51
|
Abstract
Specialized adaptations for killing microbes are synonymous with phagocytic cells including macrophages, monocytes, inflammatory neutrophils, and eosinophils. Recent genome sequencing of extant species, however, reveals that analogous antimicrobial machineries exist in certain non-immune cells and also within species that ostensibly lack a well-defined immune system. Here we probe the evolutionary record for clues about the ancient and diverse phylogenetic origins of macrophage killing mechanisms and how some of their properties are shared with cells outside the traditional bounds of immunity in higher vertebrates such as mammals.
Collapse
|
52
|
Zaidi A, Singh KP, Ali V. Leishmania and its quest for iron: An update and overview. Mol Biochem Parasitol 2016; 211:15-25. [PMID: 27988301 DOI: 10.1016/j.molbiopara.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Abstract
Parasites of genus Leishmania are the causative agents of complex neglected diseases called leishmaniasis and continue to be a significant health concern globally. Iron is a vital nutritional requirement for virtually all organisms, including pathogenic trypanosomatid parasites, and plays a crucial role in many facets of cellular metabolism as a cofactor of several enzymes. Iron acquisition is essential for the survival of parasites. Yet parasites are also vulnerable to the toxicity of iron and reactive oxygen species. The aim of this review is to provide an update on the current knowledge about iron acquisition and usage by Leishmania species. We have also discussed about host strategy to modulate iron availability and the strategies deployed by Leishmania parasites to overcome iron withholding defences and thus favour parasite growth within host macrophages. Since iron plays central roles in the host's response and parasite metabolism, a comprehensive understanding of the iron metabolism is beneficial to identify potential viable therapeutic opportunities against leishmaniasis.
Collapse
Affiliation(s)
- Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India.
| |
Collapse
|
53
|
Khan N, Vidyarthi A, Nadeem S, Negi S, Nair G, Agrewala JN. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol 2016; 7:529. [PMID: 27965663 PMCID: PMC5124573 DOI: 10.3389/fimmu.2016.00529] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/10/2016] [Indexed: 01/09/2023] Open
Abstract
The microbiota that resides in the gastrointestinal tract provides essential health benefits to the host. In particular, they regulate immune homeostasis. Recently, several evidences indicate that alteration in the gut microbial community can cause infectious and non-infectious diseases. Tuberculosis (TB) is the most devastating disease, inflicting mortality and morbidity. It remains unexplored, whether changes in the gut microbiota can provoke or prevent TB. In the current study, we have demonstrated the antibiotics driven changes in the gut microbial composition and their impact on the survival of Mycobacterium tuberculosis (Mtb) in the lungs, liver, and spleen of infected mice, compared to those with intact microbiota. Interestingly, dysbiosis of microbes showed significant increase in the bacterial burden in lungs and dissemination of Mtb to spleen and liver. Furthermore, elevation in the number of Tregs and decline in the pool of IFN-γ- and TNF-α-releasing CD4 T cells was noticed. Interestingly, fecal transplantation in the gut microbiota disrupted animals exhibited improved Th1 immunity and lesser Tregs population. Importantly, these animals displayed reduced severity to Mtb infection. This study for the first time demonstrated the novel role of gut microbes in the susceptibility to TB and its prevention by microbial implants. In future, microbial therapies may help in treating patients suffering from TB.
Collapse
Affiliation(s)
- Nargis Khan
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Aurobind Vidyarthi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Sajid Nadeem
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Girish Nair
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh , India
| |
Collapse
|
54
|
NRAMP1 Polymorphisms like Susceptibility Marker in Mexican Focus of Cutaneous Leishmaniasis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7951285. [PMID: 27830154 PMCID: PMC5088330 DOI: 10.1155/2016/7951285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022]
Abstract
Cutaneous leishmaniasis (CL) is endemic in Campeche state, Mexico. Host and parasite factors are involved in the establishment and development of CL. Host factors include immune response and genetic background. NRAMP1 (Natural Resistance Associated Macrophage Protein 1) is important in innate immunity. Polymorphisms in NRAMP1 have been associated with susceptibility or resistance to infectious and autoimmune diseases. To study the association of NRAMP1 mutations with CL in patients from Calakmul, Campeche, samples from 115 CL patients and 69 samples of healthy people from the same area were evaluated. Five regions in NRAMP1 were amplified and digested, looking for mutations in the promoter region (−524G/C), exon 3 (274C/T), exon 8 (823 C7T), and exon 15 (G/A) and deletion of 4 bp in the 3′UTR region. We found a statistical association between polymorphisms in 3′UTR region and exon 8 and CL [χ2 = 13.26; p < 0.05; OR = 17.00; IC of 95% (2.24–128.99)]. Some patients who needed more than 40 doses of Glucantime® to heal injuries presented mutations in exons 3, 8, and 15. Multiple or ear lesions were not associated with NRAMP1 polymorphism.
Collapse
|
55
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
56
|
Abstract
Canine leishmaniosis (CanL) is caused by the parasite Leishmania infantum and is a systemic disease, which can present with variable clinical signs, and clinicopathological abnormalities. Clinical manifestations can range from subclinical infection to very severe systemic disease. Leishmaniosis is categorized as a neglected tropical disease and the complex immune responses associated with Leishmania species makes therapeutic treatments and vaccine development challenging for both dogs and humans. In this review, we summarize innate and adaptive immune responses associated with L. infantum infection in dogs, and we discuss the problems associated with the disease as well as potential solutions and the future direction of required research to help control the parasite.
Collapse
|
57
|
Sun M, Zhang L, Shi S. Associations between NRAMP1 Polymorphisms and Susceptibility to Ulcerative Colitis/Crohn's Disease: A Meta-Analysis. Immunol Invest 2016; 45:255-70. [PMID: 27019053 DOI: 10.3109/08820139.2016.1149191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Multiple environmental and genetic factors contribute to the risks of ulcerative colitis (UC) and Crohn's disease (CD). Several allelic variants have been identified in natural resistance associated macrophage protein 1 (NRAMP1) gene; however, their association with UC/CD remains conflicting. The purpose of this study was to evaluate whether NRAMP1 polymorphisms are associated with the susceptibility to UC/CD. METHODS A meta-analysis on the association between the NRAMP1 polymorphisms and susceptibility to UC/CD was performed. Relevant studies were retrieved from the databases. After eligible data were extracted, Mantel-Haenszel statistics and random/fixed effects model were applied to calculate the pooled odds radio (OR) and 95% confidence interval (95% CI). RESULTS Seven articles containing 536 UC cases, 997 CD cases, and 1361 controls were collected. No significant association between allele 2 frequency of NRAMP1 and susceptibility to UC/CD was detected in overall population (all p > 0.05). However, increased UC/CD risk for allele 3 was observed in Caucasian population (OR = 1.27, 95% CI = 1.08~1.50, p = 0.04), whereas decreased UC/CD risk was detected in non-Caucasian population (OR = 0.72, 95% CI = 0.60~0.87, p < 0.001), under "allele 3 vs. other alleles" model. Moreover, a significant increase in CD risk for T carrier frequency of -237 C/T (OR = 0.44, 95% CI, 0.26~0.75, p = 0.003) was detected, but not 274 C/T and 1729+55del4 (TGTG) +/del. CONCLUSIONS The polymorphism of -237 C/T is related to the risk of CD; and the association of allele 3 with UC/CD risk differs in Caucasian and non-Caucasian population, which might be the potential biomarkers for clinical diagnosis of UC/CD.
Collapse
Affiliation(s)
- Manyi Sun
- a Department of Gastroenterology , Tianjin Union Medicine Center & Tianjin People's Hospital , Tianjin , China
| | - Li Zhang
- b Department of Pathology , Tianjin Union Medicine Center & Tianjin People's Hospital , Tianjin , China
| | - Songli Shi
- b Department of Pathology , Tianjin Union Medicine Center & Tianjin People's Hospital , Tianjin , China
| |
Collapse
|
58
|
Sun H, Kamanova J, Lara-Tejero M, Galán JE. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathog 2016; 12:e1005484. [PMID: 26933955 PMCID: PMC4775039 DOI: 10.1371/journal.ppat.1005484] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen’s virulence. The inflammatory response to microbial pathogens usually limits their replication but it can also cause tissue damage. The enteropathogenic bacteria Salmonella Typhimurium stimulate host signal transduction pathways that result in inflammation. We show here that a family of related Salmonella Typhimurium effector proteins, PipA, GogA and GtgA, which are delivered by its type III secretion systems, specifically and redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to host inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors, which are central components of the NF-κB signaling pathway, but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium mutant strain lacking these effector proteins showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jana Kamanova
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
59
|
Bayerova Z, Janova E, Matiasovic J, Orlando L, Horin P. Positive selection in the SLC11A1 gene in the family Equidae. Immunogenetics 2016; 68:353-64. [DOI: 10.1007/s00251-016-0905-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/24/2016] [Indexed: 12/31/2022]
|
60
|
Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog 2016; 12:e1005340. [PMID: 26741360 PMCID: PMC4704735 DOI: 10.1371/journal.ppat.1005340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. Leishmaniasis is a serious parasitic disease that affects 12 million people worldwide, with clinical manifestations ranging from self-healing cutaneous lesions to deadly visceralizing disease. A vaccine is not available, and new and less toxic drugs against this protozoan parasite are urgently needed. Following introduction into vertebrate hosts during a sand fly blood meal, Leishmania parasites undergo extensive changes in morphology and metabolism that are critical for adaptation to life inside host macrophages and replication as amastigotes. Earlier studies identified major events that occur during amastigote differentiation, but the signaling mechanism initiating this process remained poorly understood. Previously we demonstrated a novel role for the reactive oxygen species (ROS) H2O2 in initiating amastigote differentiation, a process proposed to be dependent on iron availability inside the parasite’s mitochondria. In this study we identify LMIT1, a Leishmania transmembrane protein that functions as a mitochondrial iron transporter and is conserved in other trypanosomatid protozoan parasites. Reduced LMIT1 expression impairs mitochondrial function in the infective amastigote stage, abolishing parasite virulence. Our findings identify LMIT1 as a promising new drug target, and support the conclusion that iron-dependent ROS signals generated in the mitochondria regulate differentiation of virulent Leishmania amastigotes.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | | | - Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Candeal, Salvador, Bahia, Brazil
| | - Jennifer Jensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
61
|
Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep 2015; 16:1482-500. [PMID: 26474900 DOI: 10.15252/embr.201540558] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbes exert a major impact on human health and disease by either promoting or disrupting homeostasis, in the latter instance leading to the development of infectious diseases. Such disparate outcomes are driven by the ever-evolving genetic diversity of microbes and the countervailing host responses that minimize their pathogenic impact. Host defense strategies that limit microbial pathogenicity include resistance mechanisms that exert a negative impact on microbes, and disease tolerance mechanisms that sustain host homeostasis without interfering directly with microbes. While genetically distinct, these host defense strategies are functionally integrated, via mechanisms that remain incompletely defined. Here, we explore the general principles via which host adaptive responses regulating iron (Fe) metabolism impact on resistance and disease tolerance to infection.
Collapse
Affiliation(s)
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University, Innsbruck, Austria
| |
Collapse
|
62
|
McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi. J Vet Intern Med 2015; 29:1648-59. [PMID: 26340305 PMCID: PMC4895676 DOI: 10.1111/jvim.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Rhodococcus equi pneumonia is a major cause of morbidity and mortality in neonatal foals. Much effort has been made to identify preventative measures and new treatments for R. equi with limited success. With a growing focus in the medical community on understanding the genetic basis of disease susceptibility, investigators have begun to evaluate the interaction of the genetics of the foal with R. equi. This review describes past efforts to understand the genetic basis underlying R. equi susceptibility and tolerance. It also highlights the genetic technology available to study horses and describes the use of this technology in investigating R. equi. This review provides readers with a foundational understanding of candidate gene approaches, single nucleotide polymorphism‐based, and copy number variant‐based genome‐wide association studies, and next generation sequencing (both DNA and RNA).
Collapse
Affiliation(s)
- C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - S V Dindot
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - M J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
63
|
Wessling-Resnick M. Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J Biol Chem 2015; 290:18984-90. [PMID: 26055722 DOI: 10.1074/jbc.r115.643973] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the course of infection, many natural defenses are set up along the boundaries of the host-pathogen interface. Key among these is the host response to withhold metals to restrict the growth of invading microbes. This simple act of nutritional warfare, starving the invader of an essential element, is an effective means of limiting infection. The physiology of metal withholding is often referred to as "nutritional immunity," and the mechanisms of metal transport that contribute to this host response are the focus of this review.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- From the Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
64
|
The Relationship of HLA-DQ Alleles with Tuberculosis Risk: A Meta-analysis. Lung 2015; 193:521-30. [DOI: 10.1007/s00408-015-9747-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/13/2015] [Indexed: 11/26/2022]
|
65
|
Renberg RL, Yuan X, Samuel TK, Miguel DC, Hamza I, Andrews NW, Flannery AR. The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Negl Trop Dis 2015; 9:e0003804. [PMID: 26001191 PMCID: PMC4441390 DOI: 10.1371/journal.pntd.0003804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists. Leishmania are protozoan parasites that infect humans and replicate intracellularly in macrophages, cells normally engaged in protecting the host from pathogens. These parasites have several strategies to survive inside the hostile environment of the host macrophage, and one of these strategies involves heme acquisition. Heme is an iron-containing molecule that is essential for many cellular functions. Unlike mammalian cells, Leishmania parasites cannot synthesize heme, so must acquire it from the host cell. In earlier work we found that the parasites express a surface protein, LHR1, which transports heme into the parasites. In this study we identified specific amino acids in LHR1 that are required for heme transport. When expressed in yeast cells, LHR1 carrying these mutations had defects in heme transport that were equivalent to the inhibition in virulence observed when these proteins were expressed in Leishmania and tested in macrophage and mouse infection assays. These critical amino acids do not exist in the human heme transporter, indicating that LHR1 is a promising target for the development of specific drugs for the treatment of leishmaniasis and possibly other serious parasitic diseases, such as Chagas’ disease and sleeping sickness.
Collapse
Affiliation(s)
- Rebecca L. Renberg
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Tamika K. Samuel
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Danilo C. Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: ,
| | - Andrew R. Flannery
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- PathSensors, Inc., Baltimore, Maryland, United States of America
| |
Collapse
|
66
|
SLC11A1 polymorphisms and susceptibility to visceral leishmaniasis in Moroccan patients. Acta Trop 2014; 140:130-6. [PMID: 25151047 DOI: 10.1016/j.actatropica.2014.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/21/2023]
Abstract
Human visceral leishmaniasis is endemic in the Mediterranean basin. Since most infections are sub-clinical or asymptomatic, host genetics can provide concrete evidence in determining disease outcome. SLC11A1/NRAMP1 is a candidate gene that may be related to host susceptibility versus resistance to intracellular pathogens. This study aimed to determine possible association of SLC11A1 polymorphisms with visceral leishmaniasis among Moroccan children. A total of 106 children who developed visceral leishmaniasis due to Leishmania infantum were enrolled in this study. The control group was composed of 137 unrelated children, 97 asymptomatic subjects (DTH+) and 42 healthy individuals (DTH) who had no evidence of present or past infection. Four polymorphisms were studied by PCR-RFLP and sequencing: (GT)n microsatellite in the 5' exon 1; silent substitutions 469+14G/C in intron 4; amino acid substitution D543N in exon 15 and 823C/T polymorphism in exon 8. Thereafter, the frequencies of genotypes, alleles and haplotypes were estimated. Two polymorphisms were each significantly associated in the genotypes with visceral leishmaniasis: 823C/T in exon 8 and D543N in exon 15 when comparing visceral leishmaniasis and DTH+ groups. The results of haplotype frequencies suggested an evidence of association with resistance to visceral leishmaniasis for the "286GTG" and "288GCA" haplotypes, whereas, the "286GCG" haplotype appears to increase the risk to visceral leishmaniasis susceptibility.Our data provide insights into the possible role of SLC11A1 variation in visceral leishmaniasis susceptibility. These results must be regarded as preliminary but suggestive that further study with larger populations is worthwhile.
Collapse
|
67
|
Kedzierski L, Evans KJ. Immune responses during cutaneous and visceral leishmaniasis. Parasitology 2014; 141:1544-1562. [PMID: 25075460 DOI: 10.1017/s003118201400095x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Krystal J Evans
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, Victoria, Australia
| |
Collapse
|
68
|
Jung M, Mertens C, Brüne B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2014; 220:295-304. [PMID: 25260218 DOI: 10.1016/j.imbio.2014.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/07/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Macrophages are central in regulating iron homeostasis, which is tightly linked to their versatile role during innate immunity. They sequester iron by phagocytosis of senescent erythrocytes and represent a major source of available iron in the body. Macrophage iron homeostasis is coupled to the functional heterogeneity and plasticity of these cells, with their extreme roles during inflammation, immune modulation, and resolution of inflammation. It is now appreciated that the macrophage polarization process dictates expression profiles of genes involved in iron metabolism. Therefore, macrophages have evolved a multitude of mechanisms to sequester, transport, store, and release iron. A new, enigmatic protein entering the iron scene and affecting the macrophage phenotype is lipocalin-2. Iron sequestration in macrophages depletes the microenvironment, thereby limiting extracellular pathogen or tumor growth, while fostering inflammation. In contrast, iron release from macrophages contributes to bystander cell proliferation, which is important for tissue regeneration and repair. This dichotomy is also reflected by the dual role of lipocalin-2 in macrophages. Unfortunately, the iron release macrophage phenotype is also a characteristic of tumor-associated macrophages and stimulates tumor cell survival and growth. Iron sequestration versus its release is now appreciated to be associated with the macrophage polarization program and can be used to explain a number of biological functions attributed to distinct macrophage phenotypes. Here we discuss macrophage iron homeostasis with a special focus on lipocalin-2 related to the formation and function of tumor-associated macrophages.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Christina Mertens
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
69
|
Abstract
Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.
Collapse
|
70
|
Castellucci LC, Almeida LFD, Jamieson SE, Fakiola M, Carvalho EMD, Blackwell JM. Host genetic factors in American cutaneous leishmaniasis: a critical appraisal of studies conducted in an endemic area of Brazil. Mem Inst Oswaldo Cruz 2014; 109:279-88. [PMID: 24863979 PMCID: PMC4131779 DOI: 10.1590/0074-0276140028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.
Collapse
Affiliation(s)
- Léa Cristina Castellucci
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Lucas Frederico de Almeida
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australi, Perth, Australia
| | - Edgar Marcelino de Carvalho
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Universidade Federal da Bahia, Salvador, BA, Brasil
| | | |
Collapse
|
71
|
Loría-Cervera EN, Andrade-Narváez FJ. Animal models for the study of leishmaniasis immunology. Rev Inst Med Trop Sao Paulo 2014; 56:1-11. [PMID: 24553602 PMCID: PMC4085833 DOI: 10.1590/s0036-46652014000100001] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis remains a major public health problem worldwide and is
classified as Category I by the TDR/WHO, mainly due to the absence of control. Many
experimental models like rodents, dogs and monkeys have been developed, each with
specific features, in order to characterize the immune response to
Leishmania species, but none reproduces the pathology observed in
human disease. Conflicting data may arise in part because different parasite strains
or species are being examined, different tissue targets (mice footpad, ear, or base
of tail) are being infected, and different numbers (“low” 1×102 and “high”
1×106) of metacyclic promastigotes have been inoculated. Recently, new
approaches have been proposed to provide more meaningful data regarding the host
response and pathogenesis that parallels human disease. The use of sand fly saliva
and low numbers of parasites in experimental infections has led to mimic natural
transmission and find new molecules and immune mechanisms which should be considered
when designing vaccines and control strategies. Moreover, the use of wild rodents as
experimental models has been proposed as a good alternative for studying the
host-pathogen relationships and for testing candidate vaccines. To date, using
natural reservoirs to study Leishmania infection has been
challenging because immunologic reagents for use in wild rodents are lacking. This
review discusses the principal immunological findings against
Leishmania infection in different animal models highlighting the
importance of using experimental conditions similar to natural transmission and
reservoir species as experimental models to study the immunopathology of the
disease.
Collapse
Affiliation(s)
- Elsy Nalleli Loría-Cervera
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", MéridaYucatán, México, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, Yucatán, México
| | - Fernando José Andrade-Narváez
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", MéridaYucatán, México, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Mérida, Yucatán, México
| |
Collapse
|
72
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
73
|
Bissonnette L, Bergeron MG. Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev Mol Diagn 2014; 6:433-50. [PMID: 16706745 DOI: 10.1586/14737159.6.3.433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular diagnosis of infectious diseases is currently going through a revolution sustained by the regulatory approval of amplification tests that have been shown to be equivalent or superior to existing gold standard methods. The recent approval of a microarray system for the pharmacogenomic profiling of cytochrome P450-mediated drug metabolism is paving the way to novel, rapid, sensitive, robust and economical microfabricated systems for point-of-care diagnostics, which are utilized closer and closer to the patient's bedside. These systems will enable the multiparametric genetic evaluation of several medical conditions, including infectious diseases. This forecoming revolution will position molecular theranostics in a broader integrated view of personalized medicine, which exploits genetic information from microbes and human hosts to optimize patient management and disease treatment.
Collapse
Affiliation(s)
- Luc Bissonnette
- Département de Biologie Médicale (Microbiologie), Faculté de Médecine, Université Laval, Québec City, Canada.
| | | |
Collapse
|
74
|
Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M. Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol 2014; 30:65-74. [PMID: 24388776 PMCID: PMC3919212 DOI: 10.1016/j.pt.2013.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 12/31/2022]
Abstract
Sodium antimony gluconate contributes towards the pathogenesis of PKDL. UV light plays a pivotal role in the development of PKDL. Development of PKDL can be viewed as a reinfection or activation of latent Leishmania parasites. PKDL can be resolved by mounting an effective tissue-specific memory T cell response. Host genetic factors play a contributory role.
Post kala-azar dermal leishmaniasis (PKDL), a cutaneous sequela of visceral leishmaniasis (VL), develops in some patients alongside but more commonly after apparent cure from VL. In view of the pivotal role of PKDL patients in the transmission of VL, here we review clinical, epidemiological, parasitological, and immunological perspectives of this disease, focusing on five hypotheses to explain the development of PKDL: (i) the role of antimonial drugs; (ii) UV-induced skin damage; (iii) reinfection; (iv) organ specific failure of memory T cell responses; and (v) genetic susceptibility of the host. This review will enable researchers and clinicians to explore the unresolved mystery of PKDL and provide a framework for future application of ‘omic’ approaches for the control and eventual elimination of VL.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, 244 B, Acharya JC Bose Road, Kolkata 700 020, India
| | - Jane E Dalton
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Paul M Kaye
- Centre for Immunology and Infection, Hull York Medical School and Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, 244 B, Acharya JC Bose Road, Kolkata 700 020, India.
| |
Collapse
|
75
|
Mastroeni P, Grant A. Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect 2013; 15:849-57. [PMID: 24183878 DOI: 10.1016/j.micinf.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Collapse
Affiliation(s)
- Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | |
Collapse
|
76
|
Mittra B, Andrews NW. IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation. Trends Parasitol 2013; 29:489-96. [PMID: 23948431 DOI: 10.1016/j.pt.2013.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
The protozoan parasite Leishmania experiences extreme environmental changes as it alternates between insect and mammalian hosts. In some species, differentiation of insect promastigotes into mammalian-infective amastigotes is induced by elevated temperature and low pH, conditions found within macrophage parasitophorous vacuoles (PVs). However, the signaling events controlling amastigote differentiation remain poorly understood. Recent studies revealed a novel role for iron uptake in orchestrating the differentiation of amastigotes, through a mechanism that involves production of reactive oxygen species (ROS) and is independent from pH and temperature changes. ROS are generally thought to be deleterious for pathogens, but it is becoming increasingly apparent that they can also function as signaling molecules regulating Leishmania differentiation, in a process that is tightly controlled by iron availability.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
77
|
Deatherage Kaiser BL, Li J, Sanford JA, Kim YM, Kronewitter SR, Jones MB, Peterson CT, Peterson SN, Frank BC, Purvine SO, Brown JN, Metz TO, Smith RD, Heffron F, Adkins JN. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection. PLoS One 2013; 8:e67155. [PMID: 23840608 PMCID: PMC3694140 DOI: 10.1371/journal.pone.0067155] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.
Collapse
Affiliation(s)
- Brooke L. Deatherage Kaiser
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Jie Li
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - James A. Sanford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Scott R. Kronewitter
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Marcus B. Jones
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Christine T. Peterson
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Scott N. Peterson
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bryan C. Frank
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
78
|
Genetic and functional evidence for a role for SLC11A1 in susceptibility to otitis media in early childhood in a Western Australian population. INFECTION GENETICS AND EVOLUTION 2013; 16:411-8. [DOI: 10.1016/j.meegid.2013.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/16/2013] [Indexed: 11/19/2022]
|
79
|
Upregulation of the host SLC11A1 gene by Clostridium difficile toxin B facilitates glucosylation of Rho GTPases and enhances toxin lethality. Infect Immun 2013; 81:2724-32. [PMID: 23690404 DOI: 10.1128/iai.01177-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pseudomembranous enterocolitis associated with Clostridium difficile infection is an important cause of morbidity and mortality in patients being treated with antibiotics. Two closely related large protein toxins produced by C. difficile, TcdA and TcdB, which act identically but at different efficiencies to glucosylate low-molecular-weight Rho GTPases, underlie the microbe's pathogenicity. Using antisense RNA encoded by a library of human expressed sequence tags (ESTs), we randomly inactivated host chromosomal genes in HeLa cells and isolated clones that survived exposure to ordinarily lethal doses of TcdB. This phenotypic screening and subsequent analysis identified solute carrier family 11 member 1 (SLC11A1; formerly NRAMP1), a divalent cation transporter crucial to host defense against certain microbes, as an enhancer of TcdB lethality. Whereas SLC11A1 normally is poorly expressed in human cells of nonmyeloid lineage, TcdB increased SLC11A1 mRNA abundance in such cells through the actions of the RNA-binding protein HuR. We show that short hairpin RNA (shRNA) directed against SLC11A1 reduced TcdB glucosylation of small Rho GTPases and, consequently, toxin lethality. Consistent with the previously known role of SLC11A1 in cation transport, these effects were enhanced by elevation of Mn(2+) in media; conversely, they were decreased by treatment with a chelator of divalent cations. Our findings reveal an unsuspected role for SLC11A1 in determining C. difficile pathogenicity, demonstrate the novel ability of a bacterial toxin to increase its cytotoxicity, establish a mechanistic basis for these effects, and suggest a therapeutic approach to mitigate cell killing by C. difficile toxins A and B.
Collapse
|
80
|
Hedges JF, Kimmel E, Snyder DT, Jerome M, Jutila MA. Solute carrier 11A1 is expressed by innate lymphocytes and augments their activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4263-73. [PMID: 23509347 DOI: 10.4049/jimmunol.1200732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Solute carrier 11A1 (SLC11A1) is a divalent ion transporter formerly known as the natural resistance-associated macrophage protein (NRAMP1) and the Bcg/Lsh/Ity locus. SLC11A1 was thought to be exclusively expressed in monocyte/macrophages and to have roles in phagosome maturation and cell activation. We characterized the expression of SLC11A1 in the majority of human and bovine γδ T cells and NK cells and in human CD3(+)CD45RO(+) T cells. Consistent with a role for iron-dependent inhibition of protein tyrosine phosphatases, SLC11A1(+) lymphocytes were more prone to activation and retained tyrosine phosphorylation. Transfection of SLC11A1 into a human γδ T cell-like line rendered the cells more prone to activation. Nonadherent splenocytes from wild-type mice expressed significantly greater IFN-γ compared with cells from Sv/129 (SLC11A1(-/-)) mice. Our data suggest that SLC11A1 has a heretofore unknown role in activation of a large subset of innate lymphocytes that are critical sources of IFN-γ. SLC11A1(+) animals have enhanced innate IFN-γ expression in response to Salmonella infection compared with SLC11A1(-) mice, which include commonly used inbred laboratory mice. Expression of SLC11A1 in innate lymphocytes and its role in augmenting their activation may account for inconsistencies in studies of innate lymphocytes in different animal models.
Collapse
Affiliation(s)
- Jodi F Hedges
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA.
| | | | | | | | | |
Collapse
|
81
|
Mittra B, Cortez M, Haydock A, Ramasamy G, Myler PJ, Andrews NW. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. ACTA ACUST UNITED AC 2013; 210:401-16. [PMID: 23382545 PMCID: PMC3570109 DOI: 10.1084/jem.20121368] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During its life cycle, Leishmania undergoes extreme environmental changes, alternating between insect vectors and vertebrate hosts. Elevated temperature and decreased pH, conditions encountered after macrophage invasion, can induce axenic differentiation of avirulent promastigotes into virulent amastigotes. Here we show that iron uptake is a major trigger for the differentiation of Leishmania amazonensis amastigotes, independently of temperature and pH changes. We found that iron depletion from the culture medium triggered expression of the ferrous iron transporter LIT1 (Leishmania iron transporter 1), an increase in iron content of the parasites, growth arrest, and differentiation of wild-type (WT) promastigotes into infective amastigotes. In contrast, LIT1-null promastigotes showed reduced intracellular iron content and sustained growth in iron-poor media, followed by cell death. LIT1 up-regulation also increased iron superoxide dismutase (FeSOD) activity in WT but not in LIT1-null parasites. Notably, the superoxide-generating drug menadione or H(2)O(2) was sufficient to trigger differentiation of WT promastigotes into fully infective amastigotes. LIT1-null promastigotes accumulated superoxide radicals and initiated amastigote differentiation after exposure to H(2)O(2) but not to menadione. Our results reveal a novel role for FeSOD activity and reactive oxygen species in orchestrating the differentiation of virulent Leishmania amastigotes in a process regulated by iron availability.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
82
|
Identification and functional characterization of Leishmania donovani secretory peroxidase: delineating its role in NRAMP1 regulation. PLoS One 2013; 8:e53442. [PMID: 23326430 PMCID: PMC3543463 DOI: 10.1371/journal.pone.0053442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/28/2012] [Indexed: 01/02/2023] Open
Abstract
Leishmania silently evades host immune system and establish in the hostile environment of host macrophage phagolysosomes. For differentiation, growth and division parasite acquires divalent cations especially iron from the host nutritive pool. Natural resistance associated with macrophage protein1 (NRAMP1), a cation transporter that effluxes out divalent cations specifically iron from phagosomal milieu to the cytosol, to create ions deprived status for pathogenic microorganisms. The mechanisms of NRAMP1 regulation are largely unknown in leishmanial infections. In the present study, we identified a secretory Leishmania donovani peroxidase (Prx) that showed peroxidoxin like peroxidase activity and significantly reduced H2O2, O2.− and NO levels in LPS activated macrophages. Further, we also observed down regulated Nramp1 expression and concomitantly declined labile iron pool in activated macrophages treated with identified peroxidase. Prx also decreased levels of TNF-α, IFN-γ and IL-12 in LPS activated macrophages. These observations indicate a bifunctional protective role of secretory Prx; first it reduces redox activation of macrophages, and secondly it allows iron access to Leishmania by down regulating NRAMP1 expression.
Collapse
|
83
|
Pharmacogenomics and Personalized Medicine for Infectious Diseases. OMICS FOR PERSONALIZED MEDICINE 2013. [PMCID: PMC7122342 DOI: 10.1007/978-81-322-1184-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans have been plagued by the scourge of invasion by pathogens leading to infectious diseases from the time in memoriam and are still the cause of morbidity and mortality among millions of individuals. Trying to understand the disease mechanisms and finding the remedial measures have been the quest of humankind. The susceptibility to disease of an individual in a given population is determined by ones genetic buildup. Response to treatment and the disease prognosis also depends upon individual’s genetic predisposition. The environmental stress induces mutations and is leading to the emergence of ever-increasing more dreaded infectious pathogens, and now we are in the era of increasing antibiotic resistance that has thrown up a challenge to find new treatment regimes. Discoveries in the science of high-throughput sequencing and array technologies have shown new hope and are bringing a revolution in human health. The information gained from sequencing of both human and pathogen genomes is a way forward in deciphering host-pathogen interactions. Deciphering the pathogen virulence factors, host susceptibility genes, and the molecular programs involved in the pathogenesis of disease has paved the way for discovery of new molecular targets for drugs, diagnostic markers, and vaccines. The genomic diversity in the human population leads to differences in host responses to drugs and vaccines and is the cause of poor response to treatment as well as adverse reactions. The study of pharmacogenomics of infectious diseases is still at an early stage of development, and many intricacies of the host-pathogen interaction are yet to be understood in full measure. However, progress has been made over the decades of research in some of the important infectious diseases revealing how the host genetic polymorphisms of drug-metabolizing enzymes and transporters affect the bioavailability of the drugs which further determine the efficacy and toxicology of the drugs used for treatment. Further, the field of structural biology and chemistry has intertwined to give rise to medical structural genomics leading the way to the discovery of new drug targets against infectious diseases. This chapter explores how the advent of “omics” technologies is making a beginning in bringing about a change in the prevention, diagnosis, and treatments of the infectious diseases and hence paving way for personalized medicine.
Collapse
|
84
|
Abstract
Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and "case-control" association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.
Collapse
Affiliation(s)
- Abul K. Azad
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Wolfgang Sadee
- Department of Pharmacology, Program in Pharmacogenomics, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
85
|
Abstract
The immune system's battle against pathogens includes the "respiratory burst," a rapid release of ROS from leukocytes, thought to play a role in destroying the invading species. In this issue of the JCI, Paiva et al. demonstrate that oxidative stress actually enhances infection with the protozoan Trypanosoma cruzi, by a mechanism that may involve facilitating parasite access to iron. Their findings suggest a novel direction for the development of drugs against intracellular parasites.
Collapse
|
86
|
Fritsche G, Nairz M, Libby SJ, Fang FC, Weiss G. Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression. J Leukoc Biol 2012; 92:353-9. [PMID: 22706314 DOI: 10.1189/jlb.1111554] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The expression of the cation transporter Nramp1 (Slc11a1) in late phagolysosomes confers resistance to infection with several intracellular pathogens, such as Salmonella enterica, in mice. The antimicrobial actions of Nramp1 are attributable, in part, to modulation of macrophage immune function and cellular iron metabolism--the latter affecting the availability of the essential nutrient iron for intraphagosomal bacteria. Here, we provide novel evidence that Nramp1 functionality increases the expression of the peptide Lcn2, which exerts its antimicrobial activity by scavenging iron-loaded bacterial siderophores and mediating iron efflux from macrophages. With the use of macrophage cell lines expressing functional or nonfunctional Nramp1, we found significantly elevated Lcn2 mRNA and protein levels in Nramp1-expressing cells. These resulted from Nramp1-mediated alterations in the production of ROS, which stimulated NF-κ B activity and subsequently, Lcn2 transcription. We observed that increased Lcn2 levels in primary Nramp1-positive macrophages resulted in a significant suppression of S. enterica serovar typhimurium growth. Stimulation of Lcn2 expression is a novel mechanism by which Nramp1 confers resistance against infection with the intracellular bacterium S. typhimurium.
Collapse
Affiliation(s)
- Gernot Fritsche
- Department of Internal Medicine I, Clinical Immunology and Infectious Diseases, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
87
|
Ben-Selma W, Harizi H, Letaief M, Boukadida J. Age- and gender-specific effects on NRAMP1 gene polymorphisms and risk of the development of active tuberculosis in Tunisian populations. Int J Infect Dis 2012; 16:e543-50. [PMID: 22609013 DOI: 10.1016/j.ijid.2011.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 09/28/2011] [Accepted: 11/16/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies that have assessed NRAMP1 polymorphisms and their association with susceptibility to tuberculosis (TB) in humans have yielded conflicting results. In this study, we evaluated the association between NRAMP1 gene polymorphisms and the risk of the development of active TB in Tunisian populations. METHODS The distribution of 3'-UTR and D543N polymorphisms in 223 TB patients (168 patients with pulmonary TB (PTB) and 55 patients with extrapulmonary TB (EPTB)) and 150 healthy donors was determined by PCR-restriction fragment length polymorphism (RFLP) method. RESULTS We found that AA and AG genotypes appeared to be associated with susceptibility to PTB (odds ratio (OR) 10.8, 95% confidence interval (CI) 1.37-230.8; p corrected for the number of genotypes (pc)=0.018) and EPTB (OR 4.37, 95% CI 1.64-11.82; pc=0.0024), respectively, in patients aged less than 30 years. However, wild-type GG genotype appeared to be associated with resistance against PTB in females (OR 0.1, 95% CI 0.01-0.74; pc=0.03). The 3'-UTR del/del genotype appeared to be associated with susceptibility to PTB in patients aged less than 30 years (OR 3.75, 95% CI 1.5-9.52; pc=0.003). In contrast, TGTG+/del might be associated with resistance against the development of active PTB (OR 0.23, 95% CI 0.08-0.65; pc=0.003). A-del haplotype appeared to be associated with susceptibility to PTB (OR 1.79, 95% CI 1.11-2.9; pc=0.04). CONCLUSIONS Collectively, our results suggest an association of NRAMP1 3'-UTR and D543N polymorphisms with susceptibility to mycobacterial infection in Tunisian populations in relation to age and sex.
Collapse
Affiliation(s)
- Walid Ben-Selma
- Laboratory of Microbiology and Immunology, UR02SP13, Farhat Hached University Hospital, Av. Ibn el Jazzar, 4000 Sousse, Tunisia.
| | | | | | | |
Collapse
|
88
|
Moriguchi R, Otaki Y, Hazeki S, Shimada T, Matsumoto A, Kakita N, Kaibe S, Kuragano T, Nonoguchi H, Masayoshi N, Hasuike Y, Nakanishi T. High levels of tumor necrosis factor-α downregulate antimicrobial iron transport protein, Nramp1, in chronic hemodialysis patients: a key factor for infection risk. Am J Nephrol 2012; 35:372-8. [PMID: 22508410 DOI: 10.1159/000337742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/03/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The susceptibility of patients on maintenance hemodialysis (MHD) to infections is a major cause of mortality and morbidity. Natural resistance-associated macrophage protein 1 (Nramp1) regulates intracellular pathogen proliferation, and its mRNA expression is highest in polymorphonuclear leukocytes (PMNLs). The purpose of this study was to determine the level of Nramp1 in PMNLs from MHD patients and the factors affecting its expression. METHODS Twenty MHD patients and 24 healthy volunteers (controls) were recruited. Relative quantitative PCR was used to measure Nramp1 mRNA, and protein levels were semiquantified by means of real-time PCR and Western blot analysis or immunohistochemistry. The effect of tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6) on Nramp1 expression in PMNLs from controls was also examined. RESULTS Nramp1 mRNA and protein levels were substantially lower in PMNLs from MHD than control subjects. Serum TNF-α levels were significantly higher in the MHD group and were inversely correlated with Nramp1 mRNA levels. The addition of TNF-α to PMNLs from control subjects decreased mRNA and protein levels of Nramp1. IL-6 did not alter Nramp1 mRNA or protein expression. CONCLUSION We found that Nramp1 was downregulated in the PMNLs of MHD patients, which constitute the first defense barrier against bacterial challenges. High levels of TNF-α may be associated with the downregulation of Nramp1. Our findings indicate that the susceptibility to infection observed in MHD patients could be partly due to the impairment of the intracellular handling of iron and the donation of more iron to the bacteria.
Collapse
Affiliation(s)
- Rintarou Moriguchi
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Turner AK, Begon M, Jackson JA, Paterson S. Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 2012; 21:1632-46. [PMID: 22364125 DOI: 10.1111/j.1365-294x.2012.05501.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Individuals in natural populations are frequently exposed to a wide range of pathogens. Given the diverse profile of gene products involved in responses to different types of pathogen, this potentially results in complex pathogen-specific selection pressures acting on a broad spectrum of immune system genes in wild animals. Thus far, studies into the evolution of immune genes in natural populations have focused almost exclusively on the Major Histocompatibility Complex (MHC). However, the MHC represents only a fraction of the immune system and there is a need to broaden research in wild species to include other immune genes. Here, we examine the evidence for natural selection in a range of non-MHC genes in a natural population of field voles (Microtus agrestis). We concentrate primarily on genes encoding cytokines, signalling molecules critical in eliciting and mediating immune responses and identify signatures of natural selection acting on several of these genes. In particular, genetic diversity within Interleukin 1 beta and Interleukin 2 appears to have been maintained through balancing selection. Taken together with previous findings that polymorphism within these genes is associated with variation in resistance to multiple pathogens, this suggests that pathogen-mediated selection may be an important force driving genetic diversity at cytokine loci in voles and other natural populations. These results also suggest that, along with the MHC, preservation of genetic variation within cytokine genes should be a priority for the conservation genetics of threatened wildlife populations.
Collapse
Affiliation(s)
- Andrew K Turner
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
90
|
Lantier I, Moreno CR, Berthon P, Sallé G, Pitel F, Schibler L, Gautier-Bouchardon AV, Boivin R, Weisbecker JL, François D, Bouix J, Cribiu EP, Elsen JM, Lantier F. Quantitative trait loci for resistance to infection in sheep using a live Salmonella Abortusovis vaccine. Anim Genet 2012; 43:632-5. [DOI: 10.1111/j.1365-2052.2011.02291.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
91
|
Iron metabolism and the innate immune response to infection. Microbes Infect 2011; 14:207-16. [PMID: 22033148 DOI: 10.1016/j.micinf.2011.10.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022]
Abstract
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.
Collapse
|
92
|
Abstract
Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.
Collapse
|
93
|
Mehrotra S, Oommen J, Mishra A, Sudharshan M, Tiwary P, Jamieson SE, Fakiola M, Rani DS, Thangaraj K, Rai M, Sundar S, Blackwell JM. No evidence for association between SLC11A1 and visceral leishmaniasis in India. BMC MEDICAL GENETICS 2011; 12:71. [PMID: 21599885 PMCID: PMC3128845 DOI: 10.1186/1471-2350-12-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/20/2011] [Indexed: 01/09/2023]
Abstract
Background SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. Methods Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). Results No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. Conclusions This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, OS 221 005, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
95
|
Cairo G, Recalcati S, Mantovani A, Locati M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol 2011; 32:241-7. [PMID: 21514223 DOI: 10.1016/j.it.2011.03.007] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/25/2023]
Abstract
During inflammation, proinflammatory macrophages sequester iron as a well known bacteriostatic mechanism. Alternative activation of macrophages is linked to tissue repair, and during this process the expression pattern of genes important for iron homeostasis is distinct from that in proinflammatory macrophages. This leads to an increased capacity of the alternatively activated macrophages for heme uptake, via scavenger receptors, and for production of anti-inflammatory mediators via heme-oxygenase-dependent heme catabolism. Alternatively activated macrophages also release non-heme iron into tissues via ferroportin. Here, we propose that the iron-release-associated phenotype of alternatively activated macrophages significantly contributes to their role in various conditions, including tissue repair and tumor growth.
Collapse
Affiliation(s)
- Gaetano Cairo
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
96
|
Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. Expert Rev Mol Med 2011; 13:e12. [PMID: 21477411 DOI: 10.1017/s1462399411001840] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Salmonella enterica causes a range of life-threatening diseases in humans and animals worldwide. Current treatments for S. enterica infections are not sufficiently effective, and there is a need to develop new vaccines and therapeutics. An understanding of how S. enterica spreads in tissues has very important implications for targeting bacteria with vaccine-induced immune responses and antimicrobial drugs. Development of new control strategies would benefit from a more sophisticated evaluation of bacterial location, spatiotemporal patterns of spread and distribution in the tissues, and sites of microbial persistence. We review here recent studies of S. enterica serovar Typhimurium (S. Typhimurium) infections in mice, an established model of systemic typhoid fever in humans, which suggest that continuous bacterial spread to new infection foci and host phagocytes is an essential trait in the virulence of S. enterica during systemic infections. We further highlight how infections within host tissues are truly heterogeneous processes despite the fact that they are caused by the expansion of a genetically homogeneous microbial population. We conclude by discussing how understanding the within-host quantitative, spatial and temporal dynamics of S. enterica infections might aid the development of novel targeted preventative measures and drug regimens.
Collapse
|
97
|
How to become a top model: impact of animal experimentation on human Salmonella disease research. Infect Immun 2011; 79:1806-14. [PMID: 21343352 DOI: 10.1128/iai.01369-10] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
Collapse
|
98
|
Harada N, Kanayama M, Maruyama A, Yoshida A, Tazumi K, Hosoya T, Mimura J, Toki T, Maher JM, Yamamoto M, Itoh K. Nrf2 regulates ferroportin 1-mediated iron efflux and counteracts lipopolysaccharide-induced ferroportin 1 mRNA suppression in macrophages. Arch Biochem Biophys 2011; 508:101-9. [PMID: 21303654 DOI: 10.1016/j.abb.2011.02.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/15/2011] [Accepted: 02/01/2011] [Indexed: 01/29/2023]
Abstract
Iron is an essential element of hemoglobin, and efficient iron recycling from senescent erythrocytes by splenic macrophages is required for erythrocyte hemoglobin synthesis during erythropoiesis. Ferroportin 1 (Fpn1) is the sole iron exporter in mammals, and it also regulates iron reutilization. In this study, we demonstrated genetically that a redox-sensitive transcription factor, Nrf2, regulates Fpn1 mRNA expression in macrophages. Nrf2 activation by several electrophilic compounds commonly resulted in the upregulation of Fpn1 mRNA in bone marrow-derived and peritoneal macrophages obtained from wild-type mice but not from Nrf2 knockout mice. Further, Nrf2 activation enhanced iron release from the J774.1 murine macrophage cell line. Previous studies showed that inflammatory stimuli, such as LPS, downregulates macrophage Fpn1 by transcriptional and hepcidin-mediated post-translational mechanisms leading to iron sequestration by macrophages. We showed that two Nrf2 activators, diethyl maleate and sulforaphane (SFN; a natural Nrf2 activator found in broccoli), restored the LPS-induced suppression of Fpn1 mRNA in human and mouse macrophages, respectively. Furthermore, SFN counteracted the LPS-induced increase of Hepcidin mRNA by an Nrf2-independent mechanism in mouse peritoneal macrophages. These results demonstrate that Nrf2 regulates iron efflux from macrophages through Fpn1 gene transcription and suggest that Nrf2 may control iron metabolism during inflammation.
Collapse
Affiliation(s)
- Nobuhiko Harada
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Xu YZ, Thuraisingam T, Marino R, Radzioch D. Recruitment of SWI/SNF complex is required for transcriptional activation of the SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 2011; 286:12839-49. [PMID: 21300803 DOI: 10.1074/jbc.m110.185637] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The solute carrier family 11 member 1 (SLC11A1) gene is strictly regulated and exclusively expressed in myeloid lineage cells. However, little is known about the transcriptional regulation of the SLC11A1 gene during myeloid development. In this study, we used HL-60 cells as a model to investigate the regulatory elements/factors involved in the transactivation of the SLC11A1 gene during phorbol 12-myristate 13-acetate (PMA)-induced macrophage differentiation of HL-60 cells. Promoter deletion analysis showed that a 7-base AP-1-like element (TGACTCT) was critical for the responsiveness of the SLC11A1 promoter to PMA. Stimulation by PMA induced the binding of ATF-3 and the recruitment of two components of the SWI/SNF complex, BRG1 and β-actin, to this element in an ATF-3-dependent manner. RNAi-mediated depletion of ATF-3 or BRG1 markedly decreased SLC11A1 gene expression and its promoter activity induced by PMA. Luciferase reporter experiments demonstrated that ATF-3 cooperated with BRG1 and β-actin to activate the SLC11A1 promoter. Furthermore, we showed that PMA can induce the proximal (GT/AC)(n) repeat sequence to convert to the Z-DNA structure in the SLC11A1 gene promoter, and depletion of BRG1 resulted in a significant decrease of Z-DNA formation. Our results demonstrated that recruitment of the SWI/SNF complex initiated Z-DNA formation and subsequently helped to transactivate the SLC11A1 gene.
Collapse
Affiliation(s)
- Yong Zhong Xu
- Division of Experimental Medicine, Department of Medicine, Montreal General Hospital Research Institute, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | | |
Collapse
|
100
|
Reynolds MM, Bogomolnaya L, Guo J, Aldrich L, Bokhari D, Santiviago CA, McClelland M, Andrews-Polymenis H. Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection. PLoS One 2011; 6:e15800. [PMID: 21298091 PMCID: PMC3027627 DOI: 10.1371/journal.pone.0015800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022] Open
Abstract
TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions.
Collapse
Affiliation(s)
- M. Megan Reynolds
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Lindsay Aldrich
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Danial Bokhari
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michael McClelland
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- Department of Pathology and Laboratory Medicine, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Helene Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|