51
|
Wang P, Zhao W, Cao H. Development of a Platelet-Related Prognostic Model for Colorectal Cancer. Front Genet 2022; 13:904168. [PMID: 35719389 PMCID: PMC9198283 DOI: 10.3389/fgene.2022.904168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most common malignancies with high morbidity worldwide. Growing evidence has suggested that platelets are a fundamental component of the tumor microenvironment and play crucial roles in driving tumor biological behavior. The construction of a platelet-related prognostic model that can reliably predict CRC prognosis is of great clinical significance. The 1427 CRC-specific platelet-related genes were collected and mainly enriched in the ribosome and immune-related pathways. Based on platelet-related genes, three subtypes of TCGA CRC samples were identified by consensus clustering and characterized by differences in angiogenesis, epithelial–mesenchymal transition, immune infiltration, and prognosis. A total of 100 prognostic platelet-related genes were identified by univariate Cox regression. LASSO Cox regression further shrank those genes and constructed a 10-gene prognostic model. The patients with higher risk scores had significantly worse disease-specific survival than those with lower scores in both TCGA and validation cohorts. The risk score demonstrated good predictive performance for prognosis by receiver operating characteristic (ROC) curves. Furthermore, multivariate Cox regression analysis showed that the risk score was independent of TNM stage, sex, and age, and a graphic nomogram based on the risk score and clinical factors was developed to predict survival probability of CRC patients. Patients from the high-risk group were characterized by higher infiltration of immunosuppressive cells such as MDSC and Treg and higher expression of checkpoints CTLA4, CD86, and PDCD1LG2. Taken together, we identified three platelet-related subtypes and specifically constructed a promising 10-gene prognostic model in CRC. Our results highlighted the potential survival effects of platelet-related genes and provided evidence about their roles in regulating tumor immunity.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Wei Zhao
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hailei Cao
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital, Taiyuan, China
| |
Collapse
|
52
|
Nakai N, Hara M, Takahashi H, Shiga K, Hirokawa T, Maeda Y, Yanagita T, Ando N, Takasu K, Suzuki T, Maeda A, Ogawa R, Matsuo Y, Takiguchi S. Cancer cell‑induced tissue inhibitor of metalloproteinase‑1 secretion by cancer‑associated fibroblasts promotes cancer cell migration. Oncol Rep 2022; 47:112. [PMID: 35485275 DOI: 10.3892/or.2022.8323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/23/2021] [Indexed: 11/06/2022] Open
Abstract
Cancer‑associated fibroblasts (CAFs) are one of the major components of the cancer stroma in the tumor microenvironment. The interaction between cancer cells and CAFs (cancer‑stromal interaction; CSI) promotes tumor progression, including metastasis. Recently, the tissue inhibitor of metalloproteinase‑1 (TIMP‑1) was reported to promote cancer cell migration and metastasis, which is contrary to its anticancer role as an inhibitor of matrix metalloproteinase. Moreover, CAF‑derived TIMP‑1 is reported to regulate CAF activity. In the present study, we investigated the effect of TIMP‑1 on colon cancer cell migration in vitro. The TIMP‑1 secretion levels from the CAFs and cancer cell lines were comparatively measured to determine the main source of TIMP‑1. Furthermore, the effect of CSI on TIMP‑1 secretion was investigated using the Transwell co‑culture system. Cancer cell migration was evaluated using the wound‑healing assay. The results demonstrated that TIMP‑1 promoted the migration of LoVo cells, a colon cancer cell line, whereas TIMP‑1 neutralization inhibited the enhanced migration. The TIMP‑1 levels secreted from the cancer cells were approximately 10 times less than those secreted from the CAFs. TIMP‑1 secretion was higher in CAFs co‑cultured with cancer cells than in monocultured CAFs. Furthermore, the migration of LoVo cells increased upon co‑culturing with the CAFs. TIMP‑1 neutralization partially inhibited this enhanced migration. These results suggest that CAFs are the primary source of TIMP‑1 and that the TIMP‑1 production is enhanced through CSI in the tumor microenvironment, which promotes cancer cell migration.
Collapse
Affiliation(s)
- Nozomu Nakai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Masayasu Hara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Nanako Ando
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Korehito Takasu
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Anri Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Science, Mizuho‑cho, Mizuho‑ku, Nagoya 467‑8601, Japan
| |
Collapse
|
53
|
Zhang M, Chen Z, Wang Y, Zhao H, Du Y. The Role of Cancer-Associated Fibroblasts in Ovarian Cancer. Cancers (Basel) 2022; 14:2637. [PMID: 35681617 PMCID: PMC9179444 DOI: 10.3390/cancers14112637] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer is a lethal gynecologic tumor and is generally resistant to conventional treatments. Stable cancer-associated fibroblasts (CAFs) are important cellular components in the ovarian cancer tumor microenvironment and may provide novel resources for future treatment strategies. Different subtypes of CAFs display specific functions in tumor pathogenesis and various CAF markers suggest potential treatment targets, such as FAP and GPR77. Both autocrine and paracrine cytokines play important roles in the CAF activation process and regulate tumor progression. Downstream mediators and pathways, including IL-6, TGF-β, NF-κB, mitogen-activated protein kinase (MAPK), and AKT/mTOR/(p70S6K), play important roles in the initiation, proliferation, invasiveness, and metastasis of ovarian cancer cells and also participate in angiogenesis, therapeutic resistance, and other biological processes. Several clinical or preclinical trials have targeted stromal fibroblasts and focused on the properties of CAFs to enhance ovarian cancer treatment outcomes. This review concentrates on the origins, subtypes, and activation of CAFs, as well as specific roles of CAFs in regulating tumor development and drug resistance, and aims to provide potential and prospective targets for improving the therapeutic efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mo Zhang
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Zhixian Chen
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yan Wang
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Hongbo Zhao
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yan Du
- Clinical Research Unit, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; (M.Z.); (Z.C.); (Y.W.)
- Department of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
54
|
Kishi S, Fujiwara-Tani R, Honoki K, Sasaki R, Mori S, Ohmori H, Sasaki T, Miyagawa Y, Kawahara I, Kido A, Tanaka Y, Kuniyasu H. Oxidized high mobility group B-1 enhances metastability of colorectal cancer via modification of mesenchymal stem/stromal cells. Cancer Sci 2022; 113:2904-2915. [PMID: 35570394 PMCID: PMC9357642 DOI: 10.1111/cas.15400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
High mobility group box-1 (HMGB1) is known to be a chemotactic factor for mesenchymal stem/stromal cells (MSCs), but the effect of post-translational modification on its function is not clear. In this study, we hypothesized that differences in the oxidation state of HMGB1 would lead to differences in the function of MSCs in cancer. In human colorectal cancer, MSCs infiltrating into the stroma were correlated with liver metastasis and serum HMGB1. In animal models, oxidized HMGB1 mobilized 3-fold fewer MSCs to subcutaneous tumors compared to reduced HMGB1. Reduced HMGB1 inhibited proliferation of mouse bone marrow MSCs (BM-MSCs) and induced differentiation into osteoblasts and vascular pericytes, whereas oxidized HMGB1 promoted proliferation and increased stemness, and no differentiation was observed. When BM-MSCs pretreated with oxidized HMGB1 were co-cultured with syngeneic cancer cells, cell proliferation and stemness of cancer cells were increased, and tumorigenesis and drug resistance were promoted. In contrast, co-culture with reduced HMGB1-pretreated BM-MSCs did not enhance stemness. In an animal orthotopic transplantation colorectal cancer model, oxidized HMGB1, but not reduced HMGB1, promoted liver metastasis with intratumoral MSC chemotaxis. Thus, oxidized HMGB1 reprograms MSCs and promotes cancer malignancy. The oxidized HMGB1-MSC axis may be an important target for cancer therapy.
Collapse
Affiliation(s)
- Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | | | - Kanya Honoki
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | | | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Akira Kido
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopedics, Nara Medical University, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
55
|
Mele V, Basso C, Governa V, Glaus Garzon JF, Muraro MG, Däster S, Nebiker CA, Mechera R, Bolli M, Schmidt A, Geiger R, Spagnoli GC, Christoforidis D, Majno PE, Borsig L, Iezzi G. Identification of TPM2 and CNN1 as Novel Prognostic Markers in Functionally Characterized Human Colon Cancer-Associated Stromal Cells. Cancers (Basel) 2022; 14:cancers14082024. [PMID: 35454931 PMCID: PMC9025001 DOI: 10.3390/cancers14082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Non-transformed cells of tumor microenvironment also impact on cancer outgrowth and progression. In colon cancer, a leading cause of cancer-related death worldwide, a high abundance of a heterogeneous cell population generally referred to as cancer-associated fibroblasts (CAFs) or tumor-associated stromal cells (TASCs) is associated with poor prognosis. The identification of TASC-specific markers could help to select patients for additional treatments and may provide novel targets for innovative therapies. Some markers have been proposed, but their prognostic significance is modest. We successfully expanded TASCs from human colon cancers and demonstrated their capacity to promote tumor growth and metastatic spread in vitro and in in vivo models. By comparing TASC whole protein expression, the so-called “proteome”, with that of stromal cells derived from matched healthy colon tissues, we identified two novel markers highly significantly associated with severe prognosis. Our results might help to identify patients at risk and might suggest new treatment options. Abstract Stromal infiltration is associated with poor prognosis in human colon cancers. However, the high heterogeneity of human tumor-associated stromal cells (TASCs) hampers a clear identification of specific markers of prognostic relevance. To address these issues, we established short-term cultures of TASCs and matched healthy mucosa-associated stromal cells (MASCs) from human primary colon cancers and, upon characterization of their phenotypic and functional profiles in vitro and in vivo, we identified differentially expressed markers by proteomic analysis and evaluated their prognostic significance. TASCs were characterized by higher proliferation and differentiation potential, and enhanced expression of mesenchymal stem cell markers, as compared to MASCs. TASC triggered epithelial–mesenchymal transition (EMT) in tumor cells in vitro and promoted their metastatic spread in vivo, as assessed in an orthotopic mouse model. Proteomic analysis of matched TASCs and MASCs identified a panel of markers preferentially expressed in TASCs. The expression of genes encoding two of them, calponin 1 (CNN1) and tropomyosin beta chain isoform 2 (TPM2), was significantly associated with poor outcome in independent databases and outperformed the prognostic significance of currently proposed TASC markers. The newly identified markers may improve prognostication of primary colon cancers and identification of patients at risk.
Collapse
Affiliation(s)
- Valentina Mele
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (V.M.); (M.G.M.)
| | - Camilla Basso
- Laboratory for Surgical Research, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
| | - Valeria Governa
- Department of Clinical Sciences Lund, Section of Oncology, Lund University, 221 85 Lund, Sweden;
| | - Jesus F. Glaus Garzon
- Institute of Physiology, University of Zürich, 8006 Zürich, Switzerland; (J.F.G.G.); (L.B.)
| | - Manuele G. Muraro
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; (V.M.); (M.G.M.)
| | - Silvio Däster
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Christian A. Nebiker
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Robert Mechera
- Department of General Surgery, University Hospital Basel, 4031 Basel, Switzerland; (S.D.); (C.A.N.); (R.M.)
| | - Martin Bolli
- Department of Visceral Surgery, Clarunis-University Center for Gastrointestinal and Liver Diseases, St. Claraspital and University Hospital Basel, 4002 Basel, Switzerland;
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland;
| | - Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
- Institute of Oncology Research, Università della Svizzera italiana, 6900 Lugano, Switzerland
| | - Giulio C. Spagnoli
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
| | - Dimitri Christoforidis
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Department of Surgery, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Pietro E. Majno
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Department of Surgery, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zürich, 8006 Zürich, Switzerland; (J.F.G.G.); (L.B.)
| | - Giandomenica Iezzi
- Laboratory for Surgical Research, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland; (D.C.); (P.E.M.)
- Correspondence:
| |
Collapse
|
56
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
57
|
Yan K, Bai B, Ren Y, Cheng B, Zhang X, Zhou H, Liang Y, Chen L, Zi J, Yang Q, Zhao Q, Liu S. The Comparable Microenvironment Shared by Colorectal Adenoma and Carcinoma: An Evidence of Stromal Proteomics. Front Oncol 2022; 12:848782. [PMID: 35433435 PMCID: PMC9010820 DOI: 10.3389/fonc.2022.848782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment (TME) is a key factor involved in cancer development and metastasis. In the TME of colorectal cancer (CRC), the gene expression status of stromal tissues could influence the CRC process from normal to adenoma then carcinoma; however, the expression status at the protein level has not yet been well evaluated. A total of 22 CRC patients were recruited for this study, and the tissue regions corresponding with adjacent, adenoma, and carcinoma were carefully excised by laser capture microdissection (LCM), including a patient with adenoma and carcinoma. The individual proteomes of this cohort were implemented by high-resolution mass spectrometer under data-independent acquisition (DIA) mode. A series of informatic analysis was employed to statistically seek the proteomic characteristics related with the stroma at different stages of CRC. The identified proteins in the colorectal stromal tissues were much less than and almost overlapped with that in the corresponding epithelial tissues; however, the patterns of protein abundance in the stroma were very distinct from those in the epithelium. Although qualitative and quantitative analysis delineated the epithelial proteins specifically typified in the adjacent, adenoma, and carcinoma, the informatics in the stroma led to another deduction that such proteomes were only divided into two patterns, adjacent- and adenoma/carcinoma-dependent. The comparable proteomes of colorectal adenoma and carcinoma were further confirmed by the bulk preparation- or individual LCM-proteomics. The biochemical features of the tumor stromal proteomes were characterized as enrichment of CD4+ and CD8+ T cells, upregulated pathways of antigen presentation, and enhancement of immune signal interactions. Finally, the features of lymphoid lineages in tumor stroma were verified by tissue microarray (TMA). Based on the proteomic evidence, a hypothesis was raised that in the colorectal tissue, the TME of adenoma and carcinoma were comparable, whereas the key elements driving an epithelium from benign to malignant were likely decided by the changes of genomic mutations or/and expression within it.
Collapse
Affiliation(s)
- Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benliang Cheng
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Xia Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Haichao Zhou
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Yuting Liang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Jin Zi
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| | - Qinghai Yang
- Department of Quality Testing & Research, Fuzhou Maixin Biotech Inc., Fuzhou, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Siqi Liu
- Department of Proteomics, Beijing Genomics Instituion (BGI)-Shenzhen, Shenzhen, China
| |
Collapse
|
58
|
Akimoto N, Väyrynen JP, Zhao M, Ugai T, Fujiyoshi K, Borowsky J, Zhong R, Haruki K, Arima K, Lau MC, Kishikawa J, Twombly TS, Takashima Y, Song M, Zhang X, Wu K, Chan AT, Meyerhardt JA, Giannakis M, Nowak JA, Ogino S. Desmoplastic Reaction, Immune Cell Response, and Prognosis in Colorectal Cancer. Front Immunol 2022; 13:840198. [PMID: 35392092 PMCID: PMC8980356 DOI: 10.3389/fimmu.2022.840198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The relationships between tumor stromal features (such as desmoplastic reaction, myxoid stroma, and keloid-like collagen bundles) and immune cells in the colorectal carcinoma microenvironment have not yet been fully characterized. Methods In 908 tumors with available tissue among 4,465 incident colorectal adenocarcinoma cases in two prospective cohort studies, we examined desmoplastic reaction, myxoid stroma, and keloid-like collagen bundles. We conducted multiplex immunofluorescence for T cells [CD3, CD4, CD8, CD45RO (PTPRC), and FOXP3] and for macrophages [CD68, CD86, IRF5, MAF, and MRC1 (CD206)]. We used the inverse probability weighting method and the 4,465 incident cancer cases to adjust for selection bias. Results Immature desmoplastic reaction was associated with lower densities of intraepithelial CD3+CD8+CD45RO+ cells [multivariable odds ratio (OR) for the highest (vs. lowest) density category, 0.43; 95% confidence interval (CI), 0.29-0.62; Ptrend <0.0001] and stromal M1-like macrophages [the corresponding OR, 0.44; 95% CI, 0.28-0.70; Ptrend = 0.0011]. Similar relations were observed for myxoid stroma [intraepithelial CD3+CD8+CD45RO+ cells (Ptrend <0.0001) and stromal M1-like macrophages (Ptrend = 0.0007)] and for keloid-like collagen bundles (Ptrend <0.0001 for intraepithelial CD3+CD8+CD45RO+ cells). In colorectal cancer-specific survival analyses, multivariable-adjusted hazard ratios (with 95% confidence intervals) were 0.32 (0.23-0.44; Ptrend <0.0001) for mature (vs. immature) desmoplastic reaction, 0.25 (0.16-0.39; Ptrend <0.0001) for absent (vs. marked) myxoid stroma, and 0.12 (0.05-0.28; Ptrend <0.0001) for absent (vs. marked) keloid-like collagen bundles. Conclusions Immature desmoplastic reaction and myxoid stroma were associated with lower densities of tumor intraepithelial memory cytotoxic T cells and stromal M1-like macrophages, likely reflecting interactions between tumor, immune, and stromal cells in the colorectal tumor microenvironment.
Collapse
Affiliation(s)
- Naohiko Akimoto
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Gastroenterology, Nippon Medical School, Graduate School of Medicine, Tokyo, Japan
| | - Juha P. Väyrynen
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Melissa Zhao
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tomotaka Ugai
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kenji Fujiyoshi
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jennifer Borowsky
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rong Zhong
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Koichiro Haruki
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kota Arima
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mai Chan Lau
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Junko Kishikawa
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Tyler S. Twombly
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yasutoshi Takashima
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kana Wu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jeffrey A. Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan A. Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shuji Ogino
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, United States
| |
Collapse
|
59
|
Islam BN, Sharman SK, Hou Y, Wang R, Ashby J, Li H, Liu K, Vega KJ, Browning DD. Type-2 cGMP-dependent protein kinase suppresses proliferation and carcinogenesis in the colon epithelium. Carcinogenesis 2022; 43:584-593. [PMID: 35188962 PMCID: PMC9234760 DOI: 10.1093/carcin/bgac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
A large body of evidence has demonstrated that cyclic-guanosine monophosphate (cGMP), signaling has anti-tumor effects that might be used for colon cancer prevention. The tumor-suppressive mechanism and the signaling components downstream of cGMP remain largely unknown. The present study has characterized the expression of cGMP-dependent protein kinases (PKG1, PKG2) in normal and cancerous tissue from human colon. PKG1 was detected in both normal and tumor tissue, where it localized exclusively to the lamina propria and stroma (respectively). In contrast, PKG2 localized specifically to the epithelium where its expression decreased markedly in tumors compared to matched normal tissue. Neither PKG isoform was detected at the RNA or protein level in established colon cancer cell lines. To test for a potential tumor-suppressor role of PKG2 in the colon epithelium, Prkg2 knockout (KO) mice were subjected to azoxymethane/dextran sulfate-sodium (AOM/DSS) treatment. PKG2 deficiency was associated with crypt hyperplasia (Ki67) and almost twice the number of polyps per mouse as wild-type (WT) siblings. In vitro culture of mouse colon epithelium as organoids confirmed that PKG2 was the only isoform expressed, and it was detected in both proliferating and differentiating epithelial compartments. Colon organoids derived from Prkg2 KO mice proliferated more rapidly and exhibited a reduced ability to differentiate compared to WT controls. Taken together our results highlight PKG2 as the central target of cGMP in the colon, where it suppresses carcinogenesis by controlling proliferation in an epithelial-cell intrinsic manner.
Collapse
Affiliation(s)
- Bianca N Islam
- Department of Internal Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yali Hou
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Rui Wang
- Department of Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Justin Ashby
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kenneth J Vega
- Department of Medicine, Section of Gastroenterology and Hepatology, Augusta University, Augusta, GA, USA
| | - Darren D Browning
- To whom correspondence should be addressed. Tel: +1 706 7219526; Fax: +1 706 7216608;
| |
Collapse
|
60
|
5mC-Related lncRNAs as Potential Prognostic Biomarkers in Colon Adenocarcinoma. BIOLOGY 2022; 11:biology11020231. [PMID: 35205097 PMCID: PMC8868594 DOI: 10.3390/biology11020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary To identify the prognostic significance of 5mC-related lncRNAs in colon adenocarcinoma (COAD), we examined the expression levels and mutations of 21 5mC-regulated genes of COAD in TCGA. We also identified lncRNAs associated with 5mC regulatory genes using Pearson correlation analysis. After the least absolute shrinkage and selection operator (Lasso) Cox regression, the risk signature of 4 5mC-related lncRNAs was selected. Next, the risk signature’s predictive efficacy was proven. Moreover, the biological mechanism and potential immunotherapeutic response of this risk signature were identified. Collectively, we constructed the 5mC-related lncRNA risk signature, which could provide a novel prognostic prediction of COAD patients. Abstract Globally, colon adenocarcinoma (COAD) is one of the most frequent types of malignant tumors. About 40~50% of patients with advanced colon adenocarcinoma die from recurrence and metastasis. Long non-coding RNAs (lncRNAs) and 5-methylcytosine (5mC) regulatory genes have been demonstrated to involve in the progression and prognosis of COAD. The goal of this study was to explore the biological characteristics and potential predictive value of 5mC-related lncRNA signature in COAD. In this research, The Cancer Genome Atlas (TCGA) was utilized to obtain the expression of genes and somatic mutations in COAD, and Pearson correlation analysis was used to select lncRNAs involved in 5mC-regulated genes. Furthermore, we applied univariate Cox regression and Lasso Cox regression to construct 5mC-related lncRNA signature. Then Kaplan–Meier survival analysis, principal components analysis (PCA), receiver operating characteristic (ROC) curve, and a nomogram were performed to estimate the prognostic effect of the risk signature. GSEA was utilized to predict downstream access of the risk signature. Finally, the immune characteristics and immunotherapeutic signatures targeting this risk signature were analyzed. In the results, we obtained 1652 5mC-related lncRNAs by Pearson correlation analysis in the TCGA database. Next, we selected a risk signature that comprised 4 5mC-related lncRNAs by univariate and Lasso Cox regression. The prognostic value of the risk signature was proven. Finally, the biological mechanism and potential immunotherapeutic response of the risk signature were identified. Collectively, we constructed the 5mC-related lncRNA risk signature, which could provide a novel prognostic prediction of COAD patients.
Collapse
|
61
|
Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, Bao LL, Gonzalez-Acera M, Wallmüller S, Engel FB, Stürzl M, Neurath MF, Liebing E, Becker C. SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Cell Death Dis 2022; 13:52. [PMID: 35022391 PMCID: PMC8755774 DOI: 10.1038/s41419-021-04483-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022]
Abstract
SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer. Increased expression levels of SMYD2 were detected in human and murine colon tumor tissues compared to tumor-free tissues. SMYD2 deficiency in colonic tumor cells strongly decreased tumor growth in two independent experimental cancer models. On a molecular level, SMYD2 deficiency sensitized colonic tumor cells to TNF-induced apoptosis and necroptosis without affecting cell proliferation. Moreover, we found that SMYD2 targeted RIPK1 and inhibited the phosphorylation of RIPK1. Finally, in a translational approach, pharmacological inhibition of SMYD2 attenuated colonic tumor growth. Collectively, our data show that SMYD2 is crucial for colon tumor growth and inhibits TNF-induced apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yu-Qiang Yu
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Veronika Thonn
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Marta Zielinska
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Łódź, Poland
| | - Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Stefan Wallmüller
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Eva Liebing
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), 91054, Erlangen, Germany.
| |
Collapse
|
62
|
Watanabe K, Shiga K, Maeda A, Harata S, Yanagita T, Suzuki T, Ushigome H, Maeda Y, Hirokawa T, Ogawa R, Hara M, Takahashi H, Matsuo Y, Mitsui A, Kimura M, Takiguchi S. Chitinase 3-like 1 secreted from cancer-associated fibroblasts promotes tumor angiogenesis via interleukin-8 secretion in colorectal cancer. Int J Oncol 2022; 60:3. [PMID: 34913066 PMCID: PMC8698746 DOI: 10.3892/ijo.2021.5293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The cancer‑stromal interaction has been demonstrated to promote tumor progression, and cancer-associated fibroblasts (CAFs), which are the main components of stromal cells, have attracted attention as novel treatment targets. Chitinase 3-like 1 (CHI3L1) is a chitinase-like protein, which affects cell proliferation and angiogenesis. However, the mechanisms through which cells secrete CHI3L1 and through which CHI3L1 mediates tumor progression in the cancer microenvironment are still unclear. Accordingly, the present study assessed the secretion of CHI3L1 in the microenvironment of colorectal cancer and evaluated how CHI3L1 affects tumor angiogenesis. CAFs and normal fibroblasts (NFs) established from colorectal cancer tissue, and human colon cancer cell lines were evaluated using immunostaining, cytokine antibody array, RNA interference, reverse transcription-quantitative PCR (RT-qPCR), ELISA, western blotting and angiogenesis assays. The expression and secretion of CHI3L1 in CAFs were stronger than those in NFs and colorectal cancer cell lines. In addition, interleukin-13 receptor α2 (IL-13Rα2), a receptor for CHI3L1, was not expressed in colorectal cancer cell lines, but was expressed in fibroblasts, particularly CAFs. Furthermore, the expression and secretion of IL-8 in CAFs was stronger than that in NFs and cancer cell lines, and recombinant CHI3L1 addition increased IL-8 expression in CAFs, whereas knockdown of CHI3L1 suppressed IL-8 expression. Furthermore, IL-13Rα2 knockdown suppressed the enhancement of IL-8 expression induced by CHI3L1 treatment in CAFs. For vascular endothelial growth factor-A (VEGFA), similar results to IL-8 were observed in an ELISA for comparison of secretion between CAFs and NFs and for changes in secretion after CHI3L1 treatment in CAFs; however, no significant differences were observed for changes in expression after CHI3L1 treatment or IL-13Rα2 knockdown in CAFs assessed using RT-qPCR assays. Angiogenesis assays revealed that tube formation in vascular endothelial cells was suppressed by conditioned medium from CAFs with the addition of human CHI3L1 neutralizing antibodies compared with control IgG, and also suppressed by conditioned medium from CAFs transfected with CHI3L1, IL-8 or VEGFA small interfering RNA compared with negative control small interfering RNA. Overall, the present findings indicated that CHI3L1 secreted from CAFs acted on CAFs to increase the secretion of IL-8, thereby affecting tumor angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Anri Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Masayasu Hara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Masahiro Kimura
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
63
|
A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon. Cell Mol Gastroenterol Hepatol 2021; 13:1141-1159. [PMID: 34971821 PMCID: PMC8873938 DOI: 10.1016/j.jcmgh.2021.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Dietary signals are known to modulate stemness and tumorigenicity of intestinal progenitors; however, the impact of a high-fat diet (HFD) on the intestinal stem cell (ISC) niche and its association with colorectal cancer remains unclear. Thus, we aimed to investigate how a HFD affects the ISC niche and its regulatory factors. METHODS Mice were fed a purified diet (PD) or HFD for 2 months. The expression levels of ISC-related markers, ISC-supportive signals, and Wnt2b were assessed with real-time quantitative polymerase chain reaction, in situ hybridization, and immunofluorescence staining. RNA sequencing and metabolic function were analyzed in mesenchymal stromal cells (MSCs) from PD- and HFD-fed mice. Fecal microbiota were analyzed by 16s rRNA sequencing. Bile salt hydrolase activity and bile acid (BA) levels were measured. RESULTS We found that expression of CD44 and Wnt signal-related genes was higher in the colonic crypts of HFD-fed mice than in those fed a PD. Within the ISC niche, MSCs were expanded and secreted predominant levels of Wnt2b in the colon of HFD-fed mice. Of note, increased energy metabolism and cancer-associated fibroblast (CAF)-like properties were found in the colonic MSCs of HFD-fed mice. Moreover, colonic MSCs from HFD-fed mice promoted the growth of tumorigenic properties and accelerated the expression of cancer stem cell (CSC)-related markers in colon organoids. In particular, production of primary and secondary BAs was increased through the expansion of bile salt hydrolase-encoding bacteria in HFD-fed mice. Most importantly, BAs-FXR interaction stimulated Wnt2b production in colonic CAF-like MSCs. CONCLUSIONS HFD-induced colonic CAF-like MSCs play an indispensable role in balancing the properties of CSCs through activation of the BAs-FXR axis.
Collapse
|
64
|
Degirmenci B, Dincer C, Demirel HC, Berkova L, Moor AE, Kahraman A, Hausmann G, Aguet M, Tuncbag N, Valenta T, Basler K. Epithelial Wnt secretion drives the progression of inflammation-induced colon carcinoma in murine model. iScience 2021; 24:103369. [PMID: 34849464 PMCID: PMC8607204 DOI: 10.1016/j.isci.2021.103369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is initiated by stem cells that escape the strict control. This process is often driven through aberrant activation of Wnt signaling by mutations in components acting downstream of the receptor complex that unfetter tumor cells from the need for Wnts. Here we describe a class of colon cancer that does not depend on mutated core components of the Wnt pathway. Genetically blocking Wnt secretion from epithelial cells of such tumors results in apoptosis, reduced expression of colon cancer markers, followed by enhanced tumor differentiation. In contrast to the normal colonic epithelium, such tumor cells autosecrete Wnts to maintain their uncontrolled proliferative behavior. In humans, we determined certain cases of colon cancers in which the Wnt pathway is hyperactive, but not through mutations in its core components. Our findings illuminate the path in therapy to find further subtypes of Wnt-dependent colon cancer that might be responsive to Wnt secretion inhibitors. Acquired expression of epithelial Wnts can drive colon cancer in murine AOM/DSS model Blocking epithelial Wnt-secretion induces apoptosis of AOM/DSS cancer cells The loss of epithelial Wnts promotes differentiation of Wnt-dependent colon tumors Organoids derived from AOM/DSS cancer depend on self-autonomously secreted Wnts
Collapse
Affiliation(s)
- Bahar Degirmenci
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Cansu Dincer
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Habibe Cansu Demirel
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Linda Berkova
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Andreas E Moor
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, 1015 Lausanne, Switzerland
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, METU, Ankara, Turkey
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083142 20, Prague 4, Czech Republic
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
65
|
Xie X, Lin H, Zhang X, Song P, He X, Zhong J, Shi J. Overexpression of GDP dissociation inhibitor 1 gene associates with the invasiveness and poor outcomes of colorectal cancer. Bioengineered 2021; 12:5595-5606. [PMID: 34515625 PMCID: PMC8806759 DOI: 10.1080/21655979.2021.1967031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
GDP dissociation inhibitor (GDI) regulates the GDP/GTP exchange reaction of most Rab proteins by inhibiting GDP dissociation. This study evaluated the potential prognostic and predictive value of GDI1 in colorectal cancer (CRC). To address the prognostic power of GDI1, we performed individual and pooled survival analyses on six independent CRC microarray gene expression datasets. GDI1-enriched signatures were also analyzed. Kaplan-Meier and Cox proportional analyses were employed for survival analysis. An immunohistochemistry (IHC) analysis was performed to validate the clinical relevance and prognostic significance of the GDI1 protein level in CRC tissue samples. The results revealed that GDI1 mRNA level was significantly linked with the aggressiveness of CRC, which is compatible with gene set enrichment analysis. A meta-analysis and pooled analysis demonstrated that a higher mRNA GDI1 expression was dramatically correlated with a worse survival in a dose-dependent manner in CRC patients. Further IHC analysis validated that the protein expression of GDI1 in both cytoplasm and membrane also significantly impacted the outcome of CRC patients. In CRC patients with stage III, chemotherapy significantly reduced the relative risk of death in low-GDI1 subgroup (hazard ratio (HR) = 0.22; 95% confidence interval (95% CI) 0.09-0.56, p = 0.0003), but not in high-GDI1 subgroup (HR = 0.63; 95% CI 0.35-1.14, p = 0.1137). Therefore, both high mRNA and protein levels of GDI1 were significantly related to poor outcomes in CRC patients. GD11 may serve as a prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Huajiang Lin
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Xiangyi He
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Jing Zhong
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| | - Jiemin Shi
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Affiliated Huzhou Hospital Zhejiang University School of Medicine, Huzhou, Zhejiang Province, China
| |
Collapse
|
66
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
67
|
Age-Dependent Intestinal Repair: Implications for Foals with Severe Colic. Animals (Basel) 2021; 11:ani11123337. [PMID: 34944114 PMCID: PMC8697879 DOI: 10.3390/ani11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Colic is a leading cause of death in horses, with the most fatal form being strangulating obstruction which directly damages the intestinal barrier. Following surgical intervention, it is imperative that the intestinal barrier rapidly repairs to prevent translocation of gut bacteria and their products and ensure survival of the patient. Age-related disparities in survival have been noted in many species, including horses, humans, and pigs, with younger patients suffering poorer clinical outcomes. Maintenance and repair of the intestinal barrier is regulated by a complex mucosal microenvironment, of which the ENS, and particularly a developing network of subepithelial enteric glial cells, may be of particular importance in neonates with colic. Postnatal development of an immature enteric glial cell network is thought to be driven by the microbial colonization of the gut and therefore modulated by diet-influenced changes in bacterial populations early in life. Here, we review the current understanding of the roles of the gut microbiome, nutrition, stress, and the ENS in maturation of intestinal repair mechanisms after foaling and how this may influence age-dependent outcomes in equine colic cases.
Collapse
|
68
|
Novoa Díaz MB, Carriere PM, Martín MJ, Calvo N, Gentili C. Involvement of parathyroid hormone-related peptide in the aggressive phenotype of colorectal cancer cells. World J Gastroenterol 2021; 27:7025-7040. [PMID: 34887626 PMCID: PMC8613645 DOI: 10.3748/wjg.v27.i41.7025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of mortality from malignant diseases worldwide. In general terms, CRC presents high heterogeneity due to the influence of different genetic and environmental factors; also, the neoplastic cells are strongly influenced by the extracellular matrix and several surrounding cells, known together as the tumor microenvironment (TME). Bidirectional communication takes place between the tumor and the TME through the release of autocrine and paracrine factors. Parathyroid hormone-related peptide (PTHrP) is a cytokine secreted by a wide variety of tissues and is able to regulate several cellular functions both in physiological as well as in pathological processes. It exerts its effects as a paracrine/autocrine factor, although its mode of action is mainly paracrine. It has been shown that this peptide is expressed by several tumors and that the tumor secretion of PTHrP is responsible for the malignant humoral hypercalcemia. Eight years ago, when our research group started studying PTHrP effects in the experimental models derived from intestinal tumors, the literature available at the time addressing the effects of PTHrP on colorectal tumors was limited, and no articles had been published regarding to the paracrine action of PTHrP in CRC cells. Based on this and on our previous findings regarding the role of PTH in CRC cells, our purpose in recent years has been to explore the role of PTHrP in CRC. We analyzed the behavior of CRC cells treated with exogenous PTHrP, focalizing in the study of the following events: Survival, cell cycle progression and proliferation, migration, chemoresistance, tumor-associated angiogenesis, epithelial to mesenchymal transition program and other events also associated with invasion, such us the induction of cancer stem cells features. This work summarizes the major findings obtained by our investigation group using in vitro and in vivo CRC models that evidence the participation of PTHrP in the acquisition of an aggressive phenotype of CRC cells and the molecular mechanisms involved in these processes. Recently, we found that this cytokine induces this malignant behavior not only by its direct action on these intestinal cells but also through its influence on cells derived from TME, promoting a communication between CRC cells and surrounding cells that contributes to the molecular and morphological changes observed in CRC cells. These investigations establish the basis for our next studies in order to address the clinical applicability of our findings. Recognizing the factors and mechanisms that promote invasion in CRC cells, evasion to the cytotoxic effects of current CRC therapies and thus metastasis is decisive for the identification of new markers with the potential to improve early diagnosis and/or to predict prognosis, to predetermine drug resistance and to provide treatment guidelines that include targeted therapies for this disease.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Matías Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)- INQUISUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
69
|
Abstract
The mutational landscape of colorectal cancer (CRC) does not enable predictions to be made about the survival of patients or their response to therapy. Instead, studying the polarization and activation profiles of immune cells and stromal cells in the tumour microenvironment has been shown to be more informative, thus making CRC a prototypical example of the importance of an inflammatory microenvironment for tumorigenesis. Here, we review our current understanding of how colon cancer cells interact with their microenvironment, comprised of immune cells, stromal cells and the intestinal microbiome, to suppress or escape immune responses and how inflammatory processes shape the immune pathogenesis of CRC.
Collapse
|
70
|
Zhang X, Han C. Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomes Increase Colon Cancer Cell Apoptosis and Inhibit Proliferation and Migration. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aims to investigate whether bone marrow mesenchymal stem cell (BMSC) exosomes (BMSC-exos) affects the progression of colon cancer. Ultracentrifugation was used to extract and collect BMSC-exos which were assessed under electron microscope and by flow cytometry. The BMSCs
were divided into two groups: control group treated with α-MEM basal medium and experimental group with exosomes (10 μg/ml). Exos were extracted from BMSCs and co-cultured with colon cancer cells, followed by analysis of cell viability by CCK-8 assay and GLUT3 mRNA and
protein expression by RT-qPCR and Western blot. The electron microscope analysis indicated that the primary BMSCs showed a long spindle shape with a negative expression of antigen CD34 and positive antigen CD90. Importantly, exos inhibited the viability of colon cancer cells HCT116 and decreased
the expression of GLUT3, suggesting that exos might increase the colon cancer cell apoptosis. In conclusion, BMSC-exos inhibit cell progression in colon cancer and might be served as a promising biomarker.
Collapse
Affiliation(s)
- Xinfa Zhang
- Department of General Surgery, Shandong Province Coal Taishan Sanatorium, Taian City, Shandong Province, 271000, China
| | - Cheng Han
- Department of General Surgery, Shandong Province Coal Taishan Sanatorium, Taian City, Shandong Province, 271000, China
| |
Collapse
|
71
|
Inoue T, Hayashi Y, Tsujii Y, Yoshii S, Sakatani A, Kimura K, Uema R, Kato M, Saiki H, Shinzaki S, Iijima H, Takehara T. Suppression of autophagy promotes fibroblast activation in p53-deficient colorectal cancer cells. Sci Rep 2021; 11:19524. [PMID: 34593902 PMCID: PMC8484348 DOI: 10.1038/s41598-021-98865-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Deficiency of p53 in cancer cells activates the transformation of normal tissue fibroblasts into carcinoma-associated fibroblasts; this promotes tumor progression through a variety of mechanisms in the tumor microenvironment. The role of autophagy in carcinoma-associated fibroblasts in tumor progression has not been elucidated. We aimed to clarify the significance of autophagy in fibroblasts, focusing on the TP53 status in co-cultured human colorectal cancer cell lines (TP53-wild-type colon cancer, HCT116; TP53-mutant colon cancer, HT29; fibroblast, CCD-18Co) in vitro. Autophagy in fibroblasts was significantly suppressed in association with ACTA2, CXCL12, TGFβ1, VEGFA, FGF2, and PDGFRA mRNA levels, when co-cultured with p53-deficient HCT116sh p53 cells. Exosomes isolated from the culture media of HCT116sh p53 cells significantly suppressed autophagy in fibroblasts via inhibition of ATG2B. Exosomes derived from TP53-mutant HT29 cells also suppressed autophagy in fibroblasts. miR-4534, extracted from the exosomes of HCT116sh p53 cells, suppressed ATG2B in fibroblasts. In conclusion, a loss of p53 function in colon cancer cells promotes the activation of surrounding fibroblasts through the suppression of autophagy. Exosomal miRNAs derived from cancer cells may play a pivotal role in the suppression of autophagy.
Collapse
Affiliation(s)
- Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shunsuke Yoshii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiko Sakatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Kimura
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Uema
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Minoru Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Saiki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
72
|
Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater 2021; 132:461-472. [PMID: 33388439 DOI: 10.1016/j.actbio.2020.12.037] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
The lack of cancer-associated fibroblasts (CAFs) in patient-derived organoid (PDO) models is a major limitation as CAFs contribute to tumor progression and drug resistance. In the present study, we addressed this problem by establishing in vitro conditions that enable the co-culture of colorectal cancer (CRC) PDO with patient-derived CAFs. Considering that the CRC extracellular matrix is high in hyaluronan and collagen I, we hypothesized that hyaluronan-gelatin hydrogels may serve as a suitable alternative 3D matrix to traditionally used basement membrane extracts to support the co-culture of CRC PDO and CAFs. We report the development of in vitro models consisting of CRC PDO encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived CAFs. Through RNA- and whole -exome sequencing, we first show that these hydrogels are capable of maintaining key molecular characteristics of the original patient tumors in CRC PDO but not support the culture of CAFs. Further, based on our findings that CRC PDO culture medium poorly supports CAF viability, we developed a co-culture strategy that maintains the viability of both CRC PDO and CAFs. We found that even in the absence of growth factors conventionally used to support CRC PDO culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs co-culture models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine. STATEMENT OF SIGNIFICANCE: We report the development of an engineered tumor microenvironment consisting of colorectal cancer patient-derived organoids (CRC PDO) encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived cancer-associated fibroblasts (CAFs). Through sequential culture, we found that in the absence of growth factors added to the co-culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine.
Collapse
|
73
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
74
|
Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C, Li YQ, Zhou AJ, Huang P, Chen YY, Ni W, Zhou YX, Liu YY, Li HY, Zhou R, Mo H, Li JM. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov 2021; 7:80. [PMID: 34489408 PMCID: PMC8421363 DOI: 10.1038/s41421-021-00312-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023] Open
Abstract
Metastasis is the primary cause of cancer-related mortality in colorectal cancer (CRC) patients. How to improve therapeutic options for patients with metastatic CRC is the core question for CRC treatment. However, the complexity and diversity of stromal context of the tumor microenvironment (TME) in liver metastases of CRC have not been fully understood, and the influence of stromal cells on response to chemotherapy is unclear. Here we performed an in-depth analysis of the transcriptional landscape of primary CRC, matched liver metastases and blood at single-cell resolution, and a systematic examination of transcriptional changes and phenotypic alterations of the TME in response to preoperative chemotherapy (PC). Based on 111,292 single-cell transcriptomes, our study reveals that TME of treatment-naïve tumors is characterized by the higher abundance of less-activated B cells and higher heterogeneity of tumor-associated macrophages (TAMs). By contrast, in tumors treated with PC, we found activation of B cells, lower diversity of TAMs with immature and less activated phenotype, lower abundance of both dysfunctional T cells and ECM-remodeling cancer-associated fibroblasts, and an accumulation of myofibroblasts. Our study provides a foundation for future investigation of the cellular mechanisms underlying liver metastasis of CRC and its response to PC, and opens up new possibilities for the development of therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Li-Heng Che
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing-Wen Liu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Huo
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rong Luo
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui-Ming Xu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cai He
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Qing Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ai-Jun Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Piao Huang
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yu Chen
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wen Ni
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yun-Xia Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan-Yuan Liu
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui-Yan Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rong Zhou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Mo
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
75
|
Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CC, Fields RC, George SC. Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 2021; 175:113798. [PMID: 34015419 DOI: 10.1016/j.addr.2021.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.
Collapse
|
76
|
The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells Int 2021; 2021:9136583. [PMID: 34349805 PMCID: PMC8328693 DOI: 10.1155/2021/9136583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs have a variety of biological functions such as immune regulation, tissue damage repair, and therapeutic effects on tumors such as CRC. This review outlines the overview of MSCs and CRC and summarizes the role of MSC application in CRC.
Collapse
|
77
|
Yin TF, Zhao DY, Zhou YC, Wang QQ, Yao SK. Identification of the circRNA-miRNA-mRNA regulatory network and its prognostic effect in colorectal cancer. World J Clin Cases 2021; 9:4520-4541. [PMID: 34222420 PMCID: PMC8223824 DOI: 10.12998/wjcc.v9.i18.4520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high morbidity and mortality of colorectal cancer (CRC) have posed great threats to human health. Circular RNA (CircRNA) and microRNA (miRNA), acting as competing endogenous RNAs (ceRNAs), have been found to play vital roles in carcinogenesis. However, the biological function of ceRNAs in CRC pathogenesis and prognosis remains largely unexplored. AIM To identify the CRC-specific circRNA-miRNA-mRNA regulatory network and uncover the subnetwork associated with its prognosis. METHODS CircRNAs, miRNAs and mRNAs differentially expressed (DE) in CRC tissues were selected by expression file analysis in the Gene Expression Omnibus (GEO) database, and the downstream target molecules of circRNAs and miRNAs were predicted. Then, the intersection of differentially expressed RNA molecules with the predicted targets was determined to obtain a ceRNA network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to elucidate the possible mechanism of pathogenesis. A survival analysis using the gene profiles and clinical information in The Cancer Genome Atlas (TCGA) database was performed to identify the mRNAs associated with the clinical outcome of CRC patients and construct a prognostic subnetwork. RESULTS We downloaded three datasets (GSE126095, GSE41655 and GSE41657) of large-scale CRC samples from the GEO database. There were 55 DEcircRNAs, 114 DEmiRNAs and 267 DEmRNAs in CRC tissues compared with normal tissues. After intersecting these molecules with predicted targets, 19 circRNAs, 13 miRNAs and 28 mRNAs were chosen to develop a circRNA-miRNA-mRNA network. GO and KEGG functional enrichment analyses indicated that the retinol metabolic process, leukocyte chemotaxis, extracellular matrix remodeling, endoplasmic reticulum stress, alcohol dehydrogenase activity, gastric acid secretion, nitrogen metabolism and NOD-like receptor signaling pathway might participate in the tumorigenesis of CRC. After verifying the identified mRNA effect in the TCGA database, we finally recognized 3 mRNAs (CA2, ITLN1 and LRRC19) that were significantly associated with the overall survival of CRC patients and constructed a ceRNA subnetwork including 5 circRNAs (hsa_circ_0080210, hsa_circ_0007158, hsa_circ_0000375, hsa_circ_0018909 and hsa_circ_0011536) and 3 miRNAs (hsa-miR-601, hsa-miR-671-5p and hsa-miR-765), which could contain innovative and noninvasive indicators for the early screening and prognostic prediction of CRC. CONCLUSION We proposed a circRNA-miRNA-mRNA regulatory network closely associated with the progression and clinical outcome of CRC that might include promising biomarkers for carcinogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Teng-Fei Yin
- Graduate school, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Dong-Yan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuan-Chen Zhou
- Graduate school, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate school, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate school, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
78
|
An X, Lin W, Liu H, Zhong W, Zhang X, Zhu Y, Wang X, Li J, Sheng Q. SARS-CoV-2 Host Receptor ACE2 Protein Expression Atlas in Human Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:659809. [PMID: 34178985 PMCID: PMC8226145 DOI: 10.3389/fcell.2021.659809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through interactions with its receptor, Angiotensin-converting enzyme 2 (ACE2), causing severe acute respiratory syndrome and death in a considerable proportion of people. Patients infected with SARS-CoV-2 experience digestive symptoms. However, the precise protein expression atlas of ACE2 in the gastrointestinal tract remains unclear. In this study, we aimed to explore the ACE2 protein expression pattern and the underlying function of ACE2 in the gastrointestinal tract, including the colon, stomach, liver, and pancreas. Methods We measured the protein expression of ACE2 in the gastrointestinal tract using immunohistochemical (IHC) staining with an ACE2-specific antibody of paraffin-embedded colon, stomach, liver, and pancreatic tissues. The correlation between the protein expression of ACE2 and the prognosis of patients with gastrointestinal cancers was analyzed by the log-rank (Mantel–Cox) test. The influence of ACE2 on colon, stomach, liver, and pancreatic tumor cell line proliferation was tested using a Cell Counting Kit 8 (CCK-8) assay. Results ACE2 presented heterogeneous expression patterns in the gastrointestinal tract, and it showed a punctate distribution in hepatic cells. Compared to that in parallel adjacent non-tumor tissues, the protein expression of ACE2 was significantly increased in colon cancer, stomach cancer, and pancreatic cancer tissues but dramatically decreased in liver cancer tissues. However, the expression level of the ACE2 protein was not correlated with the survival of patients with gastrointestinal cancers. Consistently, ACE2 did not affect the proliferation of gastrointestinal cancer cells in vitro. Conclusion The ACE2 protein is widely expressed in the gastrointestinal tract, and its expression is significantly altered in gastrointestinal tumor tissues. ACE2 is not an independent prognostic marker of gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiang An
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huan Liu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, China
| | - Xiaojian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
79
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
80
|
Liu J, Huang Z, Chen HN, Qin S, Chen Y, Jiang J, Zhang Z, Luo M, Ye Q, Xie N, Zhou ZG, Wei Y, Xie K, Huang C. ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-β axis in colorectal cancer. Oncogene 2021; 40:3394-3407. [PMID: 33875786 DOI: 10.1038/s41388-021-01713-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/05/2023]
Abstract
Poorly differentiated colorectal cancer (CRC) is characterized by aggressive invasion and stromal fibroblast activation, which results in rapid progression and poor therapeutic consequences. However, the regulatory mechanism involved remains unclear. Here, we showed that ZNF37A, a member of KRAB-ZFP family, was upregulated in poorly differentiated CRCs and associated with tumor metastasis. ZNF37A enhanced the metastatic potential of multiple CRC cell lines and promoted distant metastasis in an orthotopic CRC model. Further investigation attributed the ZNF37A-exacerbated metastasis to increased extracellular TGF-β and the consequent activation of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME). Mechanistically, ZNF37A formed a complex with KAP1 and bound to the promoter of THSD4, a TME modulator, to suppress its transcription, which is required for ZNF37A-mediated TGF-β activation and CRC metastasis. Collectively, our study indicates that ZNF37A promotes TGF-β signaling in CRC cells and activates CAFs by transcriptionally repressing THSD4 to drive CRC metastasis, implicating ZNF37A as a potential biomarker for CRC differentiation and progression.
Collapse
Affiliation(s)
- Jiayang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Qin Ye
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
81
|
Chen C, Hou J, Yu S, Li W, Wang X, Sun H, Qin T, Claret FX, Guo H, Liu Z. Role of cancer-associated fibroblasts in the resistance to antitumor therapy, and their potential therapeutic mechanisms in non-small cell lung cancer. Oncol Lett 2021; 21:413. [PMID: 33841574 PMCID: PMC8020389 DOI: 10.3892/ol.2021.12674] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with high morbidity and mortality rates, which seriously endangers human health. Although treatment methods continue to evolve, the emergence of drug resistance is inevitable and seriously hinders the treatment of NSCLC. The tumor microenvironment (TME) protects tumor cells from the effects of chemotherapeutic drugs, which can lead to drug resistance. Cancer-associated fibroblasts (CAFs) are an important component of the TME, and various studies have demonstrated that CAFs play a crucial role in drug resistance in NSCLC. However, the drug resistance mechanism of CAFs and whether CAFs can be used as a target to reverse the resistance of tumor cells remain unclear. The present review discusses this issue and describes the heterogeneity of CAF markers, as well as their origins and resident organs, and the role and mechanism of this heterogeneity in NSCLC progression. Furthermore, the mechanism of CAF-mediated NSCLC resistance to chemotherapy, targeted therapy and immunotherapy is introduced, and strategies to reverse this resistance are described.
Collapse
Affiliation(s)
- Congcong Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Sun
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Qin
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Francois X. Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston TX77030, USA
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, Shaanxi 710061, P.R. China
| | - Zhiyan Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
- Department of Respiratory and Critical Care Medicine, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| |
Collapse
|
82
|
Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, Ueha S, Yamazaki S, Kawauchi M, Nakamura E, Nishiyama C, Kojima Y, Adachi-Akahane S, Hasegawa M, Nakayama M, Oshima M, Yagita H, Shibuya K, Mikami T, Inohara N, Matsushima K, Tada N, Nakano H. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun 2021; 12:2281. [PMID: 33863879 PMCID: PMC8052408 DOI: 10.1038/s41467-021-22450-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment. The stromal fibroblast population in the colon is composed of heterogeneous and distinct cell subtypes that play a crucial role in the development of colitis and colon cancer. Here the authors generate IL-11 reporter mice and characterize the origin and phenotype of inflammatory IL-11+ fibroblasts in colitis and colon cancer preclinical models.
Collapse
Affiliation(s)
- Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - Wakami Takeda
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Mika Kawauchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mizuho Nakayama
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan. .,Host Defense Research Center, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
83
|
Colon Fibroblasts and Inflammation: Sparring Partners in Colorectal Cancer Initiation? Cancers (Basel) 2021; 13:cancers13081749. [PMID: 33916891 PMCID: PMC8067599 DOI: 10.3390/cancers13081749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the third most common cause of cancer-related death. Patients suffering inflammatory bowel disease have an increased risk of CRC. It is admitted that CRC found its origin within crypts of the colon mucosa, which host the intestinal stem cells (ISCs) responsible of the tissue renewal. ISC behavior is controlled by the fibroblasts that surround the crypt. During inflammation, the signals delivered by fibroblasts are altered, leading to stem cells’ dysregulation, possibly turning them into cancer-initiating cells. Here, we reviewed the interplays between the fibroblast and the ISCs, possibly leading to the initiation of CRC due to chronic inflammation. Abstract Colorectal cancer (CRC) is the third most common cause of cancer-related death. Significant improvements in CRC treatment have been made for the last 20 years, on one hand thanks to a better detection, allowing surgical resection of the incriminated area, and on the other hand, thanks to a better knowledge of CRC’s development allowing the improvement of drug strategies. Despite this crucial progress, CRC remains a public health issue. The current model for CRC initiation and progression is based on accumulation of sequential known genetic mutations in the colon epithelial cells’ genome leading to a loss of control over proliferation and survival. However, increasing evidence reveals that CRC initiation is more complex. Indeed, chronic inflammatory contexts, such as inflammatory bowel diseases, have been shown to increase the risk for CRC development in mice and humans. In this manuscript, we review whether colon fibroblasts can go from the main regulators of the ISC homeostasis, regulating not only the renewal process but also the epithelial cells’ differentiation occurring along the colon crypt, to the main player in the initiation of the colorectal cancer process due to chronic inflammation.
Collapse
|
84
|
Smart M, Goyal S, Zilman A. Roles of phenotypic heterogeneity and microenvironment feedback in early tumor development. Phys Rev E 2021; 103:032407. [PMID: 33862830 DOI: 10.1103/physreve.103.032407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
The local microenvironment of a tumor plays an important and commonly observed role in cancer development and progression. Dynamic changes in the tissue microenvironment are thought to epigenetically disrupt healthy cellular phenotypes and drive cancer incidence. Despite the experimental work in this area there are no conceptual models to understand the interplay between the epigenetic dysregulation in the microenvironment of early tumors and the appearance of cancer driver mutations. Here, we develop a minimal model of the tissue microenvironment which considers three interacting subpopulations: healthy, phenotypically dysregulated, and mutated cancer cells. Healthy cells can epigenetically (reversibly) transition to the dysregulated phenotype, and from there to the cancer state. The epigenetic transition rates of noncancer cells can be influenced by the number of cancer cells in the microenvironment (termed microenvironment feedback). Our model delineates the regime in which microenvironment feedback accelerates the rate of cancer initiation. In addition, the model shows when and how microenvironment feedback may inhibit cancer progression. We discuss how our framework may provide resolution to some of the puzzling experimental observations of slow cancer progression.
Collapse
Affiliation(s)
- Matthew Smart
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada
| | - Anton Zilman
- Department of Physics, University of Toronto, 60 St George St, Toronto, Ontario M5S 1A7, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
85
|
Xu F, Wang Z, Song X, Zhang M, Cui L, Liu Y, Yan H, Gao S, Liu Y, Chen W. A Direct and Sensitive Method for Determination of 5-Fluorouracil in Colorectal Cancer Cells: Evaluating the Effect of Stromal Cell on Drug Resistance of Cancer Cells. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6689488. [PMID: 33708454 PMCID: PMC7932793 DOI: 10.1155/2021/6689488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Fibroblasts in the stroma play a critical role in tumor evolution. In this study, we assessed the influence of colonic fibroblasts on colon cancer cells treated with 5-fluorouracil (5-FU), and mouse colon cancer cell lines MC38 and colonic fibroblasts NIH3T3 were used in this study. A sensitive and rapid UHPLC-MS/MS method for the quantitation of 5-FU from the cell and their medium has been successfully developed and validated. The cells were lysed with methanol, and the mixture was evaporated and then redissolved to extract intracellular 5-FU. The analysis was performed on UHPLC-MS/MS using an Atlantis T3-C18 column (3 μm, 2. 1 ∗ 100 mm) and gradient elution with acetonitrile and 0.1% formic acid in water. Method validation included the following parameters: the matrix effect range 88.82%-93.64% and the recovery range 93.52%-94.56%. The intraday and interday precision and accuracy were <11% and within ±6%, and the stability, specificity, carry-over, dilution effect, and linearity all conformed to the criteria. The method was applied to detect the concentration of 5-FU inside cells and cell culture medium. The preliminary results present that NIH3T3 could enhance the drug resistance of MC38 to 5-FU with a decreased intracellular concentration of 5-FU in MC38, which showed a positive relationship with NIH3T3 number.
Collapse
Affiliation(s)
- Fengjing Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xinhua Song
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Mengwei Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Lili Cui
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Yanping Liu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun City, Jiangxi Province 336000, China
| | - Hongxia Yan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
86
|
Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, Li L, Gu LP, Cao PS, Wang GR, Ma YS, Fu D. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med 2021; 25:3699-3713. [PMID: 33621425 PMCID: PMC8051723 DOI: 10.1111/jcmm.15765] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA‐24‐3p (miR‐24‐3p) has been implicated as a key promoter of chemotherapy resistance in numerous cancers. Meanwhile, cancer‐associated fibroblasts (CAFs) can secret exosomes to transfer miRNAs, which mediate tumour development. However, little is known regarding the molecular mechanism of CAF‐derived exosomal miR‐24‐3p in colon cancer (CC). Hence, this study intended to characterize the functional relevance of CAF‐derived exosomal miR‐24‐3p in CC cell resistance to methotrexate (MTX). We identified differentially expressed HEPH, CDX2 and miR‐24‐3p in CC through bioinformatics analyses, and validated their expression in CC tissues and cells. The relationship among HEPH, CDX2 and miR‐24‐3p was verified using ChIP and dual‐luciferase reporter gene assays. Exosomes were isolated from miR‐24‐3p inhibitor–treated CAFs (CAFs‐exo/miR‐24‐3p inhibitor), which were used in combination with gain‐of‐function and loss‐of‐function experiments and MTX treatment. CCK‐8, flow cytometry and colony formation assays were conducted to determine cell viability, apoptosis and colony formation, respectively. Based on the findings, CC tissues and cells presented with high expression of miR‐24‐3p and low expression of HEPH and CDX2. CDX2 was a target gene of miR‐24‐3p and could up‐regulate HEPH. Under MTX treatment, overexpressed CDX2 or HEPH and down‐regulated miR‐24‐3p reduced cell viability and colony formation and elevated cell apoptosis. Furthermore, miR‐24‐3p was transferred into CC cells via CAF‐derived exosomes. CAF‐derived exosomal miR‐24‐3p inhibitor diminished cell viability and colony formation and increased cell apoptosis in vitro and inhibited tumour growth in vivo under MTX treatment. Altogether, CAF‐derived exosomal miR‐24‐3p accelerated resistance of CC cells to MTX by down‐regulating CDX2/HEPH axis.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China.,Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
87
|
Ma XB, Xu YY, Zhu MX, Wang L. Prognostic Signatures Based on Thirteen Immune-Related Genes in Colorectal Cancer. Front Oncol 2021; 10:591739. [PMID: 33680920 PMCID: PMC7935549 DOI: 10.3389/fonc.2020.591739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background The immunosuppressive microenvironment is closely related to tumorigenesis and cancer development, including colorectal cancer (CRC). The aim of the current study was to identify new immune biomarkers for the diagnosis and treatment of CRC. Materials and Methods CRC data were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Sequences of immune-related genes (IRGs) were obtained from the ImmPort and InnateDB databases. Gene set enrichment analysis (GSEA) and transcription factor regulation analysis were used to explore potential mechanisms. An immune-related classifier for CRC prognosis was conducted using weighted gene co-expression network analysis (WGCNA), Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) analysis. ESTIMATE and CIBERSORT algorithms were used to explore the tumor microenvironment and immune infiltration in the high-risk CRC group and the low-risk CRC group. Results By analyzing the IRGs that were significantly associated with CRC in the module, a set of 13 genes (CXCL1, F2RL1, LTB4R, GPR44, ANGPTL5, BMP5, RETNLB, MC1R, PPARGC1A, PRKDC, CEBPB, SYP, and GAB1) related to the prognosis of CRC were identified. An IRG-based prognostic signature that can be used as an independent potentially prognostic indicator was generated. The ROC curve analysis showed acceptable discrimination with AUCs of 0.68, 0.68, and 0.74 at 1-, 3-, and 5- year follow-up respectively. The predictive performance was validated in the train set. The potential mechanisms and functions of prognostic IRGs were analyzed, i.e., NOD-like receptor signaling, and transforming growth factor beta (TGFβ) signaling. Besides, the stromal score and immune score were significantly different in high-risk group and low-risk group (p=4.6982e-07, p=0.0107). Besides, the proportions of resting memory CD4+ T cells was significantly higher in the high-risk groups. Conclusions The IRG-based classifier exhibited strong predictive capacity with regard to CRC. The survival difference between the high-risk and low-risk groups was associated with tumor microenvironment and immune infiltration of CRC. Innovative biomarkers for the prediction of CRC prognosis and response to immunological therapy were identified in the present study.
Collapse
Affiliation(s)
- Xiao-Bo Ma
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan-Yuan Xu
- Department of Day Surgery Centre, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-Xuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
88
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
89
|
Kim B, Seo Y, Kwon JH, Shin Y, Kim S, Park SJ, Park JJ, Cheon JH, Kim WH, Il Kim T. IL-6 and IL-8, secreted by myofibroblasts in the tumor microenvironment, activate HES1 to expand the cancer stem cell population in early colorectal tumor. Mol Carcinog 2021; 60:188-200. [PMID: 33544929 DOI: 10.1002/mc.23283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/24/2022]
Abstract
Interaction between a tumor and its microenvironment is important for tumor initiation and progression. Cancer stem cells (CSCs) within the tumor interact with a microenvironmental niche that controls their maintenance and differentiation. We investigated the CSC-promoting effect of factors released from myofibroblasts into the microenvironment of early colorectal cancer tumors and its molecular mechanism. By messenger RNA microarray analysis, expression of HES1, a Notch signaling target, significantly increased in Caco-2 cells cocultured with 18Co cells (pericryptal myofibroblasts), compared to its expression in Caco-2 cells cultured alone. Caco-2 cells cultured in 18Co-conditioned media (CM) showed a significant increase in CD133+CD44+ cells and HES1 expression compared to that in Caco-2 cells cultured in regular media. Significant amounts of interleukin-6 (IL-6) and IL-8 were detected in 18Co-CM compared to levels in regular media. The 18Co-CM-induced increase in CD133+CD44+ cells was attenuated by IL-6- and IL-8-neutralizing antibodies. Furthermore, these neutralizing antibodies and inhibitors of STAT3 and gamma-secretase reduced the expression of HES1 induced in Caco-2 cells cultured in 18Co-CM. Immunohistochemical analysis of human tissues revealed that IL-6, IL-8, and HES1 expression increased from normal to adenoma, and from adenoma to cancer tissues. In addition, IL-6 and HES1 expression was positively correlated in early colorectal cancer tissues. In conclusion, the increase of CSCs by myofibroblasts could be mediated by IL-6/IL-8-induced HES1 activation in the tumor microenvironment. Based on these data, the IL-6/IL-8-mediated Notch/HES1 and STAT3 pathway, through which CSCs interact with their microenvironment, might be a potential target for the prevention and treatment of colorectal tumors.
Collapse
Affiliation(s)
- Bun Kim
- Department of Medicine, The Graduate School, Yonsei University College of Medicine, Seoul, Korea.,Division of Translational Science, Center for Colon Cancer, Center for Cancer Prevention and Detection, National Cancer Center, Goyang, Korea.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoojeong Seo
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hee Kwon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Youmi Shin
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | - Suhyun Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jun Park
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
90
|
Wang Z, Yang Q, Tan Y, Tang Y, Ye J, Yuan B, Yu W. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin. Front Cell Dev Biol 2021; 9:613534. [PMID: 33614646 PMCID: PMC7890026 DOI: 10.3389/fcell.2021.613534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the main stromal components of cancer, representing a group of heterogeneous cells. Many studies indicate that CAFs promote tumor development. Besides, evidence of the tumor suppression effects of CAFs keeps on merging. In the tumor microenvironment, multiple stimuli can activate fibroblasts. Notably, this does not necessarily mean the activated CAFs become strong tumor promoters immediately. The varying degree of CAFs activation makes quiescent CAFs, tumor-restraining CAFs, and tumor-promoting CAFs. Quiescent CAFs and tumor-restraining CAFs are more present in early-stage cancer, while comparatively, more tumor-promoting CAFs present in advanced-stage cancer. The underlying mechanism that balances tumor promotion or tumor inhibition effects of CAFs is mostly unknown. This review focus on the inhibitory effects of CAFs on cancer development. We describe the heterogeneous origin, markers, and metabolism in the CAFs population. Transgenetic mouse models that deplete CAFs or deplete CAFs activation signaling in the tumor stroma present direct evidence of CAFs protective effects against cancer. Moreover, we outline CAFs subpopulation and CAFs derived soluble factors that act as a tumor suppressor. Single-cell RNA-sequencing on CAFs population provides us new insight to classify CAFs subsets. Understanding the full picture of CAFs will help translate CAFs biology from bench to bedside and develop new strategies to improve precision cancer therapy.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinuo Tan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Wei Yu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
91
|
Du Q, Ye X, Lu SR, Li H, Liu HY, Zhai Q, Yu B. Exosomal miR-30a and miR-222 derived from colon cancer mesenchymal stem cells promote the tumorigenicity of colon cancer through targeting MIA3. J Gastrointest Oncol 2021; 12:52-68. [PMID: 33708424 DOI: 10.21037/jgo-20-513] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Multipotent mesenchymal stem cells (MSCs) derived from virus tumors have been reported to contribute to malignant cell growth, invasion, and metastasis. However, the mechanism of communication between MSCs and colon cancer cells is poorly understood. Recent studies have suggested that exosomes are an important player in crosstalk between cells and could significantly suppress the invasion ability of human cancer cells (hCCs) when transfected with a microRNA inhibitor. However, to date, no study has illuminated the miRNA changes in exosomes derived from hCC-MSCs. Methods Colon cancer stem cells were cultured in medium and passaged to develop fibroblast-like morphology. Exosomes were collected using ExoQuick precipitation and exosome morphology was visualized by transmission electron microscopy. Small RNA sequencing was analyzed using an Illumina HiSeq4000 analyzer, and the expression of MIA3 was assessed by real-time PCR and Western blot. The functional roles of miR-30a and miR-222 in colon cancer cells were evaluated through cell and animal experiments. Results Our results showed that the characteristics of MSC-like cells (hCC-MSCs) derived from human colon cancer stem cells were comparable to those of bone marrow-derived MSCs, including surface antigens and the ability to multi-differentiate to osteocytes and adipocytes. Furthermore, we screened the microRNA (miRNA) profiles of exosomes derived from hCC-MSCs and the corresponding parent hCC-MSCs. We found a significant enrichment in the miR-30a and miR-222 level in hCC-MSC-derived exosomes. Furthermore, in vitro and in vivo experiments demonstrated that miR-30a and miR-222 bound to their shared downstream target, MIA3, to promote the ability of colon cells to proliferate, migrate, and metastasize, thus evidencing their functional roles as oncogenic miRNAs. Conclusions These data suggest that hCC-MSC-secreted exosomes promote colon cancer cell proliferation and metastasis through delivering miR-30a and miR-222. Subsequently, exosomal miR-30a and miR-222 simultaneously target MIA3, suppress its expression, and promote colon cell proliferation, migration, and metastasis.
Collapse
Affiliation(s)
- Qiong Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Ye
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng-Rong Lu
- Department of Pharmacy, The Central Hospital of Min-Hang District, Shanghai, China
| | - Huan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Yue Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Zhai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Pharmacy, The Central Hospital of Min-Hang District, Shanghai, China.,Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Yu
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
92
|
MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrophage M2 polarization. Cell Rep 2021; 34:108724. [PMID: 33535045 DOI: 10.1016/j.celrep.2021.108724] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The signal adaptor MyD88, an essential component of TLR signaling, plays an important role in gut-microbiome interactions. However, its contribution to colitis-associated cancer (CAC) is still controversial. Far less is known about the specific effects of MyD88 signaling in myofibroblasts in CAC development. Here, we used a CAC mouse model in which MyD88 was selectively depleted in myofibroblasts. Myofibroblast MyD88-deficient mice are resistant to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced tumorigenesis, as evidenced by the decrease in the number and sizes of tumors. MyD88 deficiency in myofibroblasts attenuates intestinal epithelial cell (IEC) proliferation after acute DSS-induced colitis. Furthermore, MyD88 signaling in myofibroblasts increases the secretion of osteopontin (OPN), which promotes macrophage M2 polarization through binding to αvβ3 and CD44, leading to activation of the STAT3/PPARγ pathway. Thus, MyD88 signaling in myofibroblasts crucially contributes to colorectal cancer development and provides a promising therapeutic target for the prevention of colitis-associated carcinogenesis.
Collapse
|
93
|
Reidy E, Leonard NA, Treacy O, Ryan AE. A 3D View of Colorectal Cancer Models in Predicting Therapeutic Responses and Resistance. Cancers (Basel) 2021; 13:E227. [PMID: 33435170 PMCID: PMC7827038 DOI: 10.3390/cancers13020227] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Although there have been many advances in recent years for the treatment of colorectal cancer (CRC), it still remains the third most common cause of cancer-related deaths worldwide. Many patients with late stage CRC display resistance to multiple different therapeutics. An important aspect in developing effective therapeutics for CRC patients is understanding the interactions that take place in the tumor microenvironment (TME), as it has been shown to contribute to drug resistance in vivo. Much research over the past 100 years has focused on 2D monolayer cultures or in vivo studies, however, the efficacy in translating these to the clinic is very low. More recent studies are turning towards developing an effective 3D model of CRC that is clinically relevant, that can recapitulate the TME in vitro and bridge the gap between 2D cultures and in vivo studies, with the aim of reducing the use of animal models in the future. This review summarises the advantages and limitations of different 3D CRC models. It emphasizes how different 3D models may be optimised to study cellular and extracellular interactions that take place in the TME of CRC in an effort to allow the development of more translatable effective treatment options for patients.
Collapse
Affiliation(s)
- Eileen Reidy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| | - Niamh A. Leonard
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Oliver Treacy
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| | - Aideen E. Ryan
- Lambe Institute for Translational research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland; (E.R.); (N.A.L.); (O.T.)
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
94
|
Fibroblast Subsets in Intestinal Homeostasis, Carcinogenesis, Tumor Progression, and Metastasis. Cancers (Basel) 2021; 13:cancers13020183. [PMID: 33430285 PMCID: PMC7825703 DOI: 10.3390/cancers13020183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer often develops via the adenoma–carcinoma sequence, a process which is accompanied by (epi) genetic alterations in epithelial cells and gradual phenotypic changes in fibroblast populations. Recent studies have made it clear that these fibroblast populations which, in the context of invasive cancers are termed cancer-associated fibroblasts (CAFs), play an important role in intestinal tumor progression. This review provides an overview on the emerging role of fibroblasts in various stages of colorectal cancer development, ranging from adenoma initiation to metastatic spread of tumor cells. As fibroblasts show considerable heterogeneity in subsets and phenotypes during cancer development, a better functional understanding of stage-specific (alterations in) fibroblast/CAF populations is key to increase the effectiveness of fibroblast-based prognosticators and therapies. Abstract In intestinal homeostasis, continuous renewal of the epithelium is crucial to withstand the plethora of stimuli which can damage the structural integrity of the intestines. Fibroblasts contribute to this renewal by facilitating epithelial cell differentiation as well as providing the structural framework in which epithelial cells can regenerate. Upon dysregulation of intestinal homeostasis, (pre-) malignant neoplasms develop, a process which is accompanied by (epi) genetic alterations in epithelial cells as well as phenotypic changes in fibroblast populations. In the context of invasive carcinomas, these fibroblast populations are termed cancer-associated fibroblasts (CAFs). CAFs are the most abundant cell type in the tumor microenvironment of colorectal cancer (CRC) and consist of various functionally heterogeneous subsets which can promote or restrain cancer progression. Although most previous research has focused on the biology of epithelial cells, accumulating evidence shows that certain fibroblast subsets can also importantly contribute to tumor initiation and progression, thereby possibly providing avenues for improvement of clinical care for CRC patients. In this review, we summarized the current literature on the emerging role of fibroblasts in various stages of CRC development, ranging from adenoma initiation to the metastatic spread of cancer cells. In addition, we highlighted translational and therapeutic perspectives of fibroblasts in the different stages of intestinal tumor progression.
Collapse
|
95
|
Inducible mouse models of colon cancer for the analysis of sporadic and inflammation-driven tumor progression and lymph node metastasis. Nat Protoc 2020; 16:61-85. [PMID: 33318692 DOI: 10.1038/s41596-020-00412-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Despite advances in the detection and therapy of colorectal cancer (CRC) in recent years, CRC has remained a major challenge in clinical practice. Although alternative methods for modeling CRC have been developed, animal models of CRC remain helpful when analyzing molecular aspects of pathogenesis and are often used to perform preclinical in vivo studies of potential therapeutics. This protocol updates our protocol published in 2007, which provided an azoxymethane (AOM)-based setup for investigations into sporadic (Step 5A) and, when combined with dextran sodium sulfate (Step 5B), inflammation-associated tumor growth. This update also extends the applications beyond those of the original protocol by including an option in which AOM is serially applied to mice with p53 deficiency in the intestinal epithelium (Step 5C). In this model, the combination of p53 deficiency and AOM promotes tumor development, including growth of invasive cancers and lymph node metastasis. It also provides details on analysis of colorectal tumor growth and metastasis, including analysis of partial epithelial-to-mesenchymal transition, cell isolation and co-culture studies, high-resolution mini-endoscopy, light-sheet fluorescence microscopy and micro-CT imaging in mice. The target audience for our protocol is researchers who plan in vivo studies to address mechanisms influencing sporadic or inflammation-driven tumor development, including the analysis of local invasiveness and lymph node metastasis. It is suitable for preclinical in vivo testing of novel drugs and other interventional strategies for clinical translation, plus the evaluation of emerging imaging devices/modalities. It can be completed within 24 weeks (using Step 5A/C) or 10 weeks (using Step 5B).
Collapse
|
96
|
Chen Y, Wang W, Jiang B, Yao L, Xia F, Li X. Integrating Tumor Stroma Biomarkers With Clinical Indicators for Colon Cancer Survival Stratification. Front Med (Lausanne) 2020; 7:584747. [PMID: 33365318 PMCID: PMC7750539 DOI: 10.3389/fmed.2020.584747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023] Open
Abstract
The tumor stroma plays an important role in tumor progression and chemotherapeutic resistance; however, its role in colon cancer (CC) survival prognosis remains to be investigated. Here, we identified tumor stroma biomarkers and evaluated their role in CC prognosis stratification. Four independent datasets containing a total of 1,313 patients were included in this study and were divided into training and testing sets. Stromal scores calculated using the estimation of stromal and immune cells in malignant tumors using expression data (ESTIMATE) algorithm were used to assess the tumor stroma level. Kaplan-Meier curves and the log-rank test were used to identify relationships between stromal score and prognosis. Tumor stroma biomarkers were identified by cross-validation of multiple datasets and bioinformatics methods. Cox proportional hazards regression models were constructed using four prognosis factors (age, tumor stage, the ESTIMATE stromal score, and the biomarker stromal score) in different combinations for prognosis prediction and compared. Patients with high stromal scores had a lower overall survival rate (p = 0.00016), higher risk of recurrence (p < 0.0001), and higher probability of chemotherapeutic resistance (p < 0.0001) than those with low scores. We identified 16 tumor stroma biomarkers and generated a new prognosis indicator termed the biomarker stromal score (ranging from 0 to 16) based on their expression levels. Its addition to an age/tumor stage-based model significantly improved prognosis prediction accuracy. In conclusion, the tumor stromal score is significantly negatively associated with CC survival prognosis, and the new tumor stroma indicator can improve CC prognosis stratification.
Collapse
Affiliation(s)
- Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
97
|
Levi-Galibov O, Lavon H, Wassermann-Dozorets R, Pevsner-Fischer M, Mayer S, Wershof E, Stein Y, Brown LE, Zhang W, Friedman G, Nevo R, Golani O, Katz LH, Yaeger R, Laish I, Porco JA, Sahai E, Shouval DS, Kelsen D, Scherz-Shouval R. Heat Shock Factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun 2020; 11:6245. [PMID: 33288768 PMCID: PMC7721883 DOI: 10.1038/s41467-020-20054-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
In the colon, long-term exposure to chronic inflammation drives colitis-associated colon cancer (CAC) in patients with inflammatory bowel disease. While the causal and clinical links are well established, molecular understanding of how chronic inflammation leads to the development of colon cancer is lacking. Here we deconstruct the evolving microenvironment of CAC by measuring proteomic changes and extracellular matrix (ECM) organization over time in a mouse model of CAC. We detect early changes in ECM structure and composition, and report a crucial role for the transcriptional regulator heat shock factor 1 (HSF1) in orchestrating these events. Loss of HSF1 abrogates ECM assembly by colon fibroblasts in cell-culture, prevents inflammation-induced ECM remodeling in mice and inhibits progression to CAC. Establishing relevance to human disease, we find high activation of stromal HSF1 in CAC patients, and detect the HSF1-dependent proteomic ECM signature in human colorectal cancer. Thus, HSF1-dependent ECM remodeling plays a crucial role in mediating inflammation-driven colon cancer.
Collapse
Affiliation(s)
- Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Wenhan Zhang
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior H Katz
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Department of Gastroenterology and Hepatology, Hadassah Medical Center, Jerusalem, Israel
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ido Laish
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - John A Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | | | - Dror S Shouval
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - David Kelsen
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, and Weil Cornell Medical College, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
98
|
Qi L, Song F, Han Y, Zhang Y, Ding Y. Atractyloside targets cancer-associated fibroblasts and inhibits the metastasis of colon cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1443. [PMID: 33313188 PMCID: PMC7723590 DOI: 10.21037/atm-20-1531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Several evidences have proved that cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression. In fact, CAFs form a major component of tumor microenvironment (TME). Therefore, the development and metastasis of tumors can be effectively inhibited by small molecular compounds that target CAFs. Methods In this study, we mainly analyzed the expression profile of colon cancer (CC). We determined the intensity of CAFs in CC tissues by using the immune cell infiltration score. Gene enrichment analysis and the screening of differentially expressed genes were performed on the basis of the intensity of CAFs in CC tissues. We screened the small molecular compounds that were converted from differentially expressed genes. The results indicated that atractyloside was a small molecular compound related to CAFs in CC tissues. We identified the relationship between atractylosides and CAFs through target protein analysis and network analysis, and verified the inhibition effect of atractylosides on CC cells (CCC) by migration assay and scratch wound-healing assays. Results We found that many target proteins of atractyloside, such as the matrix metalloproteinase family and integrin proteins, were related to the biological function of CAFs. By performing network analysis, we found that the target proteins FGF1, ITGB1, and EDNRA were closely related to tumor angiogenesis, while the target proteins MMP9 and ITGAV were correlated to an extracellular matrix (ECM) and cell motility. These findings which further confirmed the relationship between atractylosides and CAFs. In addition, transwell cell migration and scratch wound-healing assays proved that atractylosides could significantly inhibit the migration of CCCs. Conclusions The atractyloside might be a small molecular compound that potentially targets CAFs and inhibits the development as well as metastasis of CC by changing the TME.
Collapse
Affiliation(s)
- Lu Qi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Yue Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| | - Ying Zhang
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Molecular Oncologic Pathology, Guangzhou, China
| |
Collapse
|
99
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
100
|
Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR, Farin HF. A Wnt-Induced Phenotypic Switch in Cancer-Associated Fibroblasts Inhibits EMT in Colorectal Cancer. Cancer Res 2020; 80:5569-5582. [PMID: 33055221 DOI: 10.1158/0008-5472.can-20-0263] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Tumor progression is recognized as a result of an evolving cross-talk between tumor cells and their surrounding nontransformed stroma. Although Wnt signaling has been intensively studied in colorectal cancer, it remains unclear whether activity in the tumor-associated stroma contributes to malignancy. To specifically interfere with stromal signals, we generated Wnt-independent tumor organoids that secrete the Wnt antagonist Sfrp1. Subcutaneous transplantation into immunocompetent as well as immunodeficient mice resulted in a strong reduction of tumor growth. Histologic and transcriptomic analyses revealed that Sfrp1 induced an epithelial-mesenchymal transition (EMT) phenotype in tumor cells without affecting tumor-intrinsic Wnt signaling, suggesting involvement of nonimmune stromal cells. Blockage of canonical signaling using Sfrp1, Dkk1, or fibroblast-specific genetic ablation of β-catenin strongly decreased the number of cancer-associated myofibroblasts (myCAF). Wnt activity in CAFs was linked with distinct subtypes, where low and high levels induced an inflammatory-like CAF (iCAF) subtype or contractile myCAFs, respectively. Coculture of tumor organoids with iCAFs resulted in significant upregulation of EMT markers, while myCAFs reverted this phenotype. In summary, we show that tumor growth and malignancy are differentially regulated via distinct fibroblast subtypes under the influence of juxtacrine Wnt signals. SIGNIFICANCE: This study provides evidence for Wnt-induced functional diversity of colorectal cancer-associated fibroblasts, representing a non-cell autonomous mechanism for colon cancer progression. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5569/F1.large.jpg.
Collapse
Affiliation(s)
- Mohammed H Mosa
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Birgitta E Michels
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Adele M Nicolas
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Florian R Greten
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), Heidelberg, Germany. .,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|