51
|
Abstract
The myelin sheath can be compared to the neuronal growth cone in that the unfurled sheath looks like a giant lamellum. The authors recently tested this hypothesis by examining the importance of WAVE1, a regulator of lamellipodia formation in neurons and other cells, in myelinogenesis. They found that WAVE1 is critical for formation of oligodendrocyte lamellae and myelin sheaths. They review the regulation of WAVE1 and how WAVE1 is transported and localized to lamellipodia. Because they found that some but not all myelination was impaired by knockout of WAVE1 function, they hypothesize that other regulators of actin nucleation help oligodendrocytes produce myelin in parallel with WAVE1 function. Interestingly, they found that oligodendrocyte maturation also is disturbed with WAVE1 knockout and propose that proper localization and transport of signaling molecules relevant to the integrin signaling cascade are disrupted by loss of WAVE1 function. NEUROSCIENTIST 13(5):486—491, 2007. DOI: 10.1177/1073858407299423
Collapse
Affiliation(s)
- Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
52
|
Dugina V, Khromova N, Rybko V, Blizniukov O, Shagieva G, Chaponnier C, Kopnin B, Kopnin P. Tumor promotion by γ and suppression by β non-muscle actin isoforms. Oncotarget 2016; 6:14556-71. [PMID: 26008973 PMCID: PMC4546487 DOI: 10.18632/oncotarget.3989] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022] Open
Abstract
Here we have shown that β-cytoplasmic actin acts as a tumor suppressor, inhibiting cell growth and invasion in vitro and tumor growth in vivo. In contrast, γ-cytoplasmic actin increases the oncogenic potential via ERK1/2, p34-Arc, WAVE2, cofilin1, PP1 and other regulatory proteins. There is a positive feedback loop between γ-actin expression and ERK1/2 activation. We conclude that non-muscle actin isoforms should not be considered as merely housekeeping proteins and the β/γ-actins ratio can be used as an oncogenic marker at least for lung and colon carcinomas. Agents that increase β- and/or decrease γ-actin expression may be useful for anticancer therapy.
Collapse
Affiliation(s)
- Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vera Rybko
- Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | - Galina Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Christine Chaponnier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Boris Kopnin
- Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Pavel Kopnin
- Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
53
|
MacGillavry HD, Kerr JM, Kassner J, Frost NA, Blanpied TA. Shank-cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses. Eur J Neurosci 2015; 43:179-93. [PMID: 26547831 DOI: 10.1111/ejn.13129] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022]
Abstract
The family of Shank scaffolding molecules (comprising Shank1, 2 and 3) are core components of the postsynaptic density (PSD) in neuronal synapses. Shanks link surface receptors to other scaffolding molecules within the PSD, as well as to the actin cytoskeleton. However, determining the function of Shank proteins in neurons has been complicated because the different Shank isoforms share a very high degree of sequence and domain homology. Therefore, to control Shank content while minimizing potential compensatory effects, a miRNA-based knockdown strategy was developed to reduce the expression of all synaptically targeted Shank isoforms simultaneously in rat hippocampal neurons. Using this approach, a strong (>75%) reduction in total Shank protein levels was achieved at individual dendritic spines, prompting an approximately 40% decrease in mushroom spine density. Furthermore, Shank knockdown reduced spine actin levels and increased sensitivity to the actin depolymerizing agent Latrunculin A. A SHANK2 mutant lacking the proline-rich cortactin-binding motif (SHANK2-ΔPRO) was unable to rescue these defects. Furthermore, Shank knockdown reduced cortactin levels in spines and increased the mobility of spine cortactin as measured by single-molecule tracking photoactivated localization microscopy, suggesting that Shank proteins recruit and stabilize cortactin at the synapse. Furthermore, it was found that Shank knockdown significantly reduced spontaneous remodelling of synapse morphology that could not be rescued by the SHANK2-ΔPRO mutant. It was concluded that Shank proteins are key intermediates between the synapse and the spine interior that, via cortactin, permit the actin cytoskeleton to dynamically regulate synapse morphology and function.
Collapse
Affiliation(s)
- Harold D MacGillavry
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584, CH Utrecht, the Netherlands
| | - Justin M Kerr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Josh Kassner
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas A Frost
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
54
|
Sekino S, Kashiwagi Y, Kanazawa H, Takada K, Baba T, Sato S, Inoue H, Kojima M, Tani K. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. Cell Commun Signal 2015; 13:41. [PMID: 26428302 PMCID: PMC4589964 DOI: 10.1186/s12964-015-0119-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abl interactor (Abi) family proteins play significant roles in actin cytoskeleton organization through participation in the WAVE complex. Mammals possess three Abi proteins: Abi-1, Abi-2, and NESH/Abi-3. Abi-1 and Abi-2 were originally identified as Abl tyrosine kinase-binding proteins. It has been disclosed that Abi-1 acts as a bridge between c-Abl and WAVE2, and c-Abl-mediated WAVE2 phosphorylation promotes actin remodeling. We showed previously that NESH/Abi-3 is present in the WAVE2 complex, but neither binds to c-Abl nor promotes c-Abl-mediated phosphorylation of WAVE2. RESULTS In this study, we characterized NESH/Abi-3 in more detail, and compared its properties with those of Abi-1 and Abi-2. NESH/Abi-3 was ectopically expressed in NIH3T3 cells, in which Abi-1, but not NESH/Abi-3, is expressed. The expression of NESH/Abi-3 caused degradation of endogenous Abi-1, which led to the formation of a NESH/Abi-3-based WAVE2 complex. When these cells were plated on fibronectin-coated dishes, the translocation of WAVE2 to the plasma membrane was significantly reduced and the formation of peripheral lamellipodial structures was disturbed, suggesting that the NESH/Abi-3-based WAVE2 complex was unable to help produce lamellipodial protrusions. Next, Abi-1, Abi-2, or NESH/Abi-3 was expressed in v-src-transformed NIH3T3 cells. Only in NESH/Abi-3-expressed cells did treatment with an Abl kinase inhibitor, imatinib mesylate, or siRNA-mediated knockdown of c-Abl promote the formation of invadopodia, which are ventral membrane protrusions with extracellular matrix degradation activity. Structural studies showed that a linker region between the proline-rich regions and the Src homology 3 (SH3) domain of Abi-1 is crucial for its interaction with c-Abl and c-Abl-mediated phosphorylation of WAVE2. CONCLUSIONS The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based one, and NESH/Abi-3 may be involved in the formation of ventral protrusions under certain conditions.
Collapse
Affiliation(s)
- Saki Sekino
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yuriko Kashiwagi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hitoshi Kanazawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Kazuki Takada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Takashi Baba
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Seiichi Sato
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Masaki Kojima
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Katsuko Tani
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
55
|
Isogai T, van der Kammen R, Leyton-Puig D, Kedziora KM, Jalink K, Innocenti M. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J Cell Sci 2015; 128:3796-810. [PMID: 26349808 DOI: 10.1242/jcs.176768] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/02/2015] [Indexed: 01/20/2023] Open
Abstract
Protrusion of lamellipodia and ruffles requires polymerization of branched actin filaments by the Arp2/3 complex. Although regulation of Arp2/3 complex activity has been extensively investigated, the mechanism of initiation of lamellipodia and ruffles remains poorly understood. Here, we show that mDia1 acts in concert with the Arp2/3 complex to promote initiation of lamellipodia and ruffles. We find that mDia1 is an epidermal growth factor (EGF)-regulated actin nucleator involved in membrane ruffling using a combination of knockdown and rescue experiments. At the molecular level, mDia1 polymerizes linear actin filaments, activating the Arp2/3 complex, and localizes within nascent and mature membrane ruffles. We employ functional complementation experiments and optogenetics to show that mDia1 cooperates with the Arp2/3 complex in initiating lamellipodia and ruffles. Finally, we show that genetic and pharmacological interference with this cooperation hampers ruffling and cell migration. Thus, we propose that the lamellipodium- and ruffle-initiating machinery consists of two actin nucleators that act sequentially to regulate membrane protrusion and cell migration.
Collapse
Affiliation(s)
- Tadamoto Isogai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Katarzyna M Kedziora
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Kees Jalink
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
56
|
Basquin C, Trichet M, Vihinen H, Malardé V, Lagache T, Ripoll L, Jokitalo E, Olivo-Marin JC, Gautreau A, Sauvonnet N. Membrane protrusion powers clathrin-independent endocytosis of interleukin-2 receptor. EMBO J 2015; 34:2147-61. [PMID: 26124312 PMCID: PMC4557667 DOI: 10.15252/embj.201490788] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
Endocytosis controls many functions including nutrient uptake, cell division, migration and signal transduction. A clathrin- and caveolin-independent endocytosis pathway is used by important physiological cargos, including interleukin-2 receptors (IL-2R). However, this process lacks morphological and dynamic data. Our electron microscopy (EM) and tomography studies reveal that IL-2R-pits and vesicles are initiated at the base of protrusions. We identify the WAVE complex as a specific endocytic actor. The WAVE complex interacts with IL-2R, via a WAVE-interacting receptor sequence (WIRS) present in the receptor polypeptide, and allows for receptor clustering close to membrane protrusions. In addition, using total internal reflection fluorescent microscopy (TIRF) and automated analysis we demonstrate that two timely distinct bursts of actin polymerization are required during IL-2R uptake, promoted first by the WAVE complex and then by N-WASP. Finally, our data reveal that dynamin acts as a transition controller for the recruitment of Arp2/3 activators required for IL-2R endocytosis. Altogether, our work identifies the spatio-temporal specific role of factors initiating clathrin-independent endocytosis by a unique mechanism that does not depend on the deformation of a flat membrane, but rather on that of membrane protrusions.
Collapse
Affiliation(s)
- Cyril Basquin
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Michaël Trichet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut de Biologie Paris-Seine (IBPS), FR3631, Electron Microscopy Facility, Paris, France
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Valérie Malardé
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Thibault Lagache
- CNRS UMR3691, Paris, France Unité d'Analyse d'Images Biologiques, Institut Pasteur, Paris, France
| | - Léa Ripoll
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Alexis Gautreau
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654 Ecole Polytechnique Centre, National de la Recherche Scientifique, Palaiseau, France
| | - Nathalie Sauvonnet
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Paris, France CNRS UMR3691, Paris, France
| |
Collapse
|
57
|
Genotype–phenotype analysis of von Hippel–Lindau syndrome in fifteen Indian families. Fam Cancer 2015; 14:585-94. [DOI: 10.1007/s10689-015-9806-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Frugtniet B, Jiang WG, Martin TA. Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. BREAST CANCER-TARGETS AND THERAPY 2015; 7:99-109. [PMID: 25941446 PMCID: PMC4416637 DOI: 10.2147/bctt.s59006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE) family are a group of molecules that form a key link between GTPases and the actin cytoskeleton. The role of WASP/WAVE family proteins in the control of actin polymerization through activation of the actin-related protein 2/3 complex is critical in the formation of the actin-based membrane protrusions seen in cell migration and invasion. For this reason, the activity of the WASP/WAVE family in cancer cell invasion and migration has been of great interest in recent years. Many reports have highlighted the potential of targeting the WASP/WAVE family as a therapy for the prevention of cancer progression, in particular breast cancer. This review focuses on the role of the WASP/WAVE family in breast cancer cell invasion and migration and how this relates to the molecular mechanisms of WASP/WAVE activity, their exact contributions to the stages of cancer progression, and how this can lead to the development of anticancer drugs that target the WASP/WAVE family and related pathways.
Collapse
Affiliation(s)
- Bethan Frugtniet
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Tracey A Martin
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
59
|
Abstract
Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed.
Collapse
Affiliation(s)
- Bruce L Goode
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Julian A Eskin
- Brandeis University, Department of Biology, Rosenstiel Center, Waltham, Massachusetts 02454
| | - Beverly Wendland
- The Johns Hopkins University, Department of Biology, Baltimore, Maryland 21218
| |
Collapse
|
60
|
Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 2014; 15:577-90. [PMID: 25145849 DOI: 10.1038/nrm3861] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protrusions at the leading edge of cells, known as lamellipodia, drive cell migration in many normal and pathological situations. Lamellipodial protrusion is powered by actin polymerization, which is mediated by the actin-related protein 2/3 (ARP2/3)-induced nucleation of branched actin networks and the elongation of actin filaments. Recently, advances have been made in our understanding of positive and negative ARP2/3 regulators (such as the SCAR/WAVE (SCAR/WASP family verprolin-homologous protein) complex and Arpin, respectively) and of proteins that control actin branch stability (such as glial maturation factor (GMF)) or actin filament elongation (such as ENA/VASP proteins) in lamellipodium dynamics and cell migration. This Review highlights how the balance between actin filament branching and elongation, and between the positive and negative feedback loops that regulate these activities, determines lamellipodial persistence. Importantly, directional persistence, which results from lamellipodial persistence, emerges as a critical factor in steering cell migration.
Collapse
|
61
|
Chazeau A, Mehidi A, Nair D, Gautier JJ, Leduc C, Chamma I, Kage F, Kechkar A, Thoumine O, Rottner K, Choquet D, Gautreau A, Sibarita JB, Giannone G. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO J 2014; 33:2745-64. [PMID: 25293574 DOI: 10.15252/embj.201488837] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.
Collapse
Affiliation(s)
- Anaël Chazeau
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Amine Mehidi
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Deepak Nair
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Jérémie J Gautier
- CNRS UPR3082, Laboratoire d'Enzymologie et Biochimie Structurales, Gif-sur-Yvette Cedex, France
| | - Cécile Leduc
- University Bordeaux, LP2N, Talence, France CNRS & Institut d'Optique, LP2N, Talence, France
| | - Ingrid Chamma
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Adel Kechkar
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Alexis Gautreau
- CNRS UPR3082, Laboratoire d'Enzymologie et Biochimie Structurales, Gif-sur-Yvette Cedex, France
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| | - Grégory Giannone
- Interdisciplinary Institute for Neuroscience, University Bordeaux UMR 5297, Bordeaux, France CNRS, Interdisciplinary Institute for Neuroscience UMR 5297, Bordeaux, France
| |
Collapse
|
62
|
Li M, Ling B, Xiao T, Tan J, An N, Han N, Guo S, Cheng S, Zhang K. Sp1 transcriptionally regulates BRK1 expression in non-small cell lung cancer cells. Gene 2014; 542:134-40. [PMID: 24680773 DOI: 10.1016/j.gene.2014.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/27/2014] [Accepted: 03/21/2014] [Indexed: 11/25/2022]
Abstract
Following a previous study reporting that BRK1 is upregulated in non-small cell lung cancer (NSCLC), the present study sought to clarify the role of specificity protein 1 (Sp1) in the transcriptional regulation of the BRK1 gene. Therefore, a construct, named F8, consisting of the -1341 to -1 nt sequence upstream of the start codon of the BRK1 gene inserted into pGL4.26 was made. A series of truncated fragments was then constructed based on F8. Segment S831, which contained the -84 to -1 nt region, displayed the highest transcriptional activity in the A549, H1299 and H520 NSCLC cell lines. Bioinformatic analysis showed a potential Sp1-binding element at -73 to -64 nt, and a mutation in this region suppressed the transcriptional activity of S831. Then the RNAi assays of Sp1 and its coworkers Sp3 and Sp4 were performed, and suppression of Sp1 by siRNA inhibited the mRNA expression of BRK1. Both an electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay demonstrated that Sp1 bound to the promoter area of the BRK1 gene. Our data identified a functional and positive Sp1 regulatory element from -73 to -64 nt in the BRK1 promoter, which may likely explain the overexpression of BRK1 in NSCLC.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Bing Ling
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jinjing Tan
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Ning An
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Suping Guo
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
63
|
Abstract
The WAVE regulatory complex (WRC) is a 400-kDa heteropentameric protein assembly that plays a central role in controlling actin cytoskeletal dynamics in many cellular processes. The WRC acts by integrating diverse cellular cues and stimulating the actin nucleating activity of the Arp2/3 complex at membranes. Biochemical and biophysical studies of the underlying mechanisms of these processes require large amounts of purified WRC. Recent success in recombinant expression, reconstitution, purification, and crystallization of the WRC has greatly advanced our understanding of the inhibition, activation, and membrane recruitment mechanisms of this complex. But many important questions remain to be answered. Here, we summarize and update the methods developed in our laboratory, which allow reliable and flexible production of tens of milligrams of recombinant WRC of crystallographic quality, sufficient for many biochemical and structural studies.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shae B Padrick
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Lisa Henry
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael K Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.
| |
Collapse
|
64
|
Ivakov A, Persson S. Plant cell shape: modulators and measurements. FRONTIERS IN PLANT SCIENCE 2013; 4:439. [PMID: 24312104 PMCID: PMC3832843 DOI: 10.3389/fpls.2013.00439] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 05/19/2023]
Abstract
Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation.
Collapse
Affiliation(s)
- Alexander Ivakov
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| | - Staffan Persson
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| |
Collapse
|
65
|
Davidson AJ, Ura S, Thomason PA, Kalna G, Insall RH. Abi is required for modulation and stability but not localization or activation of the SCAR/WAVE complex. EUKARYOTIC CELL 2013; 12:1509-16. [PMID: 24036345 PMCID: PMC3837927 DOI: 10.1128/ec.00116-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/05/2013] [Indexed: 11/20/2022]
Abstract
The SCAR/WAVE complex drives actin-based protrusion, cell migration, and cell separation during cytokinesis. However, the contribution of the individual complex members to the activity of the whole remains a mystery. This is primarily because complex members depend on one another for stability, which limits the scope for experimental manipulation. Several studies suggest that Abi, a relatively small complex member, connects signaling to SCAR/WAVE complex localization and activation through its polyproline C-terminal tail. We generated a deletion series of the Dictyostelium discoideum Abi to investigate its exact role in regulation of the SCAR complex and identified a minimal fragment that would stabilize the complex. Surprisingly, loss of either the N terminus of Abi or the C-terminal polyproline tail conferred no detectable defect in complex recruitment to the leading edge or the formation of pseudopods. A fragment containing approximately 20% Abi--and none of the sites that couple to known signaling pathways--allowed the SCAR complex to function with normal localization and kinetics. However, expression of N-terminal Abi deletions exacerbated the cytokinesis defect of the Dictyostelium abi mutant, which was earlier shown to be caused by the inappropriate activation of SCAR. This demonstrates, unexpectedly, that Abi does not mediate the SCAR complex's ability to make pseudopods, beyond its role in complex stability. Instead, we propose that Abi has a modulatory role when the SCAR complex is activated through other mechanisms.
Collapse
Affiliation(s)
- Andrew J Davidson
- Beatson Institute for Cancer Research, Bearsden, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
66
|
Manthey AL, Lachke SA, FitzGerald PG, Mason RW, Scheiblin DA, McDonald JH, Duncan MK. Loss of Sip1 leads to migration defects and retention of ectodermal markers during lens development. Mech Dev 2013; 131:86-110. [PMID: 24161570 DOI: 10.1016/j.mod.2013.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/04/2013] [Accepted: 09/11/2013] [Indexed: 12/17/2022]
Abstract
SIP1 encodes a DNA-binding transcription factor that regulates multiple developmental processes, as highlighted by the pleiotropic defects observed in Mowat-Wilson syndrome, which results from mutations in this gene. Further, in adults, dysregulated SIP1 expression has been implicated in both cancer and fibrotic diseases, where it functionally links TGFβ signaling to the loss of epithelial cell characteristics and gene expression. In the ocular lens, an epithelial tissue important for vision, Sip1 is co-expressed with epithelial markers, such as E-cadherin, and is required for the complete separation of the lens vesicle from the head ectoderm during early ocular morphogenesis. However, the function of Sip1 after early lens morphogenesis is still unknown. Here, we conditionally deleted Sip1 from the developing mouse lens shortly after lens vesicle closure, leading to defects in coordinated fiber cell tip migration, defective suture formation, and cataract. Interestingly, RNA-Sequencing analysis on Sip1 knockout lenses identified 190 differentially expressed genes, all of which are distinct from previously described Sip1 target genes. Furthermore, 34% of the genes with increased expression in the Sip1 knockout lenses are normally downregulated as the lens transitions from the lens vesicle to early lens, while 49% of the genes with decreased expression in the Sip1 knockout lenses are normally upregulated during early lens development. Overall, these data imply that Sip1 plays a major role in reprogramming the lens vesicle away from a surface ectoderm cell fate towards that necessary for the development of a transparent lens and demonstrate that Sip1 regulates distinctly different sets of genes in different cellular contexts.
Collapse
Affiliation(s)
- Abby L Manthey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | - Robert W Mason
- Department of Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - David A Scheiblin
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - John H McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
67
|
Humphreys D, Davidson AC, Hume PJ, Makin LE, Koronakis V. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells. Proc Natl Acad Sci U S A 2013; 110:16880-5. [PMID: 24085844 PMCID: PMC3801044 DOI: 10.1073/pnas.1311680110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1-WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway.
Collapse
Affiliation(s)
| | | | - Peter J. Hume
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Laura E. Makin
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
68
|
mRNA encoding WAVE-Arp2/3-associated proteins is co-localized with foci of active protein synthesis at the leading edge of MRC5 fibroblasts during cell migration. Biochem J 2013; 452:45-55. [PMID: 23452202 DOI: 10.1042/bj20121803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During cell spreading, mammalian cells migrate using lamellipodia formed from a large dense branched actin network which produces the protrusive force required for leading edge advancement. The formation of lamellipodia is a dynamic process and is dependent on a variety of protein cofactors that mediate their local regulation, structural characteristics and dynamics. In the present study, we show that mRNAs encoding some structural and regulatory components of the WAVE [WASP (Wiskott-Aldrich syndrome protein) verprolin homologous] complex are localized to the leading edge of the cell and associated with sites of active translation. Furthermore, we demonstrate that steady-state levels of ArpC2 and Rac1 proteins increase at the leading edge during cell spreading, suggesting that localized protein synthesis has a pivotal role in controlling cell spreading and migration.
Collapse
|
69
|
Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. PLANT PHYSIOLOGY 2013; 162:689-706. [PMID: 23613272 PMCID: PMC3668063 DOI: 10.1104/pp.113.217422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation.
Collapse
|
70
|
Bisi S, Disanza A, Malinverno C, Frittoli E, Palamidessi A, Scita G. Membrane and actin dynamics interplay at lamellipodia leading edge. Curr Opin Cell Biol 2013; 25:565-73. [PMID: 23639310 DOI: 10.1016/j.ceb.2013.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 12/31/2022]
Abstract
The multimolecular WAVE regulatory (WRC) and Arp2/3 complexes are primarily responsible to generate pushing forces at migratory leading edges by promoting branch elongation of actin filaments. The architectural complexity of these units betrays the necessity to impose a tight control on their activity. This is exerted through temporally coordinated and coincident signals which limit the intensity and duration of this activity. In addition, interactions of the WRC and Arp2/3 complexes with membrane binding and surprisingly membrane trafficking proteins is also emerging, revealing the existence of an 'endocytic wiring system' that spatially restrict branched actin elongation for the execution of polarized functions during cell migration.
Collapse
Affiliation(s)
- Sara Bisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | |
Collapse
|
71
|
Zhao L, Wang D, Wang Q, Rodal AA, Zhang YQ. Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly. PLoS Genet 2013; 9:e1003450. [PMID: 23593037 PMCID: PMC3616907 DOI: 10.1371/journal.pgen.1003450] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023] Open
Abstract
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly. Synapses are specialized junctions at which neurons communicate with target cells. To establish properly wired neuronal circuits, synapses must grow in size and strength with a high degree of accuracy. The actin cytoskeleton plays a crucial role in the formation and function of synapses, but the underlying mechanisms remain poorly understood. The Drosophila neuromuscular junction (NMJ) is an excellent model for studying synaptic development and function. By analyzing Drosophila mutants of the cytoplasmic FMRP interacting protein Cyfip, we establish that this protein inhibits the assembly of filamentous actin (F-actin). At cyfip mutant NMJ synapses, F-actin assembly was accelerated and NMJ terminals were shorter and grew supernumerary buds. Furthermore, neurotransmission was not sustained under high-frequency stimulation. These changes could be caused by defects in synaptic endocytosis, which would compromise the endocytic attenuation of signaling pathways such as the NMJ growth-promoting bone morphogenetic protein (BMP) pathway. Indeed, BMP signaling was upregulated in cyfip mutants. We propose that Cyfip regulates synaptic development and function by inhibiting F-actin assembly, which in turn downregulates BMP signaling via endocytosis. This study establishes a novel role for Cyfip-mediated regulation of the actin cytoskeleton at the Drosophila NMJ.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
72
|
Sossey-Alaoui K. Surfing the big WAVE: Insights into the role of WAVE3 as a driving force in cancer progression and metastasis. Semin Cell Dev Biol 2013; 24:287-97. [PMID: 23116924 PMCID: PMC4207066 DOI: 10.1016/j.semcdb.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
WAVE3 belongs to the WASP/WAVE family of actin cytoskeleton remodeling proteins. These proteins are known to be involved in several biological functions ranging from controlling cell shape and movement, to being closely associated with pathological conditions such as cancer progression and metastasis. Last decade has seen an explosion in the literature reporting significant scientific advances on the molecular mechanisms whereby the WASP/WAVE proteins are regulated both in normal physiological as well as pathological conditions. The purpose of this review is to present the major findings pertaining to how WAVE3 has become a critical player in the regulation of signaling pathways involved in cancer progression and metastasis. The review will conclude with suggesting options for the potential use of WAVE3 as a therapeutic target to prevent the progression of cancer to the lethal stage that is the metastatic disease.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., NB-50, Cleveland, OH 44195, USA.
| |
Collapse
|
73
|
Oda A, Eto K. WASPs and WAVEs: from molecular function to physiology in hematopoietic cells. Semin Cell Dev Biol 2013; 24:308-13. [PMID: 23499790 DOI: 10.1016/j.semcdb.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/29/2022]
Abstract
The actin cytoskeleton is critically involved in a variety of cell functions. The Arp2/3 complex mediates branching of filamentous actin. The members of the Wiskott-Aldrich syndrome protein (WASP) family are major regulators of the complex. As such, the family proteins are also involved in numerous aspects of cell biology. In this short review, we first define the expanding WASP family. Next, we compare the domain structure of the members, and explain the known or proposed functions of each domain or region. Finally, we demonstrate the well-characterized roles of the proteins in specific cellular functions.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Internal Medicine, Noguchi Hospital, Ashibetsu 075-0002, Japan.
| | | |
Collapse
|
74
|
Mendoza MC. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Dev Biol 2013; 24:272-9. [PMID: 23354023 DOI: 10.1016/j.semcdb.2013.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
Abstract
The WAVE2 regulatory complex (WRC) induces actin polymerization by activating the actin nucleator Arp2/3. Polymerizing actin pushes against the cell membrane and induces dramatic edge protrusions. In order to properly control such changes in cell morphology and function, cells have evolved multiple methods to tightly regulate WRC and Arp2/3 activity in space and time. Of these mechanisms, phosphorylation plays a fundamental role in transmitting extracellular and intracellular signals to the WRC and the actin cytoskeleton. This review discusses the phosphorylation-based regulatory inputs into the WRC. Signaling pathways that respond to growth factors, chemokines, hormones, and extracellular matrix converge upon the WAVE and ABI components of the WRC. The Abl, Src, ERK, and PKA kinases promote complex activation through a WRC conformation change that permits interaction with the Arp2/3 complex and through WRC translocation to the cell edge. The neuron-specific CDK5 and constitutively active CK2 kinases inhibit WRC activation. These regulatory signals are integrated in space and time as they coalesce upon the WRC. The combination of WRC phosphorylation events and WRC activity is controlled by stimulus, cell type, and cell cycle-specific pathway activation and via pathway cross-inhibition and cross-activation.
Collapse
Affiliation(s)
- Michelle C Mendoza
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
75
|
Tang H, Li A, Bi J, Veltman DM, Zech T, Spence HJ, Yu X, Timpson P, Insall RH, Frame MC, Machesky LM. Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr Biol 2013; 23:107-17. [PMID: 23273897 DOI: 10.1016/j.cub.2012.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/25/2012] [Accepted: 11/30/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Scar/WAVE regulatory complex (WRC) drives lamellipodia assembly via the Arp2/3 complex, whereas the Arp2/3 activator N-WASP is not essential for 2D migration but is increasingly implicated in 3D invasion. It is becoming ever more apparent that 2D and 3D migration utilize the actin cytoskeletal machinery differently. RESULTS We discovered that WRC and N-WASP play opposing roles in 3D epithelial cell migration. WRC depletion promoted N-WASP/Arp2/3 complex activation and recruitment to leading invasive edges and increased invasion. WRC disruption also altered focal adhesion dynamics and drove FAK activation at leading invasive edges. We observed coalescence of focal adhesion components together with N-WASP and Arp2/3 complex at leading invasive edges in 3D. Unexpectedly, WRC disruption also promoted FAK-dependent cell transformation and tumor growth in vivo. CONCLUSIONS N-WASP has a crucial proinvasive role in driving Arp2/3 complex-mediated actin assembly in cooperation with FAK at invasive cell edges, but WRC depletion can promote 3D cell motility.
Collapse
Affiliation(s)
- Haoran Tang
- The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Burianek LE, Soderling SH. Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin Cell Dev Biol 2013; 24:258-66. [PMID: 23291261 DOI: 10.1016/j.semcdb.2012.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/03/2023]
Abstract
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.
Collapse
|
77
|
Yanagisawa M, Zhang C, Szymanski DB. ARP2/3-dependent growth in the plant kingdom: SCARs for life. FRONTIERS IN PLANT SCIENCE 2013; 4:166. [PMID: 23802001 PMCID: PMC3689024 DOI: 10.3389/fpls.2013.00166] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/12/2013] [Indexed: 05/18/2023]
Abstract
In the human experience SCARs (suppressor of cAMP receptors) are permanent reminders of past events, not always based on bad decisions, but always those in which an interplay of opposing forces leaves behind a clear record in the form of some permanent watery mark. During plant morphogenesis, SCARs are important proteins that reflect an unusual evolutionary outcome, in which the plant kingdom relies heavily on this single class of actin-related protein (ARP) 2/3 complex activator to dictate the time and place of actin filament nucleation. This unusually simple arrangement may serve as a permanent reminder that cell shape control in plants is fundamentally different from that of crawling cells in mammals that use the power of actin polymerization to define and maintain cell shape. In plant cells, actin filaments indirectly affect cell shape by determining the transport properties of organelles and cargo molecules that modulate the mechanical properties of the wall. It is becoming increasingly clear that polarized bundles of actin filaments operate at whole cell spatial scales to organize the cytoplasm and dictate the patterns of long-distance intracellular transport and secretion. The number of actin-binding proteins and actin filament nucleators that are known to participate in the process of actin network formation are rapidly increasing. In plants, formins and ARP2/3 are two important actin filament nucleators. This review will focus on ARP2/3, and the apparent reliance of most plant species on the SCAR/WAVE (WASP family verprolin homologous) regulatory complex as the sole pathway for ARP2/3 activation.
Collapse
Affiliation(s)
| | - Chunhua Zhang
- Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
| | - Daniel B. Szymanski
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
- *Correspondence: Daniel B. Szymanski, Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, West Lafayette, IN 47907-1150, USA e-mail:
| |
Collapse
|
78
|
Humphreys D, Liu T, Davidson AC, Hume PJ, Koronakis V. The Drosophila Arf1 homologue Arf79F is essential for lamellipodium formation. J Cell Sci 2012; 125:5630-5. [PMID: 22992458 DOI: 10.1242/jcs.108092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The WAVE regulatory complex (WRC) drives the polymerisation of actin filaments located beneath the plasma membrane to generate lamellipodia that are pivotal to cell architecture and movement. By reconstituting WRC-dependent actin assembly at the membrane, we recently discovered that several classes of Arf family GTPases directly recruit and activate WRC in cell extracts, and that Arf cooperates with Rac1 to trigger actin polymerisation. Here, we demonstrate that the Class 1 Arf1 homologue Arf79F colocalises with the WRC at dynamic lamellipodia. We report that Arf79F is required for lamellipodium formation in Drosophila S2R+ cells, which only express one Arf isoform for each class. Impeding Arf function either by dominant-negative Arf expression or by Arf double-stranded RNA interference (dsRNAi)-mediated knockdown uncovered that Arf-dependent lamellipodium formation was specific to Arf79F, establishing that Class 1 Arfs, but not Class 2 or Class 3 Arfs, are crucial for lamellipodia. Lamellipodium formation in Arf79F-silenced cells was restored by expressing mammalian Arf1, but not by constitutively active Rac1, showing that Arf79F does not act via Rac1. Abolition of lamellipodium formation in Arf79F-silenced cells was not due to Golgi disruption. Blocking Arf79F activation with guanine nucleotide exchange factor inhibitors impaired WRC localisation to the plasma membrane and concomitant generation of lamellipodia. Our data indicate that the Class I Arf GTPase is a central component in WRC-driven lamellipodium formation.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | |
Collapse
|
79
|
Zhang J, Tang L, Shen L, Zhou S, Duan Z, Xiao L, Cao Y, Mu X, Zha L, Wang H. High level of WAVE1 expression is associated with tumor aggressiveness and unfavorable prognosis of epithelial ovarian cancer. Gynecol Oncol 2012; 127:223-30. [PMID: 22721732 DOI: 10.1016/j.ygyno.2012.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) has been shown to promote cancer invasion and metastasis. However, no evidence has been found to identify the role of WAVE1 in epithelial ovarian cancer (EOC). This study aims to determine the effect of WAVE1 expression and investigate a possible relationship between WAVE1 and prognosis in EOC. METHODS WAVE1 protein level was measured in 223 EOC specimens by immunohistochemical staining and 46 EOC specimens by Western blot analysis. Expression of WAVE1 in ovarian cancer cell lines was evaluated by Western blot analysis and immunofluorescence. Survival analysis was performed to assess the correlation between WAVE1 expression and survival. RESULTS Immunohistochemical staining and Western blot analysis showed that WAVE1 was overexpressed in EOC compared with samples from a non-invasive ovarian tumor and normal ovaries (P<0.05). Furthermore, expression of WAVE1 was significantly associated with advanced FIGO stage, poor grade, serum Ca-125 and residual tumor size (P<0.05). By Western blot analysis, WAVE1 expression was detected in four ovarian cancer cell lines. Immunofluorescence was performed to demonstrate WAVE1 expression in SKOV3 and 3AO cell lines. Survival analysis showed that patients with low WAVE1 staining had a significantly better survival compared to patients with high WAVE1 staining (P<0.05). In multivariate analysis, WAVE1 overexpression, advanced stage and suboptimal surgical debulking were independent prognostic factors of poor survival. CONCLUSIONS Our present study finds that WAVE1 overexpression is associated with an unfavorable prognosis. WAVE1 is an independent prognostic factor for EOC, which suggests that it is a novel and crucial predictor for EOC metastasis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Humphreys D, Davidson A, Hume PJ, Koronakis V. Salmonella virulence effector SopE and Host GEF ARNO cooperate to recruit and activate WAVE to trigger bacterial invasion. Cell Host Microbe 2012; 11:129-39. [PMID: 22341462 PMCID: PMC3314957 DOI: 10.1016/j.chom.2012.01.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/25/2011] [Accepted: 01/02/2012] [Indexed: 12/24/2022]
Abstract
Salmonella virulence effectors elicit host cell membrane ruffling to facilitate pathogen invasion. The WAVE regulatory complex (WRC) governs the underlying membrane-localized actin polymerization, but how Salmonella manipulates WRC is unknown. We show that Rho GTPase activation by the Salmonella guanine nucleotide exchange factor (GEF) SopE efficiently triggered WRC recruitment but not its activation, which required host Arf GTPase activity. Invading Salmonella recruited and activated Arf1 to facilitate ruffling and uptake. Arf3 and Arf6 could also enhance invasion. RNAi screening of host Arf-family GEFs revealed a key role for ARNO in pathogen invasion and generation of pathogen-containing macropinosomes enriched in Arf1 and WRC. Salmonella recruited ARNO via Arf6 and the phosphoinositide phosphatase effector SopB-induced PIP3 generation. ARNO in turn triggered WRC recruitment and activation, which was dramatically enhanced when SopE and ARNO cooperated. Thus, we uncover a mechanism by which pathogen and host GEFs synergize to regulate WRC and trigger Salmonella invasion.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB21QP, UK
| | | | | | | |
Collapse
|
81
|
Kotula L. Abi1, a critical molecule coordinating actin cytoskeleton reorganization with PI-3 kinase and growth signaling. FEBS Lett 2012; 586:2790-4. [PMID: 22617151 DOI: 10.1016/j.febslet.2012.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022]
Abstract
Coordination of actin cytoskeletal reorganization with growth and proliferation signals is a key cellular process that is not fully understood. PI-3 kinase is one of the central nodes for distributing growth and proliferation signals downstream from growth factor receptors to the nucleus. Although PI-3 kinase function has been associated with actin cytoskeleton remodeling, satisfactory explanations of the mechanisms mediating this regulation have been elusive. Here we propose that interaction of the Abi1 protein with the p85 regulatory subunit of PI-3 kinase represents the link between growth receptor signaling and actin cytoskeleton remodeling. This function of Abi1, which involves WAVE complex, was initially observed in macropinocytosis, and may explain the coincident dysregulation of PI-3 kinase and actin cytoskeleton in cancer.
Collapse
Affiliation(s)
- Leszek Kotula
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
82
|
Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:414913. [PMID: 22675626 PMCID: PMC3362954 DOI: 10.1155/2012/414913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 01/20/2023]
Abstract
Abl is a nonreceptor tyrosine kinase and plays an essential role in the modeling and remodeling of F-actin by transducing extracellular signals. Abl and its paralog, Arg, are unique among the tyrosine kinase family in that they contain an unusual extended C-terminal half consisting of multiple functional domains. This structural characteristic may underlie the role of Abl as a mediator of upstream signals to downstream signaling machineries involved in actin dynamics. Indeed, a group of SH3-containing accessory proteins, or adaptor proteins, have been identified that bind to a proline-rich domain of the C-terminal portion of Abl and modulate its kinase activity, substrate recognition, and intracellular localization. Moreover, the existence of signaling cascade and biological outcomes unique to each adaptor protein has been demonstrated. In this paper, we summarize functional roles and mechanisms of adaptor proteins in Abl-regulated actin dynamics, mainly focusing on a family of adaptor proteins, Abi. The mechanism of Abl's activation and downstream signaling mediated by Abi is described in comparison with those by another adaptor protein, Crk.
Collapse
|
83
|
Wu S, Ma L, Wu Y, Zeng R, Zhu X. Nudel is crucial for the WAVE complex assembly in vivo by selectively promoting subcomplex stability and formation through direct interactions. Cell Res 2012; 22:1270-84. [PMID: 22453242 DOI: 10.1038/cr.2012.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The WAVE regulatory complex (WRC), consisting of WAVE, Sra, Nap, Abi, and HSPC300, activates the Arp2/3 complex to control branched actin polymerization in response to Rac activation. How the WRC is assembled in vivo is not clear. Here we show that Nudel, a protein critical for lamellipodia formation, dramatically stabilized the Sra1-Nap1-Abi1 complex against degradation in cells through a dynamic binding to Sra1, whereas its physical interaction with HSPC300 protected free HSPC300 from the proteasome-mediated degradation and stimulated the HSPC300-WAVE2 complex formation. By contrast, Nudel showed little or no interactions with the Sra1-Nap1-Abi1-WAVE2 and the Sra1-Nap1-Abi1-HSPC300 complexes as well as the mature WRC. Depletion of Nudel by RNAi led to general subunit degradation and markedly attenuated the levels of mature WRC. It also abolished the WRC-dependent actin polymerization in vitro and the Rac1-induced lamellipodial actin network formation during cell spreading. Therefore, Nudel is important for the early steps of the WRC assembly in vivo by antagonizing the instability of certain WRC subunits and subcomplexes.
Collapse
Affiliation(s)
- Shuang Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
84
|
Impact of the carbazole derivative wiskostatin on mechanical stability and dynamics of motile cells. J Muscle Res Cell Motil 2012; 33:95-106. [PMID: 22407517 DOI: 10.1007/s10974-012-9287-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Many essential functions in eukaryotic cells like phagocytosis, division, and motility rely on the dynamical properties of the actin cytoskeleton. A central player in the actin system is the Arp2/3 complex. Its activity is controlled by members of the WASP (Wiskott-Aldrich syndrome protein) family. In this work, we investigated the effect of the carbazole derivative wiskostatin, a recently identified N-WASP inhibitor, on actin-driven processes in motile cells of the social ameba Dictyostelium discoideum. Drug-treated cells exhibited an altered morphology and strongly reduced pseudopod formation. However, TIRF microscopy images revealed that the overall cortical network structure remained intact. We probed the mechanical stability of wiskostatin-treated cells using a microfluidic device. While the total amount of F-actin in the cells remained constant, their stiffness was strongly reduced. Furthermore, wiskostatin treatment enhanced the resistance to fluid shear stress, while spontaneous motility as well as chemotactic motion in gradients of cAMP were reduced. Our results suggest that wiskostatin affects the mechanical integrity of the actin cortex so that its rigidity is reduced and actin-driven force generation is impaired.
Collapse
|
85
|
Gautier JJ, Lomakina ME, Bouslama-Oueghlani L, Derivery E, Beilinson H, Faigle W, Loew D, Louvard D, Echard A, Alexandrova AY, Baum B, Gautreau A. Clathrin is required for Scar/Wave-mediated lamellipodium formation. J Cell Sci 2012; 124:3414-27. [PMID: 22010197 DOI: 10.1242/jcs.081083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Scar/Wave complex (SWC) generates lamellipodia through Arp2/3-dependent polymerisation of branched actin networks. In order to identify new SWC regulators, we conducted a screen in Drosophila cells combining proteomics with functional genomics. This screen identified Clathrin heavy chain (CHC) as a protein that binds to the SWC and whose depletion affects lamellipodium formation. This role of CHC in lamellipodium formation can be uncoupled from its role in membrane trafficking by several experimental approaches. Furthermore, CHC is detected in lamellipodia in the absence of the adaptor and accessory proteins of endocytosis. We found that CHC overexpression decreased membrane recruitment of the SWC, resulting in reduced velocity of protrusions and reduced cell migration. By contrast, when CHC was targeted to the membrane by fusion to a myristoylation sequence, we observed an increase in membrane recruitment of the SWC, protrusion velocity and cell migration. Together these data suggest that, in addition to its classical role in membrane trafficking, CHC brings the SWC to the plasma membrane, thereby controlling lamellipodium formation.
Collapse
Affiliation(s)
- Jérémie J Gautier
- CNRS UPR3082, Laboratoire d'Enzymologie et Biochimie Structurales, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Rohn JL, Sims D, Liu T, Fedorova M, Schöck F, Dopie J, Vartiainen MK, Kiger AA, Perrimon N, Baum B. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. ACTA ACUST UNITED AC 2012; 194:789-805. [PMID: 21893601 PMCID: PMC3171124 DOI: 10.1083/jcb.201103168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNAi screens in Drosophila and human cells for novel actin
regulators revealed conserved roles for proteins involved in nuclear actin
export, RNA splicing, and ubiquitination. Although a large number of actin-binding proteins and their regulators have been
identified through classical approaches, gaps in our knowledge remain. Here, we
used genome-wide RNA interference as a systematic method to define metazoan
actin regulators based on visual phenotype. Using comparative screens in
cultured Drosophila and human cells, we generated phenotypic
profiles for annotated actin regulators together with proteins bearing predicted
actin-binding domains. These phenotypic clusters for the known metazoan
“actinome” were used to identify putative new core actin
regulators, together with a number of genes with conserved but poorly studied
roles in the regulation of the actin cytoskeleton, several of which we studied
in detail. This work suggests that although our search for new components of the
core actin machinery is nearing saturation, regulation at the level of nuclear
actin export, RNA splicing, ubiquitination, and other upstream processes remains
an important but unexplored frontier of actin biology.
Collapse
Affiliation(s)
- Jennifer L Rohn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Teng Y, Liu M, Cowell JK. Functional interrelationship between the WASF3 and KISS1 metastasis-associated genes in breast cancer cells. Int J Cancer 2011; 129:2825-35. [PMID: 21544801 PMCID: PMC3154992 DOI: 10.1002/ijc.25964] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/12/2011] [Indexed: 12/24/2022]
Abstract
Loss of WASF3 function in breast cancer cells results in loss of invasion phenotypes and reduced metastatic potential. By using oligonucleotide arrays, we now demonstrate that knockdown of WASF3 leads to the upregulation of the KISS1 metastasis suppressor gene with concomitant reduced invasion and loss of matrix metalloproteinases (MMP)-9 activity. Using a luciferase reporter, KISS1 transcription is significantly increased in the absence of WASF3. Knockdown of KISS1 in WASF3-silenced cells resulted in the recovery of the invasion phenotype. WASF3 knockdown also resulted in elevated IκBα levels in the cytoplasm and reduced levels of nuclear factor-kappa-B (NF-κB) p65/50 subunits in the nucleus. Tumor necrosis factor-alpha (TNF-α) has been associated with cell invasion through induction of MMP-9 production via KISS1 regulation of the NF-κB pathway. When WASF3 knockdown cells are treated with TNF-α, no effect is seen on invasion or nuclear translocation of NF-κB. Thus, coordinated expression patterns of the WASF3 metastasis promoter gene and the KISS1 metastasis suppressor gene appear to exert their influence through inhibition of NF-κB signaling, which in turn regulates MMP-9 production facilitating invasion.
Collapse
Affiliation(s)
- Yong Teng
- School of Medicine, Medical College of Georgia, Augusta, GA, USA
| | | | | |
Collapse
|
88
|
Endris V, Haussmann L, Buss E, Bacon C, Bartsch D, Rappold G. SrGAP3 interacts with lamellipodin at the cell membrane and regulates Rac-dependent cellular protrusions. J Cell Sci 2011; 124:3941-55. [PMID: 22159416 DOI: 10.1242/jcs.077081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SrGAP3/MEGAP is a member of the Slit-Robo GAP (srGAP) family and is implicated in repulsive axon guidance and neuronal migration through Slit-Robo-mediated signal transduction. Here we describe an inhibitory role of srGAP3 on actin dynamics, specifically on lamellipodia formation. We show that the F-BAR domain localizes srGAP3 to the leading edge of cellular protrusions whereas the SH3 domain is important for focal adhesion targeting. We report on a novel srGAP3 interaction partner, lamellipodin, which localizes with srGAP3 at the leading edge. Live-cell analyses revealed that srGAP3 influences lamellipodin-evoked lamellipodial dynamics. Furthermore, we show that mouse embryonic fibroblasts derived from homozygous srGAP3-knockout embryos display an increased cell area and lamellipodia formation that can be blocked by shRNA-mediated knockdown of lamellipodin.
Collapse
Affiliation(s)
- Volker Endris
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Firat-Karalar EN, Hsiue PP, Welch MD. The actin nucleation factor JMY is a negative regulator of neuritogenesis. Mol Biol Cell 2011; 22:4563-74. [PMID: 21965285 PMCID: PMC3226475 DOI: 10.1091/mbc.e11-06-0585] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Junction-mediating and regulatory protein (JMY) is a p53 cofactor that was recently shown to nucleate actin assembly by a hybrid mechanism involving tandem actin monomer binding and Arp2/3 complex activation. However, the regulation and function of JMY remain largely uncharacterized. We examined the activity of JMY in vitro and in cells, its subcellular distribution, and its function in fibroblast and neuronal cell lines. We demonstrated that recombinant full-length JMY and its isolated WASP homology 2 domain, connector, and acidic region (WWWCA) have potent actin-nucleating and Arp2/3-activating abilities in vitro. In contrast, the activity of full-length JMY, but not the isolated WWWCA domain, is suppressed in cells. The WWWCA domain is sufficient to promote actin-based bead motility in cytoplasmic extracts, and this activity depends on its ability to activate the Arp2/3 complex. JMY is expressed at high levels in brain tissue, and in various cell lines JMY is predominantly cytoplasmic, with a minor fraction in the nucleus. Of interest, silencing JMY expression in neuronal cells results in a significant enhancement of the ability of these cells to form neurites, suggesting that JMY functions to suppress neurite formation. This function of JMY requires its actin-nucleating activity. These findings highlight a previously unrecognized function for JMY as a modulator of neuritogenesis.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
90
|
Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer 2011; 129:1331-43. [PMID: 21105030 PMCID: PMC3081370 DOI: 10.1002/ijc.25793] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/26/2010] [Indexed: 12/21/2022]
Abstract
WAVE3, an actin cytoskeleton remodeling protein, is highly expressed in advanced stages of breast cancer and influences tumor cell invasion. Loss of miR-31 has been associated with cancer progression and metastasis. Here, we show that the activity of WAVE3 to promote cancer cell invasion is regulated by miR-31. An inverse correlation was demonstrated between expression levels of WAVE3 and miR-31 in invasive versus noninvasive breast cancer cell lines. miR-31 directly targeted the 3'-UTR of the WAVE3 mRNA and inhibited its expression in the invasive cancer cells, i.e., miR-31-mediated down-regulation of WAVE3 resulted in a significant reduction in the invasive phenotype of cancer cells. This relationship was specific to the loss of WAVE3 expression because re-expression of a miR-31-resistant form of WAVE3 reversed miR-31-mediated inhibition of cancer cell invasion. Furthermore, expression of miR-31 correlates inversely with breast cancer progression in humans, where an increase in expression of miR-31 target genes was observed as the tumors progressed to more aggressive forms. In conclusion, a novel mechanism for the regulation of WAVE3 expression in cancer cells has been identified, which controls the invasive properties of cancer cells. The study also identifies a critical role for WAVE3, downstream of miR-31, in the invasion-metastasis cascade.
Collapse
Affiliation(s)
- Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Stephan R, Gohl C, Fleige A, Klämbt C, Bogdan S. Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila. Mol Biol Cell 2011; 22:4079-92. [PMID: 21900504 PMCID: PMC3204070 DOI: 10.1091/mbc.e11-02-0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE.
Collapse
Affiliation(s)
- Raiko Stephan
- Institut für Neurobiologie, Universität Münster, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
92
|
Zhuang C, Tang H, Dissanaike S, Cobos E, Tao Y, Dai Z. CDK1-mediated phosphorylation of Abi1 attenuates Bcr-Abl-induced F-actin assembly and tyrosine phosphorylation of WAVE complex during mitosis. J Biol Chem 2011; 286:38614-38626. [PMID: 21900237 DOI: 10.1074/jbc.m111.281139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Coordinated actin remodeling is crucial for cell entry into mitosis. The WAVE regulatory complex is a key regulator of actin assembly, yet how the WAVE signaling is regulated to coordinate actin assembly with mitotic entry is not clear. Here, we have uncovered a novel mechanism that regulates the WAVE complex at the onset of mitosis. We found that the Bcr-Abl-stimulated F-actin assembly is abrogated during mitosis. This mitotic inhibition of F-actin assembly is accompanied by an attenuation of Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex. We identified serine 216 of Abi1 as a target of CDK1/cyclin B kinase that is phosphorylated in cells at the onset of mitosis. The Abi1 phosphorylated on serine 216 displayed greatly reduced tyrosine phosphorylation in the hematopoietic cells transformed by Bcr-Abl. Moreover, a phosphomimetic mutation of serine 216 to aspartic acid in Abi1 was sufficient to attenuate Bcr-Abl-induced tyrosine phosphorylation of the WAVE complex and F-actin assembly. Ectopic expression of Abi1 with serine 216 mutations interfered with cell cycle progression. Together, these data show that CDK1-mediated phosphorylation of serine 216 in Abi1 serves as a regulatory mechanism that may contribute to coordinated actin cytoskeleton remodeling during mitosis.
Collapse
Affiliation(s)
- Chunmei Zhuang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Hongxing Tang
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Yunxia Tao
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, Texas 79106; Department of Stem Cell Transplant Program, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
93
|
Groen AC, Coughlin M, Mitchison TJ. Microtubule assembly in meiotic extract requires glycogen. Mol Biol Cell 2011; 22:3139-51. [PMID: 21737678 PMCID: PMC3164461 DOI: 10.1091/mbc.e11-02-0158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We identified a clarified extract containing the soluble factors for microtubule assembly. We found that microtubule assembly does not require ribosomes, mitochondria, or membranes. Our clarified extracts will provide a powerful tool for activity-based biochemical fractionations for microtubule assembly. The assembly of microtubules during mitosis requires many identified components, such as γ-tubulin ring complex (γ-TuRC), components of the Ran pathway (e.g., TPX2, HuRP, and Rae1), and XMAP215/chTOG. However, it is far from clear how these factors function together or whether more factors exist. In this study, we used biochemistry to attempt to identify active microtubule nucleation protein complexes from Xenopus meiotic egg extracts. Unexpectedly, we found both microtubule assembly and bipolar spindle assembly required glycogen, which acted both as a crowding agent and as metabolic source glucose. By also reconstituting microtubule assembly in clarified extracts, we showed microtubule assembly does not require ribosomes, mitochondria, or membranes. Our clarified extracts will provide a powerful tool for activity-based biochemical fractionations for microtubule assembly.
Collapse
Affiliation(s)
- Aaron C Groen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
94
|
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679-83. [PMID: 21321325 DOI: 10.1242/jcs.064964] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soon-Tuck Sit
- sGSK Group, A-Star Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|
95
|
High-resolution X-ray structure of the trimeric Scar/WAVE-complex precursor Brk1. PLoS One 2011; 6:e21327. [PMID: 21701600 PMCID: PMC3119050 DOI: 10.1371/journal.pone.0021327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/30/2011] [Indexed: 01/08/2023] Open
Abstract
The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1), implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex.
Collapse
|
96
|
Ghiani CA, Dell'Angelica EC. Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro 2011; 3:e00058. [PMID: 21504412 PMCID: PMC3155195 DOI: 10.1042/an20110010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023] Open
Abstract
Dysbindin (also known as dysbindin-1 or dystrobrevin-binding protein 1) was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC-1 (biogenesis of lysosome-related organelles complex-1), which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal-lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.
Collapse
Key Words
- biogenesis of lysosome-related organelles complex-1 (bloc-1)
- dtnbp1
- dysbindin
- dystrobrevin-binding protein
- schizophrenia
- ap-3, adaptor protein-3
- bloc, biogenesis of lysosome-related organelles complex
- coip, co-immunoprecipitation
- hek-293 cells, human embryonic kidney cells
- hps, hermansky–pudlak syndrome
- jnk, c-jun n-terminal kinase
- ms/ms, tandem mass spectrometry
- rnai, rna interference
- shrna, short-hairpin rna
- sirna, small-interfering rna
- wash, wiskott–aldrich syndrome protein and scar homologue
- vamp-7, vesicle-associated membrane protein 7
- wave, wasp (wiskott–aldrich syndrome protein) verprolin homologous
- y2h, yeast two-hybrid
Collapse
Affiliation(s)
- Cristina A Ghiani
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- †Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| | - Esteban C Dell'Angelica
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- ‡Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
97
|
Essential role for Abi1 in embryonic survival and WAVE2 complex integrity. Proc Natl Acad Sci U S A 2011; 108:7022-7. [PMID: 21482783 DOI: 10.1073/pnas.1016811108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abl interactor 1 (Abi1) plays a critical function in actin cytoskeleton dynamics through participation in the WAVE2 complex. To gain a better understanding of the specific role of Abi1, we generated a conditional Abi1-KO mouse model and MEFs lacking Abi1 expression. Abi1-KO cells displayed defective regulation of the actin cytoskeleton, and this dysregulation was ascribed to altered activity of the WAVE2 complex. Changes in motility of Abi1-KO cells were manifested by a decreased migration rate and distance but increased directional persistence. Although these phenotypes did not correlate with peripheral ruffling, which was unaffected, Abi1-KO cells exhibited decreased dorsal ruffling. Western blotting analysis of Abi1-KO cell lysates indicated reduced levels of the WAVE complex components WAVE1 and WAVE2, Nap1, and Sra-1/PIR121. Although relative Abi2 levels were more than doubled in Abi1-KO cells, the absolute Abi2 expression in these cells amounted only to a fifth of Abi1 levels in the control cell line. This finding suggests that the presence of Abi1 is critical for the integrity and stability of WAVE complex and that Abi2 levels are not sufficiently increased to compensate fully for the loss of Abi1 in KO cells and to restore the integrity and function of the WAVE complex. The essential function of Abi1 in WAVE complexes and their regulation might explain the observed embryonic lethality of Abi1-deficient embryos, which survived until approximately embryonic day 11.5 and displayed malformations in the developing heart and brain. Cells lacking Abi1 and the conditional Abi1-KO mouse will serve as critical models for defining Abi1 function.
Collapse
|
98
|
Abstract
The SCAR/WAVE complex controls actin polymerization at the leading edges of moving cells, but its mechanism of regulation remains unclear. The recent determination of its crystal structure, and identification of the binding sites for upstream regulators, mean its workings can finally start to be revealed.
Collapse
|
99
|
Park H, Chan MM, Iritani BM. Hem-1: putting the "WAVE" into actin polymerization during an immune response. FEBS Lett 2010; 584:4923-32. [PMID: 20969869 PMCID: PMC3363972 DOI: 10.1016/j.febslet.2010.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/28/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
Abstract
Most active processes by immune cells including adhesion, migration, and phagocytosis require the coordinated polymerization and depolymerization of filamentous actin (F-actin), which is an essential component of the actin cytoskeleton. This review focuses on a newly characterized hematopoietic cell-specific actin regulatory protein called hematopoietic protein-1 [Hem-1, also known as Nck-associated protein 1-like (Nckap1l or Nap1l)]. Hem-1 is a component of the "WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein]" complex, which signals downstream of activated Rac to stimulate F-actin polymerization in response to immuno-receptor signaling. Genetic studies in cell lines and in mice suggest that Hem-1 regulates F-actin polymerization in hematopoietic cells, and may be essential for most active processes dependent on reorganization of the actin cytoskeleton in immune cells.
Collapse
Affiliation(s)
- Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Maia M. Chan
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190, USA
| |
Collapse
|
100
|
Escobar B, de Cárcer G, Fernández-Miranda G, Cascón A, Bravo-Cordero JJ, Montoya MC, Robledo M, Cañamero M, Malumbres M. Brick1 is an essential regulator of actin cytoskeleton required for embryonic development and cell transformation. Cancer Res 2010; 70:9349-59. [PMID: 20861187 DOI: 10.1158/0008-5472.can-09-4491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brick1 (Brk1) is the less-studied component of the Wave/Scar pathway involved in the branched nucleation of actin fibers. The clinical relevance of Brk1 is emphasized by correlative data showing that Von Hippel-Lindau (VHL) patients that also lose the BRK1 gene are protected against the development of tumors. This contrasts with recent evidence suggesting that the Wave complex may function as an invasion suppressor in epithelial cancers. Here, we show that the downregulation of Brk1 results in abnormal actin stress fiber formation and vinculin distribution and loss of Arp2/3 and Wave proteins at the cellular protrusions. Brk1 is required for cell proliferation and cell transformation by oncogenes. In addition, Brk1 downregulation results in defective directional migration and invasive growth in renal cell carcinoma cells as well as in other tumor cell types. Finally, genetic ablation of Brk1 results in dramatic defects in embryo compaction and development, suggesting an essential role for this protein in actin dynamics. Thus, genetic loss or inhibition of BRK1 is likely to be protective against tumor development due to proliferation and motility defects in affected cells.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/physiology
- Cell Proliferation
- Cell Transformation, Neoplastic
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeletal Proteins/physiology
- Cytoskeleton/metabolism
- Down-Regulation
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Development/genetics
- Embryonic Development/physiology
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Mice, SCID
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Beatriz Escobar
- Cell Division and Cancer Group, Confocal Microscopy and Cytometry Unit, Spanish Nacional Cancer Research Center (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|