51
|
Brown NA, Dos Reis TF, Ries LNA, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Mol Microbiol 2015; 98:420-39. [PMID: 26179439 DOI: 10.1111/mmi.13135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Caldana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Campinas, São Paulo, Brazil.,Max Planck Partnergroup at CTBE/CNPEM, Campinas, São Paulo, Brazil
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong, South Korea
| | - Jae-Hyuk Yu
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Jeffrey M Macdonald
- UNC Metabolomic Facility, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE, Campinas, São Paulo, Brazil
| |
Collapse
|
52
|
Aktipis CA, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, Wilkinson GS. Cancer across the tree of life: cooperation and cheating in multicellularity. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140219. [PMID: 26056363 PMCID: PMC4581024 DOI: 10.1098/rstb.2014.0219] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Multicellularity is characterized by cooperation among cells for the development, maintenance and reproduction of the multicellular organism. Cancer can be viewed as cheating within this cooperative multicellular system. Complex multicellularity, and the cooperation underlying it, has evolved independently multiple times. We review the existing literature on cancer and cancer-like phenomena across life, not only focusing on complex multicellularity but also reviewing cancer-like phenomena across the tree of life more broadly. We find that cancer is characterized by a breakdown of the central features of cooperation that characterize multicellularity, including cheating in proliferation inhibition, cell death, division of labour, resource allocation and extracellular environment maintenance (which we term the five foundations of multicellularity). Cheating on division of labour, exhibited by a lack of differentiation and disorganized cell masses, has been observed in all forms of multicellularity. This suggests that deregulation of differentiation is a fundamental and universal aspect of carcinogenesis that may be underappreciated in cancer biology. Understanding cancer as a breakdown of multicellular cooperation provides novel insights into cancer hallmarks and suggests a set of assays and biomarkers that can be applied across species and characterize the fundamental requirements for generating a cancer.
Collapse
Affiliation(s)
- C Athena Aktipis
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, USA Centre for Evolution and Cancer, Institute for Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Amy M Boddy
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Department of Psychology, Arizona State University, Tempe, AZ 85287-4501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Gunther Jansen
- Department of Evolutionary Ecology and Genetics, University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, CNRS UMR5554, Université Montpellier, 34095 Montpellier, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Carlo C Maley
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA 94143, USA Centre for Evolution and Cancer, Institute for Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK Biodesign Institute, School of Life Sciences, Arizona State University, PO Box 8724501, Tempe, AZ 85287-4501, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA Institute for Advanced Study, Wissenschaftskolleg zu Berlin, Berlin, Germany
| |
Collapse
|
53
|
Guan Y, Wang DY, Ying SH, Feng MG. A novel Ras GTPase (Ras3) regulates conidiation, multi-stress tolerance and virulence by acting upstream of Hog1 signaling pathway in Beauveria bassiana. Fungal Genet Biol 2015; 82:85-94. [PMID: 26162967 DOI: 10.1016/j.fgb.2015.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
Two Ras ATPases (Ras1 and Ras2) are well known to regulate antagonistically or cooperatively various cellular events in many fungi. Here we show the significance of a novel Ras homolog (Ras3) for Beauveria bassiana. Ras3 possesses five domains and two GTP/GDP switches typical for Ras family and was proven to localize to plasma membrane despite the position change of a membrane-targeting cysteine in C-terminal CAAX motif. Deletion of ras3 altered temporal transcription pattern of ras1 instead of ras2. Compared with wild-type, Δras3 grew significantly faster in a rich medium but slower in some minimal media, and produced far fewer conidia with impaired quality, which was evident with slower germination, attenuated virulence, reduced thermotolerance and decreased UV-B resistance. Moreover, Δras3 was much more sensitive to the oxidative stress of menadione than of H2O2 and to the stress of high osmolarity than of cell wall perturbation during growth. The high sensitivity of Δras3 to menadione was concurrent with reductions in both gene transcripts and total activity of superoxide dismutases. Intriguingly, the high osmosensitivity was concurrent with not only reduced transcripts of a critical transcription factor (Msn2) and most signaling proteins in the high-osmolarity-glycerol pathway of Δras3 but nearly undetectable phosphorylation signal of Hog1 hallmarking the pathway. All the changes were restored by ras3 complementation. Taken together, Ras3 is involved in the Hog1 pathway required for osmoregulation and hence can positively regulate conidiation, germination, multi-stress tolerance and virulence linked to the biological control potential of the filamentous insect pathogen.
Collapse
Affiliation(s)
- Yi Guan
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ding-Yi Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
54
|
Fortwendel JR. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. FUNGAL BIOL REV 2015; 29:54-62. [PMID: 26257821 DOI: 10.1016/j.fbr.2015.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
55
|
Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans. G3-GENES GENOMES GENETICS 2015; 5:857-72. [PMID: 25762568 PMCID: PMC4426372 DOI: 10.1534/g3.115.016667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries.
Collapse
|
56
|
de Assis LJ, Ries LNA, Savoldi M, dos Reis TF, Brown NA, Goldman GH. Aspergillus nidulans protein kinase A plays an important role in cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:213. [PMID: 26690721 PMCID: PMC4683954 DOI: 10.1186/s13068-015-0401-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/30/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The production of bioethanol from lignocellulosic feedstocks is dependent on lignocellulosic biomass degradation by hydrolytic enzymes. The main component of lignocellulose is cellulose and different types of organisms are able to secrete cellulases. The filamentous fungus Aspergillus nidulans serves as a model organism to study cellulase production and the available tools allow exploring more in depth the mechanisms governing cellulase production and carbon catabolite repression. RESULTS In A. nidulans, microarray data identified the cAMP-dependent protein kinase A (PkaA) as being involved in the transcriptional modulation and the production of lignocellulolytic enzymes in the presence of cellulose. Deletion of pkaA resulted in increased hydrolytic enzyme secretion, but reduced growth in the presence of lignocellulosic components and various other carbon sources. Furthermore, genes involved in fungal development were increased in the ΔpkaA strain, probably leading to the increased hyphal branching as was observed in this strain. This would allow the secretion of higher amounts of proteins. In addition, the expression of SynA, encoding a V-SNARE synaptobrevin protein involved in secretion, was increased in the ΔpkaA mutant. Deletion of pkaA also resulted in the reduced nuclear localization of the carbon catabolite repressor CreA in the presence of glucose and in partial de-repression when grown on cellulose. PkaA is involved in the glucose signaling pathway as the absence of this protein resulted in reduced glucose uptake and lower hexokinase/glucokinase activity, directing the cell to starvation conditions. Genome-wide transcriptomics showed that the expression of genes encoding proteins involved in fatty acid metabolism, mitochondrial function and in the use of cell storages was increased. CONCLUSIONS This study shows that PkaA is involved in hydrolytic enzyme production in A. nidulans. It appears that this protein kinase blocks the glucose pathway, hence forcing the cell to change to starvation conditions, increasing hydrolytic enzyme secretion and inducing the usage of cellular storages. This work uncovered new regulatory avenues governing the tight interplay between the metabolic states of the cell, which are important for the production of hydrolytic enzymes targeting lignocellulosic biomass. Deletion of pkaA resulted in a strain with increased hydrolytic enzyme secretion and reduced biomass formation.
Collapse
Affiliation(s)
- Leandro José de Assis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Laure Nicolas Annick Ries
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Marcela Savoldi
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- />Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Gustavo Henrique Goldman
- />Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, CEP 14040-903, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
57
|
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
58
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that relay signals from the external environment inside the cell, allowing an organism to adapt to its surroundings. They are known to detect a vast array of ligands, including sugars, amino acids, pheromone peptides, nitrogen sources, oxylipins, and light. Despite their prevalence in fungal genomes, very little is known about the functions of filamentous fungal GPCRs. Here we present the first full-genome assessment of fungal GPCRs through characterization of null mutants of all 15 GPCRs encoded by the aflatoxin-producing fungus Aspergillus flavus. All strains were assessed for growth, development, ability to produce aflatoxin, and response to carbon sources, nitrogen sources, stress agents, and lipids. Most GPCR mutants were aberrant in one or more response processes, possibly indicative of cross talk in downstream signaling pathways. Interestingly, the biological defects of the mutants did not correspond with assignment to established GPCR classes; this is likely due to the paucity of data for characterized fungal GPCRs. Many of the GPCR transcripts were differentially regulated under various conditions as well. The data presented here provide an extensive overview of the full set of GPCRs encoded by A. flavus and provide a framework for analysis in other fungal species. Aspergillus flavus is an opportunistic pathogen of crops and animals, including humans, and it produces a carcinogenic toxin called aflatoxin. Because of this, A. flavus accounts for food shortages and economic losses in addition to sickness and death. Effective means of combating this pathogen are needed to mitigate its deleterious effects. G protein-coupled receptors (GPCRs) are often used as therapeutic targets due to their signal specificity, and it is estimated that half of all drugs target GPCRs. In fungi such as A. flavus, GPCRs are likely necessary for sensing the changes in the environment, including food sources, developmental signals, stress agents, and signals from other organisms. Therefore, elucidating their functions in A. flavus could identify ideal receptors against which to develop antagonists.
Collapse
|
59
|
Zhou X, Zhao X, Xue C, Dai Y, Xu JR. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:996-1004. [PMID: 24835254 DOI: 10.1094/mpmi-02-14-0052-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens.
Collapse
|
60
|
Troskie AM, de Beer A, Vosloo JA, Jacobs K, Rautenbach M. Inhibition of agronomically relevant fungal phytopathogens by tyrocidines, cyclic antimicrobial peptides isolated from Bacillus aneurinolyticus. Microbiology (Reading) 2014; 160:2089-2101. [DOI: 10.1099/mic.0.078840-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tyrocidines, a complex of analogous cyclic decapeptides produced by Bacillus aneurinolyticus, exhibited noteworthy activity against a range of phytopathogenic fungi, including Fusarium verticillioides, Fusarium solani and Botrytis cinerea. The activity of the tyrocidine peptide complex (Trc mixture) and purified tyrocidines exhibited minimum inhibition concentrations below 13 µg ml−1 (~10 µM) and was significantly more potent than that of the commercial imidazole fungicide, bifonazole. Although the tyrocidines’ activity was negatively influenced by the presence of Ca2+, it remained unaffected by the presence of Mg2+, Na+ and K+. Microscopic analysis revealed significant impact on the morphology of F. solani and Bot. cinerea including retarded germination and hyperbranching of hyphae. Studies with membrane-impermeable dyes, SYTOX green and propidium iodide suggested that the main mode of action of tyrocidines involves the disruption of fungal membrane integrity. Because of the tyrocidines’ broad spectrum and potent antifungal activity, possible multiple targets reducing the risk of overt resistance and general salt tolerance, they are promising candidates that warrant further investigation as bio-fungicides.
Collapse
Affiliation(s)
- Anscha M. Troskie
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Abré de Beer
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Johan A. Vosloo
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Karin Jacobs
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| | - Marina Rautenbach
- BIOPEP Peptide Group, Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7600, South Africa
| |
Collapse
|
61
|
Proteomic profiling of Botrytis cinerea conidial germination. Arch Microbiol 2014; 197:117-33. [DOI: 10.1007/s00203-014-1029-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
|
62
|
Brown NA, Ries LNA, Goldman GH. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 2014; 72:48-63. [PMID: 25011009 DOI: 10.1016/j.fgb.2014.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 11/30/2022]
Abstract
The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil; Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil.
| |
Collapse
|
63
|
Norton TS, Fortwendel JR. Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 2014; 178:325-30. [PMID: 24952717 DOI: 10.1007/s11046-014-9765-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic fungi employ numerous mechanisms to flourish in the stressful environment encountered within their mammalian hosts. Central to this arsenal for filamentous fungi is invasive growth within the host microenvironment, mediated by establishment and maintenance of polarized hyphal morphogenesis. In Aspergillus fumigatus, the RasA signal transduction pathway has emerged as a significant regulator of hyphal morphogenesis and virulence, among other processes. The factors contributing to the regulation of RasA itself are not as thoroughly understood, although proper temporal activation of RasA and spatial localization of RasA to the plasma membrane are known to play major roles. Interference with RasA palmitoylation or prenylation results in mislocalization of RasA and is associated with severe growth deficits. In addition, dysregulation of RasA activation results in severe morphologic aberrancies and growth deficits. This review highlights the relationship between RasA signaling, hyphal morphogenesis, and virulence in A. fumigatus and focuses on potential determinants of spatial and temporal RasA regulation.
Collapse
Affiliation(s)
- Tiffany S Norton
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North, MSB 2102, Mobile, AL, 36688, USA
| | | |
Collapse
|
64
|
Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity, and multistress responses. Fungal Biol 2014; 118:422-31. [PMID: 24742837 DOI: 10.1016/j.funbio.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/31/2022]
Abstract
Adenylate cyclase (AC) is a core element of cAMP signalling network. Here we show functional diversity and differentiation of Beauveria bassiana AC (BbAC) and Metarhizium robertsii AC (MrAC). Severe growth defects occurred in ΔBbAC and ΔMrAC grown on nutrition-rich SDAY and several minimal media but were largely alleviated by adding cAMP to SDAY. Conidial yield increased greatly in ΔBbAC but decreased in ΔMrAC. During colony growth, ΔBbAC was highly sensitive to oxidation, high osmolarity, cell wall perturbation, carbendazim fungicide, Mn(2+), Zn(2+), Fe(3+), and EDTA but more tolerant to Cu(2+) while ΔMrAC showed higher osmotolerance, decreased sensitivity to Fe(3+), and null response to carbendazim or cell wall stress despite similar responses to oxidation and other metal ions. Conidial UV-B resistance decreased by 32% in ΔBbAC and 22% in ΔMrAC despite little change in their theromotolerance. Median lethal time (LT50) estimates of ΔBbAC and ΔMrAC against susceptible insects were 10.9 and 1.4 d longer than those from wild-type strains respectively. All the phenotypic changes were restored to wild-type levels by each gene complementation. Taken together, BbAC and MrAC regulated differentially conidiation, pathogenicity, and multistress responses in B. bassiana and M. robertsii, thereby making different contributions to their biocontrol potential.
Collapse
|
65
|
Liu T, Xu X, Leng W, Xue Y, Dong J, Jin Q. Analysis of gene expression changes in Trichophyton rubrum after skin interaction. J Med Microbiol 2014; 63:642-648. [PMID: 24586032 PMCID: PMC4042497 DOI: 10.1099/jmm.0.059386-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Trichophyton rubrum, an anthropophilic and cosmopolitan fungus, is the most common agent of superficial mycoses. In this study, T. rubrum infection was modelled by adding human skin sections to a limited medium containing glucose and cDNA microarrays were used to monitor T. rubrum gene expression patterns on a global level. We observed that exposure to human skin resulted in upregulation of the expression levels of T. rubrum genes related to many cellular and biological processes, including transcription and translation, metabolism and secondary transport, the stress response, and signalling pathways. These results provide a reference set of T. rubrum genes whose expression patterns change upon infection and reveal previously unknown genes that most likely correspond to proteins that should be considered as virulence factor candidates and potential new drug targets for T. rubrum infection.
Collapse
Affiliation(s)
- Tao Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Xingye Xu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Wenchuan Leng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Ying Xue
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Jie Dong
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
66
|
Dai Z, Aryal UK, Shukla A, Qian WJ, Smith RD, Magnuson JK, Adney WS, Beckham GT, Brunecky R, Himmel ME, Decker SR, Ju X, Zhang X, Baker SE. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genet Biol 2013; 61:120-32. [DOI: 10.1016/j.fgb.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|
67
|
Involvement of Botrytis cinerea small GTPases BcRAS1 and BcRAC in differentiation, virulence, and the cell cycle. EUKARYOTIC CELL 2013; 12:1609-18. [PMID: 24096906 DOI: 10.1128/ec.00160-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small GTPases of the Ras superfamily are highly conserved proteins that are involved in various cellular processes, in particular morphogenesis, differentiation, and polar growth. Here we report on the analysis of RAS1 and RAC homologues from the gray mold fungus Botrytis cinerea. We show that these small GTPases are individually necessary for polar growth, reproduction, and pathogenicity, required for cell cycle progression through mitosis (BcRAC), and may lie upstream of the stress-related mitogen-activated protein kinase (MAPK) signaling pathway. bcras1 and bcrac deletion strains had reduced growth rates, and their hyphae were hyperbranched and deformed. In addition, both strains were vegetatively sterile and nonpathogenic. A strain expressing a constitutively active (CA) allele of the BcRAC protein had partially similar but milder phenotypes. Similar to the deletion strains, the CA-BcRAC strain did not produce any conidia and had swollen hyphae. In contrast to the two deletion strains, however, the growth rate of the CA-BcRAC strain was normal, and it caused delayed but well-developed disease symptoms. Microscopic examination revealed an increased number of nuclei and disturbance of actin localization in the CA-BcRAC strain. Further work with cell cycle- and RAC-specific inhibitory compounds associated the BcRAC protein with progression of the cell cycle through mitosis, possibly via an effect on microtubules. Together, these results show that the multinucleate phenotype of the CA-BcRAC strain could result from at least two defects: disruption of polar growth through disturbed actin localization and uncontrolled nuclear division due to constitutive activity of BcRAC.
Collapse
|
68
|
Noble LM, Andrianopoulos A. Reproductive competence: a recurrent logic module in eukaryotic development. Proc Biol Sci 2013; 280:20130819. [PMID: 23864594 PMCID: PMC3730585 DOI: 10.1098/rspb.2013.0819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/14/2013] [Indexed: 02/06/2023] Open
Abstract
Developmental competence is the ability to differentiate in response to an appropriate stimulus, as first elaborated by Waddington in relation to organs and tissues. Competence thresholds operate at all levels of biological systems from the molecular (e.g. the cell cycle) to the ontological (e.g. metamorphosis and reproduction). Reproductive competence, an organismal process, is well studied in mammals (sexual maturity) and plants (vegetative phase change), though far less than later stages of terminal differentiation. The phenomenon has also been documented in multiple species of multicellular fungi, mostly in early, disparate literature, providing a clear example of physiological differentiation in the absence of morphological change. This review brings together data on reproductive competence in Ascomycete fungi, particularly the model filamentous fungus Aspergillus nidulans, contrasting mechanisms within Unikonts and plants. We posit reproductive competence is an elementary logic module necessary for coordinated development of multicellular organisms or functional units. This includes unitary multicellular life as well as colonial species both unicellular and multicellular (e.g. social insects such as ants). We discuss adaptive hypotheses for developmental and reproductive competence systems and suggest experimental work to address the evolutionary origins, generality and genetic basis of competence in the fungal kingdom.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
69
|
Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger. Appl Environ Microbiol 2013; 79:6924-31. [PMID: 23995938 DOI: 10.1128/aem.02061-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.
Collapse
|
70
|
Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:91. [PMID: 23800192 PMCID: PMC3698209 DOI: 10.1186/1754-6834-6-91] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. RESULTS Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA::GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. CONCLUSIONS Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.
Collapse
Affiliation(s)
- Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Fagundes de Gouvea
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nádia Graciele Krohn
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, Brazil
| |
Collapse
|
71
|
Shen S, Hao Z, Gu S, Wang J, Cao Z, Li Z, Wang Q, Li P, Hao J, Dong J. The catalytic subunit of cAMP-dependent protein kinase A StPKA-c contributes to conidiation and early invasion in the phytopathogenic fungus Setosphaeria turcica. FEMS Microbiol Lett 2013; 343:135-44. [PMID: 23557024 DOI: 10.1111/1574-6968.12150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/01/2013] [Accepted: 03/20/2013] [Indexed: 11/30/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is an important mediator of signal transduction in eukaryotic cells. Thus, identifying its function is necessary to understand the cAMP signaling network. StPKA-c, the PKA catalytic subunit gene in Setosphaeria turcica, was investigated by RNA interference technology. Transformant strains M3, M5, and M9 with diverse StPKA-c silencing efficiency were confirmed by reverse transcription polymerase chain reaction and Northern blot. Compared with the wild-type strain 01-23, the transformant strains exhibited increased growth rate and significantly decreased conidium production. In addition, the ratios of spore germination and appressorium formation and penetration were slightly reduced. Relative to the wild-type strain, the transformants demonstrated different colony color, greatly reduced pathogenicity, and similar HT-toxin activity. Further studies showed that the content of intracellular melanin in the transformants significantly decreased, and the transcription of transcriptional factor StMR was down-regulated correspondingly. The transcription and enzyme activity of xylanase was also impaired. Thus, we proposed that StPKA-c was mainly involved in the mycelium growth, conidiation, and pathogenesis of S. turcica. Furthermore, it was positively correlated with the biosyntheses of melanin and xylanase but dispensable for the activity of HT-toxin.
Collapse
Affiliation(s)
- Shen Shen
- Mycotoxin and Molecular Plant Pathology Laboratory, Agricultural University of Hebei, Baoding, Hebei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Krijgsheld P, Bleichrodt R, van Veluw G, Wang F, Müller W, Dijksterhuis J, Wösten H. Development in Aspergillus. Stud Mycol 2013; 74:1-29. [PMID: 23450714 PMCID: PMC3563288 DOI: 10.3114/sim0006] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The genus Aspergillus represents a diverse group of fungi that are among the most abundant fungi in the world. Germination of a spore can lead to a vegetative mycelium that colonizes a substrate. The hyphae within the mycelium are highly heterogeneous with respect to gene expression, growth, and secretion. Aspergilli can reproduce both asexually and sexually. To this end, conidiophores and ascocarps are produced that form conidia and ascospores, respectively. This review describes the molecular mechanisms underlying growth and development of Aspergillus.
Collapse
Affiliation(s)
- P. Krijgsheld
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - R. Bleichrodt
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - G.J. van Veluw
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - F. Wang
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - W.H. Müller
- Biomolecular Imaging, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - J. Dijksterhuis
- Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H.A.B. Wösten
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
73
|
Studt L, Humpf HU, Tudzynski B. Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS One 2013; 8:e58185. [PMID: 23469152 PMCID: PMC3585259 DOI: 10.1371/journal.pone.0058185] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
The plant-pathogenic fungus Fusarium fujikuroi is a notorious rice pathogen causing hyper-elongation of infected plants due to the production of gibberellic acids (GAs). In addition to GAs, F. fujikuroi produces a wide range of other secondary metabolites, such as fusarins, fusaric acid or the red polyketides bikaverins and fusarubins. The recent availability of the fungal genome sequence for this species has revealed the potential of many more putative secondary metabolite gene clusters whose products remain to be identified. However, the complex regulation of secondary metabolism is far from being understood. Here we studied the impact of the heterotrimeric G protein and the cAMP-mediated signaling network, including the regulatory subunits of the cAMP-dependent protein kinase (PKA), to study their effect on colony morphology, sexual development and regulation of bikaverins, fusarubins and GAs. We demonstrated that fusarubin biosynthesis is negatively regulated by at least two Gα subunits, FfG1 and FfG3, which both function as stimulators of the adenylyl cyclase FfAC. Surprisingly, the primary downstream target of the adenylyl cyclase, the PKA, is not involved in the regulation of fusarubins, suggesting that additional, yet unidentified, cAMP-binding protein(s) exist. In contrast, bikaverin biosynthesis is significantly reduced in ffg1 and ffg3 deletion mutants and positively regulated by FfAC and FfPKA1, while GA biosynthesis depends on the active FfAC and FfPKA2 in an FfG1- and FfG3-independent manner. In addition, we provide evidence that G Protein-mediated/cAMP signaling is important for growth in F. fujikuroi because deletion of ffg3, ffac and ffpka1 resulted in impaired growth on minimal and rich media. Finally, sexual crosses of ffg1 mutants showed the importance of a functional FfG1 protein for development of perithecia in the mating strain that carries the MAT1-1 idiomorph.
Collapse
Affiliation(s)
- Lena Studt
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität, Münster, Germany
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
| | - Hans-Ulrich Humpf
- Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, Münster, Germany
- * E-mail:
| |
Collapse
|
74
|
Transcriptome profiling of Botrytis cinerea conidial germination reveals upregulation of infection-related genes during the prepenetration stage. EUKARYOTIC CELL 2013; 12:614-26. [PMID: 23417562 DOI: 10.1128/ec.00295-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Botrytis cinerea causes gray mold on a great number of host plants. Infection is initiated by airborne conidia that invade the host tissue, often by penetration of intact epidermal cells. To mimic the surface properties of natural plant surfaces, conidia were incubated on apple wax-coated surfaces, resulting in rapid germination and appressorium formation. Global changes in gene expression were analyzed by microarray hybridization between conidia incubated for 0 h (dormant), 1 h (pregermination), 2.5 h (postgermination), 4 h (appressoria), and 15 h (early mycelium). Considerable changes were observed, in particular between 0 h and 1 h. Genes induced during germination were enriched in those genes encoding secreted proteins, including lytic enzymes. Comparison of wild-type and a nonpathogenic MAP kinase mutant (bmp1) revealed marked differences in germination-related gene expression, in particular related to secretory proteins. Using promoter-GFP reporter strains, we detected a strictly germination-specific expression pattern of a putative chitin deacetylase gene (cda1). In contrast, a cutinase gene (cutB) was found to be expressed only in the presence of plant lipids, in a developmentally less stringent pattern. We also identified a coregulated gene cluster possibly involved in secondary metabolite synthesis which was found to be controlled by a transcription factor also encoded in this cluster. Our data demonstrate that early conidial development in B. cinerea is accompanied by rapid shifts in gene expression that prepare the fungus for germ tube outgrowth and host cell invasion.
Collapse
|
75
|
Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. EUKARYOTIC CELL 2012. [PMID: 23204189 DOI: 10.1128/ec.00234-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.
Collapse
|
76
|
Zhang J, Zhang Y, Zhong Y, Qu Y, Wang T. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One 2012; 7:e48786. [PMID: 23152805 PMCID: PMC3494722 DOI: 10.1371/journal.pone.0048786] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the powerful competitive ability of plant cell wall degrading fungi in nature.
Collapse
Affiliation(s)
| | | | | | - Yinbo Qu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail: (YQ); (TW)
| | - Tianhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail: (YQ); (TW)
| |
Collapse
|
77
|
The putative guanine nucleotide exchange factor RicA mediates upstream signaling for growth and development in Aspergillus. EUKARYOTIC CELL 2012; 11:1399-412. [PMID: 23002107 DOI: 10.1128/ec.00255-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heterotrimeric G proteins (G proteins) govern growth, development, and secondary metabolism in various fungi. Here, we characterized ricA, which encodes a putative GDP/GTP exchange factor for G proteins in the model fungus Aspergillus nidulans and the opportunistic human pathogen Aspergillus fumigatus. In both species, ricA mRNA accumulates during vegetative growth and early developmental phases, but it is not present in spores. The deletion of ricA results in severely impaired colony growth and the total (for A. nidulans) or near (for A. fumigatus) absence of asexual sporulation (conidiation). The overexpression (OE) of the A. fumigatus ricA gene (AfricA) restores growth and conidiation in the ΔAnricA mutant to some extent, indicating partial conservation of RicA function in Aspergillus. A series of double mutant analyses revealed that the removal of RgsA (an RGS protein of the GanB Gα subunit), but not sfgA, flbA, rgsB, or rgsC, restored vegetative growth and conidiation in ΔAnricA. Furthermore, we found that RicA can physically interact with GanB in yeast and in vitro. Moreover, the presence of two copies or OE of pkaA suppresses the profound defects caused by ΔAnricA, indicating that RicA-mediated growth and developmental signaling is primarily through GanB and PkaA in A. nidulans. Despite the lack of conidiation, brlA and vosA mRNAs accumulated to normal levels in the ΔricA mutant. In addition, mutants overexpressing fluG or brlA (OEfluG or OEbrlA) failed to restore development in the ΔAnricA mutant. These findings suggest that the commencement of asexual development requires unknown RicA-mediated signaling input in A. nidulans.
Collapse
|
78
|
Affeldt KJ, Brodhagen M, Keller NP. Aspergillus oxylipin signaling and quorum sensing pathways depend on g protein-coupled receptors. Toxins (Basel) 2012; 4:695-717. [PMID: 23105976 PMCID: PMC3475224 DOI: 10.3390/toxins4090695] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/22/2023] Open
Abstract
Oxylipins regulate Aspergillus development and mycotoxin production and are also involved in Aspergillus quorum sensing mechanisms. Despite extensive knowledge of how these oxylipins are synthesized and what processes they regulate, nothing is known about how these signals are detected and transmitted by the fungus. G protein-coupled receptors (GPCR) have been speculated to be involved as they are known oxylipin receptors in mammals, and many putative GPCRs have been identified in the Aspergilli. Here, we present evidence that oxylipins stimulate a burst in cAMP in A. nidulans, and that loss of an A. nidulans GPCR, gprD, prevents this cAMP accumulation. A. flavus undergoes an oxylipin-mediated developmental shift when grown at different densities, and this regulates spore, sclerotial and aflatoxin production. A. flavus encodes two putative GprD homologs, GprC and GprD, and we demonstrate here that they are required to transition to a high-density development state, as well as to respond to spent medium of a high-density culture. The finding of GPCRs that regulate production of survival structures (sclerotia), inoculum (spores) and aflatoxin holds promise for future development of anti-fungal therapeutics.
Collapse
Affiliation(s)
- Katharyn J. Affeldt
- Department of Bacteriology and Department of Medical Microbiology and Immunology, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Marion Brodhagen
- Department of Biology, Western Washington University, 516 High Street, Bellingham, WA 98225, USA;
| | - Nancy P. Keller
- Department of Bacteriology and Department of Medical Microbiology and Immunology, 1550 Linden Drive, Madison, WI 53706, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-608-262-9795; Fax: +1-608-262-8418
| |
Collapse
|
79
|
Xie XQ, Guan Y, Ying SH, Feng MG. Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi-stress tolerance and virulence of Beauveria bassiana. Environ Microbiol 2012; 15:447-62. [PMID: 22958161 DOI: 10.1111/j.1462-2920.2012.02871.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 08/08/2012] [Accepted: 08/08/2012] [Indexed: 01/29/2023]
Abstract
Ras1 and Ras2 are two distinct Ras GTPases in Beauveria bassiana, an entomopathogenic fungus whose biocontrol potential against insect pests depends largely on virulence and multi-stress tolerance. The functions of both proteins were characterized for the first time by constructing dominant-active (GTP-bound) Ras1(G19V) and dominant-negative (GDP-bound) Ras1(D126A) and integrating them and normal Ras1 into wild type and ΔRas2 for a series of phenotypic and transcriptional analyses. The resultant mutants showed gradient changes of multiple phenotypes but little difference in conidial thermotolerance. Expression of Ras1(D126A) caused vigorous hyphal growth, severely defective conidiation, and increased tolerances to oxidation, cell wall disturbance, fungicide and UV-A/UV-B irradiations, but affected slightly germination, osmosensitivity and virulence. These phenotypes were antagonistically altered by mRas1(G19V) expressed in either wild type or ΔRas2, which was severely defective in conidial germination and hyphal growth and displayed intermediate changes in other mentioned phenotypes between paired mutants expressing Ras1(G19V) or Ras1(D126A) in wild type and ΔRas2. Their growth, UV tolerance or virulence was significantly correlated with cellular response to oxidation or cell wall disturbance. Transcriptional changes of 35 downstream effector genes involved in conidiation and multi-stress responses also related to most of the phenotypic changes among the mutants. Our findings highlight that Ras1 and Ras2 regulate differentially or antagonistically the germination, growth, conidiation, multi-stress tolerance and virulence of B. bassiana, thereby exerting profound effects on the fungal biocontrol potential.
Collapse
Affiliation(s)
- Xue-Qin Xie
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | | | | | | |
Collapse
|
80
|
Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS. Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 2012; 28:61-100. [PMID: 22616482 DOI: 10.5661/bger-28-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unlike in animal cells and yeasts, the Ras and Rho small G proteins and their regulators have not received extensive research attention in the case of the filamentous fungi. In an effort to begin to rectify this deficiency, the genome sequence of the basidiomycete mushroom Schizophyllum commune was searched for all known components of the Ras and Rho signalling pathways. The results of this study should provide an impetus for further detailed investigations into their role in polarized hyphal growth, sexual reproduction and fruiting body development. These processes have long been the targets for genetic and cell biological research in this fungus.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biology, University of Turku, Biocity A, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
81
|
Vandamme J, Castermans D, Thevelein JM. Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell Signal 2012; 24:1610-8. [PMID: 22522182 DOI: 10.1016/j.cellsig.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 01/13/2023]
Abstract
The cAMP-protein kinase A (PKA) pathway is a major signalling pathway in the yeast Saccharomyces cerevisiae, but also in many other eukaryotic cell types, including mammalian cells. Since cAMP plays a crucial role as second messenger in the regulation of this pathway, its levels are strictly controlled, both in the basal condition and after induction by agonists. A major factor in the down-regulation of the cAMP level after stimulation is PKA itself. Activation of PKA triggers feedback down-regulation of the increased cAMP level, stimulating its return to the basal concentration. This is accomplished at different levels. The best documented mechanisms are: inhibition of cAMP synthesis by down-regulation of adenylate cyclase and/or its regulatory proteins, stimulation of cAMP breakdown by phosphodiesterases and spatial regulation of cAMP levels in the cell by A-Kinase Anchoring Proteins (AKAPs). In this review we describe these processes in detail for S. cerevisiae, for cells of mammals and selected other organisms, and we hint at other possible targets for feedback regulation of intracellular cAMP levels.
Collapse
|
82
|
Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol 2012; 78:2168-78. [PMID: 22286997 DOI: 10.1128/aem.06959-11] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.
Collapse
|
83
|
Abstract
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, University of South Alabama, Mobile AL, USA
| |
Collapse
|
84
|
Qin L, Gong X, Xie J, Jiang D, Cheng J, Li G, Huang J, Fu Y. Phosphoribosylamidotransferase, the first enzyme for purine de novo synthesis, is required for conidiation in the sclerotial mycoparasite Coniothyrium minitans. Fungal Genet Biol 2011; 48:956-65. [PMID: 21763446 DOI: 10.1016/j.fgb.2011.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/15/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022]
Abstract
Coniothyrium minitans is an important sclerotial parasite of the fungal phytopathogen, Sclerotinia sclerotiorum. Previously, we constructed a T-DNA insertional library, and screened for many conidiation-deficient mutants from this library. Here, we report a T-DNA insertional mutant ZS-1T21882 that completely lost conidiation. In mutant ZS-1T21882, the T-DNA was integrated into a gene (CmPrat-1) which encodes phosphoribosylamidotransferase (PRAT, EC 2.4.2.14), an enzyme catalyzing the first committed step in de novo purine nucleotide synthesis. Gene replacement and complementation experiments confirmed that phosphoribosylamidotransferase is essential for conidiation of C. minitans. Mutant ZS-1T21882 did not grow on modified Czapek-Dox broth (MCD), but it grew well on MCD amended with IMP or AMP. The conidial production of this mutant was dependent on the dosage of IMP amended. At low concentrations, such as 0.1 mM and 0.25 mM, the mutant produced very few pycnidia, while up to 0.75 mM or higher, the conidiation of this mutant was restored completely. cAMP could not restore the conidiation of mutant ZS-1T21882 when amended into MCD, but could when amended into PDA. Neither GMP nor cGMP could restore the conidiation in MCD or in PDA. Our findings suggest that phosphoribosylamidotransferase is essential for conidiation of C. minitans via adenosine related molecules. Furthermore, when dual cultured with its host, this mutant produced conidia in the host mycelium and on the sclerotia of S. sclerotiorum, but not in dead mycelium or on dead sclerotia, suggesting that C. minitans is likely to able to obtain adenosine or related components from its host during parasitization.
Collapse
Affiliation(s)
- Li Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Kim HS, Park SY, Lee S, Adams EL, Czymmek K, Kang S. Loss of cAMP-dependent protein kinase A affects multiple traits important for root pathogenesis by Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:719-732. [PMID: 21261464 DOI: 10.1094/mpmi-11-10-0267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The soilborne fungal pathogen Fusarium oxysporum causes vascular wilt and root rot diseases in many plant species. We investigated the role of cyclic AMP-dependent protein kinase A of F. oxysporum (FoCPKA) in growth, morphology, and root attachment, penetration, and pathogenesis in Arabidopsis thaliana. Affinity of spore attachment to root surfaces of A. thaliana, observed microscopically and measured by atomic force microscopy, was reduced by a loss-of-function mutation in the gene encoding the catalytic subunit of FoCPKA. The resulting mutants also failed to penetrate into the vascular system of A. thaliana roots and lost virulence. Even when the mutants managed to enter the vascular system via physically wounded roots, the degree of vascular colonization was significantly lower than that of the corresponding wild-type strain O-685 and no noticeable disease symptoms were observed. The mutants also had reduced vegetative growth and spore production, and their hyphal growth patterns were distinct from those of O-685. Coinoculation of O-685 with an focpkA mutant or a strain nonpathogenic to A. thaliana significantly reduced disease severity and the degree of root colonization by O-685. Several experimental tools useful for studying mechanisms of fungal root pathogenesis are also introduced.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | |
Collapse
|
86
|
Tisch D, Kubicek CP, Schmoll M. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 2011; 48:631-40. [PMID: 21220037 PMCID: PMC3082050 DOI: 10.1016/j.fgb.2010.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 11/26/2022]
Abstract
Sensing of environmental signals is often mediated by G-protein coupled receptors and their cognate heterotrimeric G-proteins. In Trichoderma reesei (Hypocrea jecorina) the signals transmitted via the G-protein alpha subunits GNA1 and GNA3 cause considerable modulation of cellulase transcript levels and the extent of this adjustment is dependent on the light status. We therefore intended to elucidate the underlying mechanism connecting light response and heterotrimeric G-protein signaling. Analysis of double mutant strains showed that constitutive activation of GNA1 or GNA3 in the absence of the PAS/LOV domain protein ENVOY (ENV1) leads to the phenotype of constitutive G-alpha activation in darkness. In light, however the deletion-phenotype of Δenv1 was observed with respect to growth, conidiation and cellulase gene transcription. Additionally deletion of env1 causes decreased intracellular cAMP accumulation, even upon constitutive activation of GNA1 or GNA3. While supplementation of cAMP caused an even more severe growth phenotype of all strains lacking env1 in light, addition of the phosphodiesterase inhibitor caffeine rescued the growth phenotype of these strains. ENV1 is consequently suggested to connect the light response pathway with nutrient signaling by the heterotrimeric G-protein cascade by adjusting transcript levels of gna1 and gna3 and action on cAMP levels - presumably through inhibition of a phosphodiesterase.
Collapse
Affiliation(s)
| | | | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a/1665, A-1060 Wien, Austria
| |
Collapse
|
87
|
Lai Y, Wang L, Qing L, Chen F. Effects of cyclic AMP on development and secondary metabolites of Monascus ruber M-7. Lett Appl Microbiol 2011; 52:420-6. [PMID: 21299575 DOI: 10.1111/j.1472-765x.2011.03022.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To study effects of cyclic adenosine monophosphate (cAMP) on development and secondary metabolites of Monascus ruber M-7. METHODS AND RESULTS Plate culture, liquid-state fermentation (LSF) and solid-state fermentation (SSF) were used to evaluate effects of cAMP on colonial growth, spore formation and polyketide production of Strain M-7. The results revealed that the variation trends of colonial sizes, numbers of sexual spores and red pigment contents of M-7 were in a dose-dependent manner. And generally they increased and decreased with cAMP concentrations in the ranges of low cAMP concentrations and high cAMP concentrations, respectively. But the variation trends of numbers of asexual spores and citrinin production in both LSF and SSF were opposite to those of colonial sizes, sexual sporulation and red pigment. CONCLUSIONS The regulation of cAMP on development and secondary metabolites in Strain M-7 was in a dose-dependent pattern. And red pigment might convert to citrinin under changing cAMP concentrations. SIGNIFICANCE AND IMPACT OF THE STUDY The effects of cAMP on Strain M-7 in SSF give a new clue to enhance beneficial polyketides and reduce citrinin produced by M. ruber.
Collapse
Affiliation(s)
- Y Lai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | | | | | | |
Collapse
|
88
|
García-Rico RO, Martín JF, Fierro F. Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genet Biol 2010; 48:641-9. [PMID: 21146624 DOI: 10.1016/j.fgb.2010.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/15/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022]
Abstract
Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls vegetative growth, conidiation and secondary metabolite production. In this work we studied the role of Pga1 in spore germination and resistance to different stress conditions. Strains G203R-T (expressing the dominant inactivating pga1(G203R) allele) and Δpga1 (deleted pga1) showed a delayed and asynchronic germination pattern, and a decrease in the percentage of germination, which occurred in only 70-80% of the total conidia. In contrast, in strains expressing the dominant activating pga1(G42R) allele, germination occurred at earlier times and in 100% of conidia. In addition, strains with the pga1(G42R) allele were able to bypass the carbon source (glucose or sucrose) requirement for germination in about 64% of conidia. Thus Pga1 plays an important, but not essential, role in germination, mediating carbon source sensing. Regulation of germination by Pga1 is probably mediated by cAMP, as intracellular levels of this secondary messenger undergo a peak before the onset of germination only in strains with an active Pga1. Pga1 activity is also a determinant factor in the resistance to different stress conditions. Absence or inactivation of Pga1 allow growth on SDS-containing minimal medium, increase resistance of conidia to thermal and oxidative stress, and increase resistance of vegetative mycelium to thermal and osmotic stress. In contrast, constitutive activation of Pga1 causes a decrease in the resistance of conidia to thermal stress and of vegetative mycelium to thermal and osmotic stress. Together with our previously reported results, we show in this work that Pga1 plays a central role in the regulation of the whole growth-developmental program of this biotechnologically important fungus.
Collapse
Affiliation(s)
- Ramón Ovidio García-Rico
- Institute of Biotechnology of León (INBIOTEC), Parque Científico de León, Av. Real 1, 24006 León, Spain.
| | | | | |
Collapse
|
89
|
Teutschbein J, Albrecht D, Pötsch M, Guthke R, Aimanianda V, Clavaud C, Latgé JP, Brakhage AA, Kniemeyer O. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus. J Proteome Res 2010; 9:3427-42. [PMID: 20507060 DOI: 10.1021/pr9010684] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aspergillus fumigatus is a ubiquitously distributed filamentous fungus that has emerged as one of the most serious life-threatening pathogens in immunocompromised patients. The mechanisms for its pathogenicity are poorly understood. Here, we analyzed the proteome of dormant A. fumigatus conidia as the fungal entity having the initial contact with the host. Applying two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), we established a 2-D reference map of conidial proteins. By MALDI-TOF mass spectrometry, we identified a total number of 449 different proteins. We show that 57 proteins of our map are over-represented in resting conidia compared to mycelium. Enzymes involved in reactive oxygen intermediates (ROI) detoxification, pigment biosynthesis, and conidial rodlet layer formation were highly abundant in A. fumigatus spores and most probably account for their enormous stress resistance. Interestingly, pyruvate decarboxylase and alcohol dehydrogenase were detectable in dormant conidia, suggesting that alcoholic fermentation plays a role during dormancy or early germination. Moreover, we show that enzymes for rapid reactivation of protein biosynthesis and metabolic processes are preserved in resting conidia, which therefore feature the potential to immediately respond to an environmental stimulus by germination. The generated data lay the foundations for further proteomic analyses and a better understanding of fungal pathogenesis.
Collapse
Affiliation(s)
- Janka Teutschbein
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Choi YE, Xu JR. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:522-33. [PMID: 20192838 DOI: 10.1094/mpmi-23-4-0522] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens of maize. Mycotoxin, fumonisins produced by this pathogen pose a threat to human and animal health. Because cAMP signaling has been implicated in regulating diverse developmental and infection processes in fungal pathogens, in this study, we aimed to elucidate the function of the cAMP-protein kinase A (PKA) pathway in toxin production and plant infection in F. verticillioides. Targeted deletion mutants were generated for the CPK1 and FAC1 genes that encode a catalytic subunit of PKA and the adenylate cyclase, respectively. Defects in radial growth and macroconidiation were observed in both the cpk1 and fac1 deletion mutants. The fac1 mutant also was significantly reduced in virulence and microconidiation but increased in tolerance to heat and oxidative stresses. These phenotypes were not observed in the cpk1 mutant, indicating that additional catalytic subunit of PKA must exist and function downstream from FAC1. The fac1 mutant formed microconidia mainly in false heads. The expression levels of the hydrophobin genes HYD1 and HYD2, which are known to be associated with change in formation of microconidia, were significantly reduced in the fac1 mutant. Expression of F. verticillioides GSY2 and HSP26 genes, two other putative downstream targets of FAC1, was increased in the fac1 mutant and may be associated with its enhanced stress tolerance. Although fumonisin production was normal, biosynthesis of bikaverin was increased in the fac1 mutant, suggesting that FAC1 and cAMP signaling may have pathway-or metabolite-specific regulatory roles in secondary metabolism. Overall, the pleiotropic defects of the fac1 deletion mutant indicate that the cAMP-PKA pathway is involved in growth, conidiation, bikaverin production, and plant infection in F. verticillioides.
Collapse
Affiliation(s)
- Yoon-E Choi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
91
|
Zhao R, Bin W, Diao Y, Yang J, Liu T, Peng J, Jin Q. Global transcriptional profiles of Trichophyton rubrum in response to Flucytosine. ACTA ACUST UNITED AC 2009; 52:1173-85. [DOI: 10.1007/s11427-009-0153-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/22/2009] [Indexed: 11/28/2022]
|
92
|
Binder U, Oberparleiter C, Meyer V, Marx F. The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol 2009; 75:294-307. [PMID: 19889092 PMCID: PMC2814085 DOI: 10.1111/j.1365-2958.2009.06936.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Penicillium chrysogenum antifungal protein PAF inhibits polar growth and induces apoptosis in Aspergillus nidulans. We report here that two signalling cascades are implicated in its antifungal activity. PAF activates the cAMP/protein kinase A (Pka) signalling cascade. A pkaA deletion mutant exhibited reduced sensitivity towards PAF. This was substantiated by the use of pharmacological modulators: PAF aggravated the effect of the activator 8-Br-cAMP and partially relieved the repressive activity of caffeine. Furthermore, the Pkc/mitogen-activated protein kinase (Mpk) signalling cascade mediated basal resistance to PAF, which was independent of the small GTPase RhoA. Non-functional mutations of both genes resulted in hypersensitivity towards PAF. PAF did not increase MpkA phosphorylation or induce enzymes involved in the remodelling of the cell wall, which normally occurs in response to activators of the cell wall integrity pathway. Notably, PAF exposure resulted in actin gene repression and a deregulation of the chitin deposition at hyphal tips of A. nidulans, which offers an explanation for the morphological effects evoked by PAF and which could be attributed to the interconnection of the two signalling pathways. Thus, PAF represents an excellent tool to study signalling pathways in this model organism and to define potential fungal targets to develop new antifungals.
Collapse
Affiliation(s)
- Ulrike Binder
- Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
93
|
Cotoras M, García C, Mendoza L. Botrytis cinerea isolates collected from grapes present different requirements for conidia germination. Mycologia 2009; 101:287-95. [PMID: 19537202 DOI: 10.3852/08-012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Botrytis cinerea presents high variability in several biological traits, which can be explained by the high degree of genotypic diversity among isolates. Because this genetic variability might be related to phenotypic differences the requirements for conidia germination of three natural isolates (G1, G5 and G11) obtained from grapes and belonging to the same genetic group were analyzed. The results showed that contact with a solid surface was a common requisite for conidia germination of the isolates but they differed in their nutritional requirements to germinate. Isolate G11 was able to germinate in the absence of a carbon or nitrogen source. G1 and G5 required the presence of a carbon source such as glucose, fructose or sucrose. In G11 and G5 isolates a much higher rate of germination was obtained in the presence of sucrose. It was shown with a pharmacological approach that the cAMP stimulated the germination only in those isolates requiring a carbon source. Conidia germination of G1 and G5 was inhibited by EGTA, a calcium chelator. Isolate G11 germinated in the presence of this compound. On the other hand the germination of three B. cinerea isolates required protein synthesis and did not require RNA synthesis. To explain the ability of isolate G11 to germinate in water the content of total and reducing sugars, mannitol/L-arabitol, trehalose, and proteins in the nongerminated conidia of the three isolates was compared. The isolates presented similar amounts of total and reducing sugars. In the three isolates the amount of mannitol/L-arabitol was higher than that of trehalose. In isolate G11 total protein content was twice higher than in the other isolates.
Collapse
Affiliation(s)
- Milena Cotoras
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40-Correo 33, Santiago-Chile.
| | | | | |
Collapse
|
94
|
|
95
|
Deletion of the protein kinase A regulatory subunit leads to deregulation of mitochondrial activation and nuclear duplication in Aspergillus fumigatus. EUKARYOTIC CELL 2009; 8:271-7. [PMID: 19124579 DOI: 10.1128/ec.00391-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Proper regulation of the cyclic AMP-dependent protein kinase (PKA) pathway is required for normal growth and development in many fungi. We have reported that deletion of the PKA regulatory subunit gene, pkaR, in Aspergillus fumigatus leads to defects in germination and a hypersensitivity of conidia to oxidative stress. In this study, we further analyzed the defects of DeltapkaR conidia and found that a large proportion were abnormally larger than wild type. Because swelling and increased susceptibility to oxidative stress are characteristic of germinating conidia, we analyzed the metabolic activity of the conidia by mitochondrial staining. Whereas it required 4 h in rich medium for wild-type mitochondria to become active, DeltapkaR conidia harbored active mitochondria in the absence of a germinant. Furthermore, conidia of the mutant showed a dramatic loss in viability upon short-term storage in water, indicating starvation-induced death. Taken together, our data suggest that PKA activity regulates metabolic activation of resting conidia. Additionally, the DeltapkaR mutant displayed an abnormal abundance of hyphal nuclei and had increased transcript levels of several cell cycle regulatory genes. These data indicate an important role for PKA in the nuclear duplication cycle of A. fumigatus.
Collapse
|
96
|
Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado IG, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1443-1459. [PMID: 18842094 DOI: 10.1094/mpmi-21-11-1443] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Botrytis cinerea, some components of the cAMP-dependent pathway, such as alpha subunits of heterotrimeric G proteins and the adenylate cyclase BAC, have been characterized and their impact on growth, conidiation, germination, and virulence has been demonstrated. Here, we describe the functions of more components of the cAMP cascade: the catalytic subunits BcPKA1 and BcPKA2 and the regulatory subunit BcPKAR of the cAMP-dependent protein kinase (PKA). Although Deltabcpka2 mutants showed no obvious phenotypes, growth and virulence were severely affected by deletion of both bcpka1 and bcpkaR. Similar to Deltabac, lesion development of Deltabcpka1 and DeltabcpkaR was slower than in controls and soft rot of leaves never occurred. In contrast to Deltabac, Deltabcpka1 and DeltabcpkaR mutants sporulated in planta, and growth rate, conidiation, and conidial germination were not impaired, indicating PKA-independent functions of cAMP. Unexpectedly, Deltabcpka1 and DeltabcpkaR showed identical phenotypes, suggesting the total loss of PKA activity in both mutants. The deletion of bcras2 encoding the fungal-specific Ras GTPase resulted in significantly delayed germination and decreased growth rates. Both effects could be partially restored by exogenous cAMP, suggesting that BcRAS2 activates the adenylate cyclase in addition to the Galpha subunits BCG1 and BCG3, thus influencing cAMP-dependent signal transduction.
Collapse
Affiliation(s)
- Julia Schumacher
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Schmoll M. The information highways of a biotechnological workhorse--signal transduction in Hypocrea jecorina. BMC Genomics 2008; 9:430. [PMID: 18803869 PMCID: PMC2566311 DOI: 10.1186/1471-2164-9-430] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/20/2008] [Indexed: 11/24/2022] Open
Abstract
Background The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most prolific producers of biomass-degrading enzymes and frequently termed an industrial workhorse. To compete for nutrients in its habitat despite its shortcoming in certain degradative enzymes, efficient perception and interpretation of environmental signals is indispensable. A better understanding of these signals as well as their transmission machinery can provide sources for improvement of biotechnological processes. Results The genome of H. jecorina was analysed for the presence and composition of common signal transduction pathways including heterotrimeric G-protein cascades, cAMP signaling, mitogen activated protein kinases, two component phosphorelay systems, proteins involved in circadian rhythmicity and light response, calcium signaling and the superfamily of Ras small GTPases. The results of this survey are discussed in the context of current knowledge in order to assess putative functions as well as potential impact of alterations of the respective pathways. Conclusion Important findings include an additional, bacterial type phospholipase C protein and an additional 6-4 photolyase. Moreover the presence of 4 RGS-(Regulator of G-protein Signaling) proteins and 3 GprK-type G-protein coupled receptors comprising an RGS-domain suggest a more complex posttranslational regulation of G-protein signaling than in other ascomycetes. Also the finding, that H. jecorina, unlike yeast possesses class I phosducins which are involved in phototransduction in mammals warrants further investigation. An alteration in the regulation of circadian rhythmicity may be deduced from the extension of both the class I and II of casein kinases, homologues of which are implicated in phosphorylation of FRQ in Neurospora crassa. On the other hand, a shortage in the number of the pathogenicity related PTH11-type G-protein coupled receptors (GPCRs) as well as a lack of microbial opsins was detected. Considering its efficient enzyme system for breakdown of cellulosic materials, it came as a surprise that H. jecorina does not possess a carbon sensing GPCR.
Collapse
Affiliation(s)
- Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Wien, Austria.
| |
Collapse
|
98
|
Lorek J, Pöggeler S, Weide MR, Breves R, Bockmühl DP. Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol 2008; 48:99-103. [PMID: 18383232 DOI: 10.1002/jobm.200700292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Farnesol was the first quorum-sensing regulator to be found in eukaryotic cells. In Candida albicans, a dimorphic fungal human pathogen, farnesol blocks the yeast-to-filamentous growth transition. Here we show that in Aspergillus niger farnesol acts as an inhibitor of conidiation: Colonies grown on media containing farnesol were unable to develop conidia. Although farnesol treated A. niger cultures exhibited a colony morphology resembling the "fluffy" phenotype of A. nidulans, which is caused by a hyperactive G-protein/cAMP pathway, the intracellular level of cAMP in A. niger mycelia grown in presence of farnesol is greatly diminished. Furthermore, whereas inhibiting adenylyl cyclase led to a farnesol-like effect, the addition of external cAMP inhibited conidiation without causing a "fluffy" phenotype. This suggests that the mechanisms regulating conidiation in A. niger and A. nidulans are different.
Collapse
Affiliation(s)
- Justine Lorek
- Henkel KGaA, Research/Technology, 40191 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
99
|
Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. EUKARYOTIC CELL 2008; 7:1530-9. [PMID: 18606827 DOI: 10.1128/ec.00080-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ras family of proteins is a large group of monomeric GTPases. Members of the fungal Ras family act as molecular switches that transduce signals from the outside of the cell to signaling cascades inside the cell. A. fumigatus RasA is 94% identical to the essential RasA gene of Aspergillus nidulans and is the Ras family member sharing the highest identity to Ras homologs studied in many other fungi. In this study, we report that rasA is not essential in A. fumigatus, but its absence is associated with slowed germination and a severe defect in radial growth. The DeltarasA hyphae were more than two times the diameter of wild-type hyphae, and they displayed repeated changes in the axis of polarity during hyphal growth. The deformed hyphae accumulated numerous nuclei within each hyphal compartment. The DeltarasA mutant conidiated poorly, but this phenotype could be ameliorated by growth on osmotically stabilized media. The DeltarasA mutant also showed increased susceptibility to cell wall stressors, stained more intensely with calcofluor white, and was refractory to lysing enzymes used to make protoplasts, suggesting an alteration of the cell wall. All phenotypes associated with deletion of rasA could be corrected by reinsertion of the wild-type gene. These data demonstrate a crucial role for RasA in both hyphal growth and asexual development in A. fumigatus and provide evidence that RasA function is linked to cell wall integrity.
Collapse
|
100
|
Leng W, Liu T, Li R, Yang J, Wei C, Zhang W, Jin Q. Proteomic profile of dormant Trichophyton rubrum conidia. BMC Genomics 2008; 9:303. [PMID: 18578874 PMCID: PMC2443143 DOI: 10.1186/1471-2164-9-303] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022] Open
Abstract
Background Trichophyton rubrum is the most common dermatophyte causing fungal skin infections in humans. Asexual sporulation is an important means of propagation for T. rubrum, and conidia produced by this way are thought to be the primary cause of human infections. Despite their importance in pathogenesis, the conidia of T. rubrum remain understudied. We intend to intensively investigate the proteome of dormant T. rubrum conidia to characterize its molecular and cellular features and to enhance the development of novel therapeutic strategies. Results The proteome of T. rubrum conidia was analyzed by combining shotgun proteomics with sample prefractionation and multiple enzyme digestion. In total, 1026 proteins were identified. All identified proteins were compared to those in the NCBI non-redundant protein database, the eukaryotic orthologous groups database, and the gene ontology database to obtain functional annotation information. Functional classification revealed that the identified proteins covered nearly all major biological processes. Some proteins were spore specific and related to the survival and dispersal of T. rubrum conidia, and many proteins were important to conidial germination and response to environmental conditions. Conclusion Our results suggest that the proteome of T. rubrum conidia is considerably complex, and that the maintenance of conidial dormancy is an intricate and elaborate process. This data set provides the first global framework for the dormant T. rubrum conidia proteome and is a stepping stone on the way to further study of the molecular mechanisms of T. rubrum conidial germination and the maintenance of conidial dormancy.
Collapse
Affiliation(s)
- Wenchuan Leng
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| | | | | | | | | | | | | |
Collapse
|