51
|
Aghdassi AA, John DS, Sendler M, Storck C, van den Brandt C, Krüger B, Weiss FU, Mayerle J, Lerch MM. Absence of the neutrophil serine protease cathepsin G decreases neutrophil granulocyte infiltration but does not change the severity of acute pancreatitis. Sci Rep 2019; 9:16774. [PMID: 31727956 PMCID: PMC6856518 DOI: 10.1038/s41598-019-53293-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Acute pancreatitis is characterized by an early intracellular protease activation and invasion of leukocytes into the pancreas. Cathepsins constitute a large group of lysosomal enzymes, that have been shown to modulate trypsinogen activation and neutrophil infiltration. Cathepsin G (CTSG) is a neutrophil serine protease of the chymotrypsin C family known to degrade extracellular matrix components and to have regulatory functions in inflammatory disorders. The aim of this study was to investigate the role of CTSG in pancreatitis. Isolated acinar cells were exposed to recombinant CTSG and supramaximal cholezystokinin stimulation. In CTSG-/- mice and corresponding controls acute experimental pancreatitis was induced by serial caerulein injections. Severity was assessed by histology, serum enzyme levels and zymogen activation. Neutrophil infiltration was quantified by chloro-acetate ersterase staining and myeloperoxidase measurement. CTSG was expessed in inflammatory cells but not in pancreatic acinar cells. CTSG had no effect on intra-acinar-cell trypsinogen activation. In CTSG-/- mice a transient decrease of neutrophil infiltration into the pancreas and lungs was found during acute pancreatitis while the disease severity remained largely unchanged. CTSG is involved in pancreatic neutrophil infiltration during pancreatitis, albeit to a lesser degree than the related neutrophil (PMN) elastase. Its absence therefore leaves pancreatitis severity essentially unaffected.
Collapse
Affiliation(s)
- Ali A Aghdassi
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany.
| | - Daniel S John
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Christian Storck
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Burkhard Krüger
- Division of Medical Biology, University of Rostock, 18051, Rostock, Germany
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwigs-Maximilians University Munich, 80539, Munich, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, 17475, Greifswald, Germany
| |
Collapse
|
52
|
Wang S, Ni HM, Chao X, Wang H, Bridges B, Kumer S, Schmitt T, Mareninova O, Gukovskaya A, De Lisle RC, Ballabio A, Pacher P, Ding WX. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Autophagy 2019; 15:1954-1969. [PMID: 30894069 PMCID: PMC6844531 DOI: 10.1080/15548627.2019.1596486] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
Impaired macroautophagy/autophagy has been implicated in experimental and human pancreatitis. However, the transcriptional control governing the autophagy-lysosomal process in pancreatitis is largely unknown. We investigated the role and mechanisms of TFEB (transcription factor EB), a master regulator of lysosomal biogenesis, in the pathogenesis of experimental pancreatitis. We analyzed autophagic flux, TFEB nuclear translocation, lysosomal biogenesis, inflammation and fibrosis in GFP-LC3 transgenic mice, acinar cell-specific tfeb knockout (KO) and tfeb and tfe3 double-knockout (DKO) mice as well as human pancreatitis samples. We found that cerulein activated MTOR (mechanistic target of rapamycin kinase) and increased the levels of phosphorylated TFEB as well as pancreatic proteasome activities that led to rapid TFEB degradation. As a result, cerulein decreased the number of lysosomes resulting in insufficient autophagy in mouse pancreas. Pharmacological inhibition of MTOR or proteasome partially rescued cerulein-induced TFEB degradation and pancreatic damage. Furthermore, genetic deletion of tfeb specifically in mouse pancreatic acinar cells increased pancreatic edema, necrotic cell death, infiltration of inflammatory cells and fibrosis in pancreas after cerulein treatment. tfeb and tfe3 DKO mice also developed spontaneous pancreatitis with increased pancreatic trypsin activities, edema and infiltration of inflammatory cells. Finally, decreased TFEB nuclear staining was associated with human pancreatitis. In conclusion, our results indicate a critical role of impaired TFEB-mediated lysosomal biogenesis in promoting the pathogenesis of pancreatitis. Abbreviations: AC: acinar cell; AMY: amylase; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATP6V1B2: ATPase, H+ transporting, lysosomal V1 subunit B2; ATP6V1D: ATPase, H+ transporting, lysosomal V1 subunit D; ATP6V1H: ATPase, H+ transporting, lysosomal V1 subunit H; AV: autophagic vacuole; CDE: choline-deficient, ethionine-supplemented; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EM: electron microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H & E: hematoxylin and eosin; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: normal donor; NEU: neutrophil; PPARGC1A/PGC1α: peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha; RIPA: radio-immunoprecipitation; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TM: tamoxifen; WT: wild-type; ZG: zymogen granule.
Collapse
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Brian Bridges
- Liver Center, University of Kansa Medical Center, Kansas City, USA
| | - Sean Kumer
- Department of Surgery, University of Kansa Medical Center, Kansas City, USA
| | - Timothy Schmitt
- Department of Surgery, University of Kansa Medical Center, Kansas City, USA
| | - Olga Mareninova
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Anna Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Robert C. De Lisle
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
53
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
54
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
55
|
Yuan J, Hasdemir B, Tan T, Chheda C, Rivier J, Pandol SJ, Bhargava A. Protective effects of urocortin 2 against caerulein-induced acute pancreatitis. PLoS One 2019; 14:e0217065. [PMID: 31100090 PMCID: PMC6524941 DOI: 10.1371/journal.pone.0217065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Because little is known about the role of corticotropin-releasing factor (CRF) agonists in regulating responses in pancreatitis, we evaluated the effects of urocortin 2 (UCN2) and stressin1 in caerulein-induced acute pancreatitis (AP) model in rats. Male rats were pretreated with UCN2 or stressin1 for 30 min followed by induction of AP with supraphysiologic doses of caerulein. Serum amylase and lipase activity, pancreatic tissue necrosis, immune cell infiltrate, nuclear factor (NF)-κB activity, trypsin levels, and intracellular Ca2+ ([Ca2+]i) were ascertained. UCN2, but not stressin1 attenuated the severity of AP in rats. UCN2, but not stressin1, reduced serum amylase and lipase activity, cell necrosis and inflammatory cell infiltration in AP. NF-κB activity in pancreatic nuclear extracts increased in AP and UCN2 treatment reduced caerulein-induced increases in NF-κB activity by 42%. UCN2 treatment prevented caerulein-induced degradation of IκB-α in the cytosolic fraction as well as increased levels of p65 subunit of NF-κB in the cytosolic fraction. Pancreatic UCN2 levels decreased in AP compared with saline. UCN2 evoked [Ca2+]i responses in primary acinar cells and abolished caerulein-evoked [Ca2+]i responses at 0.1nM, and decreased by ~50% at 1.0nM caerulein. UCN2 stimulation resulted in redistribution of a portion of F-actin from the apical to the basolateral pole. UCN2 prevented the massive redistribution of F-actin observed with supraphysiologic doses of caerulein. UCN2, but not stressin1 attenuated severity of an experimental pancreatitis model. The protective effects of UCN2, including anti-inflammatory and anti-necrotic effects involve activation of the CRF2 receptor, [Ca2+]i signaling, and inhibition of NF-κB activity.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Burcu Hasdemir
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
| | - Tanya Tan
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Chintan Chheda
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jean Rivier
- The Salk Institute, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA, United States of America
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Aditi Bhargava
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
56
|
Huang C, Chen S, Zhang T, Li D, Huang Z, Huang J, Qin Y, Chen B, Cheng G, Ma F, Zhou M. TLR3 Ligand PolyI:C Prevents Acute Pancreatitis Through the Interferon-β/Interferon-α/β Receptor Signaling Pathway in a Caerulein-Induced Pancreatitis Mouse Model. Front Immunol 2019; 10:980. [PMID: 31130960 PMCID: PMC6509240 DOI: 10.3389/fimmu.2019.00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a common and devastating inflammatory disorder of the pancreas. However, there are still no effective treatments available for the disease. Therefore, it is important to discover new therapeutic targets and strategies for better treatment and prognosis of AP patients. Toll-like receptor 3 (TLR3) ligand polyI:C is a double-stranded RNA mimic that can be used as an immune stimulant. Our current study indicates that polyI:C exerted excellent anti-inflammatory effects in a caerulein-induced AP mouse model and taurocholate-induced pancreatic acinar cell line injury model. We found that polyI:C triggers type I interferon (IFN) production and downstream IFN-α/β receptor (IFNAR)-dependent signaling, which play key roles in protecting the pancreas from inflammatory injury. Knockout of IFN-β and IFNAR in mice abolished the preventive effects of polyI:C on caerulein-induced AP symptoms, which include pancreatic edema, neutrophil infiltration, the accumulation of reactive oxygen species (ROS), and inflammatory gene expression. Treating pancreatic acinar 266-6 cells with an IFNAR inhibitor, which blocks the interaction between type I IFN and IFNAR, diminishes the downregulation of oxidative stress by polyI:C. Additionally, a subsequent transcriptome analysis on the role of polyI:C in treating pancreatitis suggested that chemotaxis of neutrophils and the production of ROS were inhibited by polyI:C in the pancreases damaged by caerulein injection. Thus, polyI:C may act as a type I IFN inducer to alleviate AP, and it has the potential to be a promising therapeutic agent used at the early stages of AP.
Collapse
Affiliation(s)
- Chaohao Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengchuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dapei Li
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhonglin Huang
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Huang
- Department of Emergency, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanghua Qin
- Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Genhong Cheng
- Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Ma
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Suzhou Institute of Systems Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengtao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
57
|
Habtezion A, Gukovskaya AS, Pandol SJ. Acute Pancreatitis: A Multifaceted Set of Organelle and Cellular Interactions. Gastroenterology 2019; 156:1941-1950. [PMID: 30660726 PMCID: PMC6613790 DOI: 10.1053/j.gastro.2018.11.082] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Acute pancreatitis is an inflammatory disorder of the exocrine pancreas associated with tissue injury and necrosis. The disease can be mild, involving only the pancreas, and resolve spontaneously within days or severe, with systemic inflammatory response syndrome-associated extrapancreatic organ failure and even death. Importantly, there are no therapeutic agents currently in use that can alter the course of the disease. This article emphasizes emerging findings that stressors (environmental and genetic) that cause acute pancreatitis initially cause injury to organelles of the acinar cell (endoplasmic reticulum, mitochondria, and endolysosomal-autophagy system), and that disorders in the functions of the organelles lead to inappropriate intracellular activation of trypsinogen and inflammatory pathways. We also review emerging work on the role of damage-associated molecular patterns in mediating the local and systemic inflammatory response in addition to known cytokines and chemokine pathways. In the review, we provide considerations for correction of organelle functions in acute pancreatitis to create a discussion for clinical trial treatment and design options.
Collapse
Affiliation(s)
- Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Anna S. Gukovskaya
- Division of Gastroenterology, Department of Medicine, Department of Veterans Affairs and David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
58
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
59
|
Guo HY, Cui ZJ. Extracellular Histones Activate Plasma Membrane Toll-Like Receptor 9 to Trigger Calcium Oscillations in Rat Pancreatic Acinar Tumor Cell AR4-2J. Cells 2018; 8:3. [PMID: 30577532 PMCID: PMC6356355 DOI: 10.3390/cells8010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
In acute pancreatitis, histones are released by infiltrating neutrophils, but how histones modulate pancreatic acinar cell function has not been investigated. We have examined histone modulation of rat pancreatic acini and pancreatic acinar tumor cell AR4-2J by calcium imaging. Histones were found to have no effect on calcium in pancreatic acini but blocked calcium oscillations induced by cholecystokinin or acetylcholine. Both mixed (Hx) and individual (H1, H2A, H2B, H3, H4) histones induced calcium oscillations in AR4-2J. RT-PCR and Western blot verified the expression of histone-targeted Toll-like receptor (TLR) 2, 4 and 9. Immunocytochemistry identified TLR2/TLR4 on apical plasma membrane and TLR9 in zymogen granule regions in pancreatic acini. TLR2 was found on neighboring and TLR9 on peripheral plasma membranes, but TLR4 was in the nucleus in AR4-2J clusters. Neither TLR2 agonist zymosan-A nor TLR4 agonist lipopolysaccharide had any effect on calcium, but TLR9 agonist ODN1826 induced calcium oscillations; TLR9 antagonist ODN2088 blocked H4-induced calcium oscillations in AR4-2J, which also disappeared after treatment of AR4-2J with glucocorticoid dexamethasone, with concurrent TLR9 migration from plasma membrane to cell interiors. TLR9 down regulation with siRNA suppressed H4-induced calcium oscillations. These data together suggest that extracellular histones activate plasma membrane TLR9 to trigger calcium oscillations in AR4-2J cells.
Collapse
Affiliation(s)
- Hai Yan Guo
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
60
|
John DS, Aschenbach J, Krüger B, Sendler M, Weiss FU, Mayerle J, Lerch MM, Aghdassi AA. Deficiency of cathepsin C ameliorates severity of acute pancreatitis by reduction of neutrophil elastase activation and cleavage of E-cadherin. J Biol Chem 2018; 294:697-707. [PMID: 30455353 DOI: 10.1074/jbc.ra118.004376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/01/2018] [Indexed: 01/27/2023] Open
Abstract
Acute pancreatitis is characterized by premature intracellular protease activation and infiltration of inflammatory cells, mainly neutrophil granulocytes and macrophages, into the organ. The lysosomal proteases cathepsin B, D, and L have been identified as regulators of early zymogen activation and thus modulators of the severity of pancreatitis. Cathepsin C (CTSC, syn. dipeptidly-peptidase I) is a widely expressed, exo-cystein-protease involved in the proteolytic processing of various other lysosomal enzymes. We have studied its role in pancreatitis. We used CTSC-deleted mice and their WT littermates in two experimental models of pancreatitis. The mild model involved eight hourly caerulein injections and the severe model partial duct ligation. Isolated pancreatic acini and spleen-derived leukocytes were used for ex vivo experiments. CTSC is expressed in the pancreas and in inflammatory cells. CTSC deletion reduced the severity of pancreatitis (more prominently in the milder model) without directly affecting intra-acinar cell trypsin activation in vitro The absence of CTSC reduced infiltration of neutrophil granulocytes impaired their capacity for cleaving E-cadherin in adherens junctions between acinar cells and reduced the activity of neutrophil serine proteases polymorphonuclear (neutrophil) elastase, cathepsin G, and proteinase 3, but not neutrophil motility. Macrophage invasion was not dependent on the presence of CTSC. CTSC is a regulator and activator of various lysosomal enzymes such as cathepsin B, D, and L. Its loss mitigates the severity of pancreatitis not by reducing intra-acinar cell zymogen activation but by reducing infiltration of neutrophil granulocytes into the pancreas. In this context one of its key roles is that of an activator of neutrophil elastase.
Collapse
Affiliation(s)
- Daniel S John
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Julia Aschenbach
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Burkhard Krüger
- the Division of Medical Biology, University of Rostock, 18051 Rostock, Germany, and
| | - Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - F Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Julia Mayerle
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany.,the Department of Medicine II, Ludwigs-Maximilians University Munich, 80539 Munich, Germany
| | - Markus M Lerch
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ali A Aghdassi
- From the Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany,
| |
Collapse
|
61
|
Plavsic I, Žitinić I, Mikolasevic I, Poropat G, Hauser G. Endoscopic retrograde cholangiopancreatography-induced and non-endoscopic retrograde cholangiopancreatography-induced acute pancreatitis: Two distinct clinical and immunological entities? World J Gastrointest Endosc 2018; 10:259-266. [PMID: 30364685 PMCID: PMC6198307 DOI: 10.4253/wjge.v10.i10.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/10/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is common gastrointestinal disease of varied aetiology. The most common cause of AP is gallstones, followed by alcohol abuse as an independent risk factor. With the increased need for invasive techniques to treat pancreatic and bile duct pathologies such as endoscopic retrograde cholangiopancreatography (ERCP), AP has emerged as the most frequent complication. While severe AP following ERCP is rare (0.5%), if it does develop it has a greater severity index compared to non-ERCP AP. Development of a mild form of AP after ERCP is not considered a clinically relevant condition. Differences in the clinical presentation and prognosis of the mild and severe forms have been found between non-ERCP AP and post-endoscopic pancreatitis (PEP). It has been proposed that AP and PEP may also have different immunological responses to the initial injury. In this review, we summarise the literature on clinical and inflammatory processes in PEP vs non-ERCP AP.
Collapse
Affiliation(s)
- Ivana Plavsic
- Department of Anesthesiology and Critical care medicine, Clinical Hospital Centre, Medical Faculty, University of Rijeka, Rijeka 51000, Croatia
| | - Ivana Žitinić
- Department of Emergency Medicine, Clinical Hospital Centre, Rijeka 51000, Croatia
| | - Ivana Mikolasevic
- Department of Internal Medicine, Division of Gastroenterology, Clinical Hospital Centre, Medical Faculty, University of Rijeka, Rijeka 51000, Croatia
| | - Goran Poropat
- Department of Internal Medicine, Division of Gastroenterology, Clinical Hospital Centre, Medical Faculty, University of Rijeka, Rijeka 51000, Croatia
| | - Goran Hauser
- Department of Internal Medicine, Division of Gastroenterology, Clinical Hospital Centre, Medical Faculty, Faculty of health Studies, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
62
|
Wang L, Wagner LE, Alzayady KJ, Yule DI. Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 2018; 293:13112-13124. [PMID: 29970616 DOI: 10.1074/jbc.ra118.003421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Fine-tuning of the activity of inositol 1,4,5-trisphosphate receptors (IP3R) by a diverse array of regulatory inputs results in intracellular Ca2+ signals with distinct characteristics. These events allow the activation of specific downstream effectors. We reported previously that region-specific proteolysis represents a novel regulatory event for type 1 IP3R (R1). Specifically, caspase-fragmented R1 display a marked increase in single-channel open probability. More importantly, the distinct characteristics of the Ca2+ signals elicited via fragmented R1 can activate alternate downstream effectors. In this report, we expand these studies to investigate whether all IP3R subtypes are regulated by proteolysis. We now show that type 2 and type 3 IP3R (R2 and R3, respectively) are proteolytically cleaved in rodent models of acute pancreatitis. Surprisingly, fragmented IP3R retained tetrameric architecture, remained embedded in endoplasmic reticulum membranes and were not functionally disabled. Proteolysis was associated with a marked attenuation of the frequency of Ca2+ signals in pancreatic lobules. Consistent with these data, expression of DNAs encoding complementary R2 and R3 peptides mimicking fragmented receptors at particular sites, resulted in a significant decrease in the frequency of agonist-stimulated Ca2+ oscillations. Further, proteolysis of R2 resulted in a marked decrease in single-channel open probability. Taken together, proteolytic fragmentation modulates R2 and R3 activity in a region-specific manner, and this event may contribute to the altered Ca2+ signals in pancreatic acinar cells during acute pancreatitis.
Collapse
Affiliation(s)
- Liwei Wang
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
63
|
Chemokine CXCL16 mediates acinar cell necrosis in cerulein induced acute pancreatitis in mice. Sci Rep 2018; 8:8829. [PMID: 29891873 PMCID: PMC5995899 DOI: 10.1038/s41598-018-27200-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Severe acute pancreatitis is a lethal inflammatory disease frequently accompanied by pancreatic necrosis. We aimed to identify a key regulator in the development of pancreatic necrosis. A cytokine/chemokine array using sera from patients with acute pancreatitis (AP) revealed that serum CXCL16 levels were elevated according to the severity of pancreatitis. In a mouse model of AP, Cxcl16 expression was induced in pancreatic acini in the late phase with the development of pancreatic necrosis. Cxcl16-/- mice revealed similar sensitivity as wild-type (WT) mice to the onset of pancreatitis, but better resisted development of acinar cell necrosis with attenuated neutrophil infiltration. A cytokine array and immunohistochemistry revealed lower expression of Ccl9, a neutrophil chemoattractant, in the pancreatic acini of Cxcl16-/- mice than WT mice. Ccl9 mRNA expression was induced by stimulation with Cxcl16 protein in pancreatic acinar cells in vitro, suggesting a Cxcl16/Ccl9 cascade. Neutralizing antibody against Cxcl16 ameliorated pancreatic injury in the mouse AP model with decreased Ccl9 expression and less neutrophil accumulation. In conclusion, Cxcl16 expressed in pancreatic acini contributes to the development of acinar cell necrosis through the induction of Ccl9 and subsequent neutrophil infiltration. CXCL16 could be a new therapeutic target in AP.
Collapse
|
64
|
Fonteh P, Smith M, Brand M. Adaptive Immune Cell Dysregulation and Role in Acute Pancreatitis Disease Progression and Treatment. Arch Immunol Ther Exp (Warsz) 2018; 66:199-209. [PMID: 29189884 DOI: 10.1007/s00005-017-0495-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
Acute pancreatitis (AP) is an inflammation of the pancreas caused by various stimuli including excessive alcohol consumption, gallstone disease and certain viral infections. Managing specifically the severe form of AP is limited due to lack of an understanding of the complex immune events that occur during AP involving immune cells and inflammatory molecules such as cytokines. The relative abundance of various immune cells resulting from the immune dysregulation drives disease progression. In this review, we examine the literature on the adaptive immune cells in AP, the prognostic value of these cells in stratifying patients into appropriate care and treatment strategies based on cell frequency in different AP severities are discussed.
Collapse
Affiliation(s)
- Pascaline Fonteh
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Martin Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Brand
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
65
|
Zhao Q, Wei Y, Pandol SJ, Li L, Habtezion A. STING Signaling Promotes Inflammation in Experimental Acute Pancreatitis. Gastroenterology 2018; 154:1822-1835.e2. [PMID: 29425920 PMCID: PMC6112120 DOI: 10.1053/j.gastro.2018.01.065] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) is characterized by severe inflammation and acinar cell death. Transmembrane protein 173 (TMEM173 or STING) is a DNA sensor adaptor protein on immune cells that recognizes cytosolic nucleic acids and transmits signals that activate production of interferons and the innate immune response. We investigated whether leukocyte STING signaling mediates inflammation in mice with AP. METHODS We induced AP in C57BL/6J mice (control) and C57BL/6J-Tmem173gt/J mice (STING-knockout mice) by injection of cerulein or placement on choline-deficient DL-ethionine supplemented diet. In some mice, STING signaling was induced by administration of a pharmacologic agonist. AP was also induced in C57BL/6J mice with bone marrow transplants from control or STING-knockout mice and in mice with disruption of the cyclic GMP-AMP synthase (Cgas) gene. Pancreata were collected, analyzed by histology, and acini were isolated and analyzed by flow cytometry, quantitative polymerase chain reaction, immunoblots, and enzyme-linked immunosorbent assay. Bone-marrow-derived macrophages were collected from mice and tested for their ability to detect DNA from dying acinar cells in the presence and absence of deoxyribonuclease (DNaseI). RESULTS STING signaling was activated in pancreata from mice with AP but not mice without AP. STING-knockout mice developed less severe AP (less edema, inflammation, and markers of pancreatic injury) than control mice, whereas mice given a STING agonist developed more severe AP than controls. In immune cells collected from pancreata, STING was expressed predominantly in macrophages. Levels of cGAS were increased in mice with vs without AP, and cGAS-knockout mice had decreased edema, inflammation, and other markers of pancreatic injury upon induction of AP than control mice. Wild-type mice given bone marrow transplants from STING-knockout mice had less pancreatic injury and lower serum levels of lipase and pancreatic trypsin activity following induction of AP than mice given wild-type bone marrow. DNA from dying acinar cells activated STING signaling in macrophages, which was inhibited by addition of DNaseI. CONCLUSIONS In mice with AP, STING senses acinar cell death (by detecting DNA from dying acinar cells) and activates a signaling pathway that promotes inflammation. Macrophages express STING and activate pancreatic inflammation in AP.
Collapse
Affiliation(s)
- Qinglan Zhao
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Yi Wei
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center and Department of Veterans Affairs, Los Angeles, California
| | - Lingyin Li
- Biochemistry Department and the ChEM-H institute, Stanford University, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
66
|
Barlass U, Dutta R, Cheema H, George J, Sareen A, Dixit A, Yuan Z, Giri B, Meng J, Banerjee S, Banerjee S, Dudeja V, Dawra RK, Roy S, Saluja AK. Morphine worsens the severity and prevents pancreatic regeneration in mouse models of acute pancreatitis. Gut 2018. [PMID: 28642332 DOI: 10.1136/gutjnl-2017-313717] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Opioids such as morphine are widely used for the management of pain associated with acute pancreatitis. Interestingly, opioids are also known to affect the immune system and modulate inflammatory pathways in non-pancreatic diseases. However, the impact of morphine on the progression of acute pancreatitis has never been evaluated. In the current study, we evaluated the impact of morphine on the progression and severity of acute pancreatitis. METHODS Effect of morphine treatment on acute pancreatitis in caerulein, L-arginine and ethanol-palmitoleic acid models was evaluated after induction of the disease. Inflammatory response, gut permeability and bacterial translocation were compared. Experiments were repeated in mu (µ) opioid receptor knockout mice (MORKO) and in wild-type mice in the presence of opioid receptor antagonist naltrexone to evaluate the role of µ-opioid receptors in morphine's effect on acute pancreatitis. Effect of morphine treatment on pathways activated during pancreatic regeneration like sonic Hedgehog and activation of embryonic transcription factors like pdx-1 and ptf-1 were measured by immunofluorescence and quantitative PCR. RESULTS Histological data show that treatment with morphine after induction of acute pancreatitis exacerbates the disease with increased pancreatic neutrophilic infiltration and necrosis in all three models of acute pancreatitis. Morphine also exacerbated acute pancreatitis-induced gut permeabilisation and bacteraemia. These effects were antagonised in the MORKO mice or in the presence of naltrexone suggesting that morphine's effect on severity of acute pancreatitis are mediated through the µ-opioid receptors. Morphine treatment delayed macrophage infiltration, sonic Hedgehog pathway activation and expression of pdx-1 and ptf-1. CONCLUSION Morphine treatment worsens the severity of acute pancreatitis and delays resolution and regeneration. Considering our results, the safety of morphine for analgesia during acute pancreatitis should be re-evaluated in future human studies.
Collapse
Affiliation(s)
- Usman Barlass
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Raini Dutta
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Hassam Cheema
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - John George
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Archana Sareen
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Ajay Dixit
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Zuobiao Yuan
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Bhuwan Giri
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Jingjing Meng
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Santanu Banerjee
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Sulagna Banerjee
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Vikas Dudeja
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Rajinder K Dawra
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Sabita Roy
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| | - Ashok K Saluja
- Sylvester Comprehensive Cancer Center Department of Surgery, University of Miami, Miami, Florida, USA
| |
Collapse
|
67
|
Abstract
Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
68
|
Wu J, Zhang R, Hu G, Zhu HH, Gao WQ, Xue J. Carbon Monoxide Impairs CD11b+Ly-6ChiMonocyte Migration from the Blood to Inflamed Pancreas via Inhibition of the CCL2/CCR2 Axis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2104-2114. [DOI: 10.4049/jimmunol.1701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 01/13/2023]
|
69
|
Nikam A, Dawra R, Saluja A, Dudeja V. Pancreatitis: A Tale of Two Proteases. Gastroenterology 2018; 154:482-484. [PMID: 29337153 DOI: 10.1053/j.gastro.2018.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Aniket Nikam
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine at University of Miami, University of Miami Miller School of Medicine, Miami, Florida
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine at University of Miami, University of Miami Miller School of Medicine, Miami, Florida
| | - Ashok Saluja
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine at University of Miami, University of Miami Miller School of Medicine, Miami, Florida
| | - Vikas Dudeja
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine at University of Miami, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
70
|
Sendler M, Weiss FU, Golchert J, Homuth G, van den Brandt C, Mahajan UM, Partecke LI, Döring P, Gukovsky I, Gukovskaya AS, Wagh PR, Lerch MM, Mayerle J. Cathepsin B-Mediated Activation of Trypsinogen in Endocytosing Macrophages Increases Severity of Pancreatitis in Mice. Gastroenterology 2018; 154:704-718.e10. [PMID: 29079517 PMCID: PMC6663074 DOI: 10.1053/j.gastro.2017.10.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis is characterized by premature intracellular activation of digestive proteases within pancreatic acini and a consecutive systemic inflammatory response. We investigated how these processes interact during severe pancreatitis in mice. METHODS Pancreatitis was induced in C57Bl/6 wild-type (control), cathepsin B (CTSB)-knockout, and cathepsin L-knockout mice by partial pancreatic duct ligation with supramaximal caerulein injection, or by repetitive supramaximal caerulein injections alone. Immune cells that infiltrated the pancreas were characterized by immunofluorescence detection of Ly6g, CD206, and CD68. Macrophages were isolated from bone marrow and incubated with bovine trypsinogen or isolated acinar cells; the macrophages were then transferred into pancreatitis control or cathepsin-knockout mice. Activities of proteases and nuclear factor (NF)-κB were determined using fluorogenic substrates and trypsin activity was blocked by nafamostat. Cytokine levels were measured using a cytometric bead array. We performed immunohistochemical analyses to detect trypsinogen, CD206, and CD68 in human chronic pancreatitis (n = 13) and acute necrotizing pancreatitis (n = 15) specimens. RESULTS Macrophages were the predominant immune cell population that migrated into the pancreas during induction of pancreatitis in control mice. CD68-positive macrophages were found to phagocytose acinar cell components, including zymogen-containing vesicles, in pancreata from mice with pancreatitis, as well as human necrotic pancreatic tissues. Trypsinogen became activated in macrophages cultured with purified trypsinogen or co-cultured with pancreatic acini and in pancreata of mice with pancreatitis; trypsinogen activation required macrophage endocytosis and expression and activity of CTSB, and was sensitive to pH. Activation of trypsinogen in macrophages resulted in translocation of NF-kB and production of inflammatory cytokines; mice without trypsinogen activation (CTSB-knockout mice) in macrophages developed less severe pancreatitis compared with control mice. Transfer of macrophage from control mice to CTSB-knockout mice increased the severity of pancreatitis. Inhibition of trypsin activity in macrophages prevented translocation of NF-κB and production of inflammatory cytokines. CONCLUSIONS Studying pancreatitis in mice, we found activation of digestive proteases to occur not only in acinar cells but also in macrophages that infiltrate pancreatic tissue. Activation of the proteases in macrophage occurs during endocytosis of zymogen-containing vesicles, and depends on pH and CTSB. This process involves macrophage activation via NF-κB-translocation, and contributes to systemic inflammation and severity of pancreatitis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cathepsin B/deficiency
- Cathepsin B/genetics
- Cathepsin B/metabolism
- Cathepsin L/deficiency
- Cathepsin L/genetics
- Cells, Cultured
- Ceruletide
- Coculture Techniques
- Cytokines/metabolism
- Disease Models, Animal
- Endocytosis
- Enzyme Activation
- Genetic Predisposition to Disease
- Humans
- Hydrogen-Ion Concentration
- Inflammation Mediators/metabolism
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/pathology
- Macrophages/transplantation
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Necrosis
- Pancreas/enzymology
- Pancreas/immunology
- Pancreas/pathology
- Pancreatectomy
- Pancreatitis, Acute Necrotizing/chemically induced
- Pancreatitis, Acute Necrotizing/enzymology
- Pancreatitis, Acute Necrotizing/immunology
- Pancreatitis, Acute Necrotizing/pathology
- Phagocytosis
- Phenotype
- Severity of Illness Index
- Time Factors
- Trypsinogen/metabolism
Collapse
Affiliation(s)
- Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Janine Golchert
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Ujjwal M Mahajan
- Medizinische Klinik und Poliklinik II, Universitätsklinikum der Ludwig-Maximilians-Universität, Klinikum Grosshadern, Munich, Germany
| | - Lars-Ivo Partecke
- Department of Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Paula Döring
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Ilya Gukovsky
- VA Greater Los Angeles Healthcare System; David Geffen School of Medicine, University of California at Los Angeles, California
| | - Anna S Gukovskaya
- VA Greater Los Angeles Healthcare System; David Geffen School of Medicine, University of California at Los Angeles, California
| | - Preshit R Wagh
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany; Medizinische Klinik und Poliklinik II, Universitätsklinikum der Ludwig-Maximilians-Universität, Klinikum Grosshadern, Munich, Germany.
| |
Collapse
|
71
|
Yuan J, Tan T, Geng M, Tan G, Chheda C, Pandol SJ. Novel Small Molecule Inhibitors of Protein Kinase D Suppress NF-kappaB Activation and Attenuate the Severity of Rat Cerulein Pancreatitis. Front Physiol 2017; 8:1014. [PMID: 29270134 PMCID: PMC5725929 DOI: 10.3389/fphys.2017.01014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) activation is a key early signal regulating inflammatory and cell death responses in acute pancreatitis. Our previous in vitro studies with molecular approaches on AR42J cell showed that protein kinase D (PKD/PKD1) activation was required in NF-κB activation induced by cholecystokinin 8 (CCK) or carbachol (CCh) in pancreatic acinar cells. Recently developed small molecule PKD inhibitors, CID755673 and CRT0066101, provide potentially important pharmacological approaches to further investigate the effect of PKD in pancreatitis therapy. The aim of this study was to explore whether CID755673 and CRT0066101 block NF-κB activation with in vitro and in vivo models of experimental pancreatitis and whether the small molecule PKD inhibitors have therapeutic effects when given before or after the initiation of experimental pancreatitis. Freshly prepared pancreatic acini were incubated with CID755673 or CRT006101, followed by hyperstimulation with CCK or CCh. For in vivo experimental pancreatitis, rats were treated with intraperitoneal injection of CID755673 or CRT0066101 prior to or after administering cerulein or saline. PKD activation and NF-κB-DNA binding activity in nuclear extracts from pancreatic acini and tissue were measured. The effects of PKD inhibitors on pancreatitis responses were evaluated. Our results showed that both CID755673 or CRT0066101 selectively and specifically inhibited PKD without effects on related protein kinase Cs. Inhibition of PKD resulted in significantly attenuation of NF-κB activation in both in vitro and in vivo models of experimental pancreatitis. NF-κB inhibition by CID755673 was associated with decreased inflammatory responses and attenuated severity of the disease, which were indicated by less inflammatory cell infiltration, reduced pancreatic interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), decreased intrapancreatic trypsin activation, and alleviation in pancreatic necrosis, edema and vacuolization. Furthermore, PKD inhibitor CID755673, given after the initiation of pancreatitis in experimental rat model, significantly attenuated the severity of acute pancreatitis. Therapies for acute pancreatitis are limited. Our results indicate that small chemical PKD inhibitors have significant potential as therapeutic interventions by suppressing NF-κB activation.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tanya Tan
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Georgetown University Medical Center, Washington, DC, United States
| | - Meng Geng
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Frank Netter H. School of Medicine at Quinnipiac University, Hamden, CT, United States
| | - Grace Tan
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Vanderbilt University, Nashville, TN, United States
| | - Chintan Chheda
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
72
|
Gukovskaya AS, Gukovsky I, Algül H, Habtezion A. Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis. Gastroenterology 2017; 153:1212-1226. [PMID: 28918190 PMCID: PMC6338477 DOI: 10.1053/j.gastro.2017.08.071] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Pancreatitis is a common disorder with significant morbidity and mortality, yet little is known about its pathogenesis, and there is no specific or effective treatment. Its development involves dysregulated autophagy and unresolved inflammation, demonstrated by studies in genetic and experimental mouse models. Disease severity depends on whether the inflammatory response resolves or amplifies, leading to multi-organ failure. Dysregulated autophagy might promote the inflammatory response in the pancreas. We discuss the roles of autophagy and inflammation in pancreatitis, mechanisms of deregulation, and connections among disordered pathways. We identify gaps in our knowledge and delineate perspective directions for research. Elucidation of pathogenic mechanisms could lead to new targets for treating or reducing the severity of pancreatitis.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, California; Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Hana Algül
- II Medizinische Klinik, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
73
|
Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, Duveau V, Sanoudou D, Skosgater S, Vlahou A, Wasquel D, Krause KH, Jaquet V. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic Biol Med 2017; 112:387-396. [PMID: 28811143 DOI: 10.1016/j.freeradbiomed.2017.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.
Collapse
Affiliation(s)
- Silvia Sorce
- Neuropathology Institute, University of Zürich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Australia
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Rikard Holmdahl
- Section for Medical Inflammation research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Adriano Aguzzi
- Neuropathology Institute, University of Zürich, Switzerland
| | - Adriano Chio
- Department of Neuroscience, University of Torino, Italy
| | - Antoine Depaulis
- Grenoble Institut des Neurosciences, Inserm U1216 and Univ, Grenoble Alpes, F-38000 Grenoble, France
| | | | - Peter Olofsson
- Redoxis AB, Medicon Village, Lund, Sweden; Pronoxis AB, Medicon Village, Lund, Sweden
| | - Tomas Olsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Skosgater
- Arttic, 58A rue du Dessous des Berges, F-75013 Paris, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
74
|
Trimetazidine Increases Cell Survival and Inhibits the Activation of Inflammatory Response in Sodium Taurocholate–Induced Acute Pancreatitis. Int Surg 2017. [DOI: 10.9738/intsurg-d-17-00122.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective:
To evaluate the therapeutic effects of trimetazidine (TMZ) in an experimental acute pancreatitis (AP) model induced with sodium taurocholate (STC).
Summary of Background Data:
At present, AP is considered a disease with no specific treatment. Preventing mitochondrial dysfunction in acinar cells may be an option for specific treatment of AP. TMZ is an anti-ischemic drug with anti-inflammatory, antioxidant, and mitochondrial modulatory effects.
Methods:
Rats were divided into 4 groups. AP was induced in the AP (n = 7) and AP + TMZ (n = 7) groups by an injection of 4% sodium taurocholate to the pancreatic duct. The sham (n = 6) and drug (n = 6) groups were designated as control groups. The AP + TMZ and drug groups were administered TMZ. Samples were taken at 72 hours, and histopathologic changes as well as biochemical parameters were analyzed.
Results:
Serum amylase, tissue myeloperoxidase activity, malondialdehyde levels, serum cytokine levels, and mast cell degranulation rates were elevated after induction of AP, whereas tissue antioxidant enzyme activities and cell viability rates [determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay] decreased. These parameters were found to be different in the AP group compared with those in all other groups (P < 0.05). A significant improvement of all parameters was achieved with the TMZ treatment of AP. Histologically, significant differences were found between the AP and AP + TMZ groups in terms of leukocyte infiltration, necrosis, and apoptotic cell counts.
Conclusions:
In this study, we demonstrated that TMZ treatment protected the mitochondrial function and prevented the activation of the inflammatory cascade in the sodium taurocholate–induced AP model.
Collapse
|
75
|
He Y, Wu C, Li J, Li H, Sun Z, Zhang H, de Vos P, Pan LL, Sun J. Inulin-Type Fructans Modulates Pancreatic-Gut Innate Immune Responses and Gut Barrier Integrity during Experimental Acute Pancreatitis in a Chain Length-Dependent Manner. Front Immunol 2017; 8:1209. [PMID: 29018453 PMCID: PMC5622924 DOI: 10.3389/fimmu.2017.01209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a common abdominal inflammatory disorder and one of the leading causes of hospital admission for gastrointestinal disorders. No specific pharmacological or nutritional therapy is available but highly needed. Inulin-type fructans (ITFs) are capable of modifying gut immune and barrier homeostasis in a chemistry-dependent manner and hence potentially applicable for managing AP, but their efficacy in AP has not been demonstrated yet. The current study aimed to examine and compare modulatory effects of ITFs with different degrees of fermentability on pancreatic-gut immunity and barrier function during experimentally induced AP in mice. BALB/c mice were fed short (I)- or long (IV)-chain ITFs supplemented diets for up to 3 days before AP induction by caerulein. Attenuating effects on AP development were stronger with ITF IV than with ITF I. We found that long-chain ITF IV attenuated the severity of AP, as evidenced by reduced serum amylase levels, lipase levels, pancreatic myeloperoxidase activity, pancreatic edema, and histological examination demonstrating reduced pancreatic damage. Short-chain ITF I demonstrated only partial protective effects. Both ITF IV and ITF I modulated AP-associated systemic cytokine levels. ITF IV but not ITF I restored AP-associated intestinal barrier dysfunction by upregulating colonic tight junction modulatory proteins, antimicrobial peptides, and improved general colonic histology. Additionally, differential modulatory effects of ITF IV and ITF I were observed on pancreatic and gut immunity: ITF IV supplementation prevented innate immune cell infiltration in the pancreas and colon and tissue cytokine production. Similar effects were only observed in the gut with ITF I and not in the pancreas. Lastly, ITF IV but not ITF I downregulated AP-triggered upregulation of IL-1 receptor-associated kinase 4 (IRAK-4) and phosphor-c-Jun N-terminal kinase (p-JNK), and a net decrease of phosphor-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 (p-NF-κB p65) nuclear translocation and activation in the pancreas. Our findings demonstrate a clear chain length-dependent effect of inulin on AP. The attenuating effects are caused by modulating effects of long-chain inulin on the pancreatic-gut immunity via the pancreatic IRAK-4/p-JNK/p-NF-κBp65 signaling pathway and on prevention of disruption of the gut barrier.
Collapse
Affiliation(s)
- Yue He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chengfei Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenghua Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
76
|
Lugea A, Waldron RT, Mareninova OA, Shalbueva N, Deng N, Su HY, Thomas DD, Jones EK, Messenger SW, Yang J, Hu C, Gukovsky I, Liu Z, Groblewski GE, Gukovskaya AS, Gorelick FS, Pandol SJ. Human Pancreatic Acinar Cells: Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2726-2743. [PMID: 28935577 DOI: 10.1016/j.ajpath.2017.08.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1β, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.
Collapse
Affiliation(s)
- Aurelia Lugea
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Richard T Waldron
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga A Mareninova
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Nan Deng
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsin-Yuan Su
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Diane D Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Elaina K Jones
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Scott W Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Jiayue Yang
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cheng Hu
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Zhenqiu Liu
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Fred S Gorelick
- Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Veterans Administration Connecticut Healthcare, West Haven, Connecticut
| | - Stephen J Pandol
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
77
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
78
|
Nagao S, Taguchi K, Sakai H, Yamasaki K, Watanabe H, Otagiri M, Maruyama T. Carbon monoxide-bound hemoglobin vesicles ameliorate multiorgan injuries induced by severe acute pancreatitis in mice by their anti-inflammatory and antioxidant properties. Int J Nanomedicine 2016; 11:5611-5620. [PMID: 27822039 PMCID: PMC5089833 DOI: 10.2147/ijn.s118185] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Carbon monoxide (CO) has attracted attention as a possible therapeutic agent for affecting anti-inflammatory and antioxidant activities. Previously, CO-bound hemoglobin vesicle (CO-HbV) was developed as a nanotechnology-based CO donor, and its safety profile and therapeutic potential as a clinically applicable carrier of CO were examined in vitro and in vivo. In the present study, the therapeutic efficacy of CO-HbV against severe acute pancreatitis was examined with secondary distal organ-injured model mice that were fed with a choline-deficient ethionine-supplemented diet. A CO-HbV treatment significantly reduced the mortality of the acute pancreatitis model mice compared to saline and HbV. Biochemical and histological evaluations clearly showed that CO-HbV suppressed acute pancreatitis by inhibiting the production of systemic proinflammatory cytokines, neutrophil infiltration, and oxidative injuries in pancreatic tissue. Interestingly, CO-HbV also diminished the subsequent damage to distal organs including liver, kidneys, and lungs. This could be due to the suppression of neutrophil infiltration into tissues and the subsequently enhanced oxidative injuries. In contrast, O2-bound HbV, the inactive form of CO-HbV, was ineffective against both pancreatitis and distal organ injuries, confirming that CO was directly responsible for the protective effects of CO-HbV in acute pancreatitis. These findings suggest that CO-HbV has anti-inflammatory and antioxidant characteristics of CO and consequently exerts a superior protective effect against acute pancreatitis-induced multiorgan damage.
Collapse
Affiliation(s)
- Saori Nagao
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Research Fellow of Japan Society for the Promotion of Science, Tokyo
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto; DDS Research Institute, Sojo University
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto; DDS Research Institute, Sojo University
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto; Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
79
|
Wetterholm E, Linders J, Merza M, Regner S, Thorlacius H. Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Transl Res 2016; 176:105-18. [PMID: 27183218 DOI: 10.1016/j.trsl.2016.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/22/2022]
Abstract
Platelets are known to play an important role in acute pancreatitis (AP) via promotion of neutrophil accumulation, although mechanisms behind platelet-dependent accumulation of neutrophils in the pancreas remain elusive. Platelets contain a wide spectrum of different pro-inflammatory compounds, such as chemokines. CXCL4 (platelet factor 4) is one of the most abundant chemokine in platelets, and we hypothesized that CXCL4 might be involved in platelet-dependent accumulation of neutrophils in the inflamed pancreas. The aim of this study was to examine the role of CXCL4 in severe AP. Pancreatitis was provoked by infusion of taurocholate into the pancreatic duct or by intraperitoneal administration of L-arginine in C57BL/6 mice. Animals were treated with an antibody against platelets or CXCL4 before induction of pancreatitis. Plasma and lung levels of CXCL2, CXCL4, and interleukin (IL)-6 were determined by use of enzyme-linked immunosorbent assay. Flow cytometry was used to examine surface expression of macrophage-1 (Mac-1) on neutrophils. Plasma was obtained from healthy individuals (controls) and patients with AP. Challenge with taurocholate increased plasma levels of CXCL4, and depletion of platelets markedly reduced plasma levels of CXCL4 indicating that circulating levels of CXCL4 are mainly derived from platelets in AP. Inhibition of CXCL4 reduced taurocholate-induced neutrophil recruitment, IL-6 secretion, edema formation, amylase release, and tissue damage in the pancreas. However, immunoneutralization of CXCL4 had no effect on CXCL2-evoked neutrophil expression of Mac-1 or chemotaxis in vitro, suggesting an indirect effect of CXCL4 on neutrophil recruitment in AP. Targeting CXCL4 significantly attenuated plasma and lung levels of CXCL2, which is a potent neutrophil chemoattractant, and inhibition of the CXCL2 receptor attenuated neutrophil infiltration and tissue damage in the inflamed pancreas. A significant role of CXCL4 was confirmed in an alternate model of AP induced by L-arginine challenge. Moreover, patients with AP had significantly increased plasma levels of CXCL4 compared with healthy controls. These findings' results suggest that platelet-derived CXCL4 is a potent stimulator of neutrophil accumulation in AP and that this is mediated via generation of CXCL2 in the inflamed pancreas. We conclude that CXCL4 plays an important role in pancreatic inflammation and that targeting CXCL4 might be a useful way to ameliorate tissue damage in AP.
Collapse
Affiliation(s)
- Erik Wetterholm
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Johan Linders
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Mohammed Merza
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Sara Regner
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden.
| |
Collapse
|
80
|
Gukovskaya AS, Pandol SJ, Gukovsky I. New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol 2016; 32:429-435. [PMID: 27428704 PMCID: PMC5235997 DOI: 10.1097/mog.0000000000000301] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. RECENT FINDINGS The central physiologic function of the pancreatic acinar cell - to synthesize, store, and secrete digestive enzymes - critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles' disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. SUMMARY The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- University of California, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Ilya Gukovsky
- University of California, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
81
|
Deng W, Abliz A, Xu S, Sun R, Guo W, Shi Q, Yu J, Wang W. Severity of pancreatitis‑associated intestinal mucosal barrier injury is reduced following treatment with the NADPH oxidase inhibitor apocynin. Mol Med Rep 2016; 14:3525-34. [PMID: 27573037 PMCID: PMC5042780 DOI: 10.3892/mmr.2016.5678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
Abstract
Recent studies demonstrated that apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) inhibitor, significantly decreased acute pancreatitis-associated inflammatory and oxidative stress parameters. In addition, apocynin was able to reduce ischemic reperfusion injury-associated damage; however, the exact effects of apocynin on acute pancreatitis-associated intestinal mucosal injury have yet to be fully clarified. The present study aimed to investigate the protective effects of apocynin on intestinal mucosal injury in a rat model of severe acute pancreatitis (SAP). A total of 60 male Sprague Dawley rats were randomly divided into four groups (n=15/group): Sham operation group (SO), SAP group, apocynin treatment (APO) group and drug control (APO-CON) group. SAP was induced by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. Apocynin was administered 30 min prior to SAP induction in the APO group. All rats were sacrificed 12 h after SAP induction. Intestinal integrity was assessed by measuring diamine oxidase (DAO) levels. Morphological alterations to intestinal tissue were determined under light and transmission electron microscopy. NOX2, p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB expression levels were detected in the intestine by immunohistochemical staining. Oxidative stress was detected by measuring intestinal malondialdehyde (MDA) and superoxide dismutase content. In addition, blood inflammatory cytokines, and amylase (AMY) and lipase (LIP) levels were evaluated. The results demonstrated that apocynin attenuated the following: i) Serum AMY, LIP and DAO levels; ii) pancreatic and intestinal pathological injury; iii) intestinal MDA content; iv) intestinal ultrastructural alterations; v) serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels; and vi) NOX2, p38 MAPK and NF-κB expression in intestinal tissues. These results suggested that apocynin may attenuate intestinal barrier dysfunction in sodium taurocholate-induced SAP, presumably via its role in the prevention of reactive oxygen species generation and inhibition of p38 MAPK and NF-κB pathway activation. These findings provide novel insight suggesting that pharmacological inhibition of NOX by apocynin may be considered a novel therapeutic method for the treatment of intestinal injury in SAP.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ablikim Abliz
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Xu
- Department of General Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Rongze Sun
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenyi Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
82
|
Malla SR, Kärrman Mårdh C, Günther A, Mahajan UM, Sendler M, D'Haese J, Weiss FU, Lerch MM, Hansen MB, Mayerle J. Effect of oral administration of AZD8309, a CXCR2 antagonist, on the severity of experimental pancreatitis. Pancreatology 2016; 16:761-9. [PMID: 27450968 DOI: 10.1016/j.pan.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/18/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Acute pancreatitis is a common gastrointestinal disorder burdened with a high mortality. Two pathophysiological events during experimental pancreatitis are thought to determine the clinical course: premature digestive protease activation and tissue infiltration by inflammatory cells. We have investigated the effect of AZD8309, a potent and orally bioavailable antagonist of the chemokine receptor CXCR2, which has been proposed to regulate the transmigration of neutrophils. METHODS Male C57BL6 mice (25-30 g) received gavage feeding of AZD8309 (50 mg/kg/BW) or mannitol (controls) twice daily starting 3 h prior to pancreatitis induction. Mild pancreatitis was induced by i.p. caerulein administration (50 μg/kg BW), severe pancreatitis by intraductal taurocholate (2%). Pancreas, lung, and serum was harvested up to 48 h after pancreatitis induction and used for histopathology, amylase, lipase, cathepsin B, trypsin, and elastase activity measurements, myeloperoxidase (MPO) content and cytokine concentrations. RESULTS Oral administration of AZD8309 significantly reduced MPO in the pancreas and lungs (8 h & 24 h) and reduced intrapancreatic trypsin and elastase activity (8 h) in caerulein-pancreatitis. In taurocholate-pancreatitis AZD8309 reduced cathepsin B activity and MPO. Serum cytokine levels were reduced by AZD8309 as well as histopathological damage. CONCLUSION The CXCR2 antagonist AZD8309 reduced the transmigration of neutrophils as well as intrapancreatic protease activation in experimental pancreatitis. This effect was sufficient to reduce the overall severity of the disease. CXCR2 may therefore be a viable therapeutic target and AZD8309 a suitable agent for the treatment of acute pancreatitis.
Collapse
Affiliation(s)
| | | | - Annett Günther
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Ujjwal M Mahajan
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Jan D'Haese
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, Germany
| | | | - Markus M Lerch
- Department of Medicine A, University Medicine, Greifswald, Germany
| | - Mark Berner Hansen
- AstraZeneca R&D Mölndal, Innovative and Global Medicines, Mölndal, Sweden
| | - Julia Mayerle
- Department of Medicine A, University Medicine, Greifswald, Germany.
| |
Collapse
|
83
|
Abstract
BACKGROUND Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. METHODS This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. RESULTS Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. CONCLUSIONS These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder.
Collapse
Affiliation(s)
- Jingzhen Yuan
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA.
| | - Stephen J Pandol
- West Los Angeles VA Healthcare Center, UCLA/VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Bldg 258, Rm 340, Los Angeles, CA, 90073, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
84
|
Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian J Gastroenterol 2016; 35:153-66. [PMID: 27206712 DOI: 10.1007/s12664-016-0647-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 02/04/2023]
Abstract
The precise mechanisms involved in the pathophysiology of acute pancreatitis (AP) are still far from clear. Several earlier studies have focused mainly on pancreatic enzyme activation as the key intracellular perturbation in the pancreatic acinar cells. For decades, the trypsin-centered hypothesis has remained the focus of the intra-acinar events in acute pancreatitis. Recent advances in basic science research have lead to the better understanding of various other mechanisms such as oxidative and endoplasmic stress, impaired autophagy, mitochondrial dysfunction, etc. in causing acinar cell injury. Despite all efforts, the clinical outcome of patients with AP has not changed significantly over the years. This suggests that the knowledge of the critical molecular pathways in the pathophysiology of AP is still limited. The mechanisms through which the acinar cell injury leads to local and systemic inflammation are not well understood. The role of inflammatory markers and immune system activation is an area of much relevance from the point of view of finding a target for therapeutic intervention. Some data are available from experimental animal models but not much is known in human pancreatitis. This review intends to highlight the current understanding in this area.
Collapse
|
85
|
Criddle DN. Reactive oxygen species, Ca(2+) stores and acute pancreatitis; a step closer to therapy? Cell Calcium 2016; 60:180-9. [PMID: 27229361 DOI: 10.1016/j.ceca.2016.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022]
Abstract
Disruption of Ca(2+) homeostasis can lead to severe damage of the pancreas, resulting in premature activation of digestive enzymes, vacuolisation and necrotic cell death, features typical of acute pancreatitis (AP). Therefore a fine balance between Ca(2+) release from internal stores, Ca(2+) entry and extrusion mechanisms is necessary to avoid injury. Precipitants of AP induce Ca(2+) overload of the pancreatic acinar cell that causes mitochondrial dysfunction, via formation of the mitochondrial permeability transition pore (MPTP), loss of ATP production and consequent necrosis. Oxidative stress has been shown to occur in the development of AP and may modify Ca(2+) signalling events in the acinar cell. However, the precise pathophysiological involvement is currently unclear and antioxidant therapy in the clinic has largely proved ineffective. Possible reasons for this are discussed, including evidence that ROS generation may determine cell death patterns. In contrast, recent evidence has indicated the potential for AP therapy via the prevention of Ca(2+)-dependent mitochondrial damage. Multiple approaches are indicated from preclinical findings; 1) inhibition of Ca(2+) release by IP3R blockade, 2) inhibition of Ca(2+) entry through Orai1 blockade and 3) prevention of MPTP formation. Clinical trials of drugs which prevent mitochondrial dysfunction induced by Ca(2+) overload of pancreatic acinar cells are imminent and may provide patient benefit for a disease that currently lacks specific therapy.
Collapse
Affiliation(s)
- David N Criddle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, L69 3BX, UK.
| |
Collapse
|
86
|
Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun 2016; 7:10973. [PMID: 26964500 PMCID: PMC4793047 DOI: 10.1038/ncomms10973] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
Ductal occlusion has been postulated to precipitate focal pancreatic inflammation,
while the nature of the primary occluding agents has remained elusive. Neutrophils
make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in
contact to particulate agents to extrude decondensed chromatin as neutrophil
extracellular traps (NETs). In high cellular density, NETs form macroscopically
visible aggregates. Here we show that such aggregates form inside pancreatic ducts
in humans and mice occluding pancreatic ducts and thereby driving pancreatic
inflammation. Experimental models indicate that PADI4 is critical for intraductal
aggregate formation and that PADI4-deficiency abrogates disease progression.
Mechanistically, we identify the pancreatic juice as a strong instigator of
neutrophil chromatin extrusion. Characteristic single components of pancreatic
juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated
NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with
relevance in a plethora of inflammatory conditions involving secretory ducts. Pancreatitis often develops as a consequence of ductal obstruction.
Here, the authors show that bicarbonate ions initiate the release of neutrophil
extracellular traps (NETs) that form pancreatic ductal aggregates and occlude the ducts,
thereby driving pancreatitis in mice and humans.
Collapse
|
87
|
Liu Y, Zhou D, Long FW, Chen KL, Yang HW, Lv ZY, Zhou B, Peng ZH, Sun XF, Li Y, Zhou ZG. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 2016; 310:G303-9. [PMID: 26702138 DOI: 10.1152/ajpgi.00355.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2015] [Indexed: 02/05/2023]
Abstract
Acute pancreatitis is an inflammatory condition that may lead to multisystemic organ failure with considerable mortality. Recently, resolvin D1 (RvD1) as an endogenous anti-inflammatory lipid mediator has been confirmed to protect against many inflammatory diseases. This study was designed to investigate the effects of RvD1 in acute pancreatitis and associated lung injury. Acute pancreatitis varying from mild to severe was induced by cerulein or cerulein combined with LPS, respectively. Mice were pretreated with RvD1 at a dose of 300 ng/mouse 30 min before the first injection of cerulein. Severity of AP was assessed by biochemical markers and histology. Serum cytokines and myeloperoxidase (MPO) levels in pancreas and lung were determined for assessing the extent of inflammatory response. NF-κB activation was determined by Western blotting. The injection of cerulein or cerulein combined with LPS resulted in local injury in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the cerulein and LPS group. Pretreated RvD1 significantly reduced the degree of amylase, lipase, TNF-α, and IL-6 serum levels; the MPO activities in the pancreas and the lungs; the pancreatic NF-κB activation; and the severity of pancreatic injury and associated lung injury, especially in the severe acute pancreatitis model. These results suggest that RvD1 is capable of improving injury of pancreas and lung and exerting anti-inflammatory effects through the inhibition of NF-κB activation in experimental acute pancreatitis, with more notable protective effect in severe acute pancreatitis. These findings indicate that RvD1 may constitute a novel therapeutic strategy in the management of severe acute pancreatitis.
Collapse
Affiliation(s)
- Yong Liu
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei-Wu Long
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ke-Ling Chen
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong-Wei Yang
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhao-Yin Lv
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Hai Peng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China; and
| | - Xiao-Feng Sun
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Oncology, Department of Clinical and Experiment Medicine, Linköping University, Linköping, Sweden
| | - Yuan Li
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;
| | - Zong-Guang Zhou
- Institute of Digestive Surgery and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterological Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
88
|
Korhonen JT, Dudeja V, Dawra R, Kubes P, Saluja A. Neutrophil Extracellular Traps Provide a Grip on the Enigmatic Pathogenesis of Acute Pancreatitis. Gastroenterology 2015; 149:1682-5. [PMID: 26505817 DOI: 10.1053/j.gastro.2015.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Juha T Korhonen
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki, Finland
| | - Vikas Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Rajinder Dawra
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Paul Kubes
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki, Helsinki, Finland; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ashok Saluja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
89
|
Metaflammatory responses during obesity: Pathomechanism and treatment. Obes Res Clin Pract 2015; 10:103-13. [PMID: 26614484 DOI: 10.1016/j.orcp.2015.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022]
Abstract
Obesity induced inflammation acts as a reflex produced due to altered metabolic homeostasis in accordance to the nutrient overload on the metabolic cells. It involves up-regulation of the genes encoding for cytokines, chemokines and other inflammatory mediators through activated transcription factors - nuclear factor-kB, activator protein-1, nuclear factor of activated T cells and signal transducer and activator of transcription 3. These execute macromolecular innate immune cell sensor - inflammasome to activate caspase-1 pathway resulting in proteolytic maturation. Secretion of pro-inflammatory cytokines including TNF-α, IL-6, CRP, IL-1β, etc. from the M1 macrophages of white adipose tissue is increased, whereas there occurs a steep decline in the production of anti-inflammatory cytokines like IL-10, IL-Ra, adiponectin. Not only the adipose tissue, but also the immune cells, liver, brain, muscles and pancreas suffers from the inflammatory insult during obese condition and are exaggeratedly affected. The inflammatory kinases like JNK and IKK apart from inhibiting insulin action and glucose uptake, down-regulate transcriptional process resulting in increased expression of pro-inflammatory cytokines. Macrophage-like Kupffer cells initiate the inflammatory process in the liver preceding the inflammatory signals produced by the white adipose tissue which may further lead to hepatic-necro-inflammation. The muscle-fibre is affected by the cytokines and therefore results in decreased glycogen synthesis. The triggered hypothalamic-pituitary-adrenal axis further affects the expression of inflammatory cytokines thus altering insulin homeostasis and initiating glucose intolerance. Anti-inflammatory treatment so as to curb the severity of inflammatory responses includes administration of synthetic drugs to target the actual inflammatory molecules and various therapeutic interventions.
Collapse
|
90
|
Shamoon M, Deng Y, Chen YQ, Bhatia M, Sun J. Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 2015; 20:73-87. [PMID: 26565751 DOI: 10.1517/14728222.2015.1077227] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) is an inflammatory disorder of the pancreas encompassing a cascade of cellular and molecular events. It starts from premature activation of zymogens with the involvement of innate immune system to a potential systemic inflammatory response and multiple organ failure. Leukocytes are the major cell population that participate in the propagation of the disease. Current understanding of the course of AP is still far from complete, limiting treatment options mostly to conservative supportive care. Emerging evidence has pointed to modulation of the immune system for strategic therapeutic development, by mitigating the inflammatory response and severity of AP. In the current review, we have focused on the role of innate immunity in the condition and highlighted therapeutics targeting it for treatment of this challenging disease. AREAS COVERED The current review has aimed to elaborate in-depth understanding of specific roles of innate immune cells, derived mediators and inflammatory pathways that are involved in AP. Summarizing the recent therapeutics and approaches applied experimentally that target immune responses to attenuate AP. EXPERT OPINION The current state of knowledge on AP, limitations of presently available therapeutic approaches and the promise of therapeutic implications of innate immune system in AP are discussed.
Collapse
Affiliation(s)
- Muhammad Shamoon
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yuanyuan Deng
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yong Q Chen
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Madhav Bhatia
- b 2 University of Otago, Inflammation Research Group, Department of Pathology , Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| |
Collapse
|
91
|
Abstract
An international symposium entitled "Acute pancreatitis: progress and challenges" was held on November 5, 2014 at the Hapuna Beach Hotel, Big Island, Hawaii, as part of the 45th Anniversary Meeting of the American Pancreatic Association and the Japanese Pancreas Society. The course was organized and directed by Drs. Stephen Pandol, Tooru Shimosegawa, Robert Sutton, Bechien Wu, and Santhi Swaroop Vege. The symposium objectives were to: (1) highlight current issues in management of acute pancreatitis, (2) discuss promising treatments, (3) consider development of quality indicators and improved measures of disease activity, and (4) present a framework for international collaboration for development of new therapies. This article represents a compilation and adaptation of brief summaries prepared by speakers at the symposium with the purpose of broadly disseminating information and initiatives.
Collapse
|
92
|
Steele CW, Karim SA, Foth M, Rishi L, Leach JDG, Porter RJ, Nixon C, Jeffry Evans TR, Carter CR, Nibbs RJB, Sansom OJ, Morton JP. CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. J Pathol 2015; 237:85-97. [PMID: 25950520 PMCID: PMC4833178 DOI: 10.1002/path.4555] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/01/2015] [Accepted: 04/28/2015] [Indexed: 12/18/2022]
Abstract
Pancreatitis is a significant clinical problem and the lack of effective therapeutic options means that treatment is often palliative rather than curative. A deeper understanding of the pathogenesis of both acute and chronic pancreatitis is necessary to develop new therapies. Pathological changes in pancreatitis are dependent on innate immune cell recruitment to the site of initial tissue damage, and on the coordination of downstream inflammatory pathways. The chemokine receptor CXCR2 drives neutrophil recruitment during inflammation, and to investigate its role in pancreatic inflammation, we induced acute and chronic pancreatitis in wild-type and Cxcr2(-/-) mice. Strikingly, Cxcr2(-/-) mice were strongly protected from tissue damage in models of acute pancreatitis, and this could be recapitulated by neutrophil depletion or by the specific deletion of Cxcr2 from myeloid cells. The pancreata of Cxcr2(-/-) mice were also substantially protected from damage during chronic pancreatitis. Neutrophil depletion was less effective in this model, suggesting that CXCR2 on non-neutrophils contributes to the development of chronic pancreatitis. Importantly, pharmacological inhibition of CXCR2 in wild-type mice replicated the protection seen in Cxcr2(-/-) mice in acute and chronic models of pancreatitis. Moreover, acute pancreatic inflammation was reversible by inhibition of CXCR2. Thus, CXCR2 is critically involved in the development of acute and chronic pancreatitis in mice, and its inhibition or loss protects against pancreatic damage. CXCR2 may therefore be a viable therapeutic target in the treatment of pancreatitis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anti-Inflammatory Agents/pharmacology
- Ceruletide
- Cytoprotection
- Disease Models, Animal
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- Pancreatitis/chemically induced
- Pancreatitis/genetics
- Pancreatitis/immunology
- Pancreatitis/metabolism
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Pancreatitis, Chronic/chemically induced
- Pancreatitis, Chronic/genetics
- Pancreatitis, Chronic/immunology
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Pancreatitis, Chronic/prevention & control
- Peptides/pharmacology
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/deficiency
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction/drug effects
- Time Factors
Collapse
Affiliation(s)
- Colin W Steele
- Cancer Research UK Beatson Institute, Glasgow, UK
- Department of Surgery, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Mona Foth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Loveena Rishi
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Joshua D G Leach
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - T R Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - C Ross Carter
- Department of Surgery, Glasgow Royal Infirmary, Glasgow, UK
| | - Robert J B Nibbs
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
93
|
Abstract
PURPOSE OF REVIEW This report reviews recent animal model and human studies associated with inflammatory responses in acute and chronic pancreatitis. RECENT FINDINGS Animal model and limited human acute and chronic pancreatitis studies unravel the dynamic nature of the inflammatory processes and the ability of the immune cells to sense danger and environmental signals. In acute pancreatitis, such molecules include pathogen-associated molecular pattern recognition receptors such as toll-like receptors, and the more recently appreciated damage-associated molecular pattern molecules or 'alarmin' high mobility group box 1 and IL-33. In chronic pancreatitis, a recent understanding of a critical role for macrophage-pancreatic stellate cell interaction offers a potential targetable pathway that can alter fibrogenesis. Microbiome research in pancreatitis is a new field gaining interest but will require further investigation. SUMMARY Immune cell contribution to the pathogenesis of acute and chronic pancreatitis is gaining more appreciation and further understanding in immune signaling presents potential therapeutic targets that can alter disease progression.
Collapse
|
94
|
Hirano K, Chen WS, Chueng ALW, Dunne AA, Seredenina T, Filippova A, Ramachandran S, Bridges A, Chaudry L, Pettman G, Allan C, Duncan S, Lee KC, Lim J, Ma MT, Ong AB, Ye NY, Nasir S, Mulyanidewi S, Aw CC, Oon PP, Liao S, Li D, Johns DG, Miller ND, Davies CH, Browne ER, Matsuoka Y, Chen DW, Jaquet V, Rutter AR. Discovery of GSK2795039, a Novel Small Molecule NADPH Oxidase 2 Inhibitor. Antioxid Redox Signal 2015; 23:358-74. [PMID: 26135714 PMCID: PMC4545375 DOI: 10.1089/ars.2014.6202] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.
Collapse
Affiliation(s)
- Kazufumi Hirano
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Woei Shin Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Adeline L W Chueng
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela A Dunne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Tamara Seredenina
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Aleksandra Filippova
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - Sumitra Ramachandran
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Angela Bridges
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Laiq Chaudry
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Gary Pettman
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Craig Allan
- 3 Platform Technology & Sciences Department, GlaxoSmithKline , Stevenage, United Kingdom
| | - Sarah Duncan
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Kiew Ching Lee
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Jean Lim
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - May Thu Ma
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Agnes B Ong
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Nicole Y Ye
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shabina Nasir
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Sri Mulyanidewi
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Chiu Cheong Aw
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Pamela P Oon
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Shihua Liao
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Dizheng Li
- 4 Neuroimmunology Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Shanghai, China
| | - Douglas G Johns
- 5 Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline , King of Prussia, Pennsylvania
| | - Neil D Miller
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Ceri H Davies
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Edward R Browne
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Yasuji Matsuoka
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Deborah W Chen
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| | - Vincent Jaquet
- 2 Department of Pathology and Immunology, Medical School, Centre Médical Universitaire, University of Geneva , Geneva, Switzerland
| | - A Richard Rutter
- 1 Neural Pathways Discovery Performance Unit, Neurosciences Therapeutic Area, GlaxoSmithKline , Biopolis, Singapore
| |
Collapse
|
95
|
Yang ZW, Meng XX, Xu P. Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J Cell Mol Med 2015; 19:2513-20. [PMID: 26249268 PMCID: PMC4627557 DOI: 10.1111/jcmm.12639] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Severe acute pancreatitis (SAP) is an acute abdominal disease with the strong systemic inflammatory response, and rapidly progresses from a local pancreatic damage into multiple organ dysfunction. For many decades, the contributions of neutrophils to the pathology of SAP were traditionally thought to be the chemokine and cytokine cascades that accompany inflammation. In this review, we focus mainly on those recently recognized aspects of neutrophils in SAP processes. First, emerging evidence suggests that therapeutic interventions targeting neutrophils significantly lower tissue damage and protect against the occurrence of pancreatitis. Second, trypsin activation promotes the initial neutrophils recruitment into local pancreas, and subsequently neutrophils infiltration in turn triggers trypsin production. Finally, neutrophils have the unique ability to release neutrophil extracellular traps even in the absence of pathogens.
Collapse
Affiliation(s)
- Zhi-Wen Yang
- Pharmacy Department, Songjiang Hospital Affiliated the First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xiao Meng
- Digestive Department, Songjiang Hospital Affiliated the First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- Digestive Department, Songjiang Hospital Affiliated the First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
96
|
Wen L, Voronina S, Javed MA, Awais M, Szatmary P, Latawiec D, Chvanov M, Collier D, Huang W, Barrett J, Begg M, Stauderman K, Roos J, Grigoryev S, Ramos S, Rogers E, Whitten J, Velicelebi G, Dunn M, Tepikin AV, Criddle DN, Sutton R. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology 2015; 149:481-92.e7. [PMID: 25917787 PMCID: PMC4556985 DOI: 10.1053/j.gastro.2015.04.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release-activated calcium modulator ORAI1 is the most abundant Ca(2+) entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. METHODS Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. RESULTS GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca(2+) currents after Ca(2+) release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. CONCLUSIONS Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed for the treatment of patients with pancreatitis.
Collapse
Affiliation(s)
- Li Wen
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom; Department of Integrated Traditional and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Svetlana Voronina
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad A Javed
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom; Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad Awais
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Peter Szatmary
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom; Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Diane Latawiec
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Michael Chvanov
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - David Collier
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - John Barrett
- Respiratory Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | - Malcolm Begg
- Respiratory Therapy Area Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage, United Kingdom
| | | | | | | | | | | | | | | | | | - Alexei V Tepikin
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - David N Criddle
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Pancreas Biomedical Research Unit, National Institute for Health Research Liverpool, Royal Liverpool University Hospital, Liverpool, United Kingdom.
| |
Collapse
|
97
|
Huang W, Cash N, Wen L, Szatmary P, Mukherjee R, Armstrong J, Chvanov M, Tepikin AV, Murphy MP, Sutton R, Criddle DN. Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis. Mediators Inflamm 2015; 2015:901780. [PMID: 25878403 PMCID: PMC4386569 DOI: 10.1155/2015/901780] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/19/2014] [Indexed: 02/05/2023] Open
Abstract
Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP using in vitro and in vivo approaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisation per se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease.
Collapse
Affiliation(s)
- Wei Huang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, China
| | - Nicole Cash
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Li Wen
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, China
| | - Peter Szatmary
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Rajarshi Mukherjee
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Jane Armstrong
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael P. Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, Cambridge, UK
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
| | - David N. Criddle
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, UK
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
98
|
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.
Collapse
|
99
|
Abstract
Alcohol and gallstones are the most common etiologic factors in acute pancreatitis (AP). Recurrent AP can lead to chronic pancreatitis (CP). Although the underlying pathophysiology of the disease is complex, immune cells are critical in the pathogenesis of pancreatitis and determining disease severity. In this review, we discuss the role of innate and adaptive immune cells in both AP and CP, potential immune-based therapeutic targets, and animal models used to understand our knowledge of the disease. The relative difficulty of obtaining human pancreatic tissue during pancreatitis makes animal models necessary. Animal models of pancreatitis have been generated to understand disease pathogenesis, test therapeutic interventions, and investigate immune responses. Although current animal models do not recapitulate all aspects of human disease, until better models can be developed available models are useful in addressing key research questions. Differences between experimental and clinical pancreatitis need consideration, and when therapies are tested, models with established disease ought to be included.
Collapse
|
100
|
Lin K, Gao F, Chen Q, Liu Q, Chen S. Framework for interpretation of trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis. Saudi J Gastroenterol 2015; 21:198-207. [PMID: 26228362 PMCID: PMC4542417 DOI: 10.4103/1319-3767.161643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early intracellular premature trypsinogen activation was interpreted as the key initiator of pancreatitis. When the balance in the homeostasis of trypsin and antitrypsin system is disequilibrated, elevated aggressive enzymes directly attack the pancreatic tissue, which leads to pancreatic destruction and inflammation. However, trypsin alone is not enough to cause complications in pancreatitis, which may play a crucial role in modulating signaling events in the initial phase of the disease. NFκB activation is the major inflammatory pathway involved in the occurrence and development of pancreatitis and it can be induced by intrapancreatic activation of trypsinogen. Synthesis of trypsinogen occurs in endoplasmic reticulum (ER), and ER stress is an important early acinar cell event. Components of ER stress response are known to be able to trigger cell death as well as NFκB signaling cascade. The strongest evidence supporting the trypsin-centered theory is that gene mutations, which lead to the generation of more trypsin, or reduce the activity of trypsin inhibitors or trypsin degradation, are associated with pancreatitis. Thus, trypsin-antitrypsin imbalance may be the first step leading to pancreatic autodigestion and inducing other pathways. Continued experimental studies are necessary to determine the specific relationships between trypsin-antitrypsin imbalance and genetic heterogeneity in pancreatitis. In this article, we review the latest advances that contributed to the understanding of the basic mechanisms behind the occurrence and development of pancreatitis with a focus on the interpretation of trypsin-antitrypsin imbalance and their relationships with other inflammation pathways. We additionally highlight genetic predispositions to pancreatitis and possible mechanisms associated with them.
Collapse
Affiliation(s)
- Kun Lin
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Gao
- Department of Pathology, The First Affiliated Hospital, Fuzhou, China,Address for correspondence: Dr. Feng Gao, Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou - 350005, China. E-mail:
| | - Qingquan Chen
- Department of Laboratory Medicines, The First Affiliated Hospital, Fuzhou, China
| | - Qicai Liu
- Department of Laboratory Medicines, The First Affiliated Hospital, Fuzhou, China
| | - Shu Chen
- Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, China
| |
Collapse
|