51
|
A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol 2011; 193:4973-83. [PMID: 21764913 DOI: 10.1128/jb.00316-11] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During cytokinesis in Escherichia coli, the peptidoglycan (PG) layer produced by the divisome must be split to promote cell separation. Septal PG splitting is mediated by the amidases: AmiA, AmiB, and AmiC. To efficiently hydrolyze PG, the amidases must be activated by LytM domain factors. EnvC specifically activates AmiA and AmiB, while NlpD specifically activates AmiC. Here, we used an exportable, superfolding variant of green fluorescent protein (GFP) to demonstrate that AmiB, like its paralog AmiC, is recruited to the division site by an N-terminal targeting domain. The results of colocalization experiments indicate that EnvC is recruited to the division site well before its cognate amidase AmiB. Moreover, we show that EnvC and AmiB have differential FtsN requirements for their localization. EnvC accumulates at division sites independently of this essential division protein, whereas AmiB localization is FtsN dependent. Interestingly, we also report that AmiB and EnvC are recruited to division sites independently of one another. The same is also true for AmiC and NlpD. However, unlike EnvC, we find that NlpD shares an FtsN-dependent localization with its cognate amidase. Importantly, when septal PG synthesis is blocked by cephalexin, both EnvC and NlpD are recruited to septal rings, whereas the amidases fail to localize. Our results thus suggest that the order in which cell separation amidases and their activators localize to the septal ring relative to other components serves as a fail-safe mechanism to ensure that septal PG synthesis precedes the expected burst of PG hydrolysis at the division site, accompanied by amidase recruitment.
Collapse
|
52
|
Villanelo F, Ordenes A, Brunet J, Lagos R, Monasterio O. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. BMC STRUCTURAL BIOLOGY 2011; 11:28. [PMID: 21672257 PMCID: PMC3152878 DOI: 10.1186/1472-6807-11-28] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/14/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bacterial division is produced by the formation of a macromolecular complex in the middle of the cell, called the divisome, formed by more than 10 proteins. This process can be divided into two steps, in which the first is the polymerization of FtsZ to form the Z ring in the cytoplasm, and then the sequential addition of FtsA/ZipA to anchor the ring at the cytoplasmic membrane, a stage completed by FtsEX and FtsK. In the second step, the formation of the peptidoglycan synthesis machinery in the periplasm takes place, followed by cell division. The proteins involved in connecting both steps in cell division are FtsQ, FtsB and FtsL, and their interaction is a crucial and conserved event in the division of different bacteria. These components are small bitopic membrane proteins, and their specific function seems to be mainly structural. The purpose of this study was to obtain a structural model of the periplasmic part of the FtsB/FtsL/FtsQ complex, using bioinformatics tools and experimental data reported in the literature. RESULTS Two oligomeric models for the periplasmic region of the FtsB/FtsL/FtsQ E. coli complex were obtained from bioinformatics analysis. The FtsB/FtsL subcomplex was modelled as a coiled-coil based on sequence information and several stoichiometric possibilities. The crystallographic structure of FtsQ was added to this complex, through protein-protein docking. Two final structurally-stable models, one trimeric and one hexameric, were obtained. The nature of the protein-protein contacts was energetically favourable in both models and the overall structures were in agreement with the experimental evidence reported. CONCLUSIONS The two models obtained for the FtsB/FtsL/FtsQ complex were stable and thus compatible with the in vivo periplasmic complex structure. Although the hexameric model 2:2:2 has features that indicate that this is the most plausible structure, the ternary complex 1:1:1 cannot be discarded. Both models could be further stabilized by the binding of the other proteins of the divisome. The bioinformatics modelling of this kind of protein complex, whose function is mainly structural, provide useful information. Experimental results should confirm or reject these models and provide new data for future bioinformatics studies to refine the models.
Collapse
Affiliation(s)
- Felipe Villanelo
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | | | | | | | | |
Collapse
|
53
|
Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E, McAdams HH, Shapiro L. Assembly of the Caulobacter cell division machine. Mol Microbiol 2011; 80:1680-98. [PMID: 21542856 DOI: 10.1111/j.1365-2958.2011.07677.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytokinesis in Gram-negative bacteria is mediated by a multiprotein machine (the divisome) that invaginates and remodels the inner membrane, peptidoglycan and outer membrane. Understanding the order of divisome assembly would inform models of the interactions among its components and their respective functions. We leveraged the ability to isolate synchronous populations of Caulobacter crescentus cells to investigate assembly of the divisome and place the arrival of each component into functional context. Additionally, we investigated the genetic dependence of localization among divisome proteins and the cell cycle regulation of their transcript and protein levels to gain insight into the control mechanisms underlying their assembly. Our results revealed a picture of divisome assembly with unprecedented temporal resolution. Specifically, we observed (i) initial establishment of the division site, (ii) recruitment of early FtsZ-binding proteins, (iii) arrival of proteins involved in peptidoglycan remodelling, (iv) arrival of FtsA, (v) assembly of core divisome components, (vi) initiation of envelope invagination, (vii) recruitment of polar markers and cytoplasmic compartmentalization and (viii) cell separation. Our analysis revealed differences in divisome assembly among Caulobacter and other bacteria that establish a framework for identifying aspects of bacterial cytokinesis that are widely conserved from those that are more variable.
Collapse
Affiliation(s)
- Erin D Goley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
de Boer PAJ. Advances in understanding E. coli cell fission. Curr Opin Microbiol 2010; 13:730-7. [PMID: 20943430 DOI: 10.1016/j.mib.2010.09.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Much of what we know about cytokinesis in bacteria has come from studies with Escherichia coli, and efforts to comprehensively understand this fundamental process in this organism continue to intensify. Major recent advances include in vitro assembly of a membrane-tethered version of FtsZ into contractile rings in lipid tubules, in vitro dynamic patterning of the Min proteins and a deeper understanding of how they direct assembly of the FtsZ-ring to midcell, the elucidation of structures, biochemical activities and interactions of other key components of the cell fission machinery, and the uncovering of additional components of this machinery with often redundant but important roles in invagination of the three cell envelope layers.
Collapse
Affiliation(s)
- Piet A J de Boer
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, W213, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
55
|
The caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor. J Bacteriol 2010; 192:4847-58. [PMID: 20693330 DOI: 10.1128/jb.00607-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division in Caulobacter crescentus involves constriction and fission of the inner membrane (IM) followed about 20 min later by fission of the outer membrane (OM) and daughter cell separation. In contrast to Escherichia coli, the Caulobacter Tol-Pal complex is essential. Cryo-electron microscopy images of the Caulobacter cell envelope exhibited outer membrane disruption, and cells failed to complete cell division in TolA, TolB, or Pal mutant strains. In wild-type cells, components of the Tol-Pal complex localize to the division plane in early predivisional cells and remain predominantly at the new pole of swarmer and stalked progeny upon completion of division. The Tol-Pal complex is required to maintain the position of the transmembrane TipN polar marker, and indirectly the PleC histidine kinase, at the cell pole, but it is not required for the polar maintenance of other transmembrane and membrane-associated polar proteins tested. Coimmunoprecipitation experiments show that both TolA and Pal interact directly or indirectly with TipN. We propose that disruption of the trans-envelope Tol-Pal complex releases TipN from its subcellular position. The Caulobacter Tol-Pal complex is thus a key component of cell envelope structure and function, mediating OM constriction at the final step of cell division as well as the positioning of a protein localization factor.
Collapse
|
56
|
Möll A, Schlimpert S, Briegel A, Jensen GJ, Thanbichler M. DipM, a new factor required for peptidoglycan remodelling during cell division in Caulobacter crescentus. Mol Microbiol 2010; 77:90-107. [PMID: 20497502 DOI: 10.1111/j.1365-2958.2010.07224.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C-terminal lysostaphin-like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.
Collapse
Affiliation(s)
- Andrea Möll
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
57
|
Alexeeva S, Gadella TWJ, Verheul J, Verhoeven GS, Den Blaauwen T. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 2010; 77:384-98. [DOI: 10.1111/j.1365-2958.2010.07211.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Rico AI, García-Ovalle M, Palacios P, Casanova M, Vicente M. Role of Escherichia coli FtsN protein in the assembly and stability of the cell division ring. Mol Microbiol 2010; 76:760-71. [PMID: 20345660 DOI: 10.1111/j.1365-2958.2010.07134.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Deprivation of FtsN, the last protein in the hierarchy of divisome assembly, causes the disassembly of other elements from the division ring, even extending to already assembled proto-ring proteins. Therefore the stability and function of the divisome to produce rings active in septation is not guaranteed until FtsN is recruited. Disassembly follows an inverse sequential pathway relative to assembly. In the absence of FtsN, the frequencies of FtsN and FtsQ rings are affected similarly. Among the proto-ring components, ZipA are more sensitive than FtsZ or FtsA rings. In contrast, removal of FtsZ leads to an almost simultaneous disappearance of the other elements from rings. Although restoration of FtsN allows for a quick reincorporation of ZipA into proto-rings, the de novo joint assembly of the three components when FtsZ levels are restored to FtsZ-deprived filaments is even faster. This suggests that the recruitment of ZipA into FtsZ-FtsA incomplete proto-rings may require first a period for the reversal of these partial assemblies.
Collapse
Affiliation(s)
- Ana Isabel Rico
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/Darwin, 3. 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
59
|
Rapid beta-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci U S A 2009; 106:21872-7. [PMID: 19995973 DOI: 10.1073/pnas.0911674106] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Beta-lactam antibiotics inhibit penicillin binding proteins (PBPs) involved in peptidoglycan synthesis. Although inhibition of peptidoglycan biosynthesis is generally thought to induce cell lysis, the pattern and mechanism of cell lysis can vary substantially. Beta-lactams that inhibit FtsI, the only division specific PBP, block cell division and result in growth as filaments. These filaments ultimately lyse through a poorly understood mechanism. Here we find that one such beta-lactam, cephalexin, can, under certain conditions, lead instead to rapid lysis at nascent division sites through a process that requires the complete and ordered assembly of the divisome, the essential machinery involved in cell division. We propose that this assembly process (in which the localization of cell wall hydrolases depends on properly targeted FtsN, which in turn depends on the presence of FtsI) ensures that the biosynthetic machinery to form new septa is in place before the machinery to degrade septated daughter cells is enabled. Beta-lactams that target FtsI subvert this mechanism by inhibiting FtsI without perturbing the normal assembly of the cell division machinery and the consequent activation of cell wall hydrolases. One seemingly paradoxical implication of our results is that beta-lactam therapy may be improved by promoting active cell division.
Collapse
|
60
|
|
61
|
Self-enhanced accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR domain (DamX, DedD, and RlpA) in Escherichia coli cell constriction. J Bacteriol 2009; 191:7383-401. [PMID: 19684127 DOI: 10.1128/jb.00811-09] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Of the known essential division proteins in Escherichia coli, FtsN is the last to join the septal ring organelle. FtsN is a bitopic membrane protein with a small cytoplasmic portion and a large periplasmic one. The latter is thought to form an alpha-helical juxtamembrane region, an unstructured linker, and a C-terminal, globular, murein-binding SPOR domain. We found that the essential function of FtsN is accomplished by a surprisingly small essential domain ((E)FtsN) of at most 35 residues that is centered about helix H2 in the periplasm. (E)FtsN contributed little, if any, to the accumulation of FtsN at constriction sites. However, the isolated SPOR domain ((S)FtsN) localized sharply to these sites, while SPOR-less FtsN derivatives localized poorly. Interestingly, localization of (S)FtsN depended on the ability of cells to constrict and, thus, on the activity of (E)FtsN. This and other results suggest that, compatible with a triggering function, FtsN joins the division apparatus in a self-enhancing fashion at the time of constriction initiation and that its SPOR domain specifically recognizes some form of septal murein that is only transiently available during the constriction process. SPOR domains are widely distributed in bacteria. The isolated SPOR domains of three additional E. coli proteins of unknown function, DamX, DedD, and RlpA, as well as that of Bacillus subtilis CwlC, also accumulated sharply at constriction sites in E. coli, suggesting that septal targeting is a common property of SPORs. Further analyses showed that DamX and, especially, DedD are genuine division proteins that contribute significantly to the cell constriction process.
Collapse
|
62
|
Möll A, Thanbichler M. FtsN-like proteins are conserved components of the cell division machinery in proteobacteria. Mol Microbiol 2009; 72:1037-53. [PMID: 19400794 DOI: 10.1111/j.1365-2958.2009.06706.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In bacteria, cytokinesis is mediated by a ring-shaped multiprotein complex, called divisome. While some of its components are widely conserved, others are restricted to certain bacterial lineages. FtsN is the last essential cell division protein to localize to the division septum in Escherichia coli and is poorly conserved outside the enteric bacteria. We have identified a homologue of FtsN in the alpha-proteobacterium Caulobacter crescentus and show that it is essential for cell division. C. crescentus FtsN is recruited to the divisome significantly after cell division initiates and remains associated with the new cell poles after cytokinesis is finished. All determinants necessary for localization and function are located in a largely unstructured periplasmic segment of the protein. Its conserved SPOR-domain, by contrast, is dispensable for cytokinesis, although it supports targeting of FtsN to the division site. Interestingly, the SPOR-domain is recruited to the division plane when produced in isolated form and retains its localization potential in a heterologous host background. Searching for proteins that share the characteristic features of FtsN from E. coli and C. crescentus, we identified FtsN-like cell division proteins in beta- and delta-proteobacteria, suggesting that FtsN is widespread among bacteria, albeit highly variable at the sequence level.
Collapse
Affiliation(s)
- Andrea Möll
- Independent Junior Research Group Prokaryotic Cell Biology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 1, 35043 Marburg, Germany
| | | |
Collapse
|
63
|
Abstract
FtsE and FtsX of Escherichia coli constitute an apparent ABC transporter that localizes to the septal ring. In the absence of FtsEX, cells divide poorly and several membrane proteins essential for cell division are largely absent from the septal ring, including FtsK, FtsQ, FtsI, and FtsN. These observations, together with the fact that ftsE and ftsX are cotranscribed with ftsY, which helps to target some proteins for insertion into the cytoplasmic membrane, suggested that FtsEX might contribute to insertion of division proteins into the membrane. Here we show that this hypothesis is probably wrong, because cells depleted of FtsEX had normal amounts of FtsK, FtsQ, FtsI, and FtsN in the membrane fraction. We also show that FtsX localizes to septal rings in cells that lack FtsE, arguing that FtsX targets the FtsEX complex to the ring. Nevertheless, both proteins had to be present to recruit further Fts proteins to the ring. Mutant FtsE proteins with lesions in the ATP-binding site supported septal ring assembly (when produced together with FtsX), but these rings constricted poorly. This finding implies that FtsEX uses ATP to facilitate constriction rather than assembly of the septal ring. Finally, topology analysis revealed that FtsX has only four transmembrane segments, none of which contains a charged amino acid. This structure is not what one would expect of a substrate-specific transmembrane channel, leading us to suggest that FtsEX is not really a transporter even though it probably has to hydrolyze ATP to support cell division.
Collapse
|
64
|
The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure. J Mol Biol 2008; 386:504-19. [PMID: 19135451 PMCID: PMC2661564 DOI: 10.1016/j.jmb.2008.12.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
The Escherichia coli protein SufI (FtsP) has recently been proposed to be a component of the cell division apparatus. The SufI protein is also in widespread experimental use as a model substrate in studies of the Tat (twin arginine translocation) protein transport system. We have used SufI-GFP (green fluorescent protein) fusions to show that SufI localizes to the septal ring in the dividing cell. We have also determined the structure of SufI by X-ray crystallography to a resolution of 1.9 A. SufI is structurally related to the multicopper oxidase superfamily but lacks metal cofactors. The structure of SufI suggests it serves a scaffolding rather than an enzymatic role in the septal ring and reveals regions of the protein likely to be involved in the protein-protein interactions required to assemble SufI at the septal ring.
Collapse
|
65
|
An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. Antimicrob Agents Chemother 2008; 53:1107-15. [PMID: 19075056 DOI: 10.1128/aac.01107-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae represents a primary resistance determinant for beta-lactams, and low-affinity PBP2x variants can easily be selected with cefotaxime. Penicillin-resistant clinical isolates of S. pneumoniae frequently contain in their mosaic PBP2x the mutation T338A adjacent to the active site S337, and T338P as well as T338G substitutions are also known. Site-directed mutagenesis has now documented that a single point mutation at position T338 confers selectable levels of beta-lactam resistance preferentially to oxacillin. Despite the moderate impact on beta-lactam susceptibility, the function of the PBP2x mutants appears to be impaired, as can be documented in the absence of a functional CiaRH regulatory system, resulting in growth defects and morphological changes. The combination of low-affinity PBP2x and PBP1a encoded by mosaic genes is known to result in high cefotaxime resistance. In contrast, introduction of a mosaic pbp1a into the PBP2x(T338G) mutant did not lead to increased resistance. However, the mosaic PBP1a gene apparently complemented the PBP2x(T338G) defect, since Cia mutant derivatives grew normally. The data support the view that PBP2x and PBP1a interact with each other on some level and that alterations of both PBPs in resistant clinical isolates have evolved to ensure cooperation between both proteins.
Collapse
|
66
|
Characterization of YmgF, a 72-residue inner membrane protein that associates with the Escherichia coli cell division machinery. J Bacteriol 2008; 191:333-46. [PMID: 18978050 DOI: 10.1128/jb.00331-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.
Collapse
|
67
|
Shiomi D, Margolin W. Compensation for the loss of the conserved membrane targeting sequence of FtsA provides new insights into its function. Mol Microbiol 2008; 67:558-69. [PMID: 18186792 DOI: 10.1111/j.1365-2958.2007.06085.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The bacterial actin homologue FtsA has a conserved C-terminal membrane targeting sequence (MTS). Deletion or point mutations in the MTS, such as W408E, were shown previously to inactivate FtsA function and inhibit cell division. Because FtsA binds to the tubulin-like FtsZ protein that forms the Z ring, it is thought that the MTS of FtsA is required, along with the transmembrane protein ZipA, to assemble the Z ring and anchor it to the cytoplasmic membrane. Here, we show that despite its reduced membrane binding, FtsA-W408E could localize to the Z ring and recruit the late cell division protein FtsI, but was defective in self-interaction and recruitment of FtsN, another late cell division protein. These defects could be suppressed by a mutation that stimulates membrane association of FtsA-W408E, or by expressing a tandem FtsA-W408E. Remarkably, the FtsA MTS could be completely replaced with the transmembrane domain of MalF and remain functional for cell division. We propose that FtsA function in cell division depends on additive effects of membrane binding and self-interaction, and that the specific requirement of an amphipathic helix for tethering FtsA to the membrane can be bypassed.
Collapse
Affiliation(s)
- Daisuke Shiomi
- Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
68
|
Müller P, Ewers C, Bertsche U, Anstett M, Kallis T, Breukink E, Fraipont C, Terrak M, Nguyen-Distèche M, Vollmer W. The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli. J Biol Chem 2007; 282:36394-402. [DOI: 10.1074/jbc.m706390200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
69
|
Bernard CS, Sadasivam M, Shiomi D, Margolin W. An altered FtsA can compensate for the loss of essential cell division protein FtsN in Escherichia coli. Mol Microbiol 2007; 64:1289-305. [PMID: 17542921 PMCID: PMC4754970 DOI: 10.1111/j.1365-2958.2007.05738.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtsN is the last known essential protein component to be recruited to the Escherichia coli divisome, and has several special properties. Here we report the isolation of suppressor mutants of ftsA that allow viability in the absence of ftsN. Cells producing the FtsA suppressors exhibited a mild cell division deficiency in the absence of FtsN, and no obvious phenotype in its presence. Remarkably, these altered FtsA proteins also could partially suppress a deletion of ftsK or zipA, were less toxic than wild-type FtsA when in excess, and conferred resistance to excess MinC, indicating that they share some properties with the previously isolated FtsA* suppressor mutant, and bypass the need for ftsN by increasing the integrity of the Z ring. TolA, which normally requires FtsN for its recruitment to the divisome, localized proficiently in the suppressed ftsN null strain, strongly suggesting that FtsN does not recruit the Tol-Pal complex directly. Therefore, despite its classification as a core divisome component, FtsN has no unique essential function but instead promotes overall Z ring integrity. The results strongly suggest that FtsA is conformationally flexible, and this flexibility is a key modulator of divisome function at all stages.
Collapse
Affiliation(s)
| | | | | | - William Margolin
- For correspondence. ; Tel. (+1) 713 500 5452; Fax (+1) 713 500 5499
| |
Collapse
|
70
|
Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1714-34. [PMID: 17658458 DOI: 10.1016/j.bbamem.2007.06.007] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
The periplasmic murein (peptidoglycan) sacculus is a giant macromolecule made of glycan strands cross-linked by short peptides completely surrounding the cytoplasmic membrane to protect the cell from lysis due to its internal osmotic pressure. More than 50 different muropeptides are released from the sacculus by treatment with a muramidase. Escherichia coli has six murein synthases which enlarge the sacculus by transglycosylation and transpeptidation of lipid II precursor. A set of twelve periplasmic murein hydrolases (autolysins) release murein fragments during cell growth and division. Recent data on the in vitro murein synthesis activities of the murein synthases and on the interactions between murein synthases, hydrolases and cell cycle related proteins are being summarized. There are different models for the architecture of murein and for the incorporation of new precursor into the sacculus. We present a model in which morphogenesis of the rod-shaped E. coli is driven by cytoskeleton elements competing for the control over the murein synthesis multi-enzyme complexes.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
71
|
Gerding MA, Ogata Y, Pecora ND, Niki H, de Boer PAJ. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol Microbiol 2007; 63:1008-25. [PMID: 17233825 PMCID: PMC4428343 DOI: 10.1111/j.1365-2958.2006.05571.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fission of bacterial cells involves the co-ordinated invagination of the envelope layers. Invagination of the cytoplasmic membrane (IM) and peptidoglycan (PG) layer is likely driven by the septal ring organelle. Invagination of the outer membrane (OM) in Gram-negative species is thought to occur passively via its tethering to the underlying PG layer with generally distributed PG-binding OM (lipo)proteins. The Tol-Pal system is energized by proton motive force and is well conserved in Gram-negative bacteria. It consists of five proteins that can connect the OM to both the PG and IM layers via protein-PG and protein-protein interactions. Although the system is needed to maintain full OM integrity, and for class A colicins and filamentous phages to enter cells, its precise role has remained unclear. We show that all five components accumulate at constriction sites in Escherichia coli and that mutants lacking an intact system suffer delayed OM invagination and contain large OM blebs at constriction sites and cell poles. We propose that Tol-Pal constitutes a dynamic subcomplex of the division apparatus in Gram-negative bacteria that consumes energy to establish transient trans-envelope connections at/near the septal ring to draw the OM onto the invaginating PG and IM layers during constriction.
Collapse
Affiliation(s)
- Matthew A. Gerding
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yasuyuki Ogata
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nicole D. Pecora
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hironori Niki
- Radioisotope Center, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Piet A. J. de Boer
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- For correspondence. ; Tel. (+1) 216 368 1697; Fax (+1) 216 368 3055
| |
Collapse
|
72
|
Khattar MM, Kassem II, El-Hajj ZW. Of the morphogenes that make a ring, a rod and a sphere in Escherichia coli. Sci Prog 2007; 90:59-72. [PMID: 17725227 PMCID: PMC10368356 DOI: 10.3184/003685007x216912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 1993, William Donachie wrote "The success of molecular genetics in the study of bacterial cell division has been so great that we find ourselves, armed with much greater knowledge of detail, confronted once again with the same naive questions that we set to answer in the first place". Indeed, attempts to answer the apparently simple question of how a bacterial cell divides have led to a wealth of new knowledge, in particular over the past decade and a half. And while some questions have been answered to a great extent since the early reports of isolation of division mutants of Escherichia coli, some key pieces of the puzzle remain elusive. In addition to it being a fundamental process in bacteria that merits investigation in its own right, studying the process of cell division offers an abundance of new targets for the development of new antibacterial compounds that act directly against key division proteins and other components of the cytoskeleton, which are encoded by the morphogenes of E. coli. This review aims to present the reader with a snapshot summary of the key players in E. coli morphogenesis with emphasis on cell division and the rod to sphere transition.
Collapse
|
73
|
Vicente M, Rico AI, Martínez-Arteaga R, Mingorance J. Septum enlightenment: assembly of bacterial division proteins. J Bacteriol 2006; 188:19-27. [PMID: 16352817 PMCID: PMC1317574 DOI: 10.1128/jb.188.1.19-27.2006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, c/ Darwin 3, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
74
|
Wang S, Arends SJR, Weiss DS, Newman EB. A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. Mol Microbiol 2006; 58:791-9. [PMID: 16238627 DOI: 10.1111/j.1365-2958.2005.04864.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mutant in which S-adenosylmethionine synthetase is underexpressed makes filaments with no visible septa. Examination with GFP fusions to various septal proteins shows that FtsZ, ZipA and FtsA localize to the septal ring, but FtsQ, FtsW, FtsI or FtsN do not. The requirement for S-adenosylmethionine suggests that some methylation reaction is required before a complete septal ring can be assembled.
Collapse
Affiliation(s)
- Shan Wang
- Biology Department, Concordia University, 1455 de Maisonneuve Ave., Montreal, Quebec H3G 1M8, Canada
| | | | | | | |
Collapse
|
75
|
Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:27-94. [PMID: 17098054 DOI: 10.1016/s0074-7696(06)53002-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.
Collapse
Affiliation(s)
- Elizabeth Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
76
|
Abstract
At the heart of bacterial cell division is a dynamic ring-like structure of polymers of the tubulin homologue FtsZ. This ring forms a scaffold for assembly of at least ten additional proteins at midcell, the majority of which are likely to be involved in remodeling the peptidoglycan cell wall at the division site. Together with FtsZ, these proteins are thought to form a cell division complex, or divisome. In Escherichia coli, the components of the divisome are recruited to midcell according to a strikingly linear hierarchy that predicts a step-wise assembly pathway. However, recent studies have revealed unexpected complexity in the assembly steps, indicating that the apparent linearity does not necessarily reflect a temporal order. The signals used to recruit cell division proteins to midcell are diverse and include regulated self-assembly, protein-protein interactions, and the recognition of specific septal peptidoglycan substrates. There is also evidence for a complex web of interactions among these proteins and at least one distinct subcomplex of cell division proteins has been defined, which is conserved among E. coli, Bacillus subtilis and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Nathan W Goehring
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
77
|
Serina S, Nozza F, Nicastro G, Faggioni F, Mottl H, Dehò G, Polissi A. Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Res Microbiol 2005; 155:692-701. [PMID: 15380559 DOI: 10.1016/j.resmic.2004.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/11/2004] [Indexed: 11/21/2022]
Abstract
Analysis of the complete DNA sequences of many microbial genomes available reveals a fair number of putative ORFs without an identified function. A systematic scan of the Escherichia coli chromosome was achieved by random transposition with a newly developed Tn5 minitransposon derivative carrying the arabinose-inducible araP(BAD) promoter oriented outward at one end (Tn5-araP(BAD)). The transposon insertion mutants obtained were assayed for conditional lethal phenotypes (arabinose dependence or sensitivity), for growth at two temperatures (37 and 15 degrees C) and in different media (rich and minimal medium). The Tn5-araP(BAD)-tagged genes were identified by sequencing the transposon insertion points. In this way we found a new essential gene cluster (yhbN-yhbG), produced conditional lethal (arabinose-dependent) mutations in already known essential genes (folD, frr, plsC, thiL, serS, thrS, and trpS) and provided a new phenotype (cold sensitivity) to other known genes (holD, ahpC, and tolA). Moreover, we identified eight putative ORFs (kch, ycaM, ycbQ, yddA, yddB, ydeK, ydeX, and yliF) that appear to be required in optimum growth conditions (rich medium at 37 degrees C) but not in the cold and in minimal medium.
Collapse
Affiliation(s)
- Stefania Serina
- Dipartimento di Scienze biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
78
|
Corbin BD, Geissler B, Sadasivam M, Margolin W. Z-ring-independent interaction between a subdomain of FtsA and late septation proteins as revealed by a polar recruitment assay. J Bacteriol 2004; 186:7736-44. [PMID: 15516588 PMCID: PMC524888 DOI: 10.1128/jb.186.22.7736-7744.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsA, a member of the ATPase superfamily that includes actin and bacterial actin homologs, is essential for cell division of Escherichia coli and is recruited to the Z ring. In turn, recruitment of later essential division proteins to the Z ring is dependent on FtsA. In a polar recruitment assay, we found that FtsA can recruit at least two late proteins, FtsI and FtsN, to the cell poles independently of Z rings. Moreover, a unique structural domain of FtsA, subdomain 1c, which is divergent in the other ATPase superfamily members, is sufficient for this recruitment but not required for the ability of FtsA to localize to Z rings. Surprisingly, targeting the 1c subdomain to the Z ring by fusing it to FtsZ could partially suppress a thermosensitive ftsA mutation. These results suggest that subdomain 1c of FtsA is a completely independent functional domain with an important role in interacting with a septation protein subassembly.
Collapse
Affiliation(s)
- Brian D Corbin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
79
|
Ursinus A, van den Ent F, Brechtel S, de Pedro M, Höltje JV, Löwe J, Vollmer W. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J Bacteriol 2004; 186:6728-37. [PMID: 15466024 PMCID: PMC522186 DOI: 10.1128/jb.186.20.6728-6737.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.
Collapse
Affiliation(s)
- Astrid Ursinus
- Universität Tübingen, Fakultät für Biologie, Lehrbereich Mikrobielle Genetik, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Rico AI, García-Ovalle M, Mingorance J, Vicente M. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol Microbiol 2004; 53:1359-71. [PMID: 15387815 DOI: 10.1111/j.1365-2958.2004.04245.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The FtsA protein is a member of the actin superfamily that localizes to the bacterial septal ring during cell division. Deletions of domain 1C or the S12 and S13 beta-strands in domain 2B of the Escherichia coli FtsA, previously postulated to be involved in dimerization, result in partially active proteins that do not allow the normal progression of septation. The truncated FtsA protein lacking domain 1C (FtsADelta1C) localizes in correctly placed division rings, together with FtsZ and ZipA, but does not interact with other FtsA molecules in the yeast two-hybrid assay, and fails to recruit FtsQ and FtsN into the division ring. The rings containing FtsADelta1C are therefore incomplete and do not support division. The production of high levels of FtsADelta1C causes filamentation, an effect that has been reported to result as well from the imbalance between FtsA+ and FtsZ+ molecules. These data indicate that the domain 1C of FtsA participates in the interaction of the protein with other FtsA molecules and with the other proteins that are incorporated at later stages of ring assembly, and is not involved in the interaction with FtsZ and the localization of FtsA to the septal ring. The deletion of the S12-S13 strands of domain 2B generates a protein (FtsADeltaS12-13) that retains the ability to interact with FtsA+. When the mutated protein is expressed at wild-type levels, it localizes into division rings and recruits FtsQ and FtsN, but it fails to sustain septation at normal levels resulting in filamentation. A fivefold overexpression of FtsADeltaS12-13 produces short cells that have normal division rings, but also cells with polar localization of the mutated protein, and cells with rings at abnormal positions that result in the production of a fraction (15%) of small nucleoid-free cells. The S12-S13 strands of domain 2B are not essential for septation, but affect the localization of the division ring.
Collapse
Affiliation(s)
- Ana Isabel Rico
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
81
|
Yang JC, Van Den Ent F, Neuhaus D, Brevier J, Löwe J. Solution structure and domain architecture of the divisome protein FtsN. Mol Microbiol 2004; 52:651-60. [PMID: 15101973 DOI: 10.1111/j.1365-2958.2004.03991.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prokaryotic cell division occurs through the formation of a septum, which in Escherichia coli requires coordination of the invagination of the inner membrane, biosynthesis of peptidoglycan and constriction of the outer membrane. FtsN is an essential cell division protein and forms part of the divisome, a putative complex of proteins located in the cytoplasmic membrane. Structural analyses of FtsN by nuclear magnetic resonance (NMR) reveals an RNP-like fold at the C-terminus (comprising residues 243-319), which has significant sequence homology to a peptidoglycan-binding domain. Sequential deletion mutagenesis in combination with NMR shows that the remaining of the periplasmic region of FtsN is unfolded, with the exception of three short, only partially formed helices following the trans-membrane helix. Based on these findings we propose a model in which FtsN, anchored in the inner membrane, bridges over to the peptidoglycan layer, thereby enabling the coordination of the divisome and the murein-shaping machinery in the periplasm.
Collapse
Affiliation(s)
- Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
82
|
Di Lallo G, Fagioli M, Barionovi D, Ghelardini P, Paolozzi L. Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. MICROBIOLOGY-SGM 2004; 149:3353-3359. [PMID: 14663069 DOI: 10.1099/mic.0.26580-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ability of each of the nine Escherichia coli division proteins (FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsL, FtsW, FtsI, FtsN) to interact with itself and with each of the remaining eight proteins was studied in 43 possible combinations of protein pairs by the two-hybrid system previously developed by the authors' group. Once the presumed interactions between the division proteins were determined, a model showing their temporal sequence of assembly was developed. This model agrees with that developed by other authors, based on the co-localization sequence in the septum of the division proteins fused with GFP. In addition, this paper shows that the authors' assay, which has already proved to be very versatile in the study of prokaryotic and eukaryotic protein interaction, is also a powerful instrument for an in vivo study of the interaction and assembly of proteins, as in the case of septum division formation.
Collapse
Affiliation(s)
- G Di Lallo
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - M Fagioli
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - D Barionovi
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| | - P Ghelardini
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - L Paolozzi
- Dipartimento di Biologia, Università "Tor Vergata", Via della Ricerca Scientifica, I-00133 Rome, Italy
| |
Collapse
|
83
|
Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ, Weiss DS. A predicted ABC transporter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 2004; 186:785-93. [PMID: 14729705 PMCID: PMC321481 DOI: 10.1128/jb.186.3.785-793.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.
Collapse
Affiliation(s)
- Kari L Schmidt
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Wissel MC, Weiss DS. Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol 2004; 186:490-502. [PMID: 14702319 PMCID: PMC305773 DOI: 10.1128/jb.186.2.490-502.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of several proteins that localize to the septal ring. FtsI comprises a small cytoplasmic domain, a transmembrane helix, a noncatalytic domain of unknown function, and a catalytic (transpeptidase) domain. The last two domains reside in the periplasm. We used PCR to randomly mutagenize ftsI, ligated the products into a green fluorescent protein fusion vector, and screened approximately 7,500 transformants for gfp-ftsI alleles that failed to complement an ftsI null mutant. Western blotting and penicillin-binding assays were then used to weed out proteins that were unstable, failed to insert into the cytoplasmic membrane, or were defective in catalysis. The remaining candidates were tested for septal localization and ability to recruit another division protein, FtsN, to the septal ring. Mutant proteins severely defective in localization to the septal ring all had lesions in one of three amino acids-R23, L39, or Q46-that are in or near the transmembrane helix and implicate this region of FtsI in septal localization. Mutant FtsI proteins defective in recruitment of FtsN all had lesions in one of eight residues in the noncatalytic domain. The most interesting of these mutants had lesions at G57, S61, L62, or R210. Although separated by approximately 150 residues in the primary sequence, these amino acids are close together in the folded protein and might constitute a site of FtsI-FtsN interaction.
Collapse
Affiliation(s)
- Mark C Wissel
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
85
|
Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, Vicente F, González A, Cully D, Bramhill D, Singh S. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 2003; 278:44424-8. [PMID: 12952956 DOI: 10.1074/jbc.m307625200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.
Collapse
Affiliation(s)
- Jun Wang
- Department of Human and Animal Infectious Disease, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Eberhardt C, Kuerschner L, Weiss DS. Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams. J Bacteriol 2003; 185:3726-34. [PMID: 12813065 PMCID: PMC161574 DOI: 10.1128/jb.185.13.3726-3734.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 3 (PBP3; also called FtsI) is a transpeptidase that catalyzes cross-linking of the peptidoglycan cell wall in the division septum of Escherichia coli. To determine whether the catalytic activity of PBP3 is activated during division, we assayed acylation of PBP3 with three beta-lactams (cephalexin, aztreonam, and piperacillin) in growing cells. Acylation of PBP3 with cephalexin, but not aztreonam or piperacillin, appeared to be stimulated by cell division. Specifically, cephalexin acylated PBP3 about 50% faster in a population of dividing cells than in a population of filamentous cells in which division was inhibited by inactivation or depletion of FtsZ, FtsA, FtsQ, FtsW, or FtsN. However, in a simpler in vitro system using isolated membranes, acylation with cephalexin was not impaired by depletion of FtsW or FtsN. A conflicting previous report that the ftsA3(Ts) allele interferes with acylation of PBP3 was found to be due to the presence of a thermolabile PBP3 in the strain used in that study. The new findings presented here are discussed in light of the hypothesis that the catalytic activity of PBP3 is stimulated by interaction(s) with other division proteins. We suggest that there might be allosteric activation of substrate binding.
Collapse
|
87
|
Bernhardt TG, de Boer PAJ. The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 2003; 48:1171-82. [PMID: 12787347 PMCID: PMC4428285 DOI: 10.1046/j.1365-2958.2003.03511.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-acetylmuramoyl-l-alanine amidases of Escherichia coli (AmiA, B and C) are periplasmic enzymes that remove murein cross-links by cleaving the peptide moiety from N-acetylmuramic acid. Ami- cells form chains, indicating that the amidases help to split the septal murein. Interestingly, cells defective in the twin-arginine protein transport (Tat) pathway show a similar division defect. We find that both AmiA and AmiC are routed to the periplasm via Tat, providing an explanation for the Tat- division phenotype. Taking advantage of the ability of Tat to export prefolded (fluorescent) green fluorescent protein (GFP) to the periplasm, we sublocalized AmiA and AmiC in live cells using functional fusions to GFP. Interestingly, the periplasmic localization of the fusions differed markedly. AmiA-GFP appeared to be dispersed throughout the periplasm in all cells. AmiC-GFP similarly appeared throughout the periplasm in small cells, but was concentrated almost exclusively at the septal ring in constricting cells. Recruitment of AmiC to the ring was mediated by an N-terminal non-amidase targeting domain and required the septal ring component FtsN. AmiC therefore replaces FtsN as the latest known recruit to the septal ring and is the first entirely periplasmic component to be localized.
Collapse
|
88
|
Du Y, Arvidson CG. Identification of ZipA, a signal recognition particle-dependent protein from Neisseria gonorrhoeae. J Bacteriol 2003; 185:2122-30. [PMID: 12644481 PMCID: PMC151515 DOI: 10.1128/jb.185.7.2122-2130.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen designed to identify proteins that utilize the signal recognition particle (SRP) for targeting in Escherichia coli was used to screen a Neisseria gonorrhoeae plasmid library. Six plasmids were identified in this screen, and each is predicted to encode one or more putative cytoplasmic membrane (CM) proteins. One of these, pSLO7, has three open reading frames (ORFs), two of which have no similarity to known proteins in GenBank other than sequences from the closely related N. meningitidis. Further analyses showed that one of these, SLO7ORF3, encodes a protein that is dependent on the SRP for localization. This gene also appears to be essential in N. gonorrhoeae since it was not possible to generate null mutations in the gene. Although appearing unique to Neisseria at the DNA sequence level, SLO7ORF3 was found to share some features with the cell division gene zipA of E. coli. These features included similar chromosomal locations (with respect to linked genes) as well as similarities in the predicted protein domain structures. Here, we show that SLO7ORF3 can complement an E. coli conditional zipA mutant and therefore encodes a functional ZipA homolog in N. gonorrhoeae. This observation is significant in that it is the first ZipA homolog identified in a non-rod-shaped organism. Also interesting is that this is the fourth cell division protein (the others are FtsE, FtsX, and FtsQ) shown to utilize the SRP for localization, which may in part explain why the genes encoding the three SRP components are essential in bacteria.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | |
Collapse
|
89
|
Abstract
Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum.
Collapse
Affiliation(s)
- Jeffery Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | | | |
Collapse
|
90
|
Carettoni D, Gómez-Puertas P, Yim L, Mingorance J, Massidda O, Vicente M, Valencia A, Domenici E, Anderluzzi D. Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 2003; 50:192-206. [PMID: 12486713 DOI: 10.1002/prot.10244] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FtsA plays an essential role in Escherichia coli cell division and is nearly ubiquitous in eubacteria. Several evidences postulated the ability of FtsA to interact with other septation proteins and with itself. To investigate these binding properties, we screened a phage-display library with FtsA. The isolated peptides defined a degenerate consensus sequence, which in turn displayed a striking similarity with residues 126-133 of FtsA itself. This result suggested that residues 126-133 were involved in homodimerization of FtsA. The hypothesis was supported by the analysis of correlated mutations, which identified a mutual relationship between a group of amino acids encompassing the ATP-binding site and a set of residues immediately downstream to amino acids 126-133. This information was used to assemble a model of a FtsA homodimer, whose accuracy was confirmed by probing multiple alternative docking solutions. Moreover, a prediction of residues responsible for protein-protein interaction validated the proposed model and confirmed once more the importance of residues 126-133 for homodimerization. To functionally characterize this region, we introduced a deletion in ftsA, where residues 126-133 were skipped. This mutant failed to complement conditional lethal alleles of ftsA, demonstrating that amino acids 126-133 play an essential role in E. coli.
Collapse
Affiliation(s)
- Daniele Carettoni
- GlaxoSmithKline Medicines Research Center, Via Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Cell division in Escherichia coli requires the coordinated action of at least ten proteins. In recent years, substantial progress has been made in understanding the assembly of these proteins at the cell septum. These findings suggest a largely stepwise appearance of cell division proteins at the centre of the cell.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
92
|
Sciochetti SA, Lane T, Ohta N, Newton A. Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus. J Bacteriol 2002; 184:6037-49. [PMID: 12374838 PMCID: PMC135399 DOI: 10.1128/jb.184.21.6037-6049.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Accepted: 08/07/2002] [Indexed: 11/20/2022] Open
Abstract
The Caulobacter crescentus sensor kinase DivJ is required for an early cell division step and localizes at the base of the newly formed stalk during the G1-to-S-phase transition when the protein is synthesized. To identify sequences within DivJ that are required for polar localization, we examined the ability of mutagenized DivJ sequences to direct localization of the green fluorescent protein. The effects of overlapping C-terminal deletions of DivJ established that the N-terminal 326 residues, which do not contain the kinase catalytic domain, are sufficient for polar localization of the fusion protein. Internal deletions mapped a shorter sequence between residues 251 and 312 of the cytoplasmic linker that are required for efficient localization of this sensor kinase. PleC kinase mutants, which are blocked in the swarmer-to-stalked-cell transition and form flagellated, nonmotile cells, also fail to localize DivJ. To dissect the cellular factors involved in establishing subcellular polarity, we have examined DivJ localization in a pleC mutant suppressed by the sokA301 allele of ctrA and in a pleD mutant, both of which display a supermotile, stalkless phenotype. The observation that these Mot(+) strains localize DivJ to a single cell pole indicate that localization may be closely coupled to the gain of motility and that normal stalk formation is not required. We have also observed, however, that filamentous parC mutant cells, which are defective in DNA segregation and the completion of cell separation, are motile and still fail to localize DivJ to the new cell pole. These results suggest that formation of new sites for DivJ localization depends on events associated with the completion of cell separation as well as the gain of motility. Analysis of PleC and PleD mutants also provides insights into the function of the His-Asp proteins in cell cycle regulation. Thus, the ability of the sokA301 allele of ctrA to bypass the nonmotile phenotype of the pleC null mutation provides evidence that the PleC kinase controls cell motility by initiating a signal transduction pathway regulating activity of the global response regulator CtrA. Analysis of the pleD mutant cell cycle demonstrates that disruption of the swarmer-to-stalked-cell developmental sequence does not affect the asymmetric organization of the Caulobacter cell cycle.
Collapse
Affiliation(s)
- Stephen A Sciochetti
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
93
|
Trusca D, Bramhill D. Fluorescent assay for polymerization of purified bacterial FtsZ cell-division protein. Anal Biochem 2002; 307:322-9. [PMID: 12202250 DOI: 10.1016/s0003-2697(02)00036-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Septum formation in Escherichia coli is a complex cascade of interactions among cell-division proteins. The tubulin-like FtsZ division protein localizes to the division site and serves a cytoskeletal role during septum formation. A novel fluorescent-based 96-well format filter assay has been developed to measure the polymerization of FtsZ. A mixture of monomers and aggregates (38 to approximately 200 KDa in range) of purified wild-type FtsZ and a fluorescently tagged derivative of FtsZ protein in stoichiometric ratio passes through a 0.2-microm filter membrane, while polymerized FtsZ is retained on the filter. Addition of the SulA protein to the assay leads to rapid disassembly of existing FtsZ polymers, demonstrating its natural regulatory effect on FtsZ under the assay conditions. This assay is sensitive (requiring 2 microM FtsZ or less) and facilitates high-throughput screening of factors affecting FtsZ polymerization.
Collapse
Affiliation(s)
- Dorina Trusca
- Department of Endocrinology and Chemical Biology, Building 50G-246, and Biologics Research, 80Y-325, Merck Research Laboratories, Rahway, NJ 07065-0900, USA
| | | |
Collapse
|
94
|
Hale CA, de Boer PAJ. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. J Bacteriol 2002; 184:2552-6. [PMID: 11948172 PMCID: PMC135003 DOI: 10.1128/jb.184.9.2552-2556.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The septal ring in Escherichia coli consists of at least nine essential gene products whose order of assembly resembles a mostly linear dependency pathway: FtsA and ZipA directly bind FtsZ polymers at the prospective division site, followed by the sequential addition of FtsK, FtsQ, FtsL, FtsW, FtsI, and FtsN. Recruitment of FtsK and all downstream components requires the prior localization of FtsA. Here we show that recruitment of FtsK, FtsQ, FtsL, and FtsN equally requires ZipA. The results imply that association of both FtsA and ZipA with FtsZ polymers is needed for further maturation of the nascent organelle.
Collapse
Affiliation(s)
- Cynthia A Hale
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.
| | | |
Collapse
|
95
|
Pichoff S, Lutkenhaus J. Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli. EMBO J 2002; 21:685-93. [PMID: 11847116 PMCID: PMC125861 DOI: 10.1093/emboj/21.4.685] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ZipA and FtsA are essential division proteins in Escherichia coli that are recruited to the division site by interaction with FtsZ. Utilizing a newly isolated temperature-sensitive mutation in zipA we have more fully characterized the role of ZipA. We confirmed that ZipA is not required for Z ring formation; however, we found that ZipA, like FtsA, is required for recruitment of FtsK and therefore all downstream division proteins. In the absence of FtsA or ZipA Z rings formed; however, in the absence of both, new Z rings were unable to form and preformed Z rings were destabilized. Consistent with this, we found that an FtsZ mutant unable to interact with both ZipA and FtsA was unable to assemble into Z rings. These results demonstrate that ZipA and FtsA are both required for recruitment of additional division proteins to the Z ring, but either one is capable of supporting formation and stabilization of Z rings.
Collapse
Affiliation(s)
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
Corresponding author e-mail:
| |
Collapse
|
96
|
Chen JC, Minev M, Beckwith J. Analysis of ftsQ mutant alleles in Escherichia coli: complementation, septal localization, and recruitment of downstream cell division proteins. J Bacteriol 2002; 184:695-705. [PMID: 11790739 PMCID: PMC139535 DOI: 10.1128/jb.184.3.695-705.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Accepted: 11/06/2001] [Indexed: 11/20/2022] Open
Abstract
FtsQ, a 276-amino-acid, bitopic membrane protein, is one of the nine proteins known to be essential for cell division in gram-negative bacterium Escherichia coli. To define residues in FtsQ critical for function, we performed random mutagenesis on the ftsQ gene and identified four alleles (ftsQ2, ftsQ6, ftsQ15, and ftsQ65) that fail to complement the ftsQ1(Ts) mutation at the restrictive temperature. Two of the mutant proteins, FtsQ6 and FtsQ15, are functional at lower temperatures but are unable to localize to the division site unless wild-type FtsQ is depleted, suggesting that they compete poorly with the wild-type protein for septal targeting. The other two mutants, FtsQ2 and FtsQ65, are nonfunctional at all temperatures tested and have dominant-negative effects when expressed in an ftsQ1(Ts) strain at the permissive temperature. FtsQ2 and FtsQ65 localize to the division site in the presence or absence of endogenous FtsQ, but they cannot recruit downstream cell division proteins, such as FtsL, to the septum. These results suggest that FtsQ2 and FtsQ65 compete efficiently for septal targeting but fail to promote the further assembly of the cell division machinery. Thus, we have separated the localization ability of FtsQ from its other functions, including recruitment of downstream cell division proteins, and are beginning to define regions of the protein responsible for these distinct capabilities.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
97
|
Chen JC, Beckwith J. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. Mol Microbiol 2001; 42:395-413. [PMID: 11703663 DOI: 10.1046/j.1365-2958.2001.02640.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.
Collapse
Affiliation(s)
- J C Chen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
98
|
Wang Y, Jones BD, Brun YV. A set of ftsZ mutants blocked at different stages of cell division in Caulobacter. Mol Microbiol 2001; 40:347-60. [PMID: 11309118 DOI: 10.1046/j.1365-2958.2001.02395.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FtsZ is required throughout the cell division process in eubacteria and in archaea. We report the isolation of novel mutants of the FtsZ gene in Caulobacter crescentus. Clusters of charged amino acids were changed to alanine to minimize mutations that affect protein folding. Molecular modelling indicated that all the clustered-charged-to-alanine mutations had altered amino acids at the surface of the protein. Of 13 such mutants, four were recessive-lethal, three were dominant-lethal, and six had no discernible phenotype. An FtsZ depletion strain of Caulobacter was constructed to analyse the phenotype of the recessive-lethal mutations and used to show that they blocked cell division at distinct stages. One mutation blocked the initiation of cell division, two mutations blocked cell division randomly, and one mutation blocked both early and late stages of cell division. The effect of the recessive mutations on the subcellular localization of FtsZ was determined. Models to explain the various mutant phenotypes are discussed. This is the first set of recessive alleles of ftsZ blocked at different stages of cell division.
Collapse
Affiliation(s)
- Y Wang
- Department of Biology, Indiana University, Jordan Hall 142, 1001 East 3rd St., Bloomington, IN 47405-3700, USA
| | | | | |
Collapse
|
99
|
Yim L, Vandenbussche G, Mingorance J, Rueda S, Casanova M, Ruysschaert JM, Vicente M. Role of the carboxy terminus of Escherichia coli FtsA in self-interaction and cell division. J Bacteriol 2000; 182:6366-73. [PMID: 11053380 PMCID: PMC94782 DOI: 10.1128/jb.182.22.6366-6373.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the carboxy terminus of the Escherichia coli cell division protein FtsA in bacterial division has been studied by making a series of short sequential deletions spanning from residue 394 to 420. Deletions as short as 5 residues destroy the biological function of the protein. Residue W415 is essential for the localization of the protein into septal rings. Overexpression of the ftsA alleles harboring these deletions caused a coiled cell phenotype previously described for another carboxy-terminal mutation (Gayda et al., J. Bacteriol. 174:5362-5370, 1992), suggesting that an interaction of FtsA with itself might play a role in its function. The existence of such an interaction was demonstrated using the yeast two-hybrid system and a protein overlay assay. Even these short deletions are sufficient for impairing the interaction of the truncated FtsA forms with the wild-type protein in the yeast two-hybrid system. The existence of additional interactions between FtsA molecules, involving other domains, can be postulated from the interaction properties shown by the FtsA deletion mutant forms, because although unable to interact with the wild-type and with FtsADelta1, they can interact with themselves and cross-interact with each other. The secondary structures of an extensive deletion, FtsADelta27, and the wild-type protein are indistinguishable when analyzed by Fourier transform infrared spectroscopy, and moreover, FtsADelta27 retains the ability to bind ATP. These results indicate that deletion of the carboxy-terminal 27 residues does not alter substantially the structure of the protein and suggest that the loss of biological function of the carboxy-terminal deletion mutants might be related to the modification of their interacting properties.
Collapse
Affiliation(s)
- L Yim
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
100
|
Dorazi R, Dewar SJ. The SOS promoter dinH is essential for ftsK transcription during cell division. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2891-2899. [PMID: 11065367 DOI: 10.1099/00221287-146-11-2891] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of the Escherichia coli division septum has been well characterized and the majority of the genes involved have been shown to map to the dcw cluster. One exception is ftsK, which lies at 20 minutes, immediately downstream of the global response regulatory gene, lrp. The promoter for ftsK has not yet been assigned. Here, it is reported that ftsK is transcribed from two promoters; the first is located within the lrp reading frame and is dispensable whilst the second is essential and corresponds to dinH, previously characterized as an SOS promoter regulated by LexA. ftsK is the first essential gene to be described that is controlled by an SOS-inducible promoter. A possible mechanism by which dinH may be activated in recA minus strains, or in strains with uncleavable LexA, is discussed.
Collapse
Affiliation(s)
- Robert Dorazi
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| | - Susan J Dewar
- Department of Biological Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK1
| |
Collapse
|