phosphoinositide lipids. Because of their important role in signal transduction, the dysregulated metabolism of phosphoinositides represents a key step in many disease settings. Loss of their function has been demonstrated to occur as an early event a wide variety of carcinogenesis and has therefore been suggested as a biomarker for the premalignant disease. In addition, genetic alterations at multiple nodes in the pathway have been implicated in several other diseases. Accordingly, given this pervasive involvement in many diseases, the development of molecules that modulates this pathway has been initiated in studies. They have been the focus of extensive research and drug discovery activities. A better understanding of the molecular connections could uncover new targets for drug development.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
68
|
Almenar-Queralt A, Kim SN, Benner C, Herrera CM, Kang DE, Garcia-Bassets I, Goldstein LSB. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem 2013; 288:35222-36. [PMID: 24145027 DOI: 10.1074/jbc.m113.513705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
Collapse
|
69
|
Riparbelli MG, Cabrera OA, Callaini G, Megraw TL. Unique properties of Drosophila spermatocyte primary cilia. Biol Open 2013; 2:1137-47. [PMID: 24244850 PMCID: PMC3828760 DOI: 10.1242/bio.20135355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023] Open
Abstract
The primary cilium is an essential organelle required for animal development and adult homeostasis that is found on most animal cells. The primary cilium contains a microtubule-based axoneme cytoskeleton that typically grows from the mother centriole in G0/G1 phase of the cell cycle as a membrane-bound compartment that protrudes from the cell surface. A unique system of bidirectional transport, intraflagellar transport (IFT), maintains the structure and function of cilia. While the axoneme is dynamic, growing and shrinking at its tip, at the same time it is very stable to the effects of microtubule-targeting drugs. The primary cilia found on Drosophila spermatocytes diverge from the general rules of primary cilium biology in several respects. Among these unique attributes, spermatocyte cilia assemble from all four centrioles in an IFT-independent manner in G2 phase, and persist continuously through two cell divisions. Here, we show that Drosophila spermatocyte primary cilia are extremely sensitive to microtubule-targeting drugs, unlike their mammalian counterparts. Spermatocyte cilia and their axonemes fail to assemble or be maintained upon nocodazole treatment, while centriole replication appears unperturbed. On the other hand, paclitaxel (Taxol), a microtubule-stabilizing drug, disrupted transition zone assembly and anchoring to the plasma membrane while causing spermatocyte primary cilia to grow extensively long during the assembly/elongation phase, but did not overtly affect the centrioles. However, once assembled to their mature length, spermatocyte cilia appeared unaffected by Taxol. The effects of these drugs on axoneme dynamics further demonstrate that spermatocyte primary cilia are endowed with unique assembly properties.
Collapse
|
70
|
Martin PM, Yang X, Robin N, Lam E, Rabinowitz JS, Erdman CA, Quinn J, Weiss LA, Hamilton SP, Kwok PY, Moon RT, Cheyette BNR. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl Psychiatry 2013; 3:e301. [PMID: 24002087 PMCID: PMC3784764 DOI: 10.1038/tp.2013.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023] Open
Abstract
Wnt signaling, which encompasses multiple biochemical pathways that regulate neural development downstream of extracellular Wnt glycoprotein ligands, has been suggested to contribute to major psychiatric disorders including autism spectrum disorders (ASD). We used next-generation sequencing and Sequenom genotyping technologies to resequence 10 Wnt signaling pathway genes in 198 ASD patients and 240 matched controls. Results for single-nucleotide polymorphisms (SNPs) of interest were confirmed in a second set of 91 ASD and 144 control samples. We found a significantly increased burden of extremely rare missense variants predicted to be deleterious by PolyPhen-2, distributed across seven genes in the ASD sample (3.5% in ASD vs 0.8% in controls; Fisher's exact test, odds ratio (OR)=4.37, P=0.04). We also found a missense variant in WNT1 (S88R) that was overrepresented in the ASD sample (8 A/T in 267 ASD (minor allele frequency (MAF)=1.69%) vs 1 A/T in 377 controls (MAF=0.13%), OR=13.0, Fisher's exact test, P=0.0048; OR=8.2 and P=0.053 after correction for population stratification). Functional analysis revealed that WNT1-S88R is more active than wild-type WNT1 in assays for the Wnt/β-catenin signaling pathway. Our findings of a higher burden in ASD of rare missense variants distributed across 7 of 10 Wnt signaling pathway genes tested, and of a functional variant at the WNT1 locus associated with ASD, support that dysfunction of this pathway contributes to ASD susceptibility. Given recent findings of common molecular mechanisms in ASD, schizophrenia and affective disorders, these loci merit scrutiny in other psychiatric conditions as well.
Collapse
Affiliation(s)
- P-M Martin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - X Yang
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - N Robin
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - E Lam
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - J S Rabinowitz
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - C A Erdman
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - J Quinn
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - L A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - S P Hamilton
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - P-Y Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - R T Moon
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - B N R Cheyette
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Department of Psychiatry, University of California, Rock Hall Room 284D, 1550 4th Street, San Francisco, CA 94158-2324, USA. E-mail:
| |
Collapse
|
71
|
Intracellular pathways of antipsychotic combined therapies: implication for psychiatric disorders treatment. Eur J Pharmacol 2013; 718:502-23. [PMID: 23834777 DOI: 10.1016/j.ejphar.2013.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/11/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
Dysfunctions in the interplay among multiple neurotransmitter systems have been implicated in the wide range of behavioral, emotional and cognitive symptoms displayed by major psychiatric disorders, such as schizophrenia, bipolar disorder or major depression. The complex clinical presentation of these pathologies often needs the use of multiple pharmacological treatments, in particular (1) when monotherapy provides insufficient improvement of the core symptoms; (2) when there are concurrent additional symptoms requiring more than one class of medication and (3) in order to improve tolerability, by using two compounds below their individual dose thresholds to limit side effects. To date, the choice of drug combinations is based on empirical paradigm guided by clinical response. Nonetheless, several preclinical studies have demonstrated that drugs commonly used to treat psychiatric disorders may impact common intracellular target molecules (e.g. Akt/GSK-3 pathway, MAP kinases pathway, postsynaptic density proteins). These findings support the hypothesis that convergence at crucial steps of transductional pathways could be responsible for synergistic effects obtained in clinical practice by the co-administration of those apparently heterogeneous pharmacological compounds. Here we review the most recent evidence on the molecular crossroads in antipsychotic combined therapies with antidepressants, mood stabilizers, and benzodiazepines, as well as with antipsychotics. We first discuss clinical clues and efficacy of such combinations. Then we focus on the pharmacodynamics and on the intracellular pathways underpinning the synergistic, or concurrent, effects of each therapeutic add-on strategy, as well as we also critically appraise how pharmacological research may provide new insights on the putative molecular mechanisms underlying major psychiatric disorders.
Collapse
|
72
|
Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:893-903. [DOI: 10.1007/s00210-013-0893-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
|
73
|
Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon ECY, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC. A safe lithium mimetic for bipolar disorder. Nat Commun 2013; 4:1332. [PMID: 23299882 PMCID: PMC3605789 DOI: 10.1038/ncomms2320] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/22/2012] [Indexed: 12/29/2022] Open
Abstract
Lithium is the most effective mood stabilizer for the treatment of bipolar disorder, but it is toxic at only twice the therapeutic dosage and has many undesirable side effects. It is likely that a small molecule could be found with lithium-like efficacy but without toxicity through target-based drug discovery; however, lithium’s therapeutic target remains equivocal. Inositol monophosphatase is a possible target but no bioavailable inhibitors exist. Here we report that the antioxidant ebselen inhibits inositol monophosphatase and induces lithium-like effects on mouse behaviour, which are reversed with inositol, consistent with a mechanism involving inhibition of inositol recycling. Ebselen is part of the National Institutes of Health Clinical Collection, a chemical library of bioavailable drugs considered clinically safe but without proven use. Therefore, ebselen represents a lithium mimetic with the potential both to validate inositol monophosphatase inhibition as a treatment for bipolar disorder and to serve as a treatment itself.
Collapse
Affiliation(s)
- Nisha Singh
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Judy JT, Zandi PP. A review of potassium channels in bipolar disorder. Front Genet 2013; 4:105. [PMID: 23781230 PMCID: PMC3678088 DOI: 10.3389/fgene.2013.00105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Although bipolar disorder (BP) is one of the most heritable psychiatric conditions, susceptibility genes for the disorder have yet to be conclusively identified. It is likely that variants in multiple genes across multiple pathways contribute to the genotype–phenotype relationship in the affected population. Recent evidence from genome-wide association studies implicates an entire class of genes related to the structure and regulation of ion channels, suggesting that the etiology of BP may arise from channelopathies. In this review, we examine the evidence for this hypothesis, with a focus on the potential role of voltage-gated potassium channels. We consider evidence from genetic and expression studies, and discuss the potential underlying biology. We consider animal models and treatment implications of the involvement of potassium ion channelopathy in BP. Finally, we explore intriguing parallels between BP and epilepsy, the signature channelopathy of the central nervous system.
Collapse
Affiliation(s)
- Jennifer T Judy
- Department of Psychiatry, Johns Hopkins School of Medicine Baltimore, MD, USA
| | | |
Collapse
|
75
|
Singh KK. An emerging role for Wnt and GSK3 signaling pathways in schizophrenia. Clin Genet 2013; 83:511-7. [PMID: 23379509 DOI: 10.1111/cge.12111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 01/04/2023]
Abstract
Schizophrenia is a disabling illness with limited treatment options. The underlying pathophysiology remains unknown, partially due to its heterogeneous nature, and a lack of understanding of the biological functions of genetic risk factors. Several signaling pathways have been implicated, however, with the varying degrees of support. In this article, I will focus on the converging evidence supporting a prominent role for Wnt and glycogen synthase kinase 3 (GSK3) signaling in the biological bases of schizophrenia. This includes current pharmacological therapies that target GSK3, animal model and cell-based studies, and recent human genetic findings that implicate Wnt and GSK3 signaling.
Collapse
Affiliation(s)
- K K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
76
|
Kaasik K, Kivimäe S, Allen JJ, Chalkley RJ, Huang Y, Baer K, Kissel H, Burlingame AL, Shokat KM, Ptáček LJ, Fu YH. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013; 17:291-302. [PMID: 23395175 PMCID: PMC3597447 DOI: 10.1016/j.cmet.2012.12.017] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/02/2012] [Accepted: 12/06/2012] [Indexed: 02/09/2023]
Abstract
Posttranslational modifications play central roles in myriad biological pathways including circadian regulation. We employed a circadian proteomic approach to demonstrate that circadian timing of phosphorylation is a critical factor in regulating complex GSK3β-dependent pathways and identified O-GlcNAc transferase (OGT) as a substrate of GSK3β. Interestingly, OGT activity is regulated by GSK3β; hence, OGT and GSK3β exhibit reciprocal regulation. Modulating O-GlcNAcylation levels alter circadian period length in both mice and Drosophila; conversely, protein O-GlcNAcylation is circadianly regulated. Central clock proteins, Clock and Period, are reversibly modified by O-GlcNAcylation to regulate their transcriptional activities. In addition, O-GlcNAcylation of a region in PER2 known to regulate human sleep phase (S662-S674) competes with phosphorylation of this region, and this interplay is at least partly mediated by glucose levels. Together, these results indicate that O-GlcNAcylation serves as a metabolic sensor for clock regulation and works coordinately with phosphorylation to fine-tune circadian clock.
Collapse
Affiliation(s)
- Krista Kaasik
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Ma S, Kwon HJ, Johng H, Zang K, Huang Z. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol 2013; 11:e1001469. [PMID: 23349620 PMCID: PMC3551952 DOI: 10.1371/journal.pbio.1001469] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022] Open
Abstract
Radial glial cells, which are neural stem cells well known for their role in neurogenesis, also play an unexpected role in stabilizing nascent blood vessels in the brain. The cerebral cortex performs complex cognitive functions at the expense of tremendous energy consumption. Blood vessels in the brain are known to form stereotypic patterns that facilitate efficient oxygen and nutrient delivery. Yet little is known about how vessel development in the brain is normally regulated. Radial glial neural progenitors are well known for their central role in orchestrating brain neurogenesis. Here we show that, in the late embryonic cortex, radial glial neural progenitors also play a key role in brain angiogenesis, by interacting with nascent blood vessels and regulating vessel stabilization via modulation of canonical Wnt signaling. We find that ablation of radial glia results in vessel regression, concomitant with ectopic activation of Wnt signaling in endothelial cells. Direct activation of Wnt signaling also results in similar vessel regression, while attenuation of Wnt signaling substantially suppresses regression. Radial glial ablation and ectopic Wnt pathway activation leads to elevated endothelial expression of matrix metalloproteinases, while inhibition of metalloproteinase activity significantly suppresses vessel regression. These results thus reveal a previously unrecognized role of radial glial progenitors in stabilizing nascent brain vascular network and provide novel insights into the molecular cascades through which target neural tissues regulate vessel stabilization and patterning during development and throughout life. The brain is an energy-intensive organ that consumes about 10 times as much energy per unit volume as the rest of the body. It therefore requires a highly efficient vascular network for oxygen and nutrient delivery, and as a result compromises in blood vessel networks influence a wide array of brain diseases. Our current understanding is that brain-specific neural cell types are involved in shaping its vascular network, but unfortunately little is known about the cellular or molecular mechanisms involved. Using a mouse genetic model, we have found that radial glial cells, a stem cell type well known for its fundamental role in neural circuit formation, also play an unexpected role in brain vessel development. We find that radial glial cells are essential for the stabilization of newly formed blood vessels in the late embryonic brain, and do so in large part through down-regulating canonical Wnt signaling in endothelial cells (which line the interior surface of blood vessels). These findings provide new insight into how new vessels in the brain are normally stabilized and how this process may be compromised and contribute to diseases.
Collapse
Affiliation(s)
- Shang Ma
- Departments of Neuroscience and Neurology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Hyo Jun Kwon
- Departments of Neuroscience and Neurology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Heidi Johng
- Departments of Neuroscience and Neurology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Keling Zang
- Department of Physiology, University of California–San Francisco, San Francisco, California, United States of America
| | - Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Glycogen synthase kinase-3 (GSK3) is an enzyme that is gaining prominence as a critical signaling molecule in the epithelial cells of renal tubules. This review will focus on recent findings exploring the role of GSK3 in renal collecting ducts, especially its role in urine concentration involving vasopressin signaling. RECENT FINDINGS Recent studies using inhibition or tissue-specific gene deletion of GSK3 revealed the mechanism by which GSK3 regulates aquaporin 2 water channels via adenylate cyclase or the prostaglandin-E2 pathway. In other studies, postnatal treatment with lithium, an inhibitor of GSK3, increased cell proliferation and led to microcyst formation in rat kidneys. These studies suggest that loss of GSK3 activity could interfere with renal water transport at two levels. In the short term, it could disrupt vasopressin signaling in collecting duct cells and in the long term it could alter the structure of the collecting ducts, making them less responsive to the hydro-osmotic effects of vasopressin. SUMMARY Ongoing studies reveal the crucial role played by GSK3 in the regulation of vasopressin action in the renal collecting ducts and suggest a possible use of GSK3 inhibitors in disease conditions associated with disrupted vasopressin signaling.
Collapse
|
79
|
Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S. Roles of PI3K/AKT/GSK3/mTOR Pathway in Cell Signaling of Mental Illnesses. DEPRESSION RESEARCH AND TREATMENT 2012; 2012:752563. [PMID: 23320155 PMCID: PMC3535741 DOI: 10.1155/2012/752563] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/09/2012] [Accepted: 11/21/2012] [Indexed: 12/26/2022]
Abstract
Several pharmacological agents acting on monoamine neurotransmission are used for the management of mental illnesses. Regulation of PI3K/AKT and GSK3 pathways may constitute an important signaling center in the subcellular integration of the synaptic neurotransmission. The pathways also modulate neuronal cell proliferation, migration, and plasticity. There are evidences to suggest that inflammation of neuron contributes to the pathology of depression. Inflammatory activation of neuron contributes to the loss of glial elements, which are consistent with pathological findings characterizing the depression. A mechanism of anti-inflammatory reactions from antidepressant medications has been found to be associated with an enhancement of heme oxygenase-1 expression. This induction in brain is also important in neuroprotection and neuroplasticity. As enzymes involved in cell survival and neuroplasticity are relevant to neurotrophic factor dysregulation, the PI3K/AKT/GSK3 may provide an important signaling for the neuroprotection in depression. In this paper, we summarize advances on the involvement of the PI3K/AKT/GSK3 pathways in cell signaling of neuronal cells in mental illnesses.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Mayumi Kobayashi
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kanae Kikuta
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Environmental Health Science, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
80
|
Brennand KJ, Simone A, Tran N, Gage FH. Modeling psychiatric disorders at the cellular and network levels. Mol Psychiatry 2012; 17:1239-53. [PMID: 22472874 PMCID: PMC3465628 DOI: 10.1038/mp.2012.20] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although psychiatric disorders such as autism spectrum disorders, schizophrenia and bipolar disorder affect a number of brain regions and produce a complex array of clinical symptoms, basic phenotypes likely exist at the level of single neurons and simple networks. Being highly heritable, it is hypothesized that these disorders are amenable to cell-based studies in vitro. Using induced pluripotent stem cell-derived neurons and/or induced neurons from fibroblasts, limitless numbers of live human neurons can now be generated from patients with a genetic background permissive to the disease state. We predict that cell-based studies will ultimately contribute to our understanding of the initiation, progression and treatment of these psychiatric disorders.
Collapse
Affiliation(s)
- KJ Brennand
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Simone
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - N Tran
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - FH Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
81
|
Tataroğlu Ö, Lauinger L, Sancar G, Jakob K, Brunner M, Diernfellner ACR. Glycogen synthase kinase is a regulator of the circadian clock of Neurospora crassa. J Biol Chem 2012; 287:36936-43. [PMID: 22955278 DOI: 10.1074/jbc.m112.396622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Timekeeping by circadian clocks relies upon precise adjustment of expression levels of clock proteins. Here we identify glycogen synthase kinase (GSK) as a novel and critical component of the circadian clock of Neurospora crassa that regulates the abundance of its core transcription factor white collar complex (WCC) on a post-transcriptional level. We show that GSK specifically binds and phosphorylates both subunits of the WCC. Reduced expression of GSK promotes an increased accumulation of WC-1, the limiting factor of the WCC, causing an acceleration of the circadian clock and a shorter free-running period.
Collapse
Affiliation(s)
- Özgür Tataroğlu
- Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
82
|
El-Kassar N, Flomerfelt FA, Choudhury B, Hugar LA, Chua KS, Kapoor V, Lucas PJ, Gress RE. High levels of IL-7 cause dysregulation of thymocyte development. Int Immunol 2012; 24:661-71. [PMID: 22899673 DOI: 10.1093/intimm/dxs067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IL-7 signaling is required for thymocyte development and its loss has a severe deleterious effect on thymus function. Thymocyte-stromal cell interactions and other mechanisms tightly regulate IL-7 expression. We show that disruption of that regulation by over-expression of IL-7 inhibits T-cell development and promotes extensive B-cell lymphopoiesis in the thymus. Our data reveal that high levels of IL-7 negate Notch-1 function in thymocytes found in IL-7 transgenic mice and in co-culture with OP9-DL1 cells. While high levels of IL-7R are present on thymocytes, increased suppressor of cytokine signaling-1 expression blunts IL-7 downstream signaling, resulting in hypo-phosphorylation of proteins in the PI3K-Akt pathway. Consequently, GSK3β remains active and inhibits Notch-1 signaling as observed by decreased Hes-1 and Deltex expression in thymic progenitors. This is the first demonstration that high levels of IL-7 antagonize Notch-1 signaling and suggest that IL-7 may affect T- versus B-lineage choice in the thymus.
Collapse
Affiliation(s)
- Nahed El-Kassar
- Experimental Immunology and Transplantation Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Mo M, Erdelyi I, Szigeti-Buck K, Benbow JH, Ehrlich BE. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. FASEB J 2012; 26:4696-709. [PMID: 22889832 DOI: 10.1096/fj.12-214643] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect that occurs in many patients undergoing chemotherapy. It is often irreversible and frequently leads to early termination of treatment. In this study, we have identified two compounds, lithium and ibudilast, that when administered as a single prophylactic injection prior to paclitaxel treatment, prevent the development of CIPN in mice at the sensory-motor and cellular level. The prevention of neuropathy was not observed in paclitaxel-treated mice that were only prophylactically treated with a vehicle injection. The coadministration of lithium with paclitaxel also allows for administration of higher doses of paclitaxel (survival increases by 60%), protects against paclitaxel-induced cardiac abnormalities, and, notably, does not interfere with the antitumor effects of paclitaxel. Moreover, we have determined a mechanism by which CIPN develops and have discovered that lithium and ibudilast inhibit development of peripheral neuropathy by disrupting the interaction between paclitaxel, neuronal calcium sensor 1 (NCS-1), and the inositol 1,4,5-trisphosphate receptor (InsP3R) to prevent treatment-induced decreases in intracellular calcium signaling. This study shows that lithium and ibudilast are candidate therapeutics for the prevention of paclitaxel-induced neuropathy and could enable patients to tolerate more aggressive treatment regimens.
Collapse
Affiliation(s)
- Michelle Mo
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
84
|
Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, Hunter N, McMahon FJ, Detera-Wadleigh SD. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. THE PHARMACOGENOMICS JOURNAL 2012; 12:328-41. [PMID: 21383773 PMCID: PMC3134562 DOI: 10.1038/tpj.2011.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/23/2011] [Accepted: 01/30/2011] [Indexed: 02/05/2023]
Abstract
The overall neurobiological mechanisms by which lithium and valproate stabilize mood in bipolar disorder patients have yet to be fully defined. The therapeutic efficacy and dissimilar chemical structures of these medications suggest that they perturb both shared and disparate cellular processes. To investigate key pathways and functional clusters involved in the global action of lithium and valproate, we generated interaction networks formed by well-supported drug targets. Striking functional similarities emerged. Intersecting nodes in lithium and valproate networks highlighted a strong enrichment of apoptosis clusters and neurotrophin signaling. Other enriched pathways included MAPK, ErbB, insulin, VEGF, Wnt and long-term potentiation indicating a widespread effect of both drugs on diverse signaling systems. MAPK1/3 and AKT1/2 were the most preponderant nodes across pathways suggesting a central role in mediating pathway interactions. The convergence of biological responses unveils a functional signature for lithium and valproate that could be key modulators of their therapeutic efficacy.
Collapse
Affiliation(s)
- A Gupta
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Haglund F, Lu M, Vukojević V, Nilsson IL, Andreasson A, Džabić M, Bränström R, Höög A, Juhlin CC, Larsson C. Prolactin receptor in primary hyperparathyroidism--expression, functionality and clinical correlations. PLoS One 2012; 7:e36448. [PMID: 22606260 PMCID: PMC3350524 DOI: 10.1371/journal.pone.0036448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Background Primary hyperparathyroidism (PHPT) is an endocrine disorder most commonly affecting women, suggesting a role for female hormones and/or their receptors in parathyroid adenomas. We here investigated the prolactin receptor (PRLr) which is associated with tumours of the breast and other organs. Methodology/Principal Findings PRLr expression was investigated in a panel of 37 patients with sporadic parathyroid tumours and its functionality in cultured parathyroid tumour cells. In comparison with other tissues and breast cancer cells, high levels of prolactin receptor gene (PRLR) transcripts were demonstrated in parathyroid tissues. PRLr products of 60/70 kDa were highly expressed in all parathyroid tumours. In addition varying levels of the 80 kDa PRLr isoform, with known proliferative activity, were demonstrated. In parathyroid tumours, PRLr immunoreactivity was observed in the cytoplasm (in all cases, n = 36), cytoplasmic granulae (n = 16), the plasma membrane (n = 12) or enlarged lysosomes (n = 4). In normal parathyroid rim (n = 28), PRLr was uniformly expressed in the cytoplasm and granulae. In in vitro studies of short-term cultured human parathyroid tumour cells, prolactin stimulation was associated with significant transcriptional changes in JAK/STAT, RIG-I like receptor and type II interferon signalling pathways as documented by gene expression profiling. Moreover, PRLR gene expression in parathyroid tumours was inversely correlated with the patients’ plasma calcium levels. Conclusions We demonstrate that the prolactin receptor is highly abundant in human parathyroid tissues and that PRLr isoforms expression and PRLr subcellular localisation are altered in parathyroid tumours. Responsiveness of PRLr to physiological levels of prolactin was observed in the form of increased PTH secretion and altered gene transcription with significant increase of RIG-I like receptor, JAK-STAT and Type II interferon signalling pathways. These data suggest a role of the prolactin receptor in parathyroid adenomas.
Collapse
Affiliation(s)
- Felix Haglund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Guturi KKN, Mandal T, Chatterjee A, Sarkar M, Bhattacharya S, Chatterjee U, Ghosh MK. Mechanism of β-catenin-mediated transcriptional regulation of epidermal growth factor receptor expression in glycogen synthase kinase 3 β-inactivated prostate cancer cells. J Biol Chem 2012; 287:18287-96. [PMID: 22493441 DOI: 10.1074/jbc.m111.324798] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt/β-catenin and EGFR pathways are important in cancer development and often aberrantly activated in human cancer. However, it is very important to understand the mechanism responsible for this activation and the relation between them. Here, we report the mechanism of EGFR expression by transcriptionally active β-catenin in GSK3β-inactivated prostate cancer cells that eventually leads to its enhanced proliferation and survival. Expressions of β-catenin and EGFR are elevated in various cancers specifically in prostate cancer cells, DU145. When GSK3β is inactivated in these cells, β-catenin gets stabilized, phosphorylated at Ser-552 by protein kinase A, accumulates in the nucleus, and regulates the expression of its target genes that include EGFR. Chromatin immunoprecipitation (ChIP) and promoter analysis revealed that the EGFR promoter gets occupied by transcriptionally active β-catenin when elevated in GSK3β-inactivated cells. This phenomenon not only leads to increased expression of EGFR but also initiates the activation of its downstream molecules such as ERK1/2 and Stat3, ultimately resulting in up-regulation of multiple genes involved in cell proliferation and survival.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Signal Transduction in Cancer and Stem Cells Laboratory, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
87
|
Willour VL, Seifuddin F, Mahon PB, Jancic D, Pirooznia M, Steele J, Schweizer B, Goes FS, Mondimore FM, Mackinnon DF, Bipolar Genome Study Consortium, Perlis RH, Lee PH, Huang J, Kelsoe JR, Shilling PD, Rietschel M, Nöthen M, Cichon S, Gurling H, Purcell S, Smoller JW, Craddock N, DePaulo JR, Schulze TG, McMahon FJ, Zandi PP, Potash JB. A genome-wide association study of attempted suicide. Mol Psychiatry 2012; 17:433-44. [PMID: 21423239 PMCID: PMC4021719 DOI: 10.1038/mp.2011.4] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/27/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022]
Abstract
The heritable component to attempted and completed suicide is partly related to psychiatric disorders and also partly independent of them. Although attempted suicide linkage regions have been identified on 2p11-12 and 6q25-26, there are likely many more such loci, the discovery of which will require a much higher resolution approach, such as the genome-wide association study (GWAS). With this in mind, we conducted an attempted suicide GWAS that compared the single-nucleotide polymorphism (SNP) genotypes of 1201 bipolar (BP) subjects with a history of suicide attempts to the genotypes of 1497 BP subjects without a history of suicide attempts. In all, 2507 SNPs with evidence for association at P<0.001 were identified. These associated SNPs were subsequently tested for association in a large and independent BP sample set. None of these SNPs were significantly associated in the replication sample after correcting for multiple testing, but the combined analysis of the two sample sets produced an association signal on 2p25 (rs300774) at the threshold of genome-wide significance (P=5.07 × 10(-8)). The associated SNPs on 2p25 fall in a large linkage disequilibrium block containing the ACP1 (acid phosphatase 1) gene, a gene whose expression is significantly elevated in BP subjects who have completed suicide. Furthermore, the ACP1 protein is a tyrosine phosphatase that influences Wnt signaling, a pathway regulated by lithium, making ACP1 a functional candidate for involvement in the phenotype. Larger GWAS sample sets will be required to confirm the signal on 2p25 and to identify additional genetic risk factors increasing susceptibility for attempted suicide.
Collapse
Affiliation(s)
- V L Willour
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
John R Kelsoe, Tiffany A Greenwood, Thomas B Barret, Caroline M Nievergelt, Rebecca McKinney, D Shilling, Nicholas Schork, Erin N Smith, Cinnamon S Bloss, John I Nurnberger, Howard J Edenberg, Tatiana Foroud, Daniel M Koller, Elliot Gershon, Chunyu Liu, Judith A Badner, William A Scheftner, William B Lawson, Evaristus A Nwulia, Maria Hipolito, William Coryell, John Rice, William Byerley, Francis McMahon, Thomas G Schulze, Wade Berrettini, James B Potash, Peter P Zandi, Pamela B Mahon, Melvin G McInnis, Sebastian Zöllner, Peng Zhang, David Craig, Szabolics Szelinger, John Nurnberger, Marvin Miller, Elizabeth Bowman, Theodore Reich, Allison Goate, John Rice, Raymond DePaulo, Sylvia Simpson, Colin Stine, Elliot Gershon, Diane Kazuba, Elizabeth Maxwell, John Nurnberger, Marvin J Miller, Elizabeth S Bowman, N Leela Rau, P Ryan Moe, Nalini Samavedy, Rif El-Mallakh, Husseini Manji, A Glitz, Eric T Meyer, Leah Flury, Danielle M Dick, Howard Edenberg, John Rice, Theodore Reich, Allison Goate, Laura Bierut, Raymond DePaulo, Dean F MacKinnon, James B Potash, Peter P Zandi, Jennifer Payne, Wade Berrettini, William Byerley, Mark Vawter, William Coryell, Judith Badner, Francis McMahon, Chunyu Liu, Alan Sanders, Maria Caserta, Donna Harakal, William Scheftner, Howard M Kravitz, Diana Marta, Annette Vaughn-Brown, Francis J McMahon, Layla Kassem, Dennis L Murphy, John Nurnberger, Marvin J Miller, Elizabeth S Bowman, N Leela Rau, P Ryan Moe, Nalini Samavedy, Rif El Mallakh, Husseini Manji, Debra A Glitz, Eric T Meyer, Carrie Smiley, Tatiana Foroud, Leah Flury, Danielle M Dick, Howard Edenberg, John Rice, Theodore Reich, Laura Bierut, Melvin McInnis, Raymond DePaulo, Dean F MacKinnon, Francis M Mondimore, James B Potash, Peter P Zandi, Dimitrios Avramopoulos, Jennifer Payne, Wade Berrottini, William Byerley, Mark Vawter, William Coryell, Raymond Crowe, Elliot Gershon, Judith Badner, Francis McMahon, Chunyu Liu, Alan Sanders, Maria Caserta, Steven Dinwiddie, Tu Nguyen, Donna Harakal, John Kelsoe, Rebecca McKinney, William Scheftner, Howard M Kravitz, Diana Marta, Annette Vaughn-Brown, Laurie Bederow, Francis J McMahon, Layla Kassem, Sevilla Detera-Wadleigh, Lisa Austin, Dennis L Murphy, John Nurnberger, Marvin J Miller, Elizabeth S Bowman, N Leela Rau, P Ryan Moe, Nalini Samavedy, Rif El-Mallakh, Husseini Manji, Debra A Glitz, Eric T Meyer, Carrie Smiley, Tatiana Foroud, Leah Flury, Danielle M Dick, Howard Edenberg, John Rice, Theodore Reich, Allison Goate, Laura Bierut, Melvin McInnis, J Raymond DePaulo, Dean F MacKinnon, Francis M Mondimore, James B Potash, Peter P Zandi, Dimitrios Avramopoulos, Jennifer Payne, Wade Berrettini, William Byerley, Sophia Vinogradov, William Coryell, Raymond Crowe, Elliot Gershon, Judith Badner, Francis McMahon, Chunyu Liu, Alan Sanders, Maria Caserta, Steven Dinwiddie, Tu Nguyen, Donna Harakal, John Kelsoe, Rebecca McKinney, William Scheftner, Howard M Kravitz, Diana Marta, Annete Vaughn-Brown, Laurie Bederow, Francis J McMahon, Layla Kassem, Sevilla Detera-Wadleigh, Lisa Austin, Dennis L Murphy, Evarista Nwulia Lawson, Maria Hipolito,
Collapse
|
88
|
Synaptic polarity depends on phosphatidylinositol signaling regulated by myo-inositol monophosphatase in Caenorhabditis elegans. Genetics 2012; 191:509-21. [PMID: 22446320 PMCID: PMC3374314 DOI: 10.1534/genetics.111.137844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although neurons are highly polarized, how neuronal polarity is generated remains poorly understood. An evolutionarily conserved inositol-producing enzyme myo-inositol monophosphatase (IMPase) is essential for polarized localization of synaptic molecules in Caenorhabditis elegans and can be inhibited by lithium, a drug for bipolar disorder. The synaptic defect of IMPase mutants causes defects in sensory behaviors including thermotaxis. Here we show that the abnormalities of IMPase mutants can be suppressed by mutations in two enzymes, phospholipase Cβ or synaptojanin, which presumably reduce the level of membrane phosphatidylinositol 4,5-bisphosphate (PIP2). We also found that mutations in phospholipase Cβ conferred resistance to lithium treatment. Our results suggest that reduction of PIP2 on plasma membrane is a major cause of abnormal synaptic polarity in IMPase mutants and provide the first in vivo evidence that lithium impairs neuronal PIP2 synthesis through inhibition of IMPase. We propose that the PIP2 signaling regulated by IMPase plays a novel and fundamental role in the synaptic polarity.
Collapse
|
89
|
Abstract
INTRODUCTION Despite more that 60 years of clinical experience, the effective use of lithium for the treatment of mood disorder, in particular bipolarity, is in danger of becoming obsolete. In part, this is because of exaggerated fears surrounding lithium toxicity, acute and long-term tolerability and the encumbrance of life-long plasma monitoring. Recent research has once again positioned lithium centre stage and amplified the importance of understanding its science and how this translates to clinical practice. OBJECTIVE The aim of this paper is to provide a sound knowledge base as regards the science and practice of lithium therapy. METHOD A comprehensive literature search using electronic databases was conducted along with a detailed review of articles known to the authors pertaining to the use of lithium. Studies were limited to English publications and those dealing with the management of psychiatric disorders in humans. The literature was synthesized and organized according to relevance to clinical practice and understanding. RESULTS Lithium has simple pharmacokinetics that require regular dosing and monitoring. Its mechanisms of action are complex and its effects are multi-faceted, extending beyond mood stability to neuroprotective and anti-suicidal properties. Its use in bipolar disorder is under-appreciated, particularly as it has the best evidence for prophylaxis, qualifying it perhaps as the only true mood stabilizer currently available. In practice, its risks and tolerability are exaggerated and can be readily minimized with knowledge of its clinical profile and judicious application. CONCLUSION Lithium is a safe and effective agent that should, whenever indicated, be used first-line for the treatment of bipolar disorder. A better understanding of its science alongside strategic management of its plasma levels will ensure both wider utility and improved outcomes.
Collapse
Affiliation(s)
- Gin S Malhi
- CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
90
|
Valvezan AJ, Klein PS. GSK-3 and Wnt Signaling in Neurogenesis and Bipolar Disorder. Front Mol Neurosci 2012; 5:1. [PMID: 22319467 PMCID: PMC3268224 DOI: 10.3389/fnmol.2012.00001] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/02/2012] [Indexed: 01/29/2023] Open
Abstract
The canonical Wnt signaling pathway is critical for development of the mammalian central nervous system and regulates diverse processes throughout adulthood, including adult neurogenesis. Glycogen synthase kinase-3 (GSK-3) antagonizes the canonical Wnt pathway and therefore also plays a central role in neural development and adult neurogenesis. Lithium, the first line of therapy for bipolar disorder, inhibits GSK-3, activates Wnt signaling and stimulates adult neurogenesis, which may be important for its therapeutic effects. GSK-3 also regulates other critical signaling pathways which may contribute to the therapeutic effects of lithium, including growth factor/neurotrophin signaling downstream of Akt. Here we will review the roles of GSK-3 in CNS development and adult neurogenesis, with a focus on the canonical Wnt pathway. We will also discuss the validation of GSK-3 as the relevant target of lithium and the mechanisms downstream of GSK-3 that influence mammalian behavior.
Collapse
Affiliation(s)
- Alexander J Valvezan
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
91
|
Keefe MD, Wang H, De La O JP, Khan A, Firpo MA, Murtaugh LC. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice. Dis Model Mech 2012; 5:503-14. [PMID: 22266944 PMCID: PMC3380713 DOI: 10.1242/dmm.007799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.
Collapse
Affiliation(s)
- Matthew D Keefe
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
92
|
Eldar-Finkelman H, Martinez A. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Front Mol Neurosci 2011; 4:32. [PMID: 22065134 PMCID: PMC3204427 DOI: 10.3389/fnmol.2011.00032] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022] Open
Abstract
Inhibiting glycogen synthase kinase-3 (GSK-3) activity via pharmacological intervention has become an important strategy for treating neurodegenerative and psychiatric disorders. The known GSK-3 inhibitors are of diverse chemotypes and mechanisms of action and include compounds isolated from natural sources, cations, synthetic small-molecule ATP-competitive inhibitors, non-ATP-competitive inhibitors, and substrate-competitive inhibitors. Here we describe the variety of GSK-3 inhibitors with a specific emphasis on their biological activities in neurons and neurological disorders. We further highlight our current progress in the development of non-ATP-competitive inhibitors of GSK-3. The available data raise the hope that one or more of these drug design approaches will prove successful at stabilizing or even reversing the aberrant neuropathology and cognitive deficits of certain central nervous system disorders.
Collapse
Affiliation(s)
- Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | | |
Collapse
|
93
|
Lloyd LC, Giaroli G, Taylor D, Tracy DK. Bipolar depression: clinically missed, pharmacologically mismanaged. Ther Adv Psychopharmacol 2011; 1:153-62. [PMID: 23983940 PMCID: PMC3736904 DOI: 10.1177/2045125311420752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bipolar affective disorders are common and frequently debilitating mental illnesses. Diagnostic criteria mean they are defined by the presence of pathological mood elevation, but research shows greater disease burden is inflicted by depressive phases (bipolar depression) both in terms of duration and impact of symptoms. Despite this there is consistent evidence for the underdiagnosis of bipolar depression and its misdiagnosis as a unipolar disorder, with significant subsequent impact on medication management. There is currently less robust evidence for the appropriate pharmacological approach in such individuals than in unipolar depression, and fewer guidelines for clinicians. Despite this there is clear and growing evidence that 'treatment as usual' of depressive symptomatology is ineffective at best, harmful at worst, and that there is little role for the use of antidepressants. Both mood stabilizers and antipsychotics demonstrate efficacy, and whilst there are emerging data on intraclass differences, more research is needed, particularly concerning bipolar II disorder. Present treatment strategies are limited by insufficient large randomized control trials, an inadequate understanding of the neuropathology of bipolar illnesses and a lack of tailored medications. Better clinical training, understanding and recognition of this common condition are essential.
Collapse
Affiliation(s)
- Lisa C Lloyd
- CSI Lab, Psychological Medicine, The Institute of Psychiatry, King's College London, DeCrespigny Park, London, UK
| | | | | | | |
Collapse
|
94
|
Del'guidice T, Lemasson M, Beaulieu JM. Role of Beta-arrestin 2 downstream of dopamine receptors in the Basal Ganglia. Front Neuroanat 2011; 5:58. [PMID: 21922001 PMCID: PMC3167352 DOI: 10.3389/fnana.2011.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/17/2011] [Indexed: 12/26/2022] Open
Abstract
Multifunctional scaffolding protein beta-arrestins (βArr) and the G protein-receptor kinases are involved in the desensitization of several G protein-coupled receptors (GPCR). However, arrestins can also contribute to GPCR signaling independently from G proteins. In this review, we focus on the role of βArr in the regulation of dopamine receptor functions in the striatum. First, we present in vivo evidence supporting a role for these proteins in the regulation of dopamine receptor desensitization. Second, we provide an overview of the roles of βArr2 in the regulation of extracellular-signal-regulated kinases/MAP kinases and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors. Thereafter, we examine the possible involvement of βArr-mediated signaling in the action of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on different potential cellular proteins regulated by βArr-mediated signaling which could contribute to the regulation of behavioral responses to dopamine. Overall, the identification of a cell signaling function for βArr downstream of dopamine receptors underscores the intricate complexity of the intertwined mechanisms regulating and mediating cell signaling in the basal ganglia. Understanding these mechanisms may lead to a better comprehension of the several roles played by these structures in the regulation of mood and to the development of new psychoactive drugs having better therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas Del'guidice
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de Recherche Université Laval Robert-Giffard Québec, QC, Canada
| | | | | |
Collapse
|
95
|
O'Brien WT, Huang J, Buccafusca R, Garskof J, Valvezan AJ, Berry GT, Klein PS. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest 2011; 121:3756-62. [PMID: 21821916 DOI: 10.1172/jci45194] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 06/15/2011] [Indexed: 12/21/2022] Open
Abstract
Lithium is the first-line therapy for bipolar disorder. However, its therapeutic target remains controversial. Candidates include inositol monophosphatases, glycogen synthase kinase-3 (GSK-3), and a β-arrestin-2/AKT/protein phosphatase 2A (β-arrestin-2/AKT/PP2A) complex that is known to be required for lithium-sensitive behaviors. Defining the direct target(s) is critical for the development of new therapies and for elucidating the molecular pathogenesis of this major psychiatric disorder. Here, we show what we believe to be a new link between GSK-3 and the β-arrestin-2 complex in mice and propose an integrated mechanism that accounts for the effects of lithium on multiple behaviors. GSK-3β (Gsk3b) overexpression reversed behavioral defects observed in lithium-treated mice and similar behaviors observed in Gsk3b+/- mice. Furthermore, immunoprecipitation of striatial tissue from WT mice revealed that lithium disrupted the β-arrestin-2/Akt/PP2A complex by directly inhibiting GSK-3. GSK-3 inhibitors or loss of one copy of the Gsk3b gene reduced β-arrestin-2/Akt/PP2A complex formation in mice, while overexpression of Gsk3b restored complex formation in lithium-treated mice. Thus, GSK-3 regulates the stability of the β-arrestin-2/Akt/PP2A complex, and lithium disrupts the complex through direct inhibition of GSK-3. We believe these findings reveal a new role for GSK-3 within the β-arrestin complex and demonstrate that GSK-3 is a critical target of lithium in mammalian behaviors.
Collapse
Affiliation(s)
- W Timothy O'Brien
- Department of Medicine, Hematology-Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Yu Z, Ono C, Kim HB, Komatsu H, Tanabe Y, Sakae N, Nakayama KI, Matsuoka H, Sora I, Bunney WE, Tomita H. Four mood stabilizers commonly induce FEZ1 expression in human astrocytes. Bipolar Disord 2011; 13:486-99. [PMID: 22017218 DOI: 10.1111/j.1399-5618.2011.00946.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Mood stabilizers influence the morphology, chemotaxis, and survival of neurons, which are considered to be related to the mood-stabilizing effects of these drugs. Although previous studies suggest glial abnormalities in patients with bipolar disorder and an effect of mood stabilizers on certain genes in astrocytes, less is known about the effects of mood stabilizers in astrocytes than in neurons. The present study identifies a common underlying response to mood stabilizers in astrocytes. METHODS Human astrocyte-derived cells (U-87 MG) were treated with the four most commonly used mood stabilizers (lithium, valproic acid, carbamazepine, and lamotrigine) and subjected to microarray gene expression analyses. The most prominently regulated genes were validated by qRT-PCR and western blot analysis. The intercellular localization of one of these regulated genes, fasciculation and elongation protein zeta 1 (FEZ1), was evaluated by immunofluorescence staining. RESULTS The microarray data indicated that FEZ1 was the only gene commonly induced by the four mood stabilizers in human astrocyte-derived cells. An independent experiment confirmed astrocytic FEZ1 induction at both the transcript and protein levels following mood stabilizer treatments. FEZ1 localized to the cytoplasm of transformed and primary astrocytes from the human adult brain. CONCLUSIONS Our data suggest that FEZ1 may play important roles in human astrocytes, and that mood stabilizers might exert their cytoprotective and mood-stabilizing effects by inducing FEZ1 expression in astrocytes.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Torre AVDL, Junyent F, Folch J, Pelegrí C, Vilaplana J, Auladell C, Beas-Zarate C, Pallàs M, Camins A, Verdaguer E. Study of the pathways involved in apoptosis induced by PI3K inhibition in cerebellar granule neurons. Neurochem Int 2011; 59:159-67. [DOI: 10.1016/j.neuint.2011.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/28/2023]
|
98
|
Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X, Wagner FF, Holson EB, Neve RL, Biechele TL, Moon RT, Scolnick EM, Petryshen TL, Haggarty SJ. AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology 2011; 36:1397-411. [PMID: 21389981 PMCID: PMC3096809 DOI: 10.1038/npp.2011.24] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 01/27/2011] [Indexed: 01/08/2023]
Abstract
Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive. Here, we modeled lithium responsiveness using cellular assays of glycogen synthase kinase 3 (GSK-3) signaling and mood-related behavioral assays in inbred strains of mice that differ in their response to lithium. We found that activating AKT through phosphosrylation of a key regulatory site (Thr308) was associated with lithium response-activation of signaling pathways downstream of GSK-3 in cells and attenuation of mood-related behaviors in mice-and this response was attenuated by selective and direct inhibition of AKT kinase activity. Conversely, the expression of constitutively active AKT1 in both the cellular and behavioral assays conferred lithium sensitivity. In contrast, selective and direct GSK-3 inhibition by the ATP-competitive inhibitor CHIR99021 bypassed the requirement for AKT activation and modulated behavior in both lithium-responsive and non-responsive mouse strains. These results distinguish the mechanism of action of lithium from direct GSK-3 inhibition both in vivo and in vitro, and highlight the therapeutic potential for selective GSK-3 inhibitors in BP treatment.
Collapse
Affiliation(s)
- Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Michael C Lewis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Josh K Ketterman
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Elizabeth L Clore
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Misha Riley
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Keenan R Richards
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Erin Berry-Scott
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Xiulin Liu
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Edward B Holson
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Rachael L Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Travis L Biechele
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Randall T Moon
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Edward M Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
| | - Tracey L Petryshen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit and Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit and Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
99
|
Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, Gupta J, Bell R, Edenberg HJ, Tsuang MT, Kuczenski R, Geyer MA, Rodd ZA, Niculescu AB. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 2011; 1:e4. [PMID: 22832392 PMCID: PMC3309466 DOI: 10.1038/tp.2011.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/24/2011] [Indexed: 12/28/2022] Open
Abstract
Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N J Case
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - D Bowker
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - H J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M T Tsuang
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - R Kuczenski
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, UC San Diego, La Jolla, CA, USA
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
100
|
Licht-Murava A, Plotkin B, Eisenstein M, Eldar-Finkelman H. Elucidating Substrate and Inhibitor Binding Sites on the Surface of GSK-3β and the Refinement of a Competitive Inhibitor. J Mol Biol 2011; 408:366-78. [DOI: 10.1016/j.jmb.2011.02.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 12/25/2022]
|