51
|
Carvalho R, Vaz A, Pereira FL, Dorella F, Aguiar E, Chatel JM, Bermudez L, Langella P, Fernandes G, Figueiredo H, Goes-Neto A, Azevedo V. Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Sci Rep 2018; 8:15072. [PMID: 30305667 PMCID: PMC6180057 DOI: 10.1038/s41598-018-33469-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.
Collapse
Affiliation(s)
- Rodrigo Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil.
| | - Aline Vaz
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | - Fernanda Dorella
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Eric Aguiar
- Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis Bermudez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gabriel Fernandes
- Fiocruz - Centro de Pesquisa Renê Rachou, Belo Horizonte, MG, Brazil
| | | | | | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| |
Collapse
|
52
|
Pretreatment and treatment with fructo-oligosaccharides attenuate intestinal mucositis induced by 5-FU in mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
53
|
Tancharoen S, Shakya P, Narkpinit S, Dararat P, Kikuchi K. Anthocyanins Extracted from Oryza sativa L. Prevent Fluorouracil-Induced Nuclear Factor-κB Activation in Oral Mucositis: In Vitro and In Vivo Studies. Int J Mol Sci 2018; 19:ijms19102981. [PMID: 30274314 PMCID: PMC6213925 DOI: 10.3390/ijms19102981] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
This study aims to investigate the immunomodulatory effect of anthocyanins (ANTs) from Oryza sativa L. extracts on 5-fluorouracil (5-FU)-induced oral mucositis, using a rat model and oral keratinocytes. ANTs were detected by high-performance liquid chromatography (HPLC)-electrospray ionization mass spectrometry. Animals were randomly given varying doses of ANT-rich extract treatment (500 mg/kg and 1000 mg/kg) in the absence or presence of 5-FU-induced mucositis. Buccal mucosae were photographed and scored for macroscopic analysis and incisional biopsies of cheek pouches were collected for microscopic examination of oral mucositis. 5-FU caused marked hemorrhage, extensive ulcerations and abscesses compared to non-treated animals with slight erythema. Histologically, a loss of collagen bundles and inflammatory cell infiltrates was observed. After 29 days of ANT treatment, lesions resolved, and abundant collagen fibers were evident in the lamina propria. Buccal mucosa of 5-FU-injected rats showed increased Nuclear factor-kappa B (NF-κB) p50 and p65 in oral keratinocytes. The administration of ANT reduced NF-κB-positive cells in 5-FU rats (p < 0.001) compared to the non-treatment group. In oral keratinocytes, ANT treatment significantly restored 5-FU-induced growth inhibition and impaired the nuclear accumulation of NF-κB p50 and p65. Our study demonstrated that ANT from Oryza sativa L. exhibited effective anti-inflammatory properties against 5-FU-induced oral mucositis by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Prana Shakya
- Maxillofacial Prosthetic Service, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Somphong Narkpinit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pornpen Dararat
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume 8300011, Japan.
| |
Collapse
|
54
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc J. Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis. J Appl Microbiol 2018; 125:1494-1501. [DOI: 10.1111/jam.14038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023]
Affiliation(s)
- R. Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - G. Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
- Cátedra de Microbiología Superior; Facultad de Bioquímica, Química y Farmacia; Universidad Nacional de Tucumán; San Miguel de Tucumán Tucumán Argentina
| | - A. de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - J.G. LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
55
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Parent-Massin D, van Egmond H, Altieri A, Colombo P, Horváth Z, Levorato S, Edler L. Risk to human and animal health related to the presence of 4,15-diacetoxyscirpenol in food and feed. EFSA J 2018; 16:e05367. [PMID: 32626015 PMCID: PMC7009455 DOI: 10.2903/j.efsa.2018.5367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
4,15‐Diacetoxyscirpenol (DAS) is a mycotoxin primarily produced by Fusarium fungi and occurring predominantly in cereal grains. As requested by the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed the risk of DAS to human and animal health related to its presence in food and feed. Very limited information was available on toxicity and on toxicokinetics in experimental and farm animals. Due to the limitations in the available data set, human acute and chronic health‐based guidance values (HBGV) were established based on data obtained in clinical trials of DAS as an anticancer agent (anguidine) after intravenous administration to cancer patients. The CONTAM Panel considered these data as informative for the hazard characterisation of DAS after oral exposure. The main adverse effects after acute and repeated exposure were emesis, with a no‐observed‐adverse‐effect level (NOAEL) of 32 μg DAS/kg body weight (bw), and haematotoxicity, with a NOAEL of 65 μg DAS/kg bw, respectively. An acute reference dose (ARfD) of 3.2 μg DAS/kg bw and a tolerable daily intake (TDI) of 0.65 μg DAS/kg bw were established. Based on over 15,000 occurrence data, the highest acute and chronic dietary exposures were estimated to be 0.8 and 0.49 μg DAS/kg bw per day, respectively, and were not of health concern for humans. The limited information for poultry, pigs and dogs indicated a low risk for these animals at the estimated DAS exposure levels under current feeding practices, with the possible exception of fattening chicken. Assuming similar or lower sensitivity than for poultry, the risk was considered overall low for other farm and companion animal species for which no toxicity data were available. In consideration of the similarities of several trichothecenes and the likelihood of co‐exposure via food and feed, it could be appropriate to perform a cumulative risk assessment for this group of substances.
Collapse
|
56
|
Ozbek Bilg A, Topal I, Emre Akbul U, Cimen O, Kolkiran A, Akturan S, Keskin Cim F, Cankaya M, Onur Eden A, Suleyman Z. Effect of Rutin on Cisplatin-induced Small Intestine (Jejunum) Damage in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.1136.1144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
57
|
Kim SH, Chun HJ, Choi HS, Kim ES, Keum B, Seo YS, Jeen YT, Lee HS, Um SH, Kim CD. Ursodeoxycholic acid attenuates 5-fluorouracil-induced mucositis in a rat model. Oncol Lett 2018; 16:2585-2590. [PMID: 30008943 PMCID: PMC6036549 DOI: 10.3892/ol.2018.8893] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a commonly encountered complication of chemotherapy. However, there are few effective treatments or preventive methods. Ursodeoxycholic acid (UDCA) stabilizes cell membranes, acts as an antioxidant and inhibits apoptosis, thereby exerting cytoprotective effects. The aim of the present study was to examine the ability of UDCA to protecting against chemotherapy-associated mucositis. Sprague-Dawley rats were randomly assigned to five groups: Control, vehicle + 5-fluorouracil (5-FU), 5-FU + UDCA (10 mg/kg/day), 5-FU + UDCA (100 mg/kg/day) and 5-FU + UDCA (500 mg/kg/day). Following randomization, a single dose of 5-FU was injected and varying amounts of UDCA was administered to each group. UDCA was administered orally to rats for 6 days, beginning 1 day prior to 5-FU administration. The rats were sacrificed 1 day following the last UDCA administration and intestinal tissue specimens were prepared for analysis. UDCA administration attenuated body weight loss, decreased inflammatory cytokine levels and curbed intestinal villus damage in the 10 and 100 mg/kg/day groups. When compared with the jejunal villi lengths in the vehicle+5-FU group (212.8±58.0 µm), those in the 5-FU + UDCA (10 mg/kg/day) and 5-FU + UDCA (100 mg/kg/day) groups were significantly greater [331.3±18.0 µm (P=0.001) and 310.0±112.6 µm (P=0.046), respectively]. Tumor necrosis factor-α and interleukin-6 levels were reduced in the 10 and 100 mg/kg/day UDCA groups (P<0.05). UDCA considerably attenuated the elevation in inflammatory cytokines and intestinal villus damage. The results of the study suggest that UDCA may be used as a protective agent against chemotherapy-associated intestinal mucositis.
Collapse
Affiliation(s)
- Seung Han Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yeon Seok Seo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yoon Tae Jeen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hong Sik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Soon Ho Um
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chang Duck Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Gastrointestinal Medical Instrument Research, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
58
|
Chen XX, Lam KKH, Feng YB, Xu K, Sze SCW, Tang SCW, Leung GPH, Lee CKF, Shi J, Yang ZJ, Li ST, Zhang ZJ, Zhang KYB. Ellagitannins from Pomegranate Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis in Rats while Enhancing Its Chemotoxicity against HT-29 Colorectal Cancer Cells through Intrinsic Apoptosis Induction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7054-7064. [PMID: 29920075 DOI: 10.1021/acs.jafc.8b02458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Worldwide, colorectal cancer (CRC) is a deleterious disease causing millions of death annually. 5-Fluorouracil (5-FU) is a first-line chemotherapy for CRC, but chemoresistance and gastrointestinal mucositis limit its efficacy. Polyphenol-rich foods are increasingly popular due to their potential beneficial roles in preventing and treating cancer. Ellagitannins are a group of phenolic compounds commonly found in pomegranate, strawberries, raspberries, etc. The objective of this study was to explore whether ellagitannins from pomegranate (PETs) could ameliorate 5-FU-induced intestinal mucositis and enhance the drug's efficacy against CRC. The results showed that PETs (100 mg/kg) counteracted 5-FU-induced intestinal mucositis in rats. The number of apoptotic cells per crypt was reduced from 1.50 ± 0.21 to 0.85 ± 0.18 ( P < 0.05). Moreover, PETs induced HT-29 CRC cell death through intrinsic apoptosis, as demonstrated by dissipation of mitochondrial membrane potential, increased Bax-to-Bcl-2 ratio, and cleavage of caspase 9 and caspase 3. PETs and 5-FU combination treatments exhibited synergistic cytotoxicity against HT-29 cells with a weighted combination index of 0.3494. PETs (80 μg/mL) and 5-FU (40 μg/mL) treatments for 48 h induced 14.03 ± 0.76% and 16.42 ± 1.15% of HT-29 cells to undergo apoptosis, while the combination treatment further increased apoptosis of cells to 34.00 ± 1.54% ( P < 0.05). Combination treatment of the cells also enhanced S phase cell cycle arrest as compared with PETs or 5-FU monotherapy ( P < 0.05). These results suggest that dietary ellagitannins from pomegranate could alleviate intestinal mucositis in rats induced by 5-FU while enhancing its toxicity against HT-29 cells through potentiation of apoptosis and cell cycle arrest.
Collapse
|
59
|
George RP, Barker TH, Lymn KA, Bigatton DA, Howarth GS, Whittaker AL. A Judgement Bias Test to Assess Affective State and Potential Therapeutics in a Rat Model of Chemotherapy-Induced Mucositis. Sci Rep 2018; 8:8193. [PMID: 29844396 PMCID: PMC5973947 DOI: 10.1038/s41598-018-26403-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/10/2018] [Indexed: 01/29/2023] Open
Abstract
Chemotherapy-induced mucositis is an extremely painful condition that occurs in 40-60% of patients undergoing chemotherapy. As mucositis currently has no effective treatment, and due to the self-limiting nature of the condition, the major treatment aims are to manage symptoms and limit pain with significance placed on improving patient quality of life. Rodent models are frequently used in mucositis research. These investigations typically assess pathological outcomes, yet fail to include a measure of affective state; the key therapeutic goal. Assessment of cognitive biases is a novel approach to determining the affective state of animals. Consequently, this study aimed to validate a cognitive bias test through a judgement bias paradigm to measure affective state in a rat model of chemotherapy-induced intestinal mucositis. Rats with intestinal mucositis demonstrated a negative affective state, which was partially ameliorated by analgesic administration, whilst healthy rats showed an optimistic response. This study concluded that the judgement bias test was able to evaluate the emotional state of rats with chemotherapy-induced mucositis. These findings provide a foundation for future refinement to the experimental design associated with the animal model that will expedite successful transitioning of novel therapeutics to clinical practice, and also improve humane endpoint implementation.
Collapse
Affiliation(s)
- Rebecca P George
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Timothy H Barker
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kerry A Lymn
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Dylan A Bigatton
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Gastroenterology Department, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
60
|
Conjugated linoleic acid prevents damage caused by intestinal mucositis induced by 5-fluorouracil in an experimental model. Biomed Pharmacother 2018; 103:1567-1576. [PMID: 29864944 DOI: 10.1016/j.biopha.2018.04.133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Studies have showed the protective effects of conjugated linoleic acid (CLA) on intestinal epithelium, modulating host immune and inflammatory responses on intestinal diseases. OBJECTIVE To evaluate the preventive effects of CLA on the intestinal mucositis induced by 5-FU in a murine model. METHODS Sixty-four BALB/c mice were randomly divided into four groups: Control (CTL), fed a standard chow diet; CLAs, fed a diet supplemented with CLA; Mucositis (5-FU), fed a standard chow diet and underwent mucositis induction and CLAs 5-FU, fed a diet supplemented with CLA and underwent mucositis induction. Mucositis was induced by intraperitoneal injection of 300 mg/kg 5-FU. After 72 h, the animals were euthanized and intestinal permeability, bacterial translocation, inflammatory mediators, and intestinal histology were evaluated. RESULTS Mice in the CLAs 5-FU group showed reduced weight loss compared to those in the 5-FU group (p < 0.005). Furthermore, the results also showed that the treatment with CLA reduced intestinal permeability, bacterial translocation, and biomarkers of inflammatory response besides minor damage to ZO-1 and occludin with maintenance of the integrity of the intestinal epithelium and a favorable balance between the inflammatory and regulatory cytokines. CONCLUSION This study suggests that CLA reduced the adverse effects from 5-FU administration on the intestinal mucosa.
Collapse
|
61
|
McQuade RM, Stojanovska V, Stavely R, Timpani C, Petersen AC, Abalo R, Bornstein JC, Rybalka E, Nurgali K. Oxaliplatin-induced enteric neuronal loss and intestinal dysfunction is prevented by co-treatment with BGP-15. Br J Pharmacol 2018; 175:656-677. [PMID: 29194564 DOI: 10.1111/bph.14114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal side effects of chemotherapy are an under-recognized clinical problem, leading to dose reduction, delays and cessation of treatment, presenting a constant challenge for efficient and tolerated anti-cancer treatment. We have found that oxaliplatin treatment results in intestinal dysfunction, oxidative stress and loss of enteric neurons. BGP-15 is a novel cytoprotective compound with potential HSP72 co-inducing and PARP inhibiting properties. In this study, we investigated the potential of BGP-15 to alleviate oxaliplatin-induced enteric neuropathy and intestinal dysfunction. EXPERIMENTAL APPROACH Balb/c mice received oxaliplatin (3 mg·kg-1 ·day-1 ) with and without BGP-15 (15 mg·kg-1 ·day-1 : i.p.) tri-weekly for 14 days. Gastrointestinal transit was analysed via in vivo X-ray imaging, before and after treatment. Colons were collected to assess ex vivo motility, neuronal mitochondrial superoxide and cytochrome c levels and for immunohistochemical analysis of myenteric neurons. KEY RESULTS Oxaliplatin-induced neuronal loss increased the proportion of neuronal NO synthase-immunoreactive neurons and increased levels of mitochondrial superoxide and cytochrome c in the myenteric plexus. These changes were correlated with an increase in PARP-2 immunoreactivity in the colonic mucosa and were attenuated by BGP-15 co-treatment. Significant delays in gastrointestinal transit, intestinal emptying and pellet formation, impaired colonic motor activity, reduced faecal water content and lack of weight gain associated with oxaliplatin treatment were restored to sham levels in mice co-treated with BGP-15. CONCLUSION AND IMPLICATIONS Our results showed that BGP-15 ameliorated oxidative stress, increased enteric neuronal survival and alleviated oxaliplatin-induced intestinal dysfunction, suggesting that BGP-15 may relieve the gastrointestinal side effects of chemotherapy.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Cara Timpani
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC); Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Melbourne, VIC, Australia
| |
Collapse
|
62
|
Chen XX, Lam KH, Chen QX, Leung GPH, Tang SCW, Sze SCW, Xiao JB, Feng F, Wang Y, Zhang KYB, Zhang ZJ. Ficus virens proanthocyanidins induced apoptosis in breast cancer cells concomitantly ameliorated 5-fluorouracil induced intestinal mucositis in rats. Food Chem Toxicol 2017; 110:49-61. [PMID: 29030256 DOI: 10.1016/j.fct.2017.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
63
|
Whittaker AL, Zhu Y, Howarth GS, Loung CS, Bastian SEP, Wirthensohn MG. Effects of commercially produced almond by-products on chemotherapy-induced mucositis in rats. World J Gastrointest Pathophysiol 2017; 8:176-187. [PMID: 29184703 PMCID: PMC5696615 DOI: 10.4291/wjgp.v8.i4.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/20/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To determine if almond extracts reduce the severity of chemotherapy-induced mucositis as determined through biochemical, histological and behavioural markers.
METHODS Intestinal mucositis is a debilitating condition characterized by inflammation and ulceration of the gastrointestinal mucosa experienced by cancer patients undergoing chemotherapy. Certain bioactive plant products have shown promise in accelerating mucosal repair and alleviating clinical symptoms. This study evaluated almond extracts for their potential to reduce the severity of chemotherapy-induced mucositis in Dark Agouti rats. Female Dark Agouti rats were gavaged (days 3-11) with either PBS, almond hull or almond blanched water extract at two doses, and were injected intraperitoneally with 5-fluorouracil (5-FU-150 mg/kg) or saline on day 9 to induce mucositis. Burrowing behavior, histological parameters and myeloperoxidase activity were assessed.
RESULTS Bodyweight was significantly reduced in rats that received 5-FU compared to saline-treated controls (P < 0.05). Rats administered 5-FU significantly increased jejunal and ileal MPO levels (1048%; P < 0.001 and 409%; P < 0.001), compared to healthy controls. Almond hull extract caused a pro-inflammatory response in rats with mucositis as evidenced by increased myeloperoxidase activity in the jejunum when compared to 5-FU alone (rise 50%, 1088 ± 96 U/g vs 723 ± 135 U/g, P = 0.02). Other extract-related effects on inflammatory activity were minimal. 5-FU significantly increased histological severity score compared to healthy controls confirming the presence of mucositis (median of 9.75 vs 0; P < 0.001). The extracts had no ameliorating effect on histological severity score in the jejunum or ileum. Burrowing behavior was significantly reduced in all chemotherapy-treated groups (P = 0.001). The extracts failed to normalize burrowing activity to baseline levels.
CONCLUSION Almond extracts at these dosages offer little beneficial effect on mucositis severity. Burrowing provides a novel measure of affective state in studies of chemotherapy-induced mucositis.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Ying Zhu
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Chi S Loung
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Susan E P Bastian
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Michelle G Wirthensohn
- School of Agriculture, Food and Wine, the University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
64
|
Yotsumoto K, Akiyoshi T, Wada N, Imaoka A, Ohtani H. 5-Fluorouracil treatment alters the expression of intestinal transporters in rats. Biopharm Drug Dispos 2017; 38:509-516. [PMID: 28849584 DOI: 10.1002/bdd.2102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 01/26/2023]
Abstract
5-Fluorouracil (5-FU), an anticancer drug, causes severe gastrointestinal damage, which may affect the absorption of orally administered drugs including the substrates of intestinal uptake and efflux transporters. This study aimed to investigate quantitatively the effect of 5-FU-induced intestinal damage on the expression of intestinal transporters: P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and peptide transporter 1 (PEPT1) in rats. The rats were treated with 5-FU (30 mg/kg/day, p.o.) for 5 days to induce intestinal damage, and then the upper, middle and lower intestinal segments were removed. The mRNA and protein expression levels of these transporters in each segment were determined using quantitative real-time PCR and Western blotting, respectively. In the 5-FU-treated rats, the protein levels of P-gp and Bcrp in the upper segment were significantly increased to 15- and 2.6-fold of the control, respectively, while those in other segments were unaffected. Pept1 expression was increased by 5-FU in almost all segments. A remarkable increase in P-gp expression was shown, the uptake of digoxin, a P-gp substrate, in each intestinal segment was measured using a rat everted sac. As a result, the uptake of digoxin in the upper segments of 5-FU-treated rats was decreased compared with that of the control. In conclusion, 5-FU-induced intestinal damage was shown to alter the expression of these transporters, especially in the upper intestinal segment, while the characteristics of the influence varied among the transporters. The 5-FU-induced intestinal damage may affect transporter-mediated drug absorption of orally administered drugs in the clinical setting.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Administration, Oral
- Animals
- Antimetabolites, Antineoplastic/toxicity
- Blotting, Western
- Digoxin/pharmacokinetics
- Drug Interactions
- Fluorouracil/toxicity
- Gene Expression Regulation/drug effects
- Intestines/drug effects
- Intestines/pathology
- Male
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Peptide Transporter 1/genetics
- Peptide Transporter 1/metabolism
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Keiichi Yotsumoto
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Naoki Wada
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| | - Hisakazu Ohtani
- Division of Clinical Pharmacy, Keio Graduate School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
65
|
Koohi-Hosseinabadi O, Ranjbar Z, Sepehrimanesh M, AndisheTadbir A, Poorbaghi SL, Bahranifard H, Tanideh N, Koohi-Hosseinabadi M, Iraji A. Biochemical, hematological, and pathological related healing effects of Elaeagnus angustifolia hydroalcoholic extract in 5-fluorouracil-induced oral mucositis in male golden hamster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24447-24453. [PMID: 28895047 DOI: 10.1007/s11356-017-0137-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Oral mucositis (OM) is one of the cancer chemotherapy-related side effects which can affect the quality of life of affected patients. This study was designed to investigate the healing effect of Elaeagnus angustifolia in 5-flurouracil (5-FU)-induced OM in golden hamster. Fifty-six adult male golden hamsters received three intraperitoneal injections of 5-FU at a dose of 60 mg/kg on days 0, 5, and 10. The cheek pouch mucosa was scratched superficially under local anesthesia. Then, two horizontal scratches were made across the everted cheek pouch on days 3 and 4. All treatments were started on day 12 for equal number of animals in control group with no treatments, gel base group that was treated with carboxy methyl cellulose as gel base which used in preparation of the topical gel, topical gel group that used gel containing 10% hydroalcoholic extract of E. angustifolia (HEEA) topically, and dietary group which was treated with 300 mg/kg HEEA. At 2 and 5 days after treatment, blood and pouch tissue sampling were done and analyzed for blood composition, tissue malondialdehyde (MDA) level, and myeloperoxidase (MPO) and superoxide dismutase (SOD) activities plus histopathological evaluations. Both topically and orally HEEA-treated groups showed a significant relief in OM compared to the control and base gel groups. However, the systemic form had higher efficiency in some parts especially decreasing the MPO (0.27 ± 0.17 vs. 0.56 ± 0.17 IU/L) and increasing SOD (6.46 ± 0.15 vs. 5.36 ± 0.18 IU/L) activities in pouch tissue in comparison to topical form mostly at 5 days after treatment. It seems that hydroalcoholic extract of E. angustifolia can be used as an appropriate drug choice for the treatment of oral mucositis based on its healing stimulatory and anti-inflammatory properties.
Collapse
Affiliation(s)
- Omid Koohi-Hosseinabadi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ranjbar
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Sepehrimanesh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Azadeh AndisheTadbir
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hajar Bahranifard
- Department of Otorhinolaryngology, Khalili Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cell and Transgenic Technology Research Center and Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Koohi-Hosseinabadi
- Students' Research Committee, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Students' Research Committee, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
66
|
McQuade RM, Stojanovska V, Donald EL, Rahman AA, Campelj DG, Abalo R, Rybalka E, Bornstein JC, Nurgali K. Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Front Physiol 2017. [PMID: 28642718 PMCID: PMC5462962 DOI: 10.3389/fphys.2017.00391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal dysfunction is a common side-effect of chemotherapy leading to dose reductions and treatment delays. These side-effects may persist up to 10 years post-treatment. A topoisomerase I inhibitor, irinotecan (IRI), commonly used for the treatment of colorectal cancer, is associated with severe acute and delayed-onset diarrhea. The long-term effects of IRI may be due to damage to enteric neurons innervating the gastrointestinal tract and controlling its functions. Balb/c mice received intraperitoneal injections of IRI (30 mg/kg−1) 3 times a week for 14 days, sham-treated mice received sterile water (vehicle) injections. In vivo analysis of gastrointestinal transit via serial x-ray imaging, facal water content, assessment of gross morphological damage and immunohistochemical analysis of myenteric neurons were performed at 3, 7 and 14 days following the first injection and at 7 days post-treatment. Ex vivo colonic motility was analyzed at 14 days following the first injection and 7 days post-treatment. Mucosal damage and inflammation were found following both short and long-term treatment with IRI. IRI-induced neuronal loss and increases in the number and proportion of ChAT-IR neurons and the density of VAChT-IR fibers were associated with changes in colonic motility, gastrointestinal transit and fecal water content. These changes persisted in post-treatment mice. Taken together this work has demonstrated for the first time that IRI-induced inflammation, neuronal loss and altered cholinergic expression is associated with the development of IRI-induced long-term gastrointestinal dysfunction and diarrhea.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Elizabeth L Donald
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Dean G Campelj
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica y al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones Científicas, Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne UniversityMelbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| |
Collapse
|
67
|
Chang YH, Yu MS, Wu KH, Hsu MC, Chiou YH, Wu HP, Peng CT, Chao YH. Effectiveness of Parenteral Glutamine on Methotrexate-induced Oral Mucositis in Children with Acute Lymphoblastic Leukemia. Nutr Cancer 2017; 69:746-751. [DOI: 10.1080/01635581.2017.1324995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu-Hsiang Chang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Nursing, Tajen University, Pingtung, Taiwan
| | - Ming-Sun Yu
- Haematology-Oncology Section, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology and Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
- School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Chou Hsu
- Department of Recreation Sports Management, Tajen University, Pintung, Taiwan
| | - Yee-Hsuan Chiou
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Ping Wu
- Division of Pediatric General Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Tien Peng
- Division of Pediatric Hematology and Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
68
|
Hamouda N, Sano T, Oikawa Y, Ozaki T, Shimakawa M, Matsumoto K, Amagase K, Higuchi K, Kato S. Apoptosis, Dysbiosis and Expression of Inflammatory Cytokines are Sequential Events in the Development of 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Basic Clin Pharmacol Toxicol 2017; 121:159-168. [PMID: 28374966 DOI: 10.1111/bcpt.12793] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
The chemotherapeutic agent 5-fluorouracil (5-FU) causes intestinal mucositis with severe diarrhoea, but the pathogenesis is not fully understood. In this study, we investigated the pathogenic effects of 5-FU in mice, focusing on apoptosis, enterobacteria and inflammatory cytokines. Repeated administration of 5-FU caused severe intestinal mucositis on day 6, accompanied by diarrhoea and body-weight loss. TNF-α expression increased 1 day after exposure to the drug, and spiked a second time on day 4, at which point myeloperoxidase activity and IL-1β expression also increased. Apoptotic cells were observed in intestinal crypts only on day 1. 5-FU also induced dysbiosis, notably decreasing the abundance of intestinal Firmicutes while increasing the abundance of Bacteroidetes and Verrucomicrobia. Twice-daily co-administration of oral antibiotics significantly reduced the severity of intestinal mucositis and dysbiosis, and blocked the increase in myeloperoxidase activity and cytokine expression on day 6, without affecting apoptosis and TNF-α up-regulation on day 1. In cultured colonic epithelial cells, exposure to 5-FU also up-regulated TNF-α expression. Collectively, the data suggest that crypt apoptosis, dysbiosis and expression of inflammatory cytokines are sequential events in the development of intestinal mucositis after exposure to 5-FU. In particular, 5-FU appears to directly induce apoptosis via TNF-α and to suppress intestinal cell proliferation, thereby resulting in degradation of the epithelial barrier, as well as in secondary inflammation mediated by inflammatory cytokines.
Collapse
Affiliation(s)
- Nahla Hamouda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tatsushi Sano
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan.,Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Yosuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Toru Ozaki
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Masaki Shimakawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe, Hyogo, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
69
|
Koizumi R, Azuma K, Izawa H, Morimoto M, Ochi K, Tsuka T, Imagawa T, Osaki T, Ito N, Okamoto Y, Saimoto H, Ifuku S. Oral Administration of Surface-Deacetylated Chitin Nanofibers and Chitosan Inhibit 5-Fluorouracil-Induced Intestinal Mucositis in Mice. Int J Mol Sci 2017; 18:ijms18020279. [PMID: 28134832 PMCID: PMC5343815 DOI: 10.3390/ijms18020279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/24/2017] [Indexed: 01/27/2023] Open
Abstract
This study investigated the prophylactic effects of orally administered surface-deacetylated chitin nanofibers (SDACNFs) and chitosan against 5-fluorouracil (5-FU)-induced intestinal mucositis, which is a common side effect of 5-FU chemotherapy. SDACNFs and chitosan abolished histological abnormalities associated with intestinal mucositis and suppressed hypoproliferation and apoptosis of intestinal crypt cells. These results indicate that SDACNF and chitosan are useful agents for preventing mucositis induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Ryo Koizumi
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Kazuo Azuma
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Hironori Izawa
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Minoru Morimoto
- Division of Instrumental Analysis, Research Center for Bioscience and Technology, Tottori University, Tottori 680-8550, Japan.
| | - Kosuke Ochi
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Takeshi Tsuka
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Imagawa
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Norihiko Ito
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Tottori University, Tottori 680-8553, Japan.
| | - Hiroyuki Saimoto
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan.
| |
Collapse
|
70
|
Kuchay RAH. A review of complementary therapies for chemotherapy induced gastrointestinal mucositis. Drug Discov Ther 2017; 10:292-299. [PMID: 27746417 DOI: 10.5582/ddt.2016.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Administration of chemotherapy often leads to gastrointestinal mucositis (GIM). GIM manifests as nausea, abdominal pain and diarrhoea in recipients of chemotherapy. GIM is a major complication occurring in approximately 80% of patients receiving 5-flurouracil treatment. These side-effects may become so severe that significant dose reductions are required, ultimately affecting treatment efficacy and patient survival. Complementary and alternative medicine (CAM) is a growing area of public interest. This review will provide an overview of current knowledge of complementary medicinal therapies for chemotherapy induced GIM. An understanding of this evolving literature is useful in discussing these therapies with patients who are considering using them.
Collapse
|
71
|
Xie JH, Fan ST, Nie SP, Yu Q, Xiong T, Gong D, Xie MY. Lactobacillus plantarum NCU116 attenuates cyclophosphamide-induced intestinal mucosal injury, metabolism and intestinal microbiota disorders in mice. Food Funct 2016; 7:1584-92. [PMID: 26906433 DOI: 10.1039/c5fo01516b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anticancer drugs at high doses often damage the intestinal mucosa and metabolism. Lactobacillus plantarum NCU116 (NCU116) isolated from pickled vegetables was orally given to cyclophosphamide-treated mice to determine its effects on intestinal mucosal injury, nutrient metabolism and colon microbiota, and investigate the mechanisms accounting for its effects. Mice treated with the bacterium were found to favorably recover intestine morphology of villus height and crypt depth, and have improved mucins expression and quantity of goblet cells, as well as intestinal metabolism by increasing the level of short-chain fatty acids and reducing the concentration of ammonia in the colon feces. In addition, NCU116-treated mice showed a higher diversity of colonic microbiota than the group without bacterium supplementation. The number of Lactobacillus and Bifidobacterium in the mouse colon was increased after bacterium intake, which decreased the number of potentially pathogenic bacteria, Escherichia coli and Pseudomonas. These results indicated that NCU116 could be of significant advantage in reducing intestinal mucosal injury and improving the intestinal metabolism and the intestinal microbiota.
Collapse
Affiliation(s)
- Jun-Hua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Song-Tao Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China. and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
72
|
Sensing danger: toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2016; 52:499-505. [PMID: 27941769 DOI: 10.1038/bmt.2016.263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) play key roles in initiating innate and adaptive immune responses. Based mainly on animal studies there is growing evidence to suggest that TLRs are involved in the development of chemotherapy-induced mucositis and in the propagation of graft versus host reactions as well as graft versus tumor effects in allogeneic hematopoietic stem cell transplantation (HSCT). In this review we discuss these findings along with the emerging, although still preliminary, clinical evidence, that points to a role of PRRs in determining the outcome of HSCT and new therapeutic perspectives that may be related to this development.
Collapse
|
73
|
McQuade RM, Stojanovska V, Donald E, Abalo R, Bornstein JC, Nurgali K. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol Motil 2016; 28:1861-1875. [PMID: 27353132 DOI: 10.1111/nmo.12890] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/29/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The use of the anticancer chemotherapeutic agent 5-fluorouracil (5-FU) is often limited by nausea, vomiting, constipation, and diarrhea; these side-effects persist long after treatment. The effects of 5-FU on enteric neurons have not been studied and may provide insight into the mechanisms underlying 5-FU-induced gastrointestinal dysfunction. METHODS Balb/c mice received intraperitoneal injections of 5-FU (23 mg/kg) 3 times/week for 14 days. Gastrointestinal transit was analysed in vivo prior to and following 3, 7, and 14 days of 5-FU treatment via serial x-ray imaging. Following 14 days of 5-FU administration, colons were collected for assessment of ex vivo colonic motility, gross morphological structure, and immunohistochemical analysis of myenteric neurons. Fecal lipocalin-2 and CD45+ leukocytes in the colon were analysed as markers of intestinal inflammation. KEY RESULTS Short-term administration of 5-FU (3 days) increased gastrointestinal transit, induced acute intestinal inflammation and reduced the proportion of neuronal nitric oxide synthase-immunoreactive neurons. Long-term treatment (7, 14 days) resulted in delayed gastrointestinal transit, inhibition of colonic migrating motor complexes, increased short and fragmented contractions, myenteric neuronal loss and a reduction in the number of ChAT-immunoreactive neurons after the inflammation was resolved. Gross morphological damage to the colon was observed following both short- and long-term 5-FU treatment. CONCLUSIONS & INFERENCES Our results indicate that 5-FU induces accelerated gastrointestinal transit associated with acute intestinal inflammation at day 3 after the start of treatment, which may have led to persistent changes in the ENS observed after days 7 and 14 of treatment contributing to delayed gastrointestinal transit and colonic dysmotility.
Collapse
Affiliation(s)
- R M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - V Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - E Donald
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| | - R Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica (IQM) y al Instituto de Investigación en Ciencias de la Alimentación (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, VIC, Australia
| | - K Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.,Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC, Australia
| |
Collapse
|
74
|
Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol 2016; 78:881-893. [PMID: 27590709 DOI: 10.1007/s00280-016-3139-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Intestinal mucositis and diarrhea are common manifestations of anticancer regimens that include irinotecan, 5-fluorouracil (5-FU), and other cytotoxic drugs. These side effects negatively impact therapeutic outcomes and delay subsequent cycles of chemotherapy, resulting in dose reductions and treatment discontinuation. Here, we aimed to review the experimental evidence regarding possible new targets for the management of irinotecan- and 5-FU-related intestinal mucositis. METHODS A literature search was performed using the PubMed and MEDLINE databases. No publication time limit was set for article inclusion. RESULTS Here, we found that clinical management of intestinal mucositis and diarrhea is somewhat ineffective at reducing symptoms, possibly due to a lack of specific targets for modulation. We observed that IL-1β contributes to the apoptosis of enterocytes in mucositis induced by 5-FU. However, 5-FU-related mucositis is far less thoroughly investigated with regard to specific molecular targets when compared to irinotecan-related disease. Several studies have proposed that a correlation exists between the intestinal microbiota, the enterohepatic recirculation of active metabolites of irinotecan, and the establishment of mucositis. However, as reviewed here, this association seems to be controversial. In addition, the pathogenesis of irinotecan-induced mucositis appears to be orchestrated by interleukin-1/Toll-like receptor family members, leading to epithelial cell apoptosis. CONCLUSIONS IL-1β, IL-18, and IL-33 and the receptors IL-1R, IL-18R, ST2, and TLR-2 are potential therapeutic targets that can be modulated to minimize anticancer agent-associated toxicity, optimize cancer treatment dosing, and improve clinical outcomes. In this context, the pathogenesis of mucositis caused by other anticancer agents should be further investigated.
Collapse
|
75
|
Li SY. Bowel dysfunction in non-surgical cancer patients. Shijie Huaren Xiaohua Zazhi 2016; 24:3347-3353. [DOI: 10.11569/wcjd.v24.i22.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal dysfunction is common in non-surgical tumor patients, and it manifests as disorder of digestion and absorption, defect of anatomical structure and intestinal barrier dysfunction. Tumor itself and its complications, surgery, and chemoradiotherapy can induce intestinal mucosal ischemia and hypoxia, intestinal smooth muscle degeneration, necrosis and apoptosis, abnormal intestinal motility, disorder of intestinal microflora, and dysfunction of intestinal immune barrier, all of which result in intestinal dysfunction. Tumor syndrome and its complications that can result in intestinal dysfunction include malignant intestinal obstruction, postsurgical gastroparesis syndrome, radiation enteritis, and chemotherapy induced damage to intestinal barrier function, enteric dysbacteriosis, cancerous cachexia, gastrointestinal adverse reactions caused by chemoradiotherapy, somatic symptoms of depression and so on. All of these directly lead to rapid nutritional deficiencies, and interfere with the implementation of antitumor treatment. Management of intestinal dysfunction can improve the efficacy of antitumor treatment and the life quality of patients.
Collapse
|
76
|
Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F, Li M, Yuan J. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats. Nutrition 2016; 33:96-104. [PMID: 27427511 DOI: 10.1016/j.nut.2016.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The use of probiotics to alleviate chemotherapy-induced intestinal mucositis is supported by clinical consensus. However, no studies to date, to our knowledge, have systematically analyzed the effects of a probiotic mixture on chemotherapy-induced mucositis or assessed changes in the intestinal microbiota after probiotic treatment. The aim of this study was to report the effects of a probiotic mixture, DM#1, on intestinal mucositis and dysbiosis of rats treated with 5-fluorouracil (5-FU). METHODS Twenty-eight male Sprague Dawley rats weighing 180 to 220 g were randomly divided into four groups: control, 5-FU, probiotic high (PH), and probiotic low (PL). Except for the control group, all other groups received intraperitoneal injections of 5-FU for 5 d, and the PH and PL groups received DM#1 intragastrically (1 × 109 or 1 × 108 colony-forming units/kg, respectively) for 8 d. One day after the last administration, rats were sacrificed and the ilea were removed for histopathologic assessment and evaluation of permeability, myeloperoxidase activity, levels of cytokines (interleukin [IL]-4, IL-6, tumor necrosis factor [TNF]-α), and mRNA of toll-like receptors (TLR; TLR2, TLR4, and TLR9). Additionally, intestinal microbiota profiles were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis and quantitative real-time PCR. RESULTS Treatment with DM#1 ameliorated 5-FU-induced intestinal mucosal injury in rats, possibly by reducing proinflammatory cytokine levels and neutrophil infiltration. The increased intestinal permeability caused by 5-FU was ameliorated. These results were closely associated with the reestablishment of intestinal microbial homeostasis and alteration of the TLR2/TLR4 signaling pathway. CONCLUSIONS Administration of the probiotic mixture DM#1 ameliorated 5-FU-induced intestinal mucositis and dysbiosis in rats.
Collapse
Affiliation(s)
- Yan Tang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yingtao Wu
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziyi Huang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Weiwei Dong
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ying Deng
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Fengjiao Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
77
|
Mendonça RMHD, Araújo MD, Levy CE, Morari J, Silva RA, Yunes JA, Brandalise SR. Oral Mucositis in Pediatric Acute Lymphoblastic Leukemia Patients: Evaluation of Microbiological and Hematological Factors. Pediatr Hematol Oncol 2016; 32:322-30. [PMID: 26086683 DOI: 10.3109/08880018.2015.1034819] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE to investigate the associations of oral microbiota, leucocytes count, neutrophil count, platelet counts and hemoglobin level, and the severity of oral mucositis in pediatric patients with acute lymphoblastic leukemia (ALL) receiving chemotherapy. MATERIALS AND METHODS 71 prospective patients were included. Analyses of oral microbiota and blood sample were conducted on days 14 (D14) and 56 (D56) of the Brazilian GBTLI-99 treatment protocol. Herpes simplex virus (HSV) identification was performed by PCR followed by DNA sequencing analysis. Bacteria and fungi identification was obtained by standard microbiological culture tests. RESULTS 103 episodes of mucositis occurred, being 65 at D14 and 38 at D56. Most cases positive for herpes viral DNA sequences were identified as HSV-1. At D14, we found a significant association between the severity of mucositis and presence of HSV-1 (p = 0.0347), Candida spp. (p = 0.0078), and low platelet count (p = 0.0064). At D56, we found a significant association between the severity of mucositis and the presence of HSV-1 (p = 0.0317), previous HSV-1 presence on D14 (p < 0.0001) and neutrophil count (p = 0.0211). CLINICAL RELEVANCE the identification of risk factors for mucositis in children and adolescents may contribute to the development of new strategies for prevention and/or treatment, reducing the complications associated with this condition. CONCLUSIONS the presence of HSV, platelet count, and Candida spp. presence at D14 of ALL induction treatment is associated with increased severity of mucositis in children and adolescents. At D56 of ALL treatment, mucositis severity was associated with neutrophil count, HSV presence, and previous presence of HSV (at D14).
Collapse
|
78
|
Karbelkar SA, Majumdar AS. Altered systemic bioavailability and organ distribution of azathioprine in methotrexate-induced intestinal mucositis in rats. Indian J Pharmacol 2016; 48:241-7. [PMID: 27298491 PMCID: PMC4899994 DOI: 10.4103/0253-7613.182895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/22/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). MATERIALS AND METHODS Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. RESULTS Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. CONCLUSION Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.
Collapse
Affiliation(s)
- Sadaf A. Karbelkar
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| | - Anuradha S. Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
79
|
Posaconazole plasma exposure correlated to intestinal mucositis in allogeneic stem cell transplant patients. Eur J Clin Pharmacol 2016; 72:953-63. [PMID: 27066958 DOI: 10.1007/s00228-016-2057-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE Low posaconazole plasma concentrations (PPCs) are frequently encountered in allogeneic hematopoietic stem cell transplant (HSCT) patients, due to variable gastrointestinal absorption. In this study, the impact of intestinal mucositis on posaconazole exposure is investigated. PATIENTS AND METHODS A prospective pharmacokinetic study was performed including allogeneic HSCT patients receiving posaconazole prophylaxis with the oral suspension or tablets. Steady state PPCs were determined using high-performance liquid chromatography-fluorescence detection at the day of transplantation (=day 0), day +7, and +14. Citrulline was measured using liquid chromatography-tandem mass spectrometry to evaluate severity of mucositis, at baseline (day -7 or -6), and at day 0, +7 and +14. Additionally, citrulline plasma concentrations and steady state trough PPCs were determined in hematological patients without HSCT or mucositis. RESULTS Thirty-four HSCT patients received posaconazole oral suspension together with 25 cL of Coca Cola, 6 HSCT patients received posaconazole tablets and 33 hematological patients not receiving HSCT received posaconazole oral suspension. The median (interquartile range) average PPC was 0.26 mg/L (0.17-0.43), 0.67 mg/L (0.27-1.38), and 1.08 mg/L (0.96-1.38), with suspension in HSCT patients, suspension in hematological patients and tablets in HSCT patients, respectively. A higher trough PPC was encountered with the oral suspension when citrulline plasma concentrations were above 10 μmol/L compared to values below 10 μmol/L (p < 0.001), whereas for tablets, average PPCs remained high with citrulline plasma concentrations below or above 10 μmol/L (p = 0.64). CONCLUSION Posaconazole tablets should be preferred to suspension in HSCT patients immediately after transplantation to prevent insufficient plasma exposure due to intestinal mucositis.
Collapse
|
80
|
Exogenous IL-1Ra attenuates intestinal mucositis induced by oxaliplatin and 5-fluorouracil through suppression of p53-dependent apoptosis. Anticancer Drugs 2016; 26:35-45. [PMID: 24999837 DOI: 10.1097/cad.0000000000000142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a major dose-limiting side effect of many chemoagents, resulting in weight loss, diarrhea, and even death. The current treatments for CIM are palliative and have limited benefit. Interleukin-1 receptor antagonist is a natural antagonist of interleukin-1. Our previous studies showed the protective effect of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) on the intestine in mice after 5-fluorouracil chemotherapy. In this study, we further evaluated rhIL-1Ra in the treatment of CIM induced by different chemoagents and their combination. Normal as well as tumor-bearing mice were administered oxaliplatin (L-OHP), 5-fluorouracil, or their combination to induce intestinal mucositis and mortality. rhIL-1Ra administered after the chemotherapy, but not after the onset of diarrhea, significantly improved mouse survival, attenuated body weight loss, and reduced the incidence, severity, and duration of diarrhea. Histological examination showed that rhIL-1Ra-treated mice had a relatively intact mucosa structure, more proliferating crypt cells, and higher acid mucin content than the vehicle-treated mice. rhIL-1Ra suppressed crypt apoptosis by reducing the levels of proapoptotic proteins in wild-type, but not in IL-1RI or p53 mice. In addition, rhIL-1Ra was as effective as octreotide acetate in the treatment of chemotherapy-induced diarrhea, but with the advantage of reducing the epithelial apoptosis, the major cause of CIM. Importantly, the tumor sensitivity to chemotherapy was not affected by rhIL-1Ra. Thus, our data strongly suggest that rhIL-1Ra may be useful for the treatment of intestinal mucositis and improving the quality of life for cancer patients on chemotherapy.
Collapse
|
81
|
Bibi S, Kang Y, Yang G, Zhu MJ. Grape seed extract improves small intestinal health through suppressing inflammation and regulating alkaline phosphatase in IL-10-deficient mice. J Funct Foods 2016; 20:245-252. [DOI: 10.1016/j.jff.2015.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
82
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Reparative activity of costunolide and dehydrocostus in a mouse model of 5-fluorouracil-induced intestinal mucositis. RSC Adv 2016. [DOI: 10.1039/c5ra22371g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the protective effects of costunolide (Co) and dehydrocostus (De) in 5-fluorouracil (5-FU)-induced intestinal mucositis (IM) as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jingze Zhang
- Department of Pharmacy
- Logistics University of Chinese People's Armed Police Forces
- Special Drugs R & D Center of People's Armed Police Forces
- Tianjin 300162
- China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
83
|
Mardani M, Afra SM, Tanideh N, Andisheh Tadbir A, Modarresi F, Koohi-Hosseinabadi O, Iraji A, Sepehrimanesh M. Hydroalcoholic extract ofCarum carviL. in oral mucositis: a clinical trial in male golden hamsters. Oral Dis 2015; 22:39-45. [DOI: 10.1111/odi.12375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/24/2023]
Affiliation(s)
- M Mardani
- Department of Oral Medicine; School of Dentistry; Shiraz University of Medical Sciences; Shiraz Iran
| | - SM Afra
- Students' Research Committee; School of Dentistry; Shiraz University of Medical Sciences; Shiraz Iran
| | - N Tanideh
- Transgenic Technology Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - A Andisheh Tadbir
- Department of Oral Pathology; School of Dentistry; Shiraz University of Medical Sciences; Shiraz Iran
| | - F Modarresi
- Department of Microbiology and Virology; Kerman University of Medical Sciences; Kerman Iran
| | | | - A Iraji
- Central Laboratory; Shiraz University of Medical Sciences; Shiraz Iran
| | - M Sepehrimanesh
- Gastroenterohepatology Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
84
|
Fountain MD, Abernathy LM, Lonardo F, Rothstein SE, Dominello MM, Yunker CK, Chen W, Gadgeel S, Joiner MC, Hillman GG. Radiation-Induced Esophagitis is Mitigated by Soy Isoflavones. Front Oncol 2015; 5:238. [PMID: 26557504 PMCID: PMC4617099 DOI: 10.3389/fonc.2015.00238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction Lung cancer patients receiving radiotherapy present with acute esophagitis and chronic fibrosis, as a result of radiation injury to esophageal tissues. We have shown that soy isoflavones alleviate pneumonitis and fibrosis caused by radiation toxicity to normal lung. The effect of soy isoflavones on esophagitis histopathological changes induced by radiation was investigated. Methods C57BL/6 mice were treated with 10 Gy or 25 Gy single thoracic irradiation and soy isoflavones for up to 16 weeks. Damage to esophageal tissues was assessed by hematoxylin–eosin, Masson’s Trichrome and Ki-67 staining at 1, 4, 10, and 16 weeks after radiation. The effects on smooth muscle cells and leukocyte infiltration were determined by immunohistochemistry using anti-αSMA and anti-CD45, respectively. Results Radiation caused thickening of esophageal tissue layers that was significantly reduced by soy isoflavones. Major radiation alterations included hypertrophy of basal cells in mucosal epithelium and damage to smooth muscle cells in muscularis mucosae as well as disruption of collagen fibers in lamina propria connective tissue with leukocyte infiltration. These effects were observed as early as 1 week after radiation and were more pronounced with a higher dose of 25 Gy. Soy isoflavones limited the extent of tissue damage induced by radiation both at 10 and 25 Gy. Conclusion Soy isoflavones have a radioprotective effect on the esophagus, mitigating the early and late effects of radiation injury in several esophagus tissue layers. Soy could be administered with radiotherapy to decrease the incidence and severity of esophagitis in lung cancer patients receiving thoracic radiation therapy.
Collapse
Affiliation(s)
- Matthew D Fountain
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Lisa M Abernathy
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Fulvio Lonardo
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Shoshana E Rothstein
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Michael M Dominello
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Christopher K Yunker
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Shirish Gadgeel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Michael C Joiner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| | - Gilda G Hillman
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA ; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, MI , USA
| |
Collapse
|
85
|
Wang LL, Zheng WS, Chen SH, Han YX, Jiang JD. Development of rectal delivered thermo-reversible gelling film encapsulating a 5-fluorouracil hydroxypropyl-β-cyclodextrin complex. Carbohydr Polym 2015; 137:9-18. [PMID: 26686100 DOI: 10.1016/j.carbpol.2015.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022]
Abstract
We have developed a novel 5-Fluorouracil (5FU) formulation for rectal application to improve its therapeutic efficiency in colorectal cancer. The results indicated that 5FU formed an inclusion complex with Hydroxypropyl-β-Cyclodextrin (HP-β-CD). The stoichiometry of the complex was 1:1, with apparent stability constant of 100.4M(-1). After investigating physicochemical properties of the 5FU-HP-β-CD complex encapsulated with thermo-reversible gelling film, the optimized formulation P407/P188/HPMC/5FU-HP-β-CD (18.5/2.5/0.2/15%) was selected and evaluated. The result showed that the 5FU-HP-β-CD complex increased the solubility of 5FU, prolonged and enhanced its releasing. As compared to the raw drug, the transport efficiency of the 5FU-HP-β-CD complex itself or entrapped in thermo-reversible gelling film were respectively 7.3- and 6.8-fold increased, and the cellular uptake of 5-FU 4.9- and 5.4-fold elevated. There was no irritation or damage to rectal sites in the 10h treatment period. Therefore, this HP-β-CD based formulation might improve the therapeutic effect of 5FU on colon-rectal cancer.
Collapse
Affiliation(s)
- Lu-Lu Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wen-Sheng Zheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shao-Hua Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan-Xing Han
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Jian-Dong Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
86
|
Olaku OO, Ojukwu MO, Zia FZ, White JD. The Role of Grape Seed Extract in the Treatment of Chemo/Radiotherapy Induced Toxicity: A Systematic Review of Preclinical Studies. Nutr Cancer 2015; 67:730-40. [PMID: 25880972 DOI: 10.1080/01635581.2015.1029639] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Grapes are one of the most consumed fruits in the world and are rich in polyphenols. Grape seed proanthocyanidins (GSP) have demonstrated chemopreventive and/or chemotherapeutic effects in various cancer cell cultures and animal models. The clinical efficacy of chemotherapy is often limited by its adverse effects. Several studies show that reactive oxygen species mediate the cardiotoxicity and neurotoxicity induced by various cancer chemotherapeutic agents. This implies that concomitant administration of antioxidants may prevent these adverse effects. The review was carried out in accordance with the PRISMA guidelines. An electronic search strategy in Medline and Embase databases was conducted. Of the 41 studies reviewed, 27 studied GSP while the remainder (14) studied grape seed or skin extracts (GSE). All the studies were published in English, except 2 in Chinese. A significant percentage (34%) of the studies we reviewed assessed the effect of GSE or GSP on cardiotoxicity induced by chemotherapy. Doxorubicin was the most common chemotherapeutic drug studied followed by cisplatin. Research studies that assessed the effect of GSE or GSP on radiation treatment accounted for 22% of the articles reviewed. GSE/GSP ameliorates some of the cytotoxic effects on normal cells/tissues induced by chemo/radiotherapy.
Collapse
Affiliation(s)
- Oluwadamilola O Olaku
- a Office of Cancer Complementary and Alternative Medicine, National Cancer Institute , Bethesda , Maryland , USA and Kelly Services , Rockville , Maryland , USA
| | | | | | | |
Collapse
|
87
|
Regulatory role of Lactobacillus acidophilus on inflammation and gastric dysmotility in intestinal mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2015; 75:559-67. [PMID: 25572363 DOI: 10.1007/s00280-014-2663-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/22/2014] [Indexed: 01/25/2023]
Abstract
PURPOSE Lactobacillus acidophilus is widely used for gastrointestinal disorders, but its role in inflammatory conditions like in chemotherapy-induced mucositis is unclear. Here, we report the effect of L. acidophilus on 5-fluorouracil-induced (5-FU) intestinal mucositis in mice. METHODS Mice weighing 25-30 g (n = 8) were separated into three groups, saline, 5-FU, and 5-FU + L. acidophilus (5-FU-La) (16 × 10(9) CFU/kg). In the 5-FU-La group, L. acidophilus was administered concomitantly with 5-FU on the first day and alone for two additional days. Three days after the last administration of L. acidophilus, the animals were euthanized and the jejunum and ileum were removed for histopathological assessment and for evaluation of levels of myeloperoxidase activity, sulfhydryl groups, nitrite, and cytokines (TNF-α, IL-1β, CXCL-1, and IL-10). In addition, we investigated gastric emptying using spectrophotometry after feeding a 1.5-ml test meal by gavage and euthanasia. Data were submitted to ANOVA and Bonferroni's test, with the level of significance at p < 0.05. RESULTS Intestinal mucositis induced by 5-FU significantly (p < 0.05) reduced the villus height-crypt depth ratio and GSH concentration and increased myeloperoxidase activity and the nitrite concentrations compared with the control group. Furthermore, 5-FU significantly (p < 0.05) increased cytokine (TNF-α, IL-1β, and CXCL-1) concentrations and decreased IL-10 concentrations compared with the control group. 5-FU also significantly (p < 0.05) delayed gastric emptying and gastrointestinal transit compared with the control group. All of these changes were significantly (p < 0.05) reversed by treatment with L. acidophilus. CONCLUSIONS Lactobacillus acidophilus improves the inflammatory and functional aspects of intestinal mucositis induced by 5-FU.
Collapse
|
88
|
Kato S, Hayashi S, Kitahara Y, Nagasawa K, Aono H, Shibata J, Utsumi D, Amagase K, Kadowaki M. Saireito (TJ-114), a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells. PLoS One 2015; 10:e0116213. [PMID: 25565296 PMCID: PMC4286213 DOI: 10.1371/journal.pone.0116213] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022] Open
Abstract
Clinical chemotherapy frequently causes intestinal mucositis as a side effect, which is accompanied by severe diarrhea. We recently showed that the cytokine-mediated apoptotic pathway might be important for the development of intestinal mucositis induced by 5-fluorouracil (5-FU). Saireito, the traditional Japanese herbal (Kampo) medicine, is widely used to treat diarrhea and various inflammatory diseases in Japan. In the present study, we investigated the effect of saireito on 5-FU-induced intestinal mucositis in mice, especially in relation to apoptosis in the intestinal crypt. Male C57BL/6 mice were given 5-FU (50 mg/kg), i.p. once daily for 6 days. Intestinal mucositis was evaluated histochemically. Saireito (100–1000 mg/kg) was administered p.o. twice daily for 6 days. Repeated 5-FU treatment caused severe intestinal mucositis including morphological damage, which was accompanied by body weight loss and diarrhea. Daily administration of saireito reduced the severity of intestinal mucositis in a dose-dependent manner. Body weight loss and diarrhea during 5-FU treatment were also significantly attenuated by saireito administration. The number of apoptotic and caspase-3-activated cells in the intestinal crypt was increased, and was accompanied by up-regulated tumor necrosis factor (TNF)-α and interleukin (IL)-1β mRNA within 24 h of the first 5-FU injection. However, all of these measures were significantly lower after saireito administration. These results suggest that saireito attenuates 5-FU-induced intestinal mucositis. This action may come from the reduction of apoptosis in the intestinal crypt via suppression of the up-regulation of inflammatory cytokines. Therefore, saireito may be clinically useful for the prevention of intestinal mucositis during cancer chemotherapy.
Collapse
Affiliation(s)
- Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
- * E-mail:
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930–0194, Japan
| | - Yumeno Kitahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Koyo Nagasawa
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Hitomi Aono
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Junichiro Shibata
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607–8414, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Sugitani, Toyama 930–0194, Japan
| |
Collapse
|
89
|
de Araújo AA, Borba PB, de Souza FHD, Nogueira AC, Saldanha TS, Araújo TEF, da Silva AI, de Araújo Júnior RF. In a Methotrexate-Induced Model of Intestinal Mucositis, Olmesartan Reduced Inflammation and Induced Enteropathy Characterized by Severe Diarrhea, Weight Loss, and Reduced Sucrose Activity. Biol Pharm Bull 2015; 38:746-52. [DOI: 10.1248/bpb.b14-00847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Norte (UFRN), Post Graduation Program Public Health/Post Graduation Program in Pharmaceutical Science
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Zuo T, Cao L, Xue C, Tang QJ. Dietary squid ink polysaccharide induces goblet cells to protect small intestine from chemotherapy induced injury. Food Funct 2015; 6:981-6. [DOI: 10.1039/c4fo01191k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gastrointestinal mucositis induced by chemotherapy is associated with alterations of intestinal barrier function due to the potential damage induced by anti-cancer drugs on the epithelial cells.
Collapse
Affiliation(s)
- Tao Zuo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Lu Cao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| | - Qing-Juan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- PR China
| |
Collapse
|
91
|
Zuo T, He X, Cao L, Xue C, Tang QJ. The dietary polysaccharide from Ommastrephes bartrami prevents chemotherapeutic mucositis by promoting the gene expression of antimicrobial peptides in Paneth cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
92
|
Mashtoub S, Feo B, Whittaker AL, Lymn KA, Martinez-Puig D, Howarth GS. Oral Nucleotides Only Minimally Improve 5-Fluorouracil-Induced Mucositis in Rats. Nutr Cancer 2015; 67:994-1000. [PMID: 26284427 DOI: 10.1080/01635581.2015.1062118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotherapy-induced mucositis is characterized by inflammation and ulceration of the intestinal mucosa, compromising intestinal function. Exogenous nucleotides have been reported to repair the mucosa. The nucleotide preparation, Nucleoforce F0328 (Nucleoforce), was investigated for its potential to ameliorate intestinal mucositis in rats. Female Dark Agouti rats (n = 8/group) were gavaged once daily with Nucleoforce (175 mg/kg) or water from Days 0 to 8 and injected (i.p.) with 5-fluorouracil (5-FU; 150 mg/kg) or saline on Day 5. Histological parameters (disease severity, crypt depth, and villus height measurements) and myeloperoxidase activity were quantified. P < 0.05 was considered significant. Jejunal and ileal histological disease severity scores were significantly increased by 5-FU, compared to normal controls (P < 0.05). Nucleoforce treatment in 5-FU-injected rats significantly reduced jejunal and ileal disease severity compared to 5-FU controls (P < 0.05). In 5-FU-injected rats, jejunal and ileal villus heights and crypt depths were significantly decreased compared to 5-FU controls, with no additional Nucleoforce effect (P > 0.05). Intestinal myeloperoxidase activity was significantly elevated by 5-FU (8.8-fold), compared to normal controls (P < 0.05), which was not normalized by Nucleoforce treatment (P > 0.05). Nucleoforce only partially improved parameters associated with experimentally-induced mucositis. Future studies could investigate increased concentrations, more frequent administration, or protective microencapsulation delivery methods, to increase bioavailability.
Collapse
Affiliation(s)
- Suzanne Mashtoub
- a School of Medicine and Pharmacology, The University of Western Australia, Harry Perkins Institute for Medical Research, Fiona Stanley Hospital , Murdoch , Western Australia , Australia and Department of Gastroenterology, Women's and Children's Hospital , North Adelaide , South Australia , Australia
| | | | | | | | | | | |
Collapse
|
93
|
Olmesartan decreased levels of IL-1β and TNF-α, down-regulated MMP-2, MMP-9, COX-2, RANK/RANKL and up-regulated SOCs-1 in an intestinal mucositis model. PLoS One 2014; 9:e114923. [PMID: 25531650 PMCID: PMC4273993 DOI: 10.1371/journal.pone.0114923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/15/2014] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is a pro-oxidant compound that depletes dihydrofolate pools and is widely used in the treatment of leukaemia and other malignancies. The efficacy of methotrexate is often limited by mucositis and intestinal injury, which are major causes of morbidity in children and adults. The aim of this study was to evaluate the effect of olmesartan (OLM), an angiotensin II receptor antagonist, on an Intestinal Mucositis Model (IMM) induced by MTX in Wistar rats. IMM was induced via intraperitoneal (i.p.) administration of MTX (7 mg/kg) for three consecutive days. The animals were pre-treated with oral OLM at 0.5, 1 or 5 mg/kg or with vehicle 30 min prior to exposure to MTX. Small intestinal homogenates were assayed for levels of the IL-1β, IL-10 and TNF-α cytokines, malondialdehyde and myeloperoxidase activity. Additionally, immunohistochemical analyses of MMP-2, MMP-9, COX-2, RANK/RANKL and SOCS-1 and confocal microscopy analysis of SOCS-1 expression were performed. Treatment with MTX + OLM (5 mg/kg) resulted in a reduction of mucosal inflammatory infiltration, ulcerations, vasodilatation and haemorrhagic areas (p<0.05) as well as reduced concentrations of MPO (p<0.001) and the pro-inflammatory cytokines IL-1β (p<0.001) and TNF-a (p<0.01), and increase anti-inflammatory cytocine IL-10 (p<0.05). Additionally, the combined treatment reduced expression of MMP-2, MMP-9, COX-2, RANK and RANKL(p<0.05) and increased cytoplasmic expression of SOCS-1 (p<0.05). Our findings confirm the involvement of OLM in reducing the inflammatory response through increased immunosuppressive signalling in an IMM. We also suggest that the beneficial effect of olmesartan treatment is specifically exerted during the damage through blocking inflammatory cytocines.
Collapse
|
94
|
Sakai H, Sagara A, Matsumoto K, Jo A, Hirosaki A, Takase K, Sugiyama R, Sato K, Ikegami D, Horie S, Matoba M, Narita M. Neutrophil recruitment is critical for 5-fluorouracil-induced diarrhea and the decrease in aquaporins in the colon. Pharmacol Res 2014; 87:71-9. [DOI: 10.1016/j.phrs.2014.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
|
95
|
Zhan YS, Tan SW, Mao W, Jiang J, Liu HL, Wu B. Chemotherapy mediates intestinal injury via p53/p53 upregulated modulator of apoptosis (PUMA) signaling pathway. J Dig Dis 2014; 15:425-34. [PMID: 24814616 DOI: 10.1111/1751-2980.12157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the potential mechanism and signaling pathway involved in chemotherapy-induced intestinal mucosal injury (CIMI), which is a common physiopathological problem in patients with cancer. METHODS For the in vivo experiment, mice received intraperitoneal injection of 5-fluorouracil (5-FU) at a dose of 75 mg/kg/day for 1, 3 or 5 days. Villus height and crypt depth of the small intestine, cell apoptosis and proliferation were then examined to determine the extent of CIMI. The expressions of Akt, p53, PUMA and p21 were evaluated both in vivo in mice models and in vitro in the IEC-6 and HCT116 cell lines. RESULTS After 5-FU therapy both the intestinal villus height (275.93 μm vs 164.52 μm, P < 0.001) and crypt depth (64.13 μm vs 42.48 μm, P < 0.001) were decreased. The apoptotic index was greatly increased from 0.32% to 15.84% (P < 0.001) and proliferation was suppressed (63.58% vs 39.15%, P < 0.001). Additionally, p53 expression was significantly increased in the intestinal crypt along with the expressions of PUMA and p21. Western blot showed that the administration of 5-FU induced p53/PUMA-mediated apoptosis and upregulated p21 expression to suppress cell proliferation. CONCLUSION Chemotherapy might mediate intestinal injury via p53/PUMA-mediated apoptotic signaling and the suppression of proliferation in response to p21.
Collapse
Affiliation(s)
- Ya Shi Zhan
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
96
|
Gao J, Gao J, Qian L, Wang X, Wu M, Zhang Y, Ye H, Zhu S, Yu Y, Han W. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol Ther 2014; 15:982-91. [PMID: 24800927 DOI: 10.4161/cbt.29114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Jin Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Lan Qian
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Xia Wang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Mingyuan Wu
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yang Zhang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Wei Han
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| |
Collapse
|
97
|
Wang H, Bastian SEP, Cheah KY, Lawrence A, Howarth GS. Escherichia coli Nissle 1917-derived factors reduce cell death and late apoptosis and increase transepithelial electrical resistance in a model of 5-fluorouracil-induced intestinal epithelial cell damage. Cancer Biol Ther 2014; 15:560-569. [PMID: 24556751 PMCID: PMC4026078 DOI: 10.4161/cbt.28159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/03/2014] [Accepted: 02/09/2014] [Indexed: 12/13/2022] Open
Abstract
We evaluated the capacity for supernatants (SNs) derived from Escherichia coli Nissle 1917 (EcN), cultured under different growth conditions, to prevent 5-fluorouracil (5-FU)-induced intestinal epithelial cell damage. EcN was cultured in: Luria Bertani (LB) broth, tryptone soya broth (TSB), de Man Rogosa Sharpe (MRS) broth, and M17 broth supplemented with 10% (v/v) lactose solution (M17). Intestinal epithelial cells (IEC-6) were treated with the following EcN SNs: LB(+), TSB(+), MRS(+), and M17(+) in the presence and absence of 5-FU (1.5 or 5 μM). Cell viability, apoptotic activity and cell monolayer permeability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and transepithelial electrical resistance (TER) assays, respectively. 5-FU significantly reduced cell viability (P<0.05) at both 24 and 48 h. However, only EcN SN produced from LB and M17 growth media significantly decreased cell death induced by 5-FU (by approximately 10% after 24 and 48 h; and 10% after 24 h, respectively [P<0.05]). When measured by flow cytometry all EcN SNs in the presence of 5-FU increased the proportion of viable cells (by 3-5% for 24 h, 3-7% for 48 h, P<0.05) and reduced late-apoptotic cells after 24 and 48 h, compared with 5-FU control. Moreover, all EcN SNs significantly reduced the disruption of IEC-6 cell barrier function induced by 5-FU by 7-10% (P<0.05), compared with DMEM control. We conclude that EcN derived factors could potentially reduce the severity of intestinal mucositis.
Collapse
Affiliation(s)
- Hanru Wang
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy, SA Australia
| | - Susan EP Bastian
- School of Agriculture, Food and Wine; University of Adelaide; Waite Campus; Urrbrae, SA Australia
| | - Ker Y Cheah
- Gastroenterology Department; Women’s and Children’s Hospital; Adelaide, SA Australia
| | - Andrew Lawrence
- Microbiology Department; SA Pathology at Women’s and Children’s Hospital; Adelaide, SA Australia
| | - Gordon S Howarth
- School of Animal and Veterinary Sciences; University of Adelaide; Roseworthy, SA Australia
- Gastroenterology Department; Women’s and Children’s Hospital; Adelaide, SA Australia
| |
Collapse
|
98
|
Treatment withSaccharomyces boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 2014; 111:1611-21. [DOI: 10.1017/s0007114513004248] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal mucositis is an important toxic side effect of 5-fluorouracil (5-FU) treatment.Saccharomyces boulardiiis known to protect from intestinal injury via an effect on the gastrointestinal microbiota. The objective of the present study was to evaluate the effect ofS. boulardiion intestinal mucositis induced by 5-FU in a murine model. Mice were divided into saline, saline (control)+5-FU or 5-FU+S. boulardii(16 × 109colony-forming units/kg) treatment groups, and the jejunum and ileum were removed after killing of mice for the evaluation of histopathology, myeloperoxidase (MPO) activity, and non-protein sulfhydryl group (mainly reduced glutathione; GSH), nitrite and cytokine concentrations. To determine gastric emptying, phenol red was administered orally, mice were killed 20 min after administration, and the absorbance of samples collected from the mice was measured by spectrophotometry. Intestinal permeability was measured by the urinary excretion rate of lactulose and mannitol following oral administration.S. boulardiisignificantly reversed the histopathological changes in intestinal mucositis induced by 5-FU and reduced the inflammatory parameters: neutrophil infiltration (control 1·73 (sem0·37) ultrastructural MPO (UMPO)/mg, 5-FU 7·37 (sem1·77) UMPO/mg and 5-FU+S. boulardii4·15 (sem0·73) UMPO/mg); nitrite concentration (control 37·00 (sem2·39) μm, 5-FU 59·04 (sem11·41) μmand 5-FU+S. boulardii37·90 (sem5·78) μm); GSH concentration (control 477·60 (sem25·25) μg/mg, 5-FU 270·90 (sem38·50) μg/mg and 5-FU+S. boulardii514·00 (sem38·64) μg/mg). Treatment with S.Boulardiisignificantly reduced the concentrations of TNF-α and IL-1β by 48·92 and 32·21 % in the jejunum and 38·92 and 61·79 % in the ileum. In addition,S. boulardiidecreased the concentrations of chemokine (C–X–C motif) ligand 1 by 5-fold in the jejunum and 3-fold in the ileum. Interestingly,S. boulardiireduced the delay in gastric emptying (control 25·21 (sem2·55) %, 5-FU 54·91 (sem3·43) % and 5-FU+S. boulardii31·38 (sem2·80) %) and induced the recovery of intestinal permeability (lactulose:mannitol ratio: control 0·52 (sem0·03), 5-FU 1·38 (sem0·24) and 5-FU+S. boulardii0·62 (sem0·03)). In conclusion,S. boulardiireduces the inflammation and dysfunction of the gastrointestinal tract in intestinal mucositis induced by 5-FU.
Collapse
|
99
|
Cheah KY, Howarth GS, Bastian SEP. Grape seed extract dose-responsively decreases disease severity in a rat model of mucositis; concomitantly enhancing chemotherapeutic effectiveness in colon cancer cells. PLoS One 2014; 9:e85184. [PMID: 24465501 PMCID: PMC3897410 DOI: 10.1371/journal.pone.0085184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/03/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the effects of increasing grape seed extract doses on the severity of chemotherapy in a rat model and its coincident impact on chemotherapeutic effectiveness in colon cancer cells. DESIGN Female Dark Agouti rats were gavaged with grape seed extract (400-1000 mg/kg) or water (day 3-11) and were injected intraperitoneally with 5-Fluorouracil (150 mg/kg) or saline (control) on day 9 to induce mucositis. Daily metabolic data were collected and rats were sacrificed on day 12. Intestinal tissues were collected for histological and myeloperoxidase analyses. Caco-2 cell viability was examined in response to grape seed extract in combination with 5-Fluorouracil by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) assay. RESULTS Compared with 5-Fluorouracil controls, grape seed extract (400-1000 mg/kg) significantly decreased the histological damage score (P<0.05) in the jejunum. Grape seed extract (1000 mg/kg) increased jejunal crypt depth by 25% (P<0.05) in 5-Fluorouracil treated rats compared to 5-Fluorouracil controls, and attenuated the 5-Fluorouracil -induced reduction of mucosal thickness (25%, P<0.05). Grape seed extract (600 mg/kg) decreased myeloperoxidase activity by 55% (P<0.01) compared to 5-Fluorouracil controls. Grape seed extract was more effective at ameliorating 5-Fluorouracil induced intestinal injury, with effects most pronounced in the proximal jejunum. Grape seed extract (10-25 ug/mL) significantly enhanced the growth-inhibitory effects of 5-Fluorouracil by 26% (P<0.05) in Caco-2 cells and was more potent than 5-Fluorouracil at 50-100 µg/mL. CONCLUSION Grape seed extract may represent a new therapeutic option to decrease the symptoms of intestinal mucositis while concurrently impacting on the viability of colon cancer cells.
Collapse
Affiliation(s)
- Ker Yeaw Cheah
- School of Agriculture, Food and Wine, Waite Campus, University of Adelaide, South Australia, Australia
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia
| | - Gordon Stanley Howarth
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, North Adelaide, South Australia, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, South Australia, Australia
| | | |
Collapse
|
100
|
Khaw A, Logan R, Keefe D, Bartold M. Radiation-induced oral mucositis and periodontitis - proposal for an inter-relationship. Oral Dis 2013; 20:e7-18. [DOI: 10.1111/odi.12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 01/14/2023]
Affiliation(s)
- A Khaw
- Faculty of Health Sciences; School of Dentistry; University of Adelaide; Adelaide SA Australia
- Colgate Australian Clinical Dental Research Centre; University of Adelaide; Adelaide SA Australia
| | - R Logan
- Faculty of Health Sciences; School of Dentistry; University of Adelaide; Adelaide SA Australia
| | - D Keefe
- Faculty of Health Sciences; School of Medicine; University of Adelaide; Adelaide SA Australia
| | - M Bartold
- Faculty of Health Sciences; School of Dentistry; University of Adelaide; Adelaide SA Australia
- Colgate Australian Clinical Dental Research Centre; University of Adelaide; Adelaide SA Australia
| |
Collapse
|