51
|
dos Santos Coura R, Granon S. Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology (Berl) 2012; 221:1-18. [PMID: 22249358 DOI: 10.1007/s00213-011-2596-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/17/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE The prefrontal cortex (PFC) mediates executive functions, a set of control processes that optimize performance on cognitive tasks. It enables appropriate decision-making and mediates adapted behaviors, all processes impaired in psychiatric or degenerative disorders. Key players of normal functioning of the PFC are neurotransmitter (NT) systems arising from subcortical nuclei and targeting PFC subareas and, also, neuronal nicotinic acetylcholine receptors (nAChRs). These ion channels, located on multiple cell compartments in all brain areas, mediate direct cholinergic transmission and modulate the release of NTs that cross onto PFC neurons or interneurons. OBJECTIVE We compiled current knowledge concerning the role of nAChRs in NT release, focusing on the PFC. We point out plausible mechanisms of interaction among PFC circuits implicated in executive functions and emphasized the role of β2-containing nAChRs, the high-affinity receptors for acetylcholine (ACh). These receptors are more directly implicated in behavioral flexibility either when located on PFC neurons or in the monoaminergic or cholinergic systems targeting the PFC. RESULTS We shed light on potentially crucial roles played by nAChRs in complex interactions between local and afferent NTs. We show how they could act on cognition via PFC networks. CONCLUSIONS nAChRs are crucial for decision-making, during integration of emotional and motivational features, both mediated by different NT pathways in the PFC. We review the knowledge recently gained on cognitive functions in mice and our current understanding of PFC NT modulation. The combination of these data is expected to provide new hypotheses concerning the role of AChRs in cognitive processes.
Collapse
|
52
|
Alexander KS, Wu HQ, Schwarcz R, Bruno JP. Acute elevations of brain kynurenic acid impair cognitive flexibility: normalization by the alpha7 positive modulator galantamine. Psychopharmacology (Berl) 2012; 220:627-37. [PMID: 22038535 PMCID: PMC3666324 DOI: 10.1007/s00213-011-2539-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/04/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE Cognitive deficits represent a core symptom cluster in schizophrenia (SZ) that is predictive of outcome but not effectively treated by current antipsychotics. Thus, there is a need for validated animal models for testing potential pro-cognitive drugs. OBJECTIVE As kynurenic acid levels are increased in prefrontal cortex (PFC) of individuals with SZ, we acutely increased brain levels of this astrocyte-derived, negative modulator of alpha7 nicotinic acetylcholine receptors (α7nAChRs) by administration of its bioprecursor kynurenine and measured the effects on extracellular kynurenic acid and glutamate levels in PFC and also performance in a set-shifting task. RESULTS Injections of kynurenine (100 mg/kg, i.p.) increased extracellular kynurenic acid (1,500%) and decreased glutamate levels (30%) in PFC. Kynurenine also produced selective deficits in set-shifting. Saline- and kynurenine-treated rats similarly acquired the compound discrimination and intra-dimensional shift (saline, 7.0 and 6.3 trials, respectively; kynurenine, 8.0 and 6.7). Both groups required more trials to acquire the initial reversal (saline, 15.3; kynurenine, 22.2). Only kynurenine-treated rats were impaired in acquiring the extra-dimensional shift (saline, 8.2; kynurenine, 21.3). These deficits were normalized by administering the α7nAChR positive allosteric modulator galantamine (3.0 mg/kg, i.p) prior to kynurenine, as trials were comparable between galantamine + kynurenine (7.8) and controls (8.2). Bilateral local perfusion of the PFC with galantamine (5.0 μM) also attenuated kynurenine-induced deficits. CONCLUSIONS These results validate the use of animals with elevated brain kynurenic acid levels in SZ research and support studies of drugs that normalize brain kynurenic acid levels and/or positively modulate α7nAChRs as pro-cognitive treatments for SZ.
Collapse
Affiliation(s)
- Kathleen S Alexander
- Department of Psychology and Neuroscience, The Ohio State University, 1835 Neil Ave., Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
53
|
Chronic nicotine exposure selectively activates a carrier-mediated release of endogenous glutamate and aspartate from rat hippocampal synaptosomes. Neurochem Int 2012; 60:622-30. [PMID: 22417725 DOI: 10.1016/j.neuint.2012.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
Abstract
The effect of chronic nicotine treatment on the release of endogenous glutamate (GLU), aspartate (ASP) and GABA evoked in vitro by KCl, 4-aminopyridine (4AP) and nicotinic agonists in synaptosomes of rat hippocampus was investigated. Rats were chronically administered with nicotine bitartrate or saline vehicle each for 14 days using osmotic mini-pumps. Hippocampal synaptosomes were stimulated with KCl, 4AP, nicotine or with choline (Ch) and 5-iodo-A-85380 dihydrochloride (5IA85380). The GLU and ASP overflow evoked by Ch, nicotine, KCl and 4AP were increased in treated animals while the nicotine-evoked GABA overflow was reduced and that evoked by Ch, KCl and 4AP was unaffected. The 5IA85380-evoked overflow of the three aminoacids (AAs) was always reduced. The increase of ASP and GLU overflow evoked by KCl, 4AP or Ch was blocked by dl-threo-β-benzyloxyaspartic acid (dl-TBOA), a carrier transporter inhibitor, and by inhibitors of the Na(+)/Ca(2+) exchangers 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-4-thiazolidinecarboxylic acid ethyl ester (SN-6) and 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943). In conclusion long-term nicotine treatment may selectively increase GLU and ASP overflow elicited by KCl, 4AP and Ch through the activation of a carrier-mediated release mechanism and completely abolished the stimulatory effects of α4β2 nAChRs which modulate the release of all the three AA.
Collapse
|
54
|
Greenwood PM, Parasuraman R, Espeseth T. A cognitive phenotype for a polymorphism in the nicotinic receptor gene CHRNA4. Neurosci Biobehav Rev 2012; 36:1331-41. [PMID: 22373960 DOI: 10.1016/j.neubiorev.2012.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/27/2022]
Abstract
Drawing on converging behavioral, electrophysiological, and imaging evidence, we advance an hypothesis for a cognitive phenotype of a SNP in the CHRNA4 gene encoding the α(4) subunit of α(4)β(2) nicotinic receptors. First, we review evidence that visuospatial attention can be decomposed into several component processes. Secondly, we consider evidence that one component, redirection of attention, is modulated by the nicotinic cholinergic system. Third, we review evidence that nicotinic stimulation exerts effects at the network level. Fourth, we consider evidence that normal variation in this SNP exerts nicotine-like modulatory effects on visuospatial attention. Fifth, we hypothesize that the cognitive phenotype of the CHRNA4 rs1044396 SNP is characterized by greater ability of T allele carriers to preferentially process events in the attentional focus compared to events outside the attentional focus. Finally, we consider effects of the CHNRA4 rs1044396 SNP on brain activity and cognition in light of our hypothesized cognitive phenotype. This hypothesis makes an important contribution to the development of cognitive phenomics by arguing for a cognitive phenotype of CHRNA4.
Collapse
Affiliation(s)
- P M Greenwood
- Arch Lab, Psychology Department, George Mason University, Fairfax, VA 22030-4444, USA.
| | | | | |
Collapse
|
55
|
Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CPJ, Mansvelder HD. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. ACTA ACUST UNITED AC 2012; 23:148-61. [PMID: 22291029 PMCID: PMC3513956 DOI: 10.1093/cercor/bhr390] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine signaling through nicotinic receptors (nAChRs) in the prefrontal cortex (PFC) is crucial for attention. Nicotinic AChRs are expressed on glutamatergic inputs to layer V (LV) cells and on LV interneurons and LVI pyramidal neurons. Whether PFC layers are activated by nAChRs to a similar extent or whether there is layer-specific activation is not known. Here, we investigate nAChR modulation of all PFC layers and find marked layer specificity for pyramidal neurons: LII/III pyramidal neurons and glutamatergic inputs to these cells do not contain nAChRs, LV and LVI pyramidal neurons are modulated by α7 and β2* nAChRs, respectively. Interneurons across layers contain mixed combinations of nAChRs. We then tested the hypothesis that nAChRs activate the PFC in a layer-specific manner using 2-photon population imaging. In all layers, nAChR-induced neuronal firing was dominated by β2* nAChRs. In LII/III, only interneurons were activated. In LV and LVI, both interneurons and pyramidal neurons were activated, the latter most strongly in LVI. Together, these results suggest that in the PFC nAChR activation results in inhibition of LII/III pyramidal neurons. In LV and LVI, nAChR-induced activation of inhibitory and excitatory neurons results in a net augmentation of output neuron activity.
Collapse
Affiliation(s)
- Rogier B Poorthuis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, 1081HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
56
|
Zhang ZW, Kang JI, Vaucher E. Axonal varicosity density as an index of local neuronal interactions. PLoS One 2011; 6:e22543. [PMID: 21811630 PMCID: PMC3141066 DOI: 10.1371/journal.pone.0022543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 06/29/2011] [Indexed: 01/09/2023] Open
Abstract
Diffuse transmission is an important non-synaptic communication mode in the cerebral neocortex, in which neurotransmitters released from en passant varicosities interact with surrounding cells. In a previous study we have shown that the cholinergic axonal segments which were in the microproximity with dopaminergic fibers possessed a greater density of en passant varicosities compared to more distant segments, suggesting an activity-dependent level of en passant varicosities in the axonal zone of interaction. To further evaluate this plastic relationship, the density of cholinergic varicosities was quantified on fiber segments within the microproximity of activated or non-activated pyramidal cells of the prefrontal cortex (mPFC). Repetitive 14 days patterned visual stimulation paired with an electrical stimulation of the cholinergic fibers projecting to the mPFC from the HDB was performed to induce persistent axonal plastic changes. The c-Fos early gene immunoreactivity was used as a neuronal activity marker of layer V pyramidal cells, labelled with anti-glutamate transporter EAAC1. Cholinergic fibers were labeled with anti-ChAT (choline acetyltransferase) immunostaining. The density of ChAT+ varicosities on and the length of fiber segments within the 3 µm microproximity of c-Fos positive/negative pyramidal cells were evaluated on confocal images. More than 50% of the pyramidal cells in the mPFC were c-Fos immunoreactive. Density of ChAT+ varicosities was significantly increased within 3 µm vicinity of activated pyramidal cells (0.50±0.01 per µm of ChAT+ fiber length) compared to non-activated cells in this group (0.34±0.001; p≤0.05) or control rats (0.32±0.02; p≤0.05). Different types of stimulation (visual, HDB or visual/HDB) induced similar increase of the density of ChAT+ varicosities within microproximity of activated pyramidal cells. This study demonstrated at the subcellular level an activity-dependent enrichment of ChAT+ varicosities in the axonal zone of interaction with other neuronal elements.
Collapse
Affiliation(s)
- Zi-Wei Zhang
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Jun Il Kang
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
57
|
Knott VJ, Millar AM, McIntosh JF, Shah DK, Fisher DJ, Blais CM, Ilivitsky V, Horn E. Separate and combined effects of low dose ketamine and nicotine on behavioural and neural correlates of sustained attention. Biol Psychol 2011; 88:83-93. [PMID: 21742012 DOI: 10.1016/j.biopsycho.2011.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 01/08/2023]
Abstract
Given the cognitive-promoting properties of the nicotinic acetylcholinergic receptor (nAChR) agonist, nicotine, the increased prevalence of smoke-inhaled nicotine in schizophrenia has been interpreted as an attempt to self-correct cognitive deficits, which have been particularly pronounced in the attentional domain. As glutamatergic abnormalities have been implicated in these attentional deficiencies, this study attempted to shed light on the separate and interactive roles of the N-methyl-d-aspartate receptor (NMDAR) and nAChR systems in the modulation of attention by investigating, in healthy volunteers, the separate and combined effects of nicotine and the NMDAR antagonist ketamine on neural and behavioural responses in a sustained attention task. In a randomized, double-blind, placebo controlled study, performance and the P300 event-related brain potential (ERP) in a visual information processing (RVIP) task were examined in 20 smokers and 20 non-smokers (both male and female). Assessment involved intravenous injection of a low subperceptual bolus dose (.04mg/kg) of ketamine or placebo, which was accompanied by acute treatment with nicotine (4mg) or placebo gum. Nicotine-enhanced attentional processing was most evident in nonsmokers, with both performance accuracy and P300 amplitude measures. Ketamine's detrimental effects on these behavioural and electrophysiologic measures were negatively moderated by acute nicotine, the synergistic effects being expressed differently in smokers and nonsmokers. These findings support the view that acute alterations and individual differences in nAChR function can moderate even subtle glutamatergic-driven cognitive deficiencies in schizophrenia and can be important therapeutic targets for treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Verner J Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Nesic J, Duka T, Rusted JM, Jackson A. A role for glutamate in subjective response to smoking and its action on inhibitory control. Psychopharmacology (Berl) 2011; 216:29-42. [PMID: 21301814 PMCID: PMC3111550 DOI: 10.1007/s00213-011-2189-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/17/2011] [Indexed: 10/26/2022]
Abstract
RATIONALE Our previous study using memantine in smokers suggests that there may be a differential role for N-methyl-D-aspartate (NMDA) receptors in the subjective and cognitive effects of smoking. OBJECTIVES This study was designed to investigate if D-cycloserine (DCS) would modulate the subjective and cognitive effects of limited smoking. METHODS Forty-eight habitual smokers abstinent for a minimum of 2 h were randomly allocated to receive either placebo or 50 mg DCS (double-blind) and were subsequently required either to smoke half of one cigarette or to remain abstinent. Subjective and physiological effects of DCS were measured at baseline, 90 min postcapsule, and again after the partial-smoking manipulation, while the effects on sustained attention (rapid visual information processing test--RVIP) and cognitive flexibility (intra-extra dimensional set-shift test--IED) were evaluated only after the partial-smoking manipulation. RESULTS DCS alone did not produce significant subjective effects other than an increase in ratings of "Stimulated". In combination with partial smoking, however, DCS blocked the smoking-induced increase in "Stimulated" and the decrease in "Relaxed" ratings. Furthermore, in combination with smoking, DCS reduced the number of false alarms during the RVIP test (an index of inhibitory control) and produced a small increase in diastolic blood pressure. DCS failed to modulate IED performance. CONCLUSIONS These findings provide further evidence of a role for glutamate release in the subjective effects of smoking but not the effects on attention and cognitive flexibility. Furthermore, our results indicate that glutamate release may also be involved in the effect of smoking on inhibitory control.
Collapse
Affiliation(s)
- J. Nesic
- Department of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ UK
| | - T. Duka
- Department of Psychology, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - J. M. Rusted
- Department of Psychology, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - A. Jackson
- Department of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ UK
| |
Collapse
|
59
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
60
|
Espeseth T, Sneve MH, Rootwelt H, Laeng B. Nicotinic receptor gene CHRNA4 interacts with processing load in attention. PLoS One 2010; 5:e14407. [PMID: 21203548 PMCID: PMC3008676 DOI: 10.1371/journal.pone.0014407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. METHODOLOGY/PRINCIPAL FINDINGS In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in α4β2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39-77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. CONCLUSION The results support the hypothesis that the cholinergic system modulates attentional effort, and that common genetic variation can be used to study the molecular biology of cognition.
Collapse
Affiliation(s)
- Thomas Espeseth
- Department of Psychology, Center for the Study of Human Cognition, University of Oslo, Oslo, Norway
- * E-mail:
| | - Markus Handal Sneve
- Department of Psychology, Center for the Study of Human Cognition, University of Oslo, Oslo, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Bruno Laeng
- Department of Psychology, Center for the Study of Human Cognition, University of Oslo, Oslo, Norway
| |
Collapse
|
61
|
Metherate R. Functional connectivity and cholinergic modulation in auditory cortex. Neurosci Biobehav Rev 2010; 35:2058-63. [PMID: 21144860 DOI: 10.1016/j.neubiorev.2010.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/26/2022]
Abstract
Although it is known that primary auditory cortex (A1) contributes to the processing and perception of sound, its precise functions and the underlying mechanisms are not well understood. Recent studies point to a remarkably broad spectral range of largely subthreshold inputs to individual neurons in A1--seemingly encompassing, in some cases, the entire audible spectrum--as evidence for potential, and potentially unique, cortical functions. We have proposed a general mechanism for spectral integration by which information converges on neurons in A1 via a combination of thalamocortical pathways and intracortical long-distance, "horizontal", pathways. Here, this proposal is briefly reviewed and updated with results from multiple laboratories. Since spectral integration in A1 is dynamically regulated, we also show how one regulatory mechanism--modulation by the neurotransmitter acetylcholine (ACh)--could act within the hypothesized framework to alter integration in single neurons. The results of these studies promote a cellular understanding of information processing in A1.
Collapse
Affiliation(s)
- Raju Metherate
- Department of Neurobiology and Behavior, Center for Hearing Research, University of California-Irvine, CA 92697-4550, United States.
| |
Collapse
|
62
|
Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, Pellicciari R, Schwarcz R, Bruno JP. Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 2010; 169:1848-59. [PMID: 20600676 PMCID: PMC2918728 DOI: 10.1016/j.neuroscience.2010.05.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/23/2022]
Abstract
Using two in vivo methods, microdialysis and rapid in situ electrochemistry, this study examined the modulation of extracellular glutamate levels by endogenously produced kynurenic acid (KYNA) in the prefrontal cortex (PFC) of awake rats. Measured by microdialysis, i.p. administration of KYNA's bioprecursor L-kynurenine dose-dependently elevated extracellular KYNA and reduced extracellular glutamate (nadir after 50 mg/kg kynurenine: 60% decrease from baseline values). This dose-dependent decrease in glutamate levels was also seen using a glutamate-sensitive microelectrode array (MEA) (31% decrease following 50 mg/kg kynurenine). The kynurenine-induced reduction in glutamate was blocked (microdialysis) or attenuated (MEA) by co-administration of galantamine (3 mg/kg i.p.), a drug that competes with KYNA at an allosteric potentiating site of the alpha 7 nicotinic acetylcholine receptor. In separate experiments, extracellular glutamate levels were measured by MEA following the local perfusion (45 min) of the PFC with kynurenine (2.5 microM) or the selective KYNA biosynthesis inhibitor S-ethylsulfonylbenzoylalanine (S-ESBA; 5 mM). In agreement with previous microdialysis studies, local kynurenine application produced a reversible reduction in glutamate (nadir: -29%), whereas perfusion with S-ESBA increased glutamate levels reversibly (maximum: +38%). Collectively, these results demonstrate that fluctuations in the biosynthesis of KYNA in the PFC bi-directionally modulate extracellular glutamate levels, and that qualitatively very similar data are obtained by microdialysis and MEA. Since KYNA levels are elevated in the PFC of individuals with schizophrenia, and since prefrontal glutamatergic and nicotinic transmission mediate cognitive flexibility, normalization of KYNA levels in the PFC may constitute an effective treatment strategy for alleviating cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- A Konradsson-Geuken
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Carboni E, Barros V, Ibba M, Silvagni A, Mura C, Antonelli M. Prenatal restraint stress: an in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience 2010; 168:156-66. [DOI: 10.1016/j.neuroscience.2010.03.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/13/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022]
|
64
|
Pasumarthi RK, Fadel J. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons. J Neurochem 2010; 113:1023-35. [PMID: 20236223 DOI: 10.1111/j.1471-4159.2010.06666.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypothalamus is a prominent target of nicotine action. We have previously shown that acute systemic nicotine treatment induces Fos expression in the lateral hypothalamus and perifornical area (LH/PFA), with orexin/hypocretin neurons being particularly responsive. However, the neurochemical correlates of acute nicotine treatment in the LH/PFA have not been described. Anatomical studies have revealed that this area receives afferents from cholinergic, glutamatergic, and GABAergic telencephalic brain regions, suggesting a potential role for these neurotransmitters in mediating the hypothalamic component of nicotine effects on homeostatic phenomena, such as arousal and appetite. Here, we used in vivo microdialysis to determine the effect of acute systemic or local nicotine on glutamate, acetylcholine, and GABA efflux in the LH/PFA of rats. Local administration of nicotine significantly increased acetylcholine and glutamate, but not GABA, in the LH/PFA. Thus, we further tested the role of afferent sources of glutamate and acetylcholine in mediating acute nicotine-induced activation of orexin neurons by unilaterally lesioning the prefrontal cortex or basal forebrain cholinergic regions. Lesioned animals showed reduced Fos-positive orexin neurons following nicotine treatment. These data suggest that both acetylcholine and glutamate may mediate the effects of acute nicotine on the activity of hypothalamic neurons, including orexin/hypocretin cells. Changes in cholinergic or glutamatergic transmission in this region with chronic nicotine may contribute to long-term alterations in functions mediated by LH/PFA neurons, including feeding and arousal.
Collapse
Affiliation(s)
- Ravi K Pasumarthi
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
65
|
Parikh V, Ji J, Decker MW, Sarter M. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 2010; 30:3518-30. [PMID: 20203212 PMCID: PMC2864641 DOI: 10.1523/jneurosci.5712-09.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/17/2010] [Accepted: 01/22/2010] [Indexed: 11/21/2022] Open
Abstract
One-second-long increases in prefrontal cholinergic activity ("transients") were demonstrated previously to be necessary for the incorporation of cues into ongoing cognitive processes ("cue detection"). Nicotine and, more robustly, selective agonists at alpha4beta2* nicotinic acetylcholine receptors (nAChRs) enhance cue detection and attentional performance by augmenting prefrontal cholinergic activity. The present experiments determined the role of beta2-containing and alpha7 nAChRs in the generation of prefrontal cholinergic and glutamatergic transients in vivo. Transients were evoked by nicotine, the alpha4beta2* nAChR agonist ABT-089 [2-methyl-3-(2-(S)-pyrrolindinylmethoxy) pyridine dihydrochloride], or the alpha7 nAChR agonist A-582941 [2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole]. Transients were recorded in mice lacking beta2 or alpha7 nAChRs and in rats after removal of thalamic glutamatergic or midbrain dopaminergic inputs to prefrontal cortex. The main results indicate that stimulation of alpha4beta2* nAChRs evokes glutamate release and that the presence of thalamic afferents is necessary for the generation of cholinergic transients. ABT-089-evoked transients were completely abolished in mice lacking beta2* nAChRs. The amplitude, but not the decay rate, of nicotine-evoked transients was reduced by beta2* knock-out. Conversely, in mice lacking the alpha7 nAChR, the decay rate, but not the amplitude, of nicotine-evoked cholinergic and glutamatergic transients was attenuated. Substantiating the role of alpha7 nAChR in controlling the duration of release events, stimulation of alpha7 nAChR produced cholinergic transients that lasted 10- to 15-fold longer than those evoked by nicotine. alpha7 nAChR-evoked cholinergic transients are mediated in part by dopaminergic activity. Prefrontal alpha4beta2* nAChRs play a key role in evoking and facilitating the transient glutamatergic-cholinergic interactions that are necessary for cue detection and attentional performance.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| | - Jinzhao Ji
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| | - Michael W. Decker
- Neuroscience Research, Abbott Laboratories, Abbott Park, Illinois 60064-6125
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1043, and
| |
Collapse
|
66
|
The interactive effects of ketamine and nicotine on human cerebral blood flow. Psychopharmacology (Berl) 2010; 208:575-84. [PMID: 20066400 PMCID: PMC2891406 DOI: 10.1007/s00213-009-1758-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/11/2009] [Indexed: 12/13/2022]
Abstract
AIM The purpose of this study was to determine if acute nicotine attenuated ketamine-induced regional cerebral blood flow (rCBF). METHOD Following 2-4 h of nicotine abstinence, healthy chronic smokers participated in four sets of rCBF studies, H2(15)O positron emission tomography, during a simple sensory motor control task. The four drug conditions studied were placebo, ketamine alone, nicotine alone, and ketamine + nicotine. RESULTS Intravenous ketamine increased rCBF in frontal, orbital-frontal, and anterior cingulate areas. Nicotine alone induced marked rCBF elevations in the lateral occipital cortex and rCBF suppressions in the basal ganglia and anterior cingulate cortex. Nicotine added to ketamine attenuated the ketamine-induced elevated rCBF in the anterior cingulate cortex but caused a marked rCBF increase in the orbital frontal region. CONCLUSION This study illustrates the interactive effects of ketamine, an NMDA receptor antagonist, and nicotine in multiple brain regions. Nicotine substantially ameliorated the effects of ketamine on anterior cingulate rCBF and, when given alone, markedly suppressed anterior cingulate rCBF. The enhanced, synergistic orbitofrontal effects observed with ketamine and nicotine together suggest a marked increase in excitatory neurotransmission in a brain region often linked to psychosis, reward, and addictive behaviors.
Collapse
|
67
|
Konradsson-Geuken A, Gash CR, Alexander K, Pomerleau F, Huettl P, Gerhardt GA, Bruno JP. Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 2010; 63:1069-82. [PMID: 19637277 DOI: 10.1002/syn.20693] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These experiments utilized an enzyme-based microelectrode selective for the second-by-second detection of extracellular glutamate to reveal the alpha 7-based nicotinic modulation of glutamate release in the prefrontal cortex (PFC) of freely moving rats. Rats received intracortical infusions of the nonselective nicotinic agonist nicotine (12.0 mM, 1.0 microg/0.4 microl) or the selective alpha 7 agonist choline (2.0 mM/0.4 microl). The selectivity of drug-induced glutamate release was assessed in subgroups of animals pretreated with the alpha 7 antagonist, alpha-bungarotoxin (alpha-BGT, 10 microM), or kynurenine (10 microM) the precursor of the astrocyte-derived, negative allosteric alpha 7 modulator kynurenic acid. Local administration of nicotine increased glutamate signals (maximum amplitude = 4.3 +/- 0.6 microM) that were cleared to baseline levels in 493 +/- 80 seconds. Pretreatment with alpha-BGT or kynurenine attenuated nicotine-induced glutamate by 61% and 60%, respectively. Local administration of choline also increased glutamate signals (maximum amplitude = 6.3 +/- 0.9 microM). In contrast to nicotine-evoked glutamate release, choline-evoked signals were cleared more quickly (28 +/- 6 seconds) and pretreatment with alpha-BGT or kynurenine completely blocked the stimulated glutamate release. Using a method that reveals the temporal dynamics of in vivo glutamate release and clearance, these data indicate a nicotinic modulation of cortical glutamate release that is both alpha 7- and non-alpha 7-mediated. Furthermore, these data may also provide a mechanism underlying the recent focus on alpha 7 full and partial agonists as therapeutic agents in the treatment of cortically mediated cognitive deficits in schizophrenia.
Collapse
|
68
|
Hartmann J, Kiewert C, Klein J. Neurotransmitters and energy metabolites in amyloid-bearing APP(SWE)xPSEN1dE9 Mouse Brain. J Pharmacol Exp Ther 2010; 332:364-70. [PMID: 19846589 DOI: 10.1124/jpet.109.161091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease is characterized by amyloid peptide formation and deposition, neurofibrillary tangles, synaptic loss and central cholinergic dysfunction, dysfunction of energy metabolism, and dementia; however, the interactions between these hallmarks remain poorly defined. We studied a well characterized mouse model of amyloid deposition, the doubly transgenic APP(SWE)xPSEN1dE9 mouse. At 10 to 14 months of age, these mice had high levels of amyloid peptides (6.6 microg/g wet weight) and widespread amyloid plaques. Extracellular levels of acetylcholine (ACh) were determined by microdialysis in the hippocampus and were comparable with nontransgenic mice from the same colony. In the open field, both mouse strains responded with a 3-fold increase of hippocampal ACh release. Exploratory behavior of the transgenic mice appeared normal. Infusion of scopolamine evoked 5- to 6-fold increases of ACh levels in both mouse strains. High-affinity choline uptake and cholinesterase activities were identical in both mouse lines. Extracellular levels of glucose and glycerol were similar in control and transgenic mice, whereas lactate levels were slightly (p = 0.06) and glutamate levels significantly (p = 0.02) lower in transgenic mice. Exploration caused increases of glucose and lactate, whereas infusion of scopolamine (1 microM) increased glucose but not lactate. Glutamate levels were increased by scopolamine, whereas glycerol remained constant under all the conditions. We conclude that amyloid peptide production and plaque deposition causes minor changes in cholinergic function and energy metabolites in transgenic mice in vivo. Amyloid peptide formation and/or deposition may not be sufficient for long-term cholinergic or metabolic dysfunction.
Collapse
Affiliation(s)
- Joachim Hartmann
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas, USA
| | | | | |
Collapse
|
69
|
Nicotine stimulation of the medulla increases blood flow of the common carotid artery in cats. Auton Neurosci 2010; 152:49-54. [DOI: 10.1016/j.autneu.2009.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/28/2009] [Accepted: 08/28/2009] [Indexed: 11/22/2022]
|
70
|
Aracri P, Consonni S, Morini R, Perrella M, Rodighiero S, Amadeo A, Becchetti A. Tonic modulation of GABA release by nicotinic acetylcholine receptors in layer V of the murine prefrontal cortex. ACTA ACUST UNITED AC 2009; 20:1539-55. [PMID: 19812239 DOI: 10.1093/cercor/bhp214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By regulating the neocortical excitability, nicotinic acetylcholine receptors (nAChRs) control vigilance and cognition and are implicated in epileptogenesis. Modulation of gamma-aminobutyric acid (GABA) release often accompanies these processes. We studied how nAChRs regulate GABAergic transmission in the murine neocortex with immunocytochemical and patch-clamp methods. The cholinergic fibers densely innervated the somatosensory, visual, motor, and prefrontal cortices (PFC). Laminar distribution was broadly homogeneous, especially in the PFC. The cholinergic terminals were often adjacent to the soma and dendrites of GABAergic interneurons, but well-differentiated synapses were rare. Tonically applied nicotine (1-100 microM) increased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) on pyramidal neurons in PFC layer V. The contribution of nAChR types was assessed by using 1 microM dihydro-beta-erythroidine (DHbetaE), to block heteromeric nAChRs, and 10 nM methyllycaconitine (MLA), to block homomeric nAChRs. Both inhibitors antagonized the effect of nicotine on IPSCs, suggesting that mixed nAChR types control pyramidal neuron inhibition in layer V. To determine whether nAChRs are expressed on basket cells' terminals, we studied miniature IPSCs (mIPSCs). These were revealed using 0.5 microM tetrodotoxin and 50 microM Cd(2+) to isolate the GABAergic terminals from the action potential drive. The nicotinic stimulation of mIPSCs was antagonized by DHbetaE, but not MLA, indicating that heteromeric nAChRs prevail in GABAergic terminals. Immunocytochemistry confirmed the expression of nAChRs on basket cells' somata and terminals. Finally, when the ionotropic glutamatergic transmission was blocked, nicotine partially inhibited the IPSCs, an effect counteracted by both DHbetaE and MLA. Therefore, a fraction of nAChRs are capable of activating GABAergic interneurons that in turn inhibit other GABAergic interneurons, thereby reducing the IPSCs. We conclude that heteromeric nAChRs control GABA release presynaptically, whereas mixed nAChRs regulate both excitation and inhibition of interneurons, the balance depending on the overall glutamatergic drive.
Collapse
Affiliation(s)
- Patrizia Aracri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | | | | | | | | | | | | |
Collapse
|
71
|
Livingstone PD, Wonnacott S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem Pharmacol 2009; 78:744-55. [DOI: 10.1016/j.bcp.2009.06.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/28/2022]
|
72
|
Kelsey JE, Willmore EJ. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats. Behav Neurosci 2009; 120:600-11. [PMID: 16768612 DOI: 10.1037/0735-7044.120.3.600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output.
Collapse
Affiliation(s)
- John E Kelsey
- Department of Psychology and Program in Neuroscience, Bates College, Lewiston, ME 04240, USA.
| | | |
Collapse
|
73
|
Wu HQ, Pereira EFR, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 2009; 40:204-10. [PMID: 19690987 DOI: 10.1007/s12031-009-9235-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/29/2022]
Abstract
The cognitive deficits seen in schizophrenia patients are likely related to abnormal glutamatergic and cholinergic neurotransmission in the prefrontal cortex. We hypothesized that these impairments may be secondary to increased levels of the astrocyte-derived metabolite kynurenic acid (KYNA), which inhibits alpha7 nicotinic acetylcholine receptors (alpha7AChR) and may thereby reduce glutamate release. Using in vivo microdialysis in unanesthetized rats, we show here that nanomolar concentrations of KYNA, infused directly or produced in situ from its bioprecursor kynurenine, significantly decrease extracellular glutamate levels in the prefrontal cortex. This effect was prevented by the systemic administration of galantamine (3 mg/kg) but not by donepezil (2 mg/kg), indicating that KYNA blocks the allosteric potentiating site of the alpha7AChR, which recognizes galantamine but not donepezil as an agonist. In separate rats, reduction of prefrontal KYNA formation by (S)-4-ethylsulfonyl benzoylalanine, a specific inhibitor of KYNA synthesis, caused a significant elevation in extracellular glutamate levels. Jointly, our results demonstrate that fluctuations in endogenous KYNA formation bidirectionally influence cortical glutamate concentrations. These findings suggest that selective attenuation of cerebral KYNA production, by increasing glutamatergic tone, might improve cognitive function in individuals with schizophrenia.
Collapse
Affiliation(s)
- Hui-Qiu Wu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
74
|
The neuropharmacological substrates of nicotine reward: reinforcing versus reinforcement-enhancing effects of nicotine. Behav Pharmacol 2009; 20:211-25. [PMID: 19421028 DOI: 10.1097/fbp.0b013e32832c7083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Compulsive nicotine use is thought to be maintained by the acute reinforcing effects of nicotine and the reinforcement-enhancing effects of nicotine, in addition to the negative consequences of nicotine abstinence. Nicotine self-administration and nicotine-induced enhancement of non-nicotine reinforcers such as intracranial self-stimulation provide measures of these dual rewarding properties of nicotine. First, pharmacological manipulations that modulate the reinforcing and reinforcement-enhancing effects of nicotine are identified and discussed. Second, the interpretation and implications of data that identified shared and specific pharmacological substrates underlying the dual rewarding effects of nicotine are discussed, including implications for the preclinical testing of putative antismoking medications. In conclusion, reinforcement-related behaviors that are mediated by central reinforcement processes are likely to, and generally do, exhibit a number of common pharmacological substrates. Interestingly, however, a few pharmacological classes of compounds seem to exert selective effects on components of the dual nicotine reward mechanisms, indicating differences in the pharmacological substrates of the reinforcing and reinforcement-enhancing effects of nicotine. Further characterization of such compounds may ultimately lead to the identification of novel medications for nicotine dependence in humans.
Collapse
|
75
|
Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 2009; 29:529-38. [PMID: 19187269 DOI: 10.1111/j.1460-9568.2008.06594.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We tested the hypothesis that fluctuations in the levels of kynurenic acid (KYNA), an endogenous antagonist of the alpha7 nicotinic acetylcholine (ACh) receptor, modulate extracellular ACh levels in the medial prefrontal cortex in rats. Decreases in cortical KYNA levels were achieved by local perfusion of S-ESBA, a selective inhibitor of the astrocytic enzyme kynurenine aminotransferase II (KAT II), which catalyses the formation of KYNA from its precursor L-kynurenine. At 5 mm, S-ESBA caused a 30% reduction in extracellular KYNA levels, which was accompanied by a two-threefold increase in basal cortical ACh levels. Co-perfusion of KYNA in the endogenous range (100 nm), which by itself tended to reduce basal ACh levels, blocked the ability of S-ESBA to raise extracellular ACh levels. KYNA perfusion (100 nm) also prevented the evoked ACh release caused by d-amphetamine (2.0 mg/kg). This effect was duplicated by the systemic administration of kynurenine (50 mg/kg), which resulted in a significant increase in cortical KYNA formation. Jointly, these data indicate that astrocytes, by producing and releasing KYNA, have the ability to modulate cortical cholinergic neurotransmission under both basal and stimulated conditions. As cortical KYNA levels are elevated in individuals with schizophrenia, and in light of the established role of cortical ACh in executive functions, our findings suggest that drugs capable of attenuating the production of KYNA may be of benefit in the treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- A Zmarowski
- Department of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Poorthuis RB, Goriounova NA, Couey JJ, Mansvelder HD. Nicotinic actions on neuronal networks for cognition: general principles and long-term consequences. Biochem Pharmacol 2009; 78:668-76. [PMID: 19426718 DOI: 10.1016/j.bcp.2009.04.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 04/27/2009] [Indexed: 02/04/2023]
Abstract
Nicotine enhances cognitive performance in humans and laboratory animals. The immediate positive actions of nicotine on learning, memory and attention are well-documented. Several brain areas involved in cognition, such as the prefrontal cortex, have been implicated. Besides acute effects on these brain areas and on brain function, a picture is emerging showing that long-term consequences of nicotine exposure during adolescence can be detrimental for cognitive performance. The majority of adult smokers started the habit during adolescence. Our knowledge on the types of nicotinic receptors in the brain areas that are candidates for mediating nicotine's effects is increasing. However, much less is known about the underlying cellular mechanisms. A series of recent studies have uncovered exciting features of the mechanisms by which nicotine alters prefrontal cortex neuronal activity, synaptic plasticity, gene expression and cognitive function, and how these changes may have a lasting effect on the developing brain. In this review, we discuss these exciting findings and identify several common principles by which nicotinic receptor activation modulates cortical circuits involved in cognition. Understanding how nicotine induces long-term changes in neuronal circuits and alters plasticity in the prefrontal cortex is essential to determining how these mechanisms interact to alter cognition.
Collapse
Affiliation(s)
- Rogier B Poorthuis
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
77
|
Reinvang I, Lundervold AJ, Rootwelt H, Wehling E, Espeseth T. Individual variation in a cholinergic receptor gene modulates attention. Neurosci Lett 2009; 453:131-4. [DOI: 10.1016/j.neulet.2009.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
|
78
|
Livingstone PD, Srinivasan J, Kew JN, Dawson LA, Gotti C, Moretti M, Shoaib M, Wonnacott S. α7 and non-α7 nicotinic acetylcholine receptors modulate dopamine releasein vitroandin vivoin the rat prefrontal cortex. Eur J Neurosci 2009; 29:539-50. [DOI: 10.1111/j.1460-9568.2009.06613.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
79
|
Abstract
While most cigarette smokers endorse a desire to quit smoking, only 14-49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may result in improved pharmacological and behavioral interventions for this condition. Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this chapter is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in alpha4beta2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors). These findings indicate that smoking enhances neurotransmission through cortico-basal ganglia-thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in attentional performance, mood, anxiety, and irritability.
Collapse
Affiliation(s)
- Anil Sharma
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Greater Los Angeles VA Healthcare System, 11301 Wilshire Blvd. Bldg 256 Suite 221, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
80
|
Lucas-Meunier E, Monier C, Amar M, Baux G, Frégnac Y, Fossier P. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex. Cereb Cortex 2009; 19:2411-27. [PMID: 19176636 DOI: 10.1093/cercor/bhn258] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons.
Collapse
Affiliation(s)
- Estelle Lucas-Meunier
- Laboratoire de neurobiologie cellulaire et moléculaire, UPR CNRS 9040, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
81
|
Mansvelder HD, Mertz M, Role LW. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 2009; 20:432-40. [PMID: 19560048 DOI: 10.1016/j.semcdb.2009.01.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/11/2009] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
Abstract
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity. In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
82
|
Chronic nicotine improves cognitive performance in a test of attention but does not attenuate cognitive disruption induced by repeated phencyclidine administration. Psychopharmacology (Berl) 2009; 202:275-86. [PMID: 18618099 PMCID: PMC2634814 DOI: 10.1007/s00213-008-1246-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Nicotine-induced cognitive enhancement may be a factor maintaining tobacco smoking, particularly in psychiatric populations suffering from cognitive deficits. Schizophrenia patients exhibit higher smoking rates compared with the general population, suggesting that attempts to self-medicate cognitive schizophrenia deficits may underlie these high smoking levels. OBJECTIVES The present study explored pro-cognitive effects of nicotine in a model of schizophrenia-like cognitive dysfunction to test this self-medication hypothesis. MATERIALS AND METHODS We investigated whether chronic nicotine (3.16 mg/kg/day, base) would attenuate the performance disruption in the five-choice serial reaction time task (5-CSRTT, a task assessing various cognitive modalities, including attention) induced by repeated administration of phencyclidine (PCP), an N-methyl-D-aspartate receptor antagonist that induces cognitive deficits relevant to schizophrenia. RESULTS Chronic nicotine administration shortened 5-CSRTT response latencies under baseline conditions. Nicotine-treated rats also made more correct responses and fewer omissions than vehicle-treated rats. Replicating previous studies, repeated PCP administration (2 mg/kg, 30 min before behavioral testing for two consecutive days followed 2 weeks later by five consecutive days of PCP administration) decreased accuracy and increased response latencies, premature responding, and timeout responding. Chronic nicotine did not attenuate these PCP-induced disruptions. CONCLUSIONS Chronic nicotine had pro-cognitive effects by itself, supporting the hypothesis that cognitive enhancement may contribute to tobacco smoking. At the doses of nicotine and PCP used, however, no support was found for the hypothesis that the beneficial effects of nicotine on cognitive deficits induced by repeated PCP administration, assessed in the 5-CSRTT, are larger than nicotine effects in the absence of PCP.
Collapse
|
83
|
Differential involvement of glutamatergic mechanisms in the cognitive and subjective effects of smoking. Neuropsychopharmacology 2009; 34:257-65. [PMID: 18418361 DOI: 10.1038/npp.2008.50] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is growing preclinical evidence for the involvement of glutamate in the behavioral actions of nicotine. The aim of this study, was to investigate the role of N-methyl-D-aspartate (NMDA) receptors in the cognitive and subjective effects of smoking in humans. Sixty regular smokers took part in this double-blind placebo controlled study, that investigated the effect of the NMDA-antagonist memantine (40 mg) and the nicotinic-receptor antagonist mecamylamine (10 mg) on smoking-induced improvement in performance of a task of sustained attention and on smoking-induced changes in subjective effects and craving. Increases in subjective ratings of 'buzzed' following smoking were reversed by memantine, but not by mecamylamine. In contrast, improvement on a Rapid Visual Information Processing task by smoking was opposed by mecamylamine, but not by memantine. Smoking reduced craving for cigarettes, but neither drug altered this effect. Our results suggest that glutamatergic mechanisms may have differential involvement in the subjective and cognitive actions of smoking. Further investigations using different ligands are warranted to fully characterize the role of glutamate underlying the consequences of smoking behavior.
Collapse
|
84
|
de Castro BM, Pereira GS, Magalhães V, Rossato JI, De Jaeger X, Martins-Silva C, Leles B, Lima P, Gomez MV, Gainetdinov RR, Caron MG, Izquierdo I, Cammarota M, Prado VF, Prado MAM. Reduced expression of the vesicular acetylcholine transporter causes learning deficits in mice. GENES BRAIN AND BEHAVIOR 2008; 8:23-35. [PMID: 18778400 DOI: 10.1111/j.1601-183x.2008.00439.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Storage of acetylcholine in synaptic vesicles plays a key role in maintaining cholinergic function. Here we used mice with a targeted mutation in the vesicular acetylcholine transporter (VAChT) gene that reduces transporter expression by 40% to investigate cognitive processing under conditions of VAChT deficiency. Motor skill learning in the rotarod revealed that VAChT mutant mice were slower to learn this task, but once they reached maximum performance they were indistinguishable from wild-type mice. Interestingly, motor skill performance maintenance after 10 days was unaffected in these mutant mice. We also tested whether reduced VAChT levels affected learning in an object recognition memory task. We found that VAChT mutant mice presented a deficit in memory encoding necessary for the temporal order version of the object recognition memory, but showed no alteration in spatial working memory, or spatial memory in general when tested in the Morris water maze test. The memory deficit in object recognition memory observed in VAChT mutant mice could be reversed by cholinesterase inhibitors, suggesting that learning deficits caused by reduced VAChT expression can be ameliorated by restoring ACh levels in the synapse. These data indicate an important role for cholinergic tone in motor learning and object recognition memory.
Collapse
Affiliation(s)
- B M de Castro
- Program in Molecular Pharmacology, ICB and Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kassam SM, Herman PM, Goodfellow NM, Alves NC, Lambe EK. Developmental excitation of corticothalamic neurons by nicotinic acetylcholine receptors. J Neurosci 2008; 28:8756-64. [PMID: 18753377 PMCID: PMC2909269 DOI: 10.1523/jneurosci.2645-08.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/19/2008] [Accepted: 07/24/2008] [Indexed: 11/21/2022] Open
Abstract
In this study, we show robust nicotinic excitation of pyramidal neurons in layer VI of prefrontal cortex. This layer contains the corticothalamic neurons, which gate thalamic activity and play a critical role in attention. Our experiments tested nicotinic excitation across postnatal development, using whole-cell recordings in prefrontal brain slices from rats. These experiments showed that layer VI neurons have peak nicotinic currents during the first postnatal month, a time period of intensive cortical development in rodents. We demonstrate that these currents are mediated directly by postsynaptic nicotinic receptors and can be suppressed by a competitive antagonist of alpha(4)beta(2)* nicotinic receptors. To record from identified corticothalamic neurons, we performed stereotaxic surgery to label the neurons projecting to medial dorsal thalamus. As hypothesized, recordings from these retrogradely labeled neurons in layer VI showed prominent nicotinic currents. Finally, we examined the effects of the drug nicotine on layer VI neurons and probed for the potential involvement of the accessory subunit, alpha(5), in their receptors. A level of nicotine similar to that found in the blood of smokers elicits a stable inward current in layer VI neurons, yet this exposure desensitizes approximately 50% of the subsequent current elicited by acetylcholine. An allosteric modulator of alpha(4)beta(2)alpha(5) receptors resulted in a 2.5-fold potentiation of submaximal nicotinic currents. This result is consistent with the expression of the relatively rare alpha(5) nicotinic subunit in layer VI. In summary, we show that layer VI corticothalamic neurons can be strongly excited during development by an unusual subtype of nicotinic receptor.
Collapse
Affiliation(s)
| | | | | | | | - Evelyn K. Lambe
- Departments of Physiology and
- Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada M5S1A8
| |
Collapse
|
86
|
Clearwater JM, Rennie CJ, Robinson PA. Mean field model of acetylcholine mediated dynamics in the thalamocortical system. J Theor Biol 2008; 255:287-98. [PMID: 18775441 DOI: 10.1016/j.jtbi.2008.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/01/2008] [Accepted: 08/08/2008] [Indexed: 12/31/2022]
Abstract
A recent continuum model of the large scale electrical activity of the thalamocortical system is generalized to include cholinergic modulation. The model is examined analytically and numerically to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses. Changing the ACh concentration moves the system between zones of one, three, and five steady states, showing that neuromodulation of synaptic strength is a possible mechanism by which multiple steady states emerge in the brain. The lowest firing rate steady state is always stable, and subsequent fixed points alternate between stable and unstable. Increasing ACh concentration changes the form of the spectrum. Increasing the tonic level of ACh concentration increases the magnitudes of the N100 and P200 in the evoked response potential (ERP), without changing the timing of these peaks. Driving the system with a pulse of cholinergic activity results in a transient increase in the firing rate of cortical neurons that lasts over 10s. Step-like increases in cortical ACh concentration cause increases in the firing rate of cortical neurons, with rapid responses due to fast acting nicotinic receptors and slower responses due to muscarinic receptor suppression of intracortical connections.
Collapse
Affiliation(s)
- J M Clearwater
- School of Physics, University of Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
87
|
Dickinson JA, Kew JNC, Wonnacott S. Presynaptic alpha 7- and beta 2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 2008; 74:348-59. [PMID: 18445710 DOI: 10.1124/mol.108.046623] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Nicotine can enhance working memory and attention. Activation of both alpha7 and beta2(*) nicotinic acetylcholine receptors (nAChRs) in the prefrontal cortex (PFC) has been implicated in these processes. The ability of presynaptic nAChRs to modulate neurotransmitter release, notably glutamate release, is postulated to contribute to nicotine's effects. We have examined the cellular mechanisms underlying alpha7 and beta2(*) nAChR-mediated [(3)H]d-aspartate release from the PFC in vitro. Using the alpha7 and beta2(*) nAChR-selective agonists (R)-N-(1-azabicyclo[2.2.2]-oct-3-yl)(5-(2-pyridyl)thiophene-2-carboxamide) (compound A) and 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-iodo-A-85380), respectively, in conjunction with inhibitors of voltage-operated Ca(2+) channels (VOCCs) and intracellular Ca(2+) stores, we show that [(3)H]d-aspartate release evoked by activation of beta2(*) nAChRs occurs via VOCCs. In contrast, alpha7 nAChR-evoked release was unaffected by VOCC blockers but was abolished by modulators of Ca(2+) stores, including ryanodine. The alpha7 nAChR ligand alpha-bungarotoxin and ryanodine receptors were colocalized to a subpopulation of PFC synaptosomes. Compound A-evoked [(3)H]d-aspartate release was also blocked by mitogen-activated protein kinase kinase 1 inhibitors, implicating extracellular signal-regulated kinase (ERK)1/2 in alpha7 nAChR-evoked exocytosis. Western blotting confirmed that compound A, but not 5-iodo-A-85380, application increased ERK2 phosphorylation in PFC synaptosomes, and this was dependent on ryanodine-sensitive stores. Compound A also promoted synapsin-1 phosphorylation at ERK1/2-dependent sites, in a ryanodine-sensitive manner. Thus, beta2(*) and alpha7 nAChR subtypes in the PFC mediate [(3)H]d-aspartate release via distinct mechanisms as a result of their differential coupling to VOCCs and Ca(2+)-induced Ca(2+) release (CICR), respectively. The ability of alpha7 nAChRs to promote the phosphorylation of presynaptic ERK2 and synapsin-1, downstream of CICR, provides a potential mechanism for presynaptic facilitation in the PFC.
Collapse
Affiliation(s)
- Jane A Dickinson
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
88
|
Dougherty JJ, Wu J, Mehta TK, Brown B, Nichols RA. Chronic nicotine alters nicotinic receptor-induced presynaptic Ca2+ responses in isolated nerve terminals. Neurochem Res 2008; 33:1106-12. [PMID: 18095155 PMCID: PMC2662773 DOI: 10.1007/s11064-007-9557-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Brain nicotinic receptors display pronounced permeability for Ca2+ and localize to presynaptic nerve terminals, in addition to postsynaptic sites. Chronic exposure to nicotine has been shown to alter brain nicotinic receptor expression, but the functional consequences for presynaptic Ca2+ have not been directly examined. Here, we used confocal imaging to assess Ca2+ responses in individual nerve terminals from cortices of mice treated up to 14 days with nicotine as compared to vehicle-treated controls. Chronic nicotine treatment led to substantially enhanced amplitudes of presynaptic Ca2+ responses to acute application of nicotine at concentrations of 50 nM (2-fold) and 500 nM (1.7-fold), but not 50 microM. In addition, increased expression of high-affinity nicotinic receptors on isolated terminals was observed following chronic treatment, as determined immunocytochemically and pharmacologically. These findings suggest that chronic exposure to nicotine may lead to enhanced sensitivity to nicotine at select presynaptic sites in brain via up-regulation of high-affinity nicotinic receptors.
Collapse
Affiliation(s)
- John J Dougherty
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|
89
|
Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 2008; 28:3769-80. [PMID: 18385335 DOI: 10.1523/jneurosci.5251-07.2008] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.
Collapse
|
90
|
Jain R, Mukherjee K, Balhara YPS. The role of NMDA receptor antagonists in nicotine tolerance, sensitization, and physical dependence: a preclinical review. Yonsei Med J 2008; 49:175-88. [PMID: 18452252 PMCID: PMC2615322 DOI: 10.3349/ymj.2008.49.2.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 05/30/2007] [Indexed: 12/04/2022] Open
Abstract
Nicotine, the primary psychoactive component of tobacco products, produces diverse neurophysiological, motivational, and behavioral effects through several brain regions and neurochemical pathways. Various neurotransmitter systems have been explored to understand the mechanisms behind nicotine tolerance, dependence, and withdrawal. Recent evidence suggests that glutamate neurotransmission has an important role in this phenomenon. The aim of the present review is to discuss preclinical findings concerning the role of N-methyl-D-aspartate (NMDA) receptor neurotransmission in mediating the behavioral effects of nicotine, tolerance, sensitization, dependence, and withdrawal. Based on preclinical findings, it is hypothesized that NMDA receptors mediate the common adaptive processes that are involved in the development, maintenance, and expression of nicotine addiction. Modulation of glutamatergic neurotransmission with NMDA receptor antagonists may prove to be useful in alleviating the symptoms of nicotine abstinence and facilitate tobacco-smoking cessation.
Collapse
Affiliation(s)
- Raka Jain
- National Drug Dependence Treatment Centre and Department of Psychiatry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, Pin 110029, India.
| | | | | |
Collapse
|
91
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
92
|
Clearwater JM, Rennie CJ, Robinson PA. Mean field model of acetylcholine mediated dynamics in the cerebral cortex. BIOLOGICAL CYBERNETICS 2007; 97:449-460. [PMID: 17965874 DOI: 10.1007/s00422-007-0186-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 09/24/2007] [Indexed: 05/25/2023]
Abstract
A recent continuum model of the large scale electrical activity of the cerebral cortex is generalized to include cholinergic modulation. In this model, dynamic modulation of synaptic strength acts over the time scales of nicotinic and muscarinic receptor action. The cortical model is analyzed to determine the effect of acetylcholine (ACh) on its steady states, linear stability, spectrum, and temporal responses to changes in subcortical input. ACh increases the firing rate in steady states of the system. Changing ACh concentration does not introduce oscillatory behavior into the system, but increases the overall spectral power. Model responses to pulses in subcortical input are affected by the tonic level of ACh concentration, with higher levels of ACh increasing the magnitude firing rate response of excitatory cortical neurons to pulses of subcortical input. Numerical simulations are used to explore the temporal dynamics of the model in response to changes in ACh concentration. Evidence is seen of a transition from a state in which intracortical inputs are emphasized to a state where thalamic afferents have enhanced influence. Perturbations in ACh concentration cause changes in the firing rate of cortical neurons, with rapid responses due to fast acting facilitatory effects of nicotinic receptors on subcortical afferents, and slower responses due to muscarinic suppression of intracortical connections. Together, these numerical simulations demonstrate that the actions of ACh could be a significant factor modulating early components of evoked response potentials.
Collapse
Affiliation(s)
- J M Clearwater
- School of Physics, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
93
|
Quarta D, Naylor CG, Stolerman IP. The serotonin 2C receptor agonist Ro-60-0175 attenuates effects of nicotine in the five-choice serial reaction time task and in drug discrimination. Psychopharmacology (Berl) 2007; 193:391-402. [PMID: 17473916 DOI: 10.1007/s00213-007-0802-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 04/09/2007] [Indexed: 12/25/2022]
Abstract
RATIONALE There is evidence that serotonin(2C) (5-HT(2C)) receptors can modulate some behavioural effects of nicotine, but the generality of this action is not known. OBJECTIVE To analyse the influence of the 5-HT(2C) agonist Ro-60-0175 on responses to nicotine in the five-choice serial reaction time task (5-CSRTT) and on its discriminative stimulus effect; these procedures constitute models for attention-enhancing and subjective effects of nicotine, respectively. MATERIALS AND METHODS In the 5-CSRTT, rats were trained to obtain food reinforcers by detecting light stimuli and then challenged with Ro-60-0175 (0.3-0.8 mg/kg) and nicotine (0.2 mg/kg). For drug discrimination studies, rats were trained to discriminate nicotine (0.2 mg/kg) from saline in a two-lever procedure using a tandem schedule of food reinforcement. RESULTS In the 5-CSRTT, nicotine positively influenced most response indices, confirming previous results. Ro-60-0175 increased response latencies and omission errors and reduced anticipatory responding but had little effect on response accuracy; importantly, it counteracted the effects of nicotine on response speed and omission errors. Pentobarbitone (10-14 mg/kg) also slowed performance of the 5-CSRTT but did not weaken the nicotine-induced enhancement of performance. In the drug discrimination procedure, Ro-60-0175 was not generalised with nicotine but shifted the nicotine dose-response curve to the right in a dose-related manner. CONCLUSIONS The data suggest that selective occupancy of 5-HT(2C) receptors can attenuate some effects of nicotine in the 5-CSRTT and weaken the nicotine discriminative stimulus; these effects cannot be explained by a sedative action of Ro-60-0175.
Collapse
Affiliation(s)
- Davide Quarta
- Section of Behavioural Pharmacology, Institute of Psychiatry P049, King's College London, De Crespigny Park, London, UK
| | | | | |
Collapse
|
94
|
Lee CM, Chang WC, Chang KB, Shyu BC. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs. Eur J Neurosci 2007; 25:2847-61. [PMID: 17561847 DOI: 10.1111/j.1460-9568.2007.05485.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The absence of a slice preparation with intact thalamocortical pathways has held back elucidation of the cellular and synaptic mechanisms by which thalamic signals are differentially transmitted to and processed in the anterior cingulate cortex (ACC). In this report we introduce an innovative mouse brain slice preparation in which it is possible to explore the electrophysiological properties of ACC neurons with intact long-distance inputs from medial thalamic (MT) nuclei by intracellular recordings; this MT-ACC neuronal pathway plays an integral role in information transmission. Biocytin-labeled fibers in a functional slice could be traced anterogradely or retrogradely from the MT via the reticular thalamic nuclei, striatum and corpus callosum to the cingulate cortical areas. Eighty-seven cells downstream of the thalamic projections in 49 slices were recorded intracellularly. Intracellular recordings in the ACC showed that thalamocingulate transmission involves both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors. Thalamus-evoked responses recorded extracellularly in the ACC were activated and progressed along a deep-superficial-deep trajectory loop across the ACC layers. We observed enhanced paired-pulse facilitation and tetanic potentiation of thalamocingulate synapses, suggestive of input-specific ACC plasticity and selective processing of information relayed by thalamocingulate pathways. Furthermore, we observed differential responses of ACC neurons to thalamic burst stimulation, which underscores the importance of MT afferents in relaying sensory information to the ACC. This new slice preparation enables the contribution of MT-evoked ACC synaptic transmission to short-term plasticity in the neuronal circuitry underlying sensory information processing to be examined in detail.
Collapse
Affiliation(s)
- Chia-Ming Lee
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
95
|
Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol Neurobiol 2007; 36:184-200. [PMID: 17952661 DOI: 10.1007/s12035-007-0032-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Substances such as acetylcholine and glutamate act as both neurotransmitters and neuromodulators. As neuromodulators, they change neural information processing by regulating synaptic transmitter release, altering baseline membrane potential and spiking activity, and modifying long-term synaptic plasticity. Slice physiology research has demonstrated that many neuromodulators differentially modulate afferent, incoming information compared to intrinsic and recurrent processing in cortical structures such as piriform cortex, neocortex, and the hippocampus. The enhancement of afferent (external) pathways versus the suppression at recurrent (internal) pathways could cause cortical dynamics to switch between a predominant influence of external stimulation to a predominant influence of internal recall. Modulation of afferent versus intrinsic processing could contribute to the role of neuromodulators in regulating attention, learning, and memory effects in behavior.
Collapse
|
96
|
Dávid C, Schleicher A, Zuschratter W, Staiger JF. The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat. Eur J Neurosci 2007; 25:2329-40. [PMID: 17445231 DOI: 10.1111/j.1460-9568.2007.05496.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
gamma-Aminobutyric acid (GABA)ergic interneurons of neocortex consist of many subgroups with extremely heterogeneous morphological, physiological and molecular properties. To explore the putative effect of the vasoactive intestinal polypeptide-immunopositive (VIP +) neurons on neocortical circuitry, the number and distribution of VIP + boutons were analysed on somatodendritic domains of 272 parvalbumin immunopositive (PV +) 3D-reconstructed neurons. The synaptic nature of 91% of somatic and 76% of dendritic contacts was verified by electron microscopy. The target PV + neurons were separated in two significantly different groups by means of cluster analysis. The first group (Cluster 1, 26%) received on average five times more VIP + synapses than those of the second group. The second group (Cluster 2, 74%) contained cells that were poorly innervated by VIP + boutons or did not have either somatic or dendritic or any VIP innervation at all. The cells of Cluster 1 had a soma size and total dendritic length significantly smaller than that of Cluster 2, however, they received three times more dendritic synapses, which resulted in a five times higher VIP + synaptic density on dendrites. Our results showed that although most of the PV + cells are innervated by VIP + boutons at a varying degree, some 6% of PV + cells received no input from VIP + interneurons. This suggests a refined morphological basis to influence the majority of the PV + interneurons, which are very effectively controlling pyramidal cell firing. Together with metabolic and neuromodulatory effects of VIP, this would probably result in an enhanced responsiveness of the latter cell type to tactile stimuli.
Collapse
Affiliation(s)
- Csaba Dávid
- Albert-Ludwigs-University Freiburg, Institute of Anatomy and Cell Biology, Department of Neuroanatomy, D-79001 Freiburg, Germany.
| | | | | | | |
Collapse
|
97
|
Espeseth T, Endestad T, Rootwelt H, Reinvang I. Nicotine receptor gene CHRNA4 modulates early event-related potentials in auditory and visual oddball target detection tasks. Neuroscience 2007; 147:974-85. [PMID: 17590520 DOI: 10.1016/j.neuroscience.2007.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/30/2007] [Accepted: 04/16/2007] [Indexed: 11/18/2022]
Abstract
The present study seeks to identify effects of a common genetic polymorphism in the human nicotinic alpha4beta2 receptor on components of the cognitive event-related potentials in auditory and visual modalities. The same sense thymine-to-cytosine polymorphism (c.1629T-C; Ser543Ser) was shown to preferentially modulate early components in both modalities. Specifically, the auditory N1 component amplitude was higher for T allele homozygotes than for C allele carriers. The visual P1 component revealed the same pattern of significant polymorphic modulation, but the later N1 amplitude differences were only marginally significant. There was no reliable indication of interactions between genotype and task factors. Parallel modulation of early latency modality-specific event-related potential (ERP) components in vision and audition may indicate that the CHRNA4 polymorphism affects factors that are common to top-down modulation of sensory processing across modalities.
Collapse
Affiliation(s)
- T Espeseth
- Center for the Study of Human Cognition, Department of Psychology, University of Oslo, and Department of Medical Biochemistry, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway.
| | | | | | | |
Collapse
|
98
|
Briand LA, Gritton H, Howe WM, Young DA, Sarter M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 2007; 83:69-91. [PMID: 17681661 PMCID: PMC2080765 DOI: 10.1016/j.pneurobio.2007.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/06/2007] [Accepted: 06/22/2007] [Indexed: 12/19/2022]
Abstract
Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
Collapse
Affiliation(s)
- Lisa A Briand
- University of Michigan, Department of Psychology and Neuroscience Program, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
99
|
von Engelhardt J, Eliava M, Meyer AH, Rozov A, Monyer H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J Neurosci 2007; 27:5633-42. [PMID: 17522308 PMCID: PMC6672773 DOI: 10.1523/jneurosci.4647-06.2007] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine is a major neurotransmitter that modulates cortical functions. In addition to basal forebrain neurons that give rise to the principal cholinergic input into the cortex, a second source constituted by intrinsic cholinergic interneurons has been identified. Although these cells have been characterized anatomically, little is known about their functional role in cortical microcircuits. The paucity of this cell population has been a major hindrance for detailed electrophysiological investigations. To facilitate functional studies, we generated transgenic mice that express enhanced green fluorescent protein (EGFP) in choline acetyltransferase (ChAT)-positive neurons. Aided by the transgene expression, the characterization of distinct cholinergic interneurons was possible. These cells were located in layer 2-3, had a bipolar morphology, were calretinin- and vasoactive intestinal peptide positive, but had a non-GABAergic phenotype. Paired recordings showed that EGFP/ChAT-positive neurons receive excitatory and inhibitory input from adjacent principal cells and various types of interneurons. However, EGFP/ChAT-positive neurons do not exert direct postsynaptic responses in neighboring neurons. Interestingly, prolonged activation of EGFP-labeled cholinergic neurons induces an increase in spontaneous EPSCs in adjacent pyramidal neurons. This indirect effect is mediated by nicotinic receptors that are presumably presynaptically localized. Thus, intrinsic bipolar cholinergic neurons can modulate cortical function locally.
Collapse
Affiliation(s)
- Jakob von Engelhardt
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marina Eliava
- Department of Physiology, Northwestern University, Chicago, Illinois 60611, and
| | - Axel H. Meyer
- Neuroscience Research, Abbott GmbH and Company KG, 67061 Ludwigshafen, Germany
| | - Andrei Rozov
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department Clinical Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
100
|
Quarta D, Naylor CG, Morris HV, Patel S, Genn RF, Stolerman IP. Different effects of ionotropic and metabotropic glutamate receptor antagonists on attention and the attentional properties of nicotine. Neuropharmacology 2007; 53:421-30. [PMID: 17631918 DOI: 10.1016/j.neuropharm.2007.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 01/09/2023]
Abstract
Distinct lines of evidence indicate that glutamate plays a primary role in modulating cognitive functions. Notably, competitive glutamate receptor antagonists acting at ionotropic N-methyl-d-aspartate (NMDA) or metabotropic glutamate 5 (mGlu5) receptors impair cognitive performance. Conversely, nicotine and other psychostimulants stimulate glutamatergic mechanisms and can act as cognitive enhancers. Hence we analysed the role of glutamate in performance of an attentional task and in nicotine-induced enhancement of attention by using the rodent five-choice serial reaction time task (5-CSRTT). Rats were trained to criterion performance and were then pre-dosed with either vehicle, the NMDA receptor antagonist (+)3-(2-carboxypiperazin-4-propyl)-1-propenyl-1-phosphonic acid (CPP, 0.3-2.0 mg/kg) or the mGlu5 antagonist 2-methyl-6-phenylethynyl-pyridine (MPEP, 1.0-9.0 mg/kg) and challenged with nicotine (0.2 mg/kg). Nicotine improved attentional performance, an effect that was weakened by doses of CPP that themselves had little impact on performance; importantly, CPP dose-dependently blunted the ability of nicotine to improve response accuracy, the major measure of signal detection in the paradigm. MPEP dose-dependently impaired signal detection under conditions with a high attentional load, an effect that was reversed by nicotine; thus, MPEP did not block nicotine-induced attentional enhancement. Co-administration of either CPP or MPEP with nicotine also produced a general slowing of performance characterised by increases in omission errors and response latencies and reduced anticipatory responding. It is concluded that activation of NMDA receptors may be an important determinant of the effects of nicotine in the 5-CSRTT. Stimulation of nicotinic receptors may also reverse attentional deficits associated with the impaired function of the glutamate network.
Collapse
Affiliation(s)
- Davide Quarta
- Section of Behavioural Pharmacology P049, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | | | | | | | | |
Collapse
|