51
|
Affiliation(s)
- Francine Blei
- Department of Pediatrics, New York University School of Medicine, Kaplan Cancer Center, General Clinical Research Center, Hassenfeld Children's Center for Cancer and Blood Disorders, New York, New York, USA
| |
Collapse
|
52
|
Kluk MJ, Hla T. Role of the sphingosine 1-phosphate receptor EDG-1 in vascular smooth muscle cell proliferation and migration. Circ Res 2001; 89:496-502. [PMID: 11557736 DOI: 10.1161/hh1801.096338] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sphingosine 1-phosphate (S1P), a platelet-derived ligand for the EDG-1 family of G protein-coupled receptors (GPCRs), has recently emerged as a regulator of vascular development. Although S1P has potent effects on endothelial cells and vascular smooth muscle cells (VSMCs), the functions of the specific S1P receptors in the latter cell type are not known. Here we show that pup-intimal VSMCs express higher levels of EDG-1 mRNA than adult-medial VSMCs. Stable transfection of EDG-1 into adult-medial VSMCs enhanced their proliferative response to S1P, concomitant with induction of p70 S6 kinase activity and expression of cyclin D1. Pertussis toxin treatment inhibited S1P-induced p70 S6 kinase activation, cyclin D1 expression and proliferation, suggesting that EDG-1-coupling to the G(i) pathway is critical. Furthermore, blocking p70 S6 kinase phosphorylation with rapamycin inhibited cyclin D1 expression and proliferation, suggesting that activation of p70 S6 kinase is critical in EDG-1/G(i)-mediated cell proliferation. EDG-1 expression also profoundly enhanced the migratory response of adult-medial VSMCs to S1P. S1P-induced migration of adult-medial VSMCs expressing exogenous EDG-1 required G(i) activation but not p70 S6 kinase. These results suggest that enhanced expression of EDG-1 in VSMCs dramatically stimulates both the proliferative and migratory responses to S1P. Since EDG-1 is expressed in the pup-intimal phenotype of VSMCs, S1P signaling via EDG-1 may play a role in vascular diseases in which the proliferation and migration of VSMCs are dysregulated.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Division/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Culture Media, Serum-Free/pharmacology
- Cyclin D1/drug effects
- Cyclin D1/metabolism
- DNA/biosynthesis
- DNA/drug effects
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Gene Expression Regulation/drug effects
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Lysophospholipids
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Pertussis Toxin
- Protein Isoforms/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cell Surface
- Receptors, G-Protein-Coupled
- Receptors, Lysophospholipid
- Ribosomal Protein S6 Kinases/drug effects
- Ribosomal Protein S6 Kinases/metabolism
- Sirolimus/pharmacology
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Transfection
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- M J Kluk
- Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
53
|
Vasir B, Jonas JC, Steil GM, Hollister-Lock J, Hasenkamp W, Sharma A, Bonner-Weir S, Weir GC. Gene expression of VEGF and its receptors Flk-1/KDR and Flt-1 in cultured and transplanted rat islets. Transplantation 2001; 71:924-35. [PMID: 11349728 DOI: 10.1097/00007890-200104150-00018] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and its two receptor tyrosine kinases, Flk-1/KDR and Flt-1, may play an important role in mediating the revascularization of transplanted pancreatic islets. METHODS Using semiquantitative multiplex reverse-transcribed polymerase chain reaction we determined the gene expression of VEGF and its receptors in cultured and transplanted rat islets. RESULTS After exposure of islet cells to hypoxia in vitro, increases were found in the gene expression of the VEGF120 and VEGF164 isoforms, with simultaneous increases in VE-cadherin, Flk-1/KDR, and Flt-1. In vivo studies consisted of analysis of islet grafts transplanted into both normal and diabetic recipients. Expression of both VEGF120 and VEGF164 in grafts was up-regulated for the first 2-3 days after transplantation, with the response being more prolonged in the diabetic rats. These increases were followed by reduced expression of VEGF on days 5, 7, and 9. Increases in the expression of VE-cadherin in islet grafts in normal and diabetic recipients tended to parallel VEGF expression, with the increases in both probably being caused by hypoxia. The early increases of VEGF expression were followed by a rise in the expression of VEGF receptors, which probably represents the early stages of angiogenesis. Graft expression of Flk-1/KDR and Flt-1 was enhanced at 3 and 5 days in the normoglycemic recipients, while in the diabetic recipients increases were found later on days 5, 7, and 14. CONCLUSIONS The delayed expression of VEGF receptors in the diabetic recipients could reflect impaired angiogenesis caused by the diabetic milieu; this delay could contribute to the less outcomes of grafts transplanted into a hyperglycemic environment.
Collapse
Affiliation(s)
- B Vasir
- Joslin Diabetes Center and Dept. of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Poliakov A, Tkachuk V, Ovchinnikova T, Potapenko N, Bagryantsev S, Stepanova V. Plasmin-dependent elimination of the growth-factor-like domain in urokinase causes its rapid cellular uptake and degradation. Biochem J 2001; 355:639-45. [PMID: 11311125 PMCID: PMC1221778 DOI: 10.1042/bj3550639] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) act in concert to mediate pericellular proteolysis and to stimulate intracellular signalling responsible for cell migration and proliferation. uPA is composed of three domains, a proteolytic domain (PD), a kringle domain (KD) and a growth-factor-like domain (GFD), the last of which mediates the interaction with uPAR. We demonstrate that uPA, associated with the surface of U937 cells, undergoes plasmin-mediated cleavage of the Lys(46)-Ser(47) bond with elimination of the GFD. Using recombinant forms of uPA, we show that a uPA variant lacking the GFD (r-uPADeltaGFD) and unable to associate with uPAR is rapidly cleared from the cell surface. Binding and internalization of r-uPADeltaGFD are markedly decreased in the presence of 39 kDa receptor-associated protein (RAP), the antagonist of several endocytic receptors of the low-density lipoprotein receptor family, suggesting that this protein clearance pathway is used for r-uPADeltaGFD. In contrast with rapidly internalized r-uPADeltaGFD, the intact recombinant single-chain urokinase with wild-type structure (r-uPAwt) bound to uPAR is retained on the cell surface. Soluble uPAR protects uPA from cleavage by plasmin that results in the elimination of GFD, suggesting that uPAR might protect cell-bound urokinase from plasmin-mediated cleavage between the GFD and KD and subsequent degradation.
Collapse
Affiliation(s)
- A Poliakov
- Biochemistry Department, Institute of Experimental Cardiology, Cardiology Research Center, Cherepkovskaya Street 15, Moscow 121552, Russia
| | | | | | | | | | | |
Collapse
|
55
|
Breugem CC, van Der Horst CM, Hennekam RC. Progress toward understanding vascular malformations. Plast Reconstr Surg 2001; 107:1509-23. [PMID: 11335828 DOI: 10.1097/00006534-200105000-00033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C C Breugem
- Department of Plastic, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
56
|
Pinter E, Haigh J, Nagy A, Madri JA. Hyperglycemia-induced vasculopathy in the murine conceptus is mediated via reductions of VEGF-A expression and VEGF receptor activation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1199-206. [PMID: 11290536 PMCID: PMC1891927 DOI: 10.1016/s0002-9440(10)64069-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Major congenital malformations, including those affecting the cardiovascular system, remain the leading cause of mortality and morbidity in infants of diabetic mothers. Interestingly, targeted mutations of several genes (including VEGF and VEGF receptors) and many teratogenic agents (including excess D-glucose) that give rise to embryonic lethal phenotypes during organogenesis are associated with a failure in the formation and/or maintenance of a functional vitelline circulation. Given the similarities in the pathology of the abnormal vitelline circulation in many of these conditions, we hypothesized that the hyperglycemic insult present in diabetes could cause the resultant abnormalities in the vitelline circulation by affecting VEGF/VEGF receptor signaling pathway(s). In this study we report that hyperglycemic insult results in reduced levels of VEGF-A in the conceptus, which in turn, leads to abnormal VEGF receptor signaling, ultimately resulting in embryonic (vitelline) vasculopathy. These findings and our observation that addition of exogenous rVEGF-A(165) within a defined concentration range blunts the hyperglycemia-induced vasculopathy in the conceptus support the concept that VEGF levels can be modulated by glucose levels. In addition, these findings may ultimately lead to novel therapeutic approaches for the treatment of selected congenital cardiovascular abnormalities associated with diabetes.
Collapse
Affiliation(s)
- E Pinter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
57
|
Lijnen HR, Bloemmen F, Vereecken A, Collen D. Enzyme-linked immunosorbent assay for the specific detection of angiostatin-like plasminogen moieties in biological samples. Thromb Res 2001; 102:53-9. [PMID: 11323015 DOI: 10.1016/s0049-3848(01)00217-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An enzyme-linked immunosorbent assay (ELISA) was developed for the specific detection of human angiostatin-like plasminogen moieties (comprising kringles 1-4) in biological samples. The assay involves prior removal of all other plasminogen moieties by immunoadsorption of diluted samples (to about 10 ng/ml plasminogen) with a mixture of insolubilized MA-42B12 (directed against kringle 5) and MA-31E9 (directed against the proteinase domain). The recovery of angiostatin during this procedure is > or = 95%. Subsequently, angiostatin-like fragments are detected in an ELISA, based on two monoclonal antibodies reacting with nonoverlapping epitopes in the kringle 1-3 domain: MA-36E6 for capture and MA-34D3 for tagging. The assay has a lower detection limit of about 0.1 ng/ml and is performed with intra- and interassay coefficient of variation of 2.4% and 15%. In tumor fluids obtained from cancer patients (n = 10), angiostatin levels ranged between 0.24 and 6.7 microg/ml (1.62+/-0.60 microg/ml; mean+/-S.E.M.) The identity of angiostatin was confirmed by immunoblotting using specific monoclonal antibodies. A weak correlation (r = .66) was observed with the total plasminogen concentration in these samples. This ELISA thus appears suitable for the specific quantitation of angiostatin-like plasminogen moieties in biological samples, and may be useful to study its (patho)physiological relevance.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Molecular and Vascular Biology, University of Leuven, Campus Gasthuisberg, O&N, Herestraat 49, B-3000, Louvain, Belgium.
| | | | | | | |
Collapse
|
58
|
Rerolle JP, Hertig A, Nguyen G, Sraer JD, Rondeau EP. Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int 2000; 58:1841-50. [PMID: 11044203 DOI: 10.1111/j.1523-1755.2000.00355.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. The progression of renal lesions to fibrosis involves several mechanisms, among which the inhibition of extracellular matrix (ECM) degradation appears to play an important role. Two interrelated proteolytic systems are involved in matrix degradation: the plasminogen activation system and the matrix metalloproteinase system. The plasminogen activator inhibitor type 1 (PAI-1), as the main inhibitor of plasminogen activation, regulates fibrinolysis and the plasmin-mediated matrix metalloproteinase activation. PAI-1 is also a component of the ECM, where it binds to vitronectin. PAI-1 is not expressed in the normal human kidney but is strongly induced in various forms of kidney diseases, leading to renal fibrosis and terminal renal failure. Thrombin, angiotensin II, and transforming growth factor-beta are potent in vitro and in vivo agonists in increasing PAI-1 synthesis. Several experimental and clinical studies support a role for PAI-1 in the renal fibrogenic process occurring in chronic glomerulonephritis, diabetic nephropathy, focal segmental glomerulosclerosis, and other fibrotic renal diseases. Experimental models of renal diseases in PAI-1-deficient animals are in progress, and preliminary results indicate a role for PAI-1 in renal fibrogenesis. Inhibition of PAI-1 activity or of PAI-1 synthesis by specific antibodies, peptidic antagonists, antisense oligonucleotides, or decoy oligonucleotides has been obtained in vitro, but needs to be evaluated in vivo for the prevention or the treatment of renal fibrosis.
Collapse
|
59
|
Abstract
First described in the developing nervous system, Semaphorin III/Neuropilin, Ephrin/Eph, and Delta/Notch signaling relays have now been implicated in the elaboration of the blood vessel network during embryogenesis.
Collapse
Affiliation(s)
- D T Shima
- Endothelial Cell Biology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, WC2A 3PX, London, UK
| | | |
Collapse
|
60
|
Luttun A, Dewerchin M, Collen D, Carmeliet P. The role of proteinases in angiogenesis, heart development, restenosis, atherosclerosis, myocardial ischemia, and stroke: insights from genetic studies. Curr Atheroscler Rep 2000; 2:407-16. [PMID: 11122772 DOI: 10.1007/s11883-000-0079-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of novel gene technologies in mice has provided an elegant tool to identify gene products that are causally linked to certain physiologic processes as well as the pathogenesis of numerous disorders. Using these techniques, three major proteolytic systems -- the plasminogen, the matrix metalloproteinase (MMP) and the coagulation systems -- have been shown to be involved in cardiovascular diseases, which still constitute the leading cause of death in Western societies. This overview summarizes the role of these proteolytic systems in angiogenesis, arterial stenosis, allograft transplant stenosis, vein graft stenosis, atherosclerosis, myocardial infarction, cardiac development and ischemic stroke and discusses possible therapeutic implications.
Collapse
Affiliation(s)
- A Luttun
- Center for Transgene Technology and Gene Therapy, Campus Gasthuisberg, Herestraat 49, University of Leuven, Leuven, B-3000, Belgium
| | | | | | | |
Collapse
|
61
|
Mukhina S, Stepanova V, Traktouev D, Poliakov A, Beabealashvilly R, Gursky Y, Minashkin M, Shevelev A, Tkachuk V. The chemotactic action of urokinase on smooth muscle cells is dependent on its kringle domain. Characterization of interactions and contribution to chemotaxis. J Biol Chem 2000; 275:16450-8. [PMID: 10749881 DOI: 10.1074/jbc.m909080199] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Urokinase plasminogen activator (uPA) is thought to exert its effects on cell growth, adhesion, and migration by mechanisms involving proteolysis and interaction with its cell surface receptor (uPAR). The functional properties of uPA and the significance of its various domains for chemotactic activity were analyzed using human airway smooth muscle cells (hAWSMC). The wild-type uPA (r-uPAwt), inactive urokinase with single mutation (His(204) to Gln) (r-uPA(H/Q)), urokinase with mutation of His(204) to Gln together with a deletion of growth factor-like domain (r-uPA(H/Q)-GFD), the catalytic domain of urokinase (r-uPA(LMW)), and its kringle domain (r-KD) were expressed in Escherichia coli. We demonstrate that glycosylated uPA, r-uPAwt, r-uPA(H/Q), and r-uPA(H/Q)-GFD elicited similar chemotactic effects. Half-maximal chemotaxis (EC(50)) were apparent at approximately 2 nm with all the uPA variants. The kringle domain induced cell migration with an EC(50) of about 6 nm, whereas the denaturated r-KD and r-uPA(LMW) were without effect. R-uPAwt-induced chemotaxis was dependent on an association with uPAR and a uPA-kringle domain-binding site, determined using a monoclonal uPAR antibody to prevent the uPA-uPAR interaction, and a monoclonal antibody to the uPA-kringle domain. The binding of iodinated r-uPAwt with hAWSMC was due to interaction with a high affinity binding site on the uPAR, and a lower affinity binding site on an unidentified cell surface target, which was mediated exclusively through the kringle domain of urokinase. Specific binding of r-uPA(H/Q)-GFD to hAWSMC involved an interaction with a single site whose characteristics were similar to those of the low affinity site of r-uPAwt binding to hAWSMC. uPAR-deficient HEK 293 cells specifically bound r-uPAwt and r-uPA(H/Q)-GFD via a single, similar type of binding site. These cells migrated when stimulated by r-uPA(H/Q)-GFD and uPAwt, but not r-uPA(LMW). HEK 293 cells transfected with the uPAR cDNA expressed two classes of sites that bound r-uPAwt; however, only a single site was responsible for the binding of r-uPA(H/Q)-GFD. Together, these findings indicate that uPA-induced chemotaxis is dependent on the binding of the uPA-kringle to the membrane surface of cells and the association of uPA with uPAR.
Collapse
Affiliation(s)
- S Mukhina
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow 121552, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Murohara T, Ikeda H, Duan J, Shintani S, Sasaki KI, Eguchi H, Onitsuka I, Matsui K, Imaizumi T. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105:1527-36. [PMID: 10841511 PMCID: PMC300847 DOI: 10.1172/jci8296] [Citation(s) in RCA: 632] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/1999] [Accepted: 04/10/2000] [Indexed: 12/15/2022] Open
Abstract
Endothelial precursor cells (EPCs) have been identified in adult peripheral blood. We examined whether EPCs could be isolated from umbilical cord blood, a rich source for hematopoietic progenitors, and whether in vivo transplantation of EPCs could modulate postnatal neovascularization. Numerous cell clusters, spindle-shaped and attaching (AT) cells, and cord-like structures developed from culture of cord blood mononuclear cells (MNCs). Fluorescence-trace experiments revealed that cell clusters, AT cells, and cord-like structures predominantly were derived from CD34-positive MNCs (MNC(CD34+)). AT cells and cell clusters could be generated more efficiently from cord blood MNCs than from adult peripheral blood MNCs. AT cells incorporated acetylated-LDL, released nitric oxide, and expressed KDR, VE-cadherin, CD31, and von Willebrand factor but not CD45. Locally transplanted AT cells survived and participated in capillary networks in the ischemic tissues of immunodeficient nude rats in vivo. AT cells thus had multiple endothelial phenotypes and were defined as a major population of EPCs. Furthermore, laser Doppler and immunohistochemical analyses revealed that EPC transplantation quantitatively augmented neovascularization and blood flow in the ischemic hindlimb. In conclusion, umbilical cord blood is a valuable source of EPCs, and transplantation of cord blood-derived EPCs represents a promising strategy for modulating postnatal neovascularization.
Collapse
Affiliation(s)
- T Murohara
- The Cardiovascular Research Institute, Department of Internal Medicine III, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Since the mid 1980s a new strategy is coming from bench to bedside termed angiogenesis. This process involves sprouting of capillaries and finally results in newly developed microvessels which belong to the capillary level. Importantly these newly formed capillary tubes lack vascular smooth muscle cells, they are not surrounded by mural cells and are fragile and prone to rupture. Therefore these networks remain susceptible to hypoxic regulation, fail to become remodelled and are unable to sustain proper circulation: they cannot adapt to changes in physiological demands of blood supply. Since atherosclerosis affects large conductance arteries, capillary sprouting from compromised vessels cannot provide an adequate supply of blood flow to the endangered tissue. However, the body provides a natural system of pre-existing collateral arteries, which may bypass sites of arterial occlusion. These vessels can dramatically increase their lumen by growth so as to provide enhanced perfusion to the jeopardized ischaemic regions. This process - termed arteriogenesis - finally results in fully functional and structurally normal arteries which can ameliorate the ensuing detrimental effects of vessel obstruction in many regions of the body. Hallmarks of arteriogenesis are increased levels of shear forces (rather than ischaemia), the invasion of circulating monocytes (and their pluripotent precursors), and the substrates of arteriogenesis are pre-existing collateral arterioles.
Collapse
Affiliation(s)
- I Buschmann
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany.
| | | |
Collapse
|
64
|
Chapter 11. Anti-angiogenesis as a therapeutic strategy for cancer. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
65
|
Induction of the Plasminogen Activator Inhibitor-1 Gene Expression by Mild Hypoxia Via a Hypoxia Response Element Binding the Hypoxia-Inducible Factor-1 in Rat Hepatocytes. Blood 1999. [DOI: 10.1182/blood.v94.12.4177] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPlasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of both tissue-type and urokinase-type plasminogen activators. The balance between plasminogen activators and PAI-1 plays an important role in several physiological and pathophysiological processes such as atherosclerosis or thrombosis. Because these conditions are associated with hypoxia, it was the aim of the present study to investigate the influence of low O2tension on the expression of PAI-1 mRNA and protein using primary cultured rat hepatocytes as a model system. We found that PAI-1 mRNA and protein were induced by mild hypoxia (8% O2). The hypoxia-dependent PAI-1 mRNA induction was transcriptionally regulated because it was inhibited by actinomycin D (ActD). Luciferase (LUC) reporter gene constructs driven by about 800 bp of the 5′-flanking region of the rat PAI-1 gene were transiently transfected into primary rat hepatocytes; mild hypoxia caused a 3-fold induction, which was mediated by the PAI-1 promoter region -175/-158 containing 2 putative hypoxia response elements (HRE) binding the hypoxia-inducible factor (HIF-1). Mutation of the HRE-1 (-175/-168) or HRE-2 (-165/-158) also abolished the induction by mild hypoxia. Cotransfection of a HIF-1 vector and the PAI-1–LUC constructs, as well as gel shift assays, showed that the HRE-2 of the PAI-1 promoter was most critical for induction by hypoxia and HIF-1 binding. Thus, PAI-1 induction by mild hypoxia via a HIF-1 binding HRE in the rat PAI-1 promoter appears to be the mechanism causing the increase in PAI-1 in many clinical conditions associated with O2deficiency.
Collapse
|
66
|
Induction of the Plasminogen Activator Inhibitor-1 Gene Expression by Mild Hypoxia Via a Hypoxia Response Element Binding the Hypoxia-Inducible Factor-1 in Rat Hepatocytes. Blood 1999. [DOI: 10.1182/blood.v94.12.4177.424k14_4177_4185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of both tissue-type and urokinase-type plasminogen activators. The balance between plasminogen activators and PAI-1 plays an important role in several physiological and pathophysiological processes such as atherosclerosis or thrombosis. Because these conditions are associated with hypoxia, it was the aim of the present study to investigate the influence of low O2tension on the expression of PAI-1 mRNA and protein using primary cultured rat hepatocytes as a model system. We found that PAI-1 mRNA and protein were induced by mild hypoxia (8% O2). The hypoxia-dependent PAI-1 mRNA induction was transcriptionally regulated because it was inhibited by actinomycin D (ActD). Luciferase (LUC) reporter gene constructs driven by about 800 bp of the 5′-flanking region of the rat PAI-1 gene were transiently transfected into primary rat hepatocytes; mild hypoxia caused a 3-fold induction, which was mediated by the PAI-1 promoter region -175/-158 containing 2 putative hypoxia response elements (HRE) binding the hypoxia-inducible factor (HIF-1). Mutation of the HRE-1 (-175/-168) or HRE-2 (-165/-158) also abolished the induction by mild hypoxia. Cotransfection of a HIF-1 vector and the PAI-1–LUC constructs, as well as gel shift assays, showed that the HRE-2 of the PAI-1 promoter was most critical for induction by hypoxia and HIF-1 binding. Thus, PAI-1 induction by mild hypoxia via a HIF-1 binding HRE in the rat PAI-1 promoter appears to be the mechanism causing the increase in PAI-1 in many clinical conditions associated with O2deficiency.
Collapse
|
67
|
Abstract
In the past ten years, alternative revascularization strategies have come from bench to bedside focusing on the growth of new vessels to replace the old. Hypoxia and vascular endothelial growth factor may induce capillary growth; however, atherosclerosis affects large conductance vessels, which can only be replaced by functional collateral arteries.
Collapse
Affiliation(s)
- W Schaper
- Department of Experimental Cardiology, Max-Planck-Institute for Physiological and Clinical Research, Bad Nauheim, Germany
| | | |
Collapse
|
68
|
Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nübe O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 1999; 5:1135-42. [PMID: 10502816 DOI: 10.1038/13459] [Citation(s) in RCA: 562] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA-/-) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA-/- mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.
Collapse
Affiliation(s)
- S Heymans
- Center for Transgene Technology, Flanders Interuniversity, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Compelling evidence indicates that vascular endothelial growth factor (VEGF) is a fundamental regulator of normal and abnormal angiogenesis. The loss of a single VEGF allele results in defective vascularization and early embryonic lethality. VEGF plays also a critical role in kidney development, and its inactivation during early postnatal life results in the suppression of glomerular development and kidney failure. Recent evidence indicates that VEGF is also essential for angiogenesis in the female reproductive tract and for morphogenesis of the epiphyseal growth plate and endochondral bone formation. Substantial experimental evidence also implicates VEGF in pathological angiogenesis. Anti-VEGF monoclonal antibodies or other VEGF inhibitors block the growth of several human tumor cell lines in nude mice. Furthermore, the concentrations of VEGF are elevated in the aqueous and vitreous humors of patients with proliferative retinopathies such as the diabetic retinopathy. In addition, VEGF-induced angiogenesis results in a therapeutic benefit in several animal models of myocardial or limb ischemia. Currently, both therapeutic angiogenesis using recombinant VEGF or VEGF gene transfer and inhibition of VEGF-mediated pathological angiogenesis are being pursued clinically.
Collapse
Affiliation(s)
- N Ferrara
- Department of Cardiovascular Research, Genentech, Inc., South San Francisco, California 94080, USA.
| |
Collapse
|
70
|
Yamanaka N, Shimizu A. Role of glomerular endothelial damage in progressive renal disease. Kidney Blood Press Res 1999; 22:13-20. [PMID: 10352403 DOI: 10.1159/000025904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although glomerular lesions are caused by multiple mechanisms, when the lesion is severe, it frequently results in segmental or global sclerosis regardless of etiology, and contributes to progression of renal disease. Initially, glomerular mesangial cell injury was considered to be central to glomerular sclerosis. Recently, glomerular epithelial cell injury has attracted attention as the primary event of the sclerosis. Less attention has been paid to glomerular endothelial cell injury. However, the latter is acquiring increasing interest as to whether endothelial cell injury is also a crucial factor in the cause and progression of glomerular sclerosis. It has been clearly demonstrated that regeneration of impaired glomerular capillary networks plays an important role in the repair process of glomerular lesions. Glomerular endothelial cell injury exerts significant influences on the progression and repair process of glomerular disease. When the glomerular lesion is severe, angiogenesis is prevented due to endothelial cell injury, with subsequent sclerosis taking place in the impaired region. These glomerular endothelial cell injuries inevitably affect mesangial and epithelial cells and presumably modify the progression of renal disease by reciprocally interacting with them.
Collapse
Affiliation(s)
- N Yamanaka
- Department of Pathology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
71
|
Buschmann I, Schaper W. Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 1999; 14:121-125. [PMID: 11390835 DOI: 10.1152/physiologyonline.1999.14.3.121] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After birth, new blood vessel formation proceeds via angiogenesis or arteriogenesis. Angiogenesis (capillary sprouting) results in higher capillary density. Arteriogenesis (rapid proliferation of collateral arteries) is potentially able to significantly alter the outcome of coronary and peripheral artery disease. The processes share some growth features but differ in many aspects.
Collapse
Affiliation(s)
- I. Buschmann
- Department for Experimental Cardiology of the Max Planck Institute for Physiological and Clinical Research, Benekestrasse 2, D-61231 Bad Nauheim, Germany
| | | |
Collapse
|
72
|
Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5:623-8. [PMID: 10371499 DOI: 10.1038/9467] [Citation(s) in RCA: 1461] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.
Collapse
Affiliation(s)
- H P Gerber
- Department of Cardiovascular Research, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Angiogenesis, the formation of new blood vessels from pre--existing ones, is central for both normal development and homeostasis as well as in certain pathological conditions. The vascular endothelial growth factors (VEGFs) and their receptors are prime regulators of both physiological and pathological angiogenesis. The different VEGFs have overlapping but specific roles in controlling the growth of new blood vessels. The VEGF receptors transduce signals mediating endothelial cell proliferation, migration, organization into functional vessels and remodeling of the vessel network. In recent years, rapid progress has been made in understanding the receptor-ligand interactions that orchestrate the neovascularization process.
Collapse
Affiliation(s)
- T Veikkola
- Molecular/Cancer Biology Laboratory, Haartman Institute (Haatmaninkatu 3), 00014 University of Helsinki, Finland
| | | |
Collapse
|
74
|
|
75
|
Pipaón C, Tsai SY, Tsai MJ. COUP-TF upregulates NGFI-A gene expression through an Sp1 binding site. Mol Cell Biol 1999; 19:2734-45. [PMID: 10082539 PMCID: PMC84066 DOI: 10.1128/mcb.19.4.2734] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The formation of various tissues requires close communication between two groups of cells, epithelial and mesenchymal cells. COUP-TFs are transcription factors which have been shown to have functions in embryonic development. COUP-TFI is expressed mainly in the nervous system, and its targeted deletion leads to defects in the central and peripheral nervous systems. COUP-TFII is highly expressed in the mesenchymal component of the developing organs. A null mutation of COUP-TFII results in the malformation of the heart and blood vessels. From their expression pattern, we proposed that COUP-TFs regulate paracrine signals important for mesenchymal cell-epithelial cell interactions. In order to identify genes regulated by COUP-TF in this process, a rat urogenital mesenchymal cell line was stably transfected with a COUP-TFI expression vector. We found that NGFI-A, a gene with important functions in brain, organ, and vasculature development, has elevated mRNA and protein levels upon overexpression of COUP-TFI in these cells. A study of the promoter region of this gene identified a COUP-TF-responsive element between positions -64 and -46. Surprisingly, this region includes binding sites for members of the Sp1 family of transcription factors but no COUP-TF binding site. Mutations that abolish the Sp1 binding activity also impair the transactivation of the NGFI-A promoter by COUP-TF. Two regions of the COUP-TF molecule are shown to be important for NGFI-A activation: the DNA binding domain and the extreme C terminus of the putative ligand binding domain. The C-terminal region is likely to be important for interaction with coactivators. In fact, the coactivators p300 and steroid receptor activator 1 can enhance the transactivation of the NGFI-A promoter induced by COUP-TFI. Finally, we demonstrated that COUP-TF can directly interact with Sp1. Taken together, these results suggest that NGFI-A is a target gene for COUP-TFs and that the Sp1 family of transcription factors mediates its regulation by COUP-TFs.
Collapse
Affiliation(s)
- C Pipaón
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
76
|
Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N. VEGF is required for growth and survival in neonatal mice. Development 1999; 126:1149-59. [PMID: 10021335 DOI: 10.1242/dev.126.6.1149] [Citation(s) in RCA: 617] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1–3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1–3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1–3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1–3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.
Collapse
Affiliation(s)
- H P Gerber
- Departments of Cardiovascular Research and Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Iljin K, Dube A, Kontusaari S, Korhonen J, Lahtinen I, Oettgen P, Alitalo K. Role of ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. FASEB J 1999; 13:377-86. [PMID: 9973326 DOI: 10.1096/fasebj.13.2.377] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Tie gene encodes an endothelial cell receptor tyrosine kinase necessary for normal vascular development. The Tie gene promoter targets expression of heterologous genes specifically to endothelial cells in transgenic mice. Here we have characterized the promoter sequences critical for endothelial cell-specific activity in cultured cells and transgenic mice. Progressive deletions and site-directed mutations of the promoter showed that the critical endothelial cell-specific elements are an octamer transcription factor binding site and several Ets binding sites located in two clusters within 300 bp upstream of the major transcription initiation site. Among members of the Ets transcription factor family tested, NERF-2 (a novel transcription factor related to the ets factor ELF-1), which is expressed in endothelial cells, and ETS2 showed the strongest transactivation of the Tie promoter; ETS1 gave lower levels of stimulation and the other Ets factors gave little or no transactivation. Furthermore, the Tie promoter directed the production of high amounts of human growth hormone into the circulation of transgenic mice. The secreted amounts correlated with transgene copy number, being relatively insensitive to the effects of the transgene integration site. These properties suggest that Tie promoter activity is controlled by endothelial cell Ets factors and that it has potential for use in vectors for endothelial cell-specific gene expression.
Collapse
Affiliation(s)
- K Iljin
- Molecular/Cancer Biology Laboratory, Haartman Institute and Department of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
78
|
Carmeliet P, Collen D. Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr Top Microbiol Immunol 1999; 237:133-58. [PMID: 9893349 DOI: 10.1007/978-3-642-59953-8_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- P Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | |
Collapse
|
79
|
Carmeliet P, Collen D. Development and disease in proteinase-deficient mice: role of the plasminogen, matrix metalloproteinase and coagulation system. Thromb Res 1998; 91:255-85. [PMID: 9772009 DOI: 10.1016/s0049-3848(98)00122-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- P Carmeliet
- Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, KU Leuven, Belgium.
| | | |
Collapse
|