51
|
Baker C, Ahmed M, Cheng K, Arciero E, Bhave S, Natalie Ho WL, Goldstein AM, Hotta R. Hypoganglionosis in the gastric antrum causes delayed gastric emptying. Neurogastroenterol Motil 2020; 32:e13766. [PMID: 31773831 PMCID: PMC7182502 DOI: 10.1111/nmo.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enteric nervous system (ENS) abnormalities have been implicated in delayed gastric emptying but studies exploring potential treatment options are limited by the lack of an experimental animal model. We examined the ENS abnormalities in the mouse stomach associated with aging, developed a novel model of gastroparesis, and established a new approach to measure gastric emptying. METHODS A modified gastric emptying assay was developed, validated in nNOS -/- mice, and tested in mice at multiple ages. Age-related changes in ENS structure were analyzed by immunohistochemistry. Gastric aganglionosis was generated in Wnt1-iDTR mice using focal administration of diphtheria toxin (DT) into the anterior antral wall. KEY RESULTS Older mice (>5 months) exhibit hypoganglionosis in the gastric antrum and a decreased proportion of nNOS neurons as compared to younger mice (age 5-7 weeks). This was associated with a significant age-dependent decrease in liquid and solid gastric emptying. A novel model of gastric antrum hypoganglionosis was established using neural crest-specific expression of diphtheria toxin receptor. In this model, a significant reduction in liquid and solid gastric emptying is observed. CONCLUSIONS & INFERENCES Older mice exhibit delayed gastric emptying associated with hypoganglionosis and a reduction in nNOS-expressing neurons in the antrum. The causal relationship between antral hypoganglionosis and delayed gastric emptying was verified using a novel experimental model of ENS ablation. This study provides new information regarding the pathogenesis of delayed gastric emptying and provides a robust model system to study this disease and develop novel treatments.
Collapse
Affiliation(s)
- Corey Baker
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Minhal Ahmed
- Department of Bioengineering, Northeastern University, Boston MA 02115
| | - Katarina Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Emily Arciero
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Wing Lam Natalie Ho
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
52
|
Anti- and pro-oxidant effects of quercetin stabilized by microencapsulation on interstitial cells of Cajal, nitrergic neurons and M2-like macrophages in the jejunum of diabetic rats. Neurotoxicology 2020; 77:193-204. [PMID: 32007490 DOI: 10.1016/j.neuro.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Given the well-known antioxidant and neuroprotective properties of quercetin, the aim of this work was to evaluate the effects of quercetin stabilized by microencapsulation at two doses (10 mg kg-1 and 100 mg kg-1) on the oxidative/antioxidant status, number and morphological features of ICC, nitrergic neurons and M2-like macrophages in jejunum of diabetic rats. The rats were randomly distributed into six groups: normoglycemic control (N), diabetic control (D) and either normoglycemic or diabetic groups treated with quercetin-loaded microcapsules at a dose of 10 mg kg-1 (NQ10 and DQ10, respectively) or 100 mg kg-1 (NQ100 and DQ100, respectively). After 60 days, the jejunum was collected. Whole mounts were immunostained for Ano1, nNOS and CD206, and oxidative stress levels and total antioxidant capacity of the jejunum were measured. Diabetes led to a loss of ICC and nitrergic neurons, but increased numbers of M2-like macrophages and elevated levels of oxidative stress were seen in diabetic animals. High-dose administration of quercetin (100 mg kg-1) further aggravated the diabetic condition (DQ100) but this treatment resulted in harmful effects on healthy rats (NQ100), pointing to a pro-oxidant activity. However, low-dose administration of quercetin (10 mg kg-1) gave rise to antioxidant and protective effects on ICC, nNOS, macrophages and oxidative/antioxidant status in DQ100, but NQ100 displayed infrequent negative outcomes in normoglycemic animals. Microencapsulation of the quercetin may become promising alternatives to reduce diabetes-induced oxidative stress but antioxidant therapies should be careful used under healthy status to avoid toxic effects.
Collapse
|
53
|
Koch KL, Hasler WL, Van Natta M, Calles-Escandon J, Grover M, Pasricha PJ, Snape WJ, Parkman HP, Abell TL, McCallum RW, Nguyen LA, Sarosiek I, Farrugia G, Tonascia J, Lee L, Miriel L, Hamilton F. Satiety testing in diabetic gastroparesis: Effects of insulin pump therapy with continuous glucose monitoring on upper gastrointestinal symptoms and gastric myoelectrical activity. Neurogastroenterol Motil 2020; 32:e13720. [PMID: 31574209 PMCID: PMC7382784 DOI: 10.1111/nmo.13720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/30/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Symptoms induced by caloric or non-caloric satiety test meals and gastric myoelectrical activity (GMA) have not been studied in patients with diabetic gastroparesis (DGP) before and after intense glucose management. AIMS We determined the effects of continuous subcutaneous insulin infusion (CSII) with continuous glucose monitoring (CGM) on GI symptoms, volume consumed, and GMA induced by the caloric meal satiety test (CMST) and water load satiety test (WLST) in DGP. METHODS Forty-five patients with DGP underwent CMST and WLST at baseline and 24 weeks after CSII with CGM. Subjects ingested the test meals until they were completely full. Visual analog scales were used to quantify pre- and postmeal symptoms, and GMA was recorded with cutaneous electrodes and analyzed visually and by computer. KEY RESULTS: At baseline and 24-week visits, nausea, bloating, abdominal discomfort, and fullness were immediately increased after CMST and WLST (Ps < 0.01). The meal volumes ingested were significantly less than normal controls at both visits in almost one-third of the subjects. After the CMST, the percentage 3 cycle per minute GMA increased and bradygastria decreased compared with WLST (Ps < 0.05). After treatment for 24 weeks meal volumes ingested, postmeal symptoms and GMA were no different than baseline. CONCLUSIONS AND INFERENCES: (a) Satiety test meals elicited symptoms of nausea, bloating, and abdominal discomfort; (b) CMST stimulated more symptoms and changes in GMA than WLST; and (c) CSII with CGM for 24 weeks did not improve symptoms, volumes ingested, or GMA elicited by the two satiety test meals in these patients with diabetic GP. Satiety tests in diabetic gastropresis are useful to study acute postprandial symptoms and GMA, but these measures were not improved by intensive insulin therapy.
Collapse
Affiliation(s)
- Kenneth L Koch
- Section on Gastroenterology, Wake Forest University, Winston-Salem, North Carolina
| | - William L Hasler
- Division of Gastroenterology, University of Michigan, Ann Arbor, Michigan
| | - Mark Van Natta
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | - Pankaj J Pasricha
- Center for Neurogastroenterology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - William J Snape
- California Pacific Medical Center, San Francisco, California
| | - Henry P Parkman
- Section of Gastroenterology, Temple University, Philadelphia, Pennsylvania
| | - Thomas L Abell
- Digestive and Liver Health, University of Louisville, Louisville, Kentucky
| | | | - Linda A Nguyen
- Division of Gastroenterology, Stanford University, Palo Alto, California
| | - Irene Sarosiek
- Division of Gastroenterology, Texas Tech University, El Paso, Texas
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - James Tonascia
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Linda Lee
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura Miriel
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Frank Hamilton
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| |
Collapse
|
54
|
Muller PA, Matheis F, Mucida D. Gut macrophages: key players in intestinal immunity and tissue physiology. Curr Opin Immunol 2019; 62:54-61. [PMID: 31841704 DOI: 10.1016/j.coi.2019.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
The mammalian gastrointestinal tract harbors a large reservoir of tissue macrophages, which, in concert with other immune cells, help to maintain a delicate balance between tolerance to commensal microbes and food antigens, and resistance to potentially harmful microbes or toxins. Beyond their roles in resistance and tolerance, recent studies have uncovered novel roles played by tissue-resident, including intestinal-resident macrophages in organ physiology. Here, we will discuss recent advances in the understanding of the origin, phenotype and function of macrophages residing in the different layers of the intestine during homeostasis and under pathological conditions.
Collapse
Affiliation(s)
- Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
55
|
Grover M, Farrugia G, Stanghellini V. Gastroparesis: a turning point in understanding and treatment. Gut 2019; 68:2238-2250. [PMID: 31563877 PMCID: PMC6874806 DOI: 10.1136/gutjnl-2019-318712] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Gastroparesis is defined by delayed gastric emptying (GE) and symptoms of nausea, vomiting, bloating, postprandial fullness, early satiety and abdominal pain. Most common aetiologies include diabetes, postsurgical and postinfectious, but in many cases it is idiopathic. Clinical presentation and natural history vary by the aetiology. There is significant morbidity and healthcare utilisation associated with gastroparesis. Mechanistic studies from diabetic animal models of delayed GE as well as human full-thickness biopsies have significantly advanced our understanding of this disorder. An innate immune dysregulation and injury to the interstitial cells of Cajal and other components of the enteric nervous system through paracrine and oxidative stress mediators is likely central to the pathogenesis of gastroparesis. Scintigraphy and 13C breath testing provide the most validated assessment of GE. The stagnant gastroparesis therapeutic landscape is likely to soon see significant changes. Relatively newer treatment strategies include antiemetics (aprepitant), prokinetics (prucalopride, relamorelin) and fundic relaxants (acotiamide, buspirone). Endoscopic pyloromyotomy appears promising over the short term, especially for symptoms of nausea and vomiting. Further controlled trials and identification of the appropriate subgroup with pyloric dysfunction and assessment of long-term outcomes are essential. This review highlights the clinical presentation, diagnosis, mechanisms and treatment advancements for gastroparesis.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vincenzo Stanghellini
- Department of Digestive Diseases and Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
56
|
Goyal RK, Cristofaro V, Sullivan MP. Rapid gastric emptying in diabetes mellitus: Pathophysiology and clinical importance. J Diabetes Complications 2019; 33:107414. [PMID: 31439470 PMCID: PMC7707148 DOI: 10.1016/j.jdiacomp.2019.107414] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/20/2019] [Accepted: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Although slow gastric emptying (gastroparesis) is a well-known complication of chronic hyperglycemia in diabetes mellitus (DM), it recently has become clear that rapid gastric emptying also is a frequent and important diabetic complication. In contrast, acute hyperglycemia causes slow gastric emptying, and acute hypoglycemia causes rapid gastric emptying. Rapid gastric emptying is frequent in T2DM; however, it may also occur in T1DM, particularly in the early stages of the disease, but may persist even into late stages. Recent studies suggest that usually, the stomach restricts the emptying of nutrients to 1-4 kcals/min. This restriction is due to the action of the gastric 'braking' hormones such as GLP-1, leptin, and amylin acting via the gastric inhibitory vagal motor circuit (GIVMC). Disruption of this braking system leads to rapid gastric emptying. Acute hyperglycemia also slows gastric emptying by stimulating the GIVMC, while acute hypoglycemia causes rapid gastric emptying by stimulating the gastric excitatory vagal motor circuit (GEVMC). In contrast, chronic hyperglycemia causes rapid gastric emptying by inducing oxidative stress in the stomach wall that disrupts inhibitory neuromuscular transmission and increases the contractility of the smooth muscle, while chronic hyperglycemia may also cause slow gastric emptying via severe inflammatory stress caused by proinflammatory macrophages and reduce contractility of the smooth muscle. There is a bidirectional relationship between blood glucose and gastric emptying. Thus, rapid gastric emptying may lead to a sizeable postprandial spike, and slow gastric emptying may blunt it. Postprandial hyperglycemia is involved in the development, progression, and complications of DM. Correction of fast gastric emptying involves agents that activate GIVMC and the use of gastric 'braking' hormones or their analogs. Recognition and treatment of rapid gastric emptying may contribute to better management of postprandial hyperglycemia and prevention of some diabetic complications.
Collapse
Affiliation(s)
- Raj K Goyal
- Departments of Medicine and Surgery, VA Boston Healthcare System and Harvard Medical School, Boston, MA, United States of America.
| | - Vivian Cristofaro
- Departments of Medicine and Surgery, VA Boston Healthcare System and Harvard Medical School, Boston, MA, United States of America
| | - Maryrose P Sullivan
- Departments of Medicine and Surgery, VA Boston Healthcare System and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
57
|
Grover M, Dasari S, Bernard CE, Chikkamenahalli LL, Yates KP, Pasricha PJ, Sarosiek I, McCallum R, Koch KL, Abell TL, Kuo B, Shulman RJ, Gibbons SJ, McKenzie TJ, Kellogg TA, Kendrick ML, Tonascia J, Hamilton FA, Parkman HP, Farrugia G. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G716-G726. [PMID: 31482734 PMCID: PMC6879892 DOI: 10.1152/ajpgi.00115.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in diabetic mice. Loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages has been reported in full-thickness gastric biopsies from gastroparesis patients. We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying, and symptoms. Full-thickness gastric antrum biopsies were obtained from nine DG patients, seven IG patients, and five nondiabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1,305 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity pathway analysis and correlations were carried out. Multiple-testing corrected P < 0.05 was considered statistically significant. Seventy-three proteins were differentially expressed in DG, 132 proteins were differentially expressed in IG, and 40 proteins were common to DG and IG. In both DG and IG, "Role of Macrophages, Fibroblasts and Endothelial Cells" was the most statistically significant altered pathway [DG false discovery rate (FDR) = 7.9 × 10-9; IG FDR = 6.3 × 10-12]. In DG, properdin expression correlated with GCSI bloating (r = -0.99, FDR = 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C-ζ type, and complement C2 correlated with 4 h gastric retention (r = -0.97, FDR = 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Protein expression changes suggest a central role of macrophage-driven immune dysregulation in gastroparesis, specifically, complement activation in diabetic gastroparesis.NEW & NOTEWORTHY This study uses SOMAscan, a novel proteomics assay for determination of altered proteins and associated molecular pathways in human gastroparesis. Seventy-three proteins were changed in diabetic gastroparesis, 132 in idiopathic gastroparesis compared with controls. Forty proteins were common in both. Macrophage-based immune dysregulation pathway was most significantly affected in both diabetic and idiopathic gastroparesis. Proteins involved in the complement and prostaglandin synthesis pathway were associated with symptoms and gastric emptying delay in diabetic gastroparesis.
Collapse
Affiliation(s)
| | - Surendra Dasari
- 2Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Katherine P. Yates
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Irene Sarosiek
- 5Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | - Braden Kuo
- 8Massachusetts General Hospital, Boston, Massachusetts
| | | | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - James Tonascia
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Frank A. Hamilton
- 11National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | | | | |
Collapse
|
58
|
Kishi K, Kaji N, Kurosawa T, Aikiyo S, Hori M. Hyperglycemia in the early stages of type 1 diabetes accelerates gastric emptying through increased networks of interstitial cells of Cajal. PLoS One 2019; 14:e0222961. [PMID: 31596858 PMCID: PMC6785066 DOI: 10.1371/journal.pone.0222961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Gastric emptying (GE) can be either delayed or accelerated in diabetes mellitus (DM). However, most research has focused on delayed GE mediated by a chronic hyperglycemic condition in DM. As such, the function of GE in the early stages of DM is not well understood. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract. In the present study, we investigated changes in GE and ICC networks in the early stages of DM using a streptozotocin-induced type 1 diabetic mouse model. The changes in GE were measured by the 13C-octanoic acid breath test. ICC networks were immunohistochemically detected by an antibody for c-Kit, a specific marker for ICC. Our results showed that GE in type 1 DM was significantly accelerated in the early stages of DM (2-4 weeks after onset). In addition, acute normalization of blood glucose levels by a single administration of insulin did not recover normal GE. ICC networks of the gastric antrum were significantly increased in DM and were not affected by the acute normalization of blood glucose. In conclusion, our results suggest that GE is accelerated in the early stages of DM, and it is associated with increased ICC networks. This mechanism may help to clarify a link between the onset of DM and GE disorders.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tamaki Kurosawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Aikiyo
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
59
|
Abstract
This review covers the epidemiology, pathophysiology, clinical features, diagnosis, and management of diabetic gastroparesis, and more broadly diabetic gastroenteropathy, which encompasses all the gastrointestinal manifestations of diabetes mellitus. Up to 50% of patients with type 1 and type 2 DM and suboptimal glycemic control have delayed gastric emptying (GE), which can be documented with scintigraphy, 13C breath tests, or a wireless motility capsule; the remainder have normal or rapid GE. Many patients with delayed GE are asymptomatic; others have dyspepsia (i.e., mild to moderate indigestion, with or without a mild delay in GE) or gastroparesis, which is a syndrome characterized by moderate to severe upper gastrointestinal symptoms and delayed GE that suggest, but are not accompanied by, gastric outlet obstruction. Gastroparesis can markedly impair quality of life, and up to 50% of patients have significant anxiety and/or depression. Often the distinction between dyspepsia and gastroparesis is based on clinical judgement rather than established criteria. Hyperglycemia, autonomic neuropathy, and enteric neuromuscular inflammation and injury are implicated in the pathogenesis of delayed GE. Alternatively, there are limited data to suggest that delayed GE may affect glycemic control. The management of diabetic gastroparesis is guided by the severity of symptoms, the magnitude of delayed GE, and the nutritional status. Initial options include dietary modifications, supplemental oral nutrition, and antiemetic and prokinetic medications. Patients with more severe symptoms may require a venting gastrostomy or jejunostomy and/or gastric electrical stimulation. Promising newer therapeutic approaches include ghrelin receptor agonists and selective 5-hydroxytryptamine receptor agonists.
Collapse
Affiliation(s)
- Adil E Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yogish C Kudva
- Division of Endocrinology. Mayo Clinic, Rochester, Minnesota
| | - David O Prichard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
60
|
Cil O, Anderson MO, Yen R, Kelleher B, Huynh TL, Seo Y, Nilsen SP, Turner JR, Verkman AS. Slowed gastric emptying and improved oral glucose tolerance produced by a nanomolar-potency inhibitor of calcium-activated chloride channel TMEM16A. FASEB J 2019; 33:11247-11257. [PMID: 31299174 PMCID: PMC6766656 DOI: 10.1096/fj.201900858r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Interstitial cells of Cajal, which express the calcium-activated chloride channel transmembrane member 16A (TMEM16A), are an important determinant of gastrointestinal (GI) motility. We previously identified the acylaminocycloalkylthiophene class of TMEM16A inhibitors, which, following medicinal chemistry, gave analog 2-bromodifluoroacetylamino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxylic acid o-tolylamide (TMinh-23) with 30 nM half-maximal inhibitory concentration. Here, we tested the efficacy of TMinh-23 for inhibition of GI motility in mice. In isolated murine gastric antrum, TMinh-23 strongly inhibited spontaneous and carbachol-stimulated rhythmic contractions. Pharmacokinetic analysis showed predicted therapeutic concentrations of TMinh-23 for at least 4 h following a single oral or intraperitoneal dose at 10 mg/kg. Gastric emptying, as assessed following an oral bolus of phenol red or independently by [99mTc]-diethylenetriamine pentaacetic acid scintigraphy, was reduced by TMinh-23 by ∼60% at 20 min. Interestingly, there was little effect of TMinh-23 on baseline whole-gut transit time or time to diarrhea induced by castor oil. Consequent to the delay in gastric emptying, TMinh-23 administration significantly reduced the elevation in blood sugar in mice following an oral but not intraperitoneal glucose load. These results provide pharmacological evidence for involvement of TMEM16A in gastric emptying and suggest the utility of TMEM16A inhibition in disorders of accelerated gastric emptying, such as dumping syndrome, and potentially for improving glucose tolerance in diabetes mellitus/metabolic syndrome and enhancing satiety in obesity.-Cil, O., Anderson, M. O., Yen, R., Kelleher, B., Huynh, T. L., Seo, Y., Nilsen, S. P., Turner, J. R., Verkman, A. S. Slowed gastric emptying and improved oral glucose tolerance produced by a nanomolar-potency inhibitor of calcium-activated chloride channel TMEM16A.
Collapse
Affiliation(s)
- Onur Cil
- Department of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Marc O. Anderson
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Robert Yen
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Bryan Kelleher
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - Tony L. Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Steven P. Nilsen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerrold R. Turner
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S. Verkman
- Department of Medicine and Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
61
|
Podboy A, Hwang JH, Nguyen LA, Garcia P, Zikos TA, Kamal A, Triadafilopoulos G, Clarke JO. Gastric per-oral endoscopic myotomy: Current status and future directions. World J Gastroenterol 2019; 25:2581-2590. [PMID: 31210711 PMCID: PMC6558440 DOI: 10.3748/wjg.v25.i21.2581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Gastroparesis, or symptomatic delayed gastric emptying in the absence of mechanical obstruction, is a challenging and increasingly identified syndrome. Medical options are limited and the only medication approved by the Food and Drug Administration for treatment of gastroparesis is metoclopramide, although other agents are frequently used off label. With this caveat, first-line treatments for gastroparesis include dietary modifications, antiemetics and promotility agents, although these therapies are limited by suboptimal efficacy and significant medication side effects. Treatment of patients that fail first-line treatments represents a significant therapeutic challenge. Recent advances in endoscopic techniques have led to the development of a promising novel endoscopic therapy for gastroparesis via endoscopic pyloromyotomy, also referred to as gastric per-oral endoscopic myotomy or per-oral endoscopic pyloromyotomy. The aim of this article is to review the technical aspects of the per-oral endoscopic myotomy procedure for the treatment of gastroparesis, provide an overview of the currently published literature, and outline potential next directions for the field.
Collapse
Affiliation(s)
- Alexander Podboy
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Linda A Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Patricia Garcia
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Thomas A Zikos
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Afrin Kamal
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - George Triadafilopoulos
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - John O Clarke
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
62
|
Kawamura T, Matsuura B, Miyake T, Abe M, Ikeda Y, Hiasa Y. Effects of Motilin Receptor Agonists and Ghrelin in Human motilin receptor Transgenic Mice. Int J Mol Sci 2019; 20:ijms20071521. [PMID: 30934667 PMCID: PMC6479874 DOI: 10.3390/ijms20071521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal motility is regulated by neural factors and humoral factors. Both motilin and ghrelin improve gastrointestinal motility, but many issues remain unclear. We prepared human motilin receptor transgenic (Tg) mice and performed experiments evaluating the effects of motilin, erythromycin (EM), and ghrelin. EM and ghrelin promoted gastric emptying (GE) when administered either peripherally or centrally to Tg mice. Atropine (a muscarinic receptor antagonist) counteracted GE induced by centrally administered EM, but not that induced by peripherally administered EM. The administration of EM in this model promoted the effect of mosapride (a selective serotonin 5-hydroxytryptamine 4 (5-HT4) receptor agonist), and improved loperamide (a μ-opioid receptor agonist)-induced gastroparesis. The level of acyl-ghrelin was significantly attenuated by EM administration. Thus, we have established an animal model appropriate for the evaluation of motilin receptor agonists. These data and the model are expected to facilitate the identification of novel compounds with clinical potential for relieving symptoms of dyspepsia and gastroparesis.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Erythromycin/administration & dosage
- Erythromycin/pharmacology
- Gastric Emptying/drug effects
- Gastroparesis/blood
- Gastroparesis/chemically induced
- Gastroparesis/drug therapy
- Gastroparesis/physiopathology
- Ghrelin/blood
- Ghrelin/pharmacology
- Humans
- Loperamide/adverse effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Morpholines/pharmacology
- Postprandial Period
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/genetics
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Stomach/drug effects
- Stomach/pathology
- Stomach/physiopathology
- Vagus Nerve/drug effects
- Vagus Nerve/physiology
Collapse
Affiliation(s)
- Tomoe Kawamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Bunzo Matsuura
- Department of Lifestyle-related Medicine and Endocrinology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Yoshiou Ikeda
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City 791-0295, Japan.
| |
Collapse
|
63
|
Abell TL, Kedar A, Stocker A, Beatty K, McElmurray L, Hughes M, Rashed H, Kennedy W, Wendelschafer-Crabb G, Yang X, Fraig M, Omer E, Miller E, Griswold M, Pinkston C. Gastroparesis syndromes: Response to electrical stimulation. Neurogastroenterol Motil 2019; 31:e13534. [PMID: 30706646 DOI: 10.1111/nmo.13534] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Factors underlying gastroparesis are not well defined, nor is the mechanism of action of gastric electrical stimulation (GES). We hypothesized that GES acts via several mechanisms related to underlying disordered pathophysiology. METHODS We studied 43 consecutive eligible patients with gastroparetic symptoms, previously evaluated by two methods in each of five core areas: inflammatory, autonomic, enteric, electrophysiologic, and hormonal; and also categorized by GI symptoms, metabolic status, illness quantification, and gastric physiology. We then studied 41 patients who underwent temporary GES for 5-7 days. Thirty-six of those patients were implanted and 30 were followed up at 6 months after permanent GES. RESULTS In previous but separately reported work, patients had similar GI symptoms regardless of baseline gastric emptying or diabetic/idiopathic status and all patients demonstrated abnormalities in each of the five areas studied. After GES, patients showed early and late effects of electrical stimulation with changes noted in multiple areas, categorized by improvement status. CONCLUSION Patients with symptoms of gastroparesis have multiple abnormalities, including systemic inflammation and disordered hormonal status. GES affects many of these abnormalities. We conclude electrical stimulation improves symptoms and physiology with (a) an early and sustained anti-emetic effect; (b) an early and durable gastric prokinetic effect in delayed emptying patients; (c) an early anti-arrhythmic effect that continues over time; (d) a late autonomic effect; (e) a late hormonal effect; (f) an early anti-inflammatory effect that persists; and (g) an early and sustained improvement in health-related quality of life. This study is registered with Clinicaltrials.gov under study # NCT03178370 (https://clinicaltrials.gov/ct2/show/NCT03178370).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiu Yang
- University of Louisville, Louisville, Kentucky
| | | | | | - Ed Miller
- University of Louisville, Louisville, Kentucky
| | | | | |
Collapse
|
64
|
Cipriani G, Terhaar ML, Eisenman ST, Ji S, Linden DR, Wright AM, Sha L, Ordog T, Szurszewski JH, Gibbons SJ, Farrugia G. Muscularis Propria Macrophages Alter the Proportion of Nitrergic but Not Cholinergic Gastric Myenteric Neurons. Cell Mol Gastroenterol Hepatol 2019; 7:689-691.e4. [PMID: 30711545 PMCID: PMC6477476 DOI: 10.1016/j.jcmgh.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Key Words
- bmp2, bone morphogenetic protein 2
- chat+, choline acetyltransferase+
- csf1, colony stimulating factor 1
- huc/d, embryonic lethal, abnormal vision, drosophila-like protein 3/4 antigen
- mpm, muscularis propria macrophage
- na, numerical aperture
- nos, nitric oxide synthase
- wt, wild-type
Collapse
Affiliation(s)
| | | | | | - Sihan Ji
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota,Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - David R. Linden
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Alec M. Wright
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Tamas Ordog
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | - Simon J. Gibbons
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota,Corresponding authors:
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota,Corresponding authors:
| |
Collapse
|
65
|
Bekkelund M, Sangnes DA, Gunnar Hatlebakk J, Aabakken L. Pathophysiology of idiopathic gastroparesis and implications for therapy. Scand J Gastroenterol 2019; 54:8-17. [PMID: 30638082 DOI: 10.1080/00365521.2018.1558280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Idiopathic gastroparesis is a gastric motility disorder characterized by chronic upper gastrointestinal symptoms and delayed gastric emptying without an identifiable underlying condition. This review summarizes recent understanding of the pathophysiology and treatment of idiopathic gastroparesis. MATERIALS AND METHODS Structured literature search in the PubMed, Embase and ClinicalTrials.gov databases. RESULTS Idiopathic gastroparesis involves several alterations in gastric motility and sensation, including delayed gastric emptying, altered myoelectrical activity, impaired fundic accommodation, visceral hypersensitivity and disturbances in antropyloroduodenal motility and coordination. Multiple cellular changes have been identified, including depletion of interstitial cells of Cajal (ICC) and enteric nerves, as well as stromal fibrosis. The underlying cause of these changes is not fully understood but may be an immune imbalance, including loss of anti-inflammatory heme-oxygenase-1 positive (HO-1) macrophages. There is currently no causal therapy for idiopathic gastroparesis. The treatment ladder consists of dietary measures, prokinetic and antiemetic medications, and varying surgical or endoscopic interventions, including promising pyloric therapies. There are ongoing trials with several novel medications, raising hopes for future treatment. CONCLUSIONS Patients with idiopathic gastroparesis present several pathophysiological alterations in the stomach, where depletion of ICC is of special importance. Treatment is currently focused on alleviating symptoms through dietary adjustments, medication or surgical or endoscopic interventions.
Collapse
Affiliation(s)
- Mattis Bekkelund
- a Faculty of Medicine, Department of Clinical Medicine , University of Oslo , Oslo , Norway.,b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway
| | - Dag A Sangnes
- b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway.,d Clinical institute 1, University of Bergen , Bergen , Norway
| | - Jan Gunnar Hatlebakk
- b Department of Medicine , National Centre for Functional Gastrointestinal Disorders, Haukeland University Hospital , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway.,d Clinical institute 1, University of Bergen , Bergen , Norway
| | - Lars Aabakken
- a Faculty of Medicine, Department of Clinical Medicine , University of Oslo , Oslo , Norway.,e Department of Transplantation Medicine , Section for Gastroenterology, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
66
|
Rich A. Improved Imaging of Zebrafish Motility. Neurogastroenterol Motil 2018; 30:e13435. [PMID: 30240125 PMCID: PMC6152886 DOI: 10.1111/nmo.13435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/06/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022]
Abstract
Zebrafish larvae are transparent and the entire gastrointestinal (GI) tract is easily visualized. Application of a new image analysis technique is reported in this issue of Neurogastroenterology and Motility (Neurogastroenterol Motil., 2018, volume 30, e13351). The technique quantifies movement in images collected in a timed sequence, and characterizes smooth muscle contractions based on contraction distance and frequency. The technique also reports the contraction amplitude, or the distance moved. This technique, and current spatiotemporal mapping techniques, are essential tools enabling characterization of GI motility patterns in intact physiological settings. Advances and development of transgenic zebrafish that lack pigmentation, with calcium reporters expressed in specific cell types, or with inactivation of specific genes contribute to our understanding of the generation, and regulation of GI motility at the molecular, cellular, and systemic level. Finally, development of chambers that immobilize zebrafish larvae for long-duration imaging will contribute to our technique toolbox, and will provide an increased experimental throughput.
Collapse
Affiliation(s)
- Adam Rich
- The College at Brockport, SUNY, 350 New Campus Drive, Brockport, NY 14420 USA, Telephone: 585-395-5740
| |
Collapse
|