51
|
Delaunay-Moisan A, Appenzeller-Herzog C. The antioxidant machinery of the endoplasmic reticulum: Protection and signaling. Free Radic Biol Med 2015; 83:341-51. [PMID: 25744411 DOI: 10.1016/j.freeradbiomed.2015.02.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/16/2022]
Abstract
Cellular metabolism is inherently linked to the production of oxidizing by-products, including reactive oxygen species (ROS) hydrogen peroxide (H2O2). When present in excess, H2O2 can damage cellular biomolecules, but when produced in coordinated fashion, it typically serves as a mobile signaling messenger. It is therefore not surprising that cell health critically relies on both low-molecular-weight and enzymatic antioxidant components, which protect from ROS-mediated damage and shape the propagation and duration of ROS signals. This review focuses on H2O2-antioxidant cross talk in the endoplasmic reticulum (ER), which is intimately linked to the process of oxidative protein folding. ER-resident or ER-regulated sources of H2O2 and other ROS, which are subgrouped into constitutive and stimulated sources, are discussed and set into context with the diverse antioxidant mechanisms in the organelle. These include two types of peroxide-reducing enzymes, a high concentration of glutathione derived from the cytosol, and feedback-regulated thiol-disulfide switches, which negatively control the major ER oxidase ER oxidoreductin-1. Finally, new evidence highlighting emerging principles of H2O2-based cues at the ER will likely set a basis for establishing ER redox processes as a major line of future signaling research. A fundamental problem that remains to be solved is the specific, quantitative, time resolved, and targeted detection of H2O2 in the ER and in specialized ER subdomains.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Laboratoire Stress Oxydants et Cancer, CEA-Saclay, Service de Biologie Intégrative et de Génétique Moléculaire, Institut de Biologie et de Technologie de Saclay, Commissariat à l׳Energie Atomique et aux Energies Alternatives, F-91191 Gif Sur Yvette, France/Institute for Integrative Biology of the Cell (I2BC), Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France.
| | | |
Collapse
|
52
|
Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 2015; 3:35. [PMID: 26075204 PMCID: PMC4444963 DOI: 10.3389/fcell.2015.00035] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 12/14/2022] Open
Abstract
Reduction-oxidation or “redox” reactions are an integral part of a broad range of cellular processes such as gene expression, energy metabolism, protein import and folding, and autophagy. As many of these processes are intimately linked with cell fate decisions, transient or chronic changes in cellular redox equilibrium are likely to contribute to the initiation and progression of a plethora of human diseases. Since a long time, it is known that mitochondria are major players in redox regulation and signaling. More recently, it has become clear that also peroxisomes have the capacity to impact redox-linked physiological processes. To serve this function, peroxisomes cooperate with other organelles, including mitochondria. This review provides a comprehensive picture of what is currently known about the redox interplay between mitochondria and peroxisomes in mammals. We first outline the pro- and antioxidant systems of both organelles and how they may function as redox signaling nodes. Next, we critically review and discuss emerging evidence that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. Key issues include possible physiological roles, messengers, and mechanisms. We also provide examples of how data mining of publicly-available datasets from “omics” technologies can be a powerful means to gain additional insights into potential redox signaling pathways between peroxisomes and mitochondria. Finally, we highlight the need for more studies that seek to clarify the mechanisms of how mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress. The outcome of such studies may open up exciting new avenues for the community of researchers working on cellular responses to organelle-derived oxidative stress, a research field in which the role of peroxisomes is currently highly underestimated and an issue of discussion.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven Leuven, Belgium
| |
Collapse
|
53
|
Xu Y, Wu H, Huang C, Hao C, Wu B, Miao C, Chen S, Jia N. Sensitive detection of tumor cells by a new cytosensor with 3D-MWCNTs array based on vicinal-dithiol-containing proteins (VDPs). Biosens Bioelectron 2015; 66:321-6. [DOI: 10.1016/j.bios.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
|
54
|
Mohanasundaram KA, Haworth NL, Grover MP, Crowley TM, Goscinski A, Wouters MA. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins. Front Pharmacol 2015; 6:1. [PMID: 25805991 PMCID: PMC4354306 DOI: 10.3389/fphar.2015.00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022] Open
Abstract
Cysteine is susceptible to a variety of modifications by reactive oxygen and nitrogen oxide species, including glutathionylation; and when two cysteines are involved, disulfide formation. Glutathione-cysteine adducts may be removed from proteins by glutaredoxin, whereas disulfides may be reduced by thioredoxin. Glutaredoxin is homologous to the disulfide-reducing thioredoxin and shares similar binding modes of the protein substrate. The evolution of these systems is not well characterized. When a single Cys is present in a protein, conjugation of the redox buffer glutathione may induce conformational changes, resulting in a simple redox switch that effects a signaling cascade. If a second cysteine is introduced into the sequence, the potential for disulfide formation exists. In favorable protein contexts, a bistable redox switch may be formed. Because of glutaredoxin's similarities to thioredoxin, the mutated protein may be immediately exapted into the thioredoxin-dependent redox cycle upon addition of the second cysteine. Here we searched for examples of protein substrates where the number of redox-active cysteine residues has changed throughout evolution. We focused on cross-strand disulfides (CSDs), the most common type of forbidden disulfide. We searched for proteins where the CSD is present, absent and also found as a single cysteine in protein orthologs. Three different proteins were selected for detailed study-CD4, ERO1, and AKT. We created phylogenetic trees, examining when the CSD residues were mutated during protein evolution. We posit that the primordial cysteine is likely to be the cysteine of the CSD which undergoes nucleophilic attack by thioredoxin. Thus, a redox-active disulfide may be introduced into a protein structure by stepwise mutation of two residues in the native sequence to Cys. By extension, evolutionary acquisition of structural disulfides in proteins can potentially occur via transition through a redox-active disulfide state.
Collapse
Affiliation(s)
| | - Naomi L. Haworth
- School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Mani P. Grover
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| | - Tamsyn M. Crowley
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
- Australian Animal Health Laboratory, Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research OrganisationGeelong, VIC, Australia
| | - Andrzej Goscinski
- School of Information Technology, Faculty of Science, Engineering and Built Environment, Deakin UniversityGeelong, VIC, Australia
| | - Merridee A. Wouters
- School of Medicine, Faculty of Health, Deakin UniversityGeelong, VIC, Australia
| |
Collapse
|
55
|
Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med 2015; 78:1-10. [PMID: 25451644 DOI: 10.1016/j.freeradbiomed.2014.10.511] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.
Collapse
Affiliation(s)
- Lea Bleier
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany; Functional Proteomics, SFB815 Core Unit, Medical School, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Mirco Steger
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, D-60590 Frankfurt am Main, Germany; Radboud University Medical Center, Nijmegen Center for Mitochondrial Disorders, 6500 GA Nijmegen, The Netherlands
| | - Stefan Dröse
- Molecular Bioenergetics Group, Goethe-University, D-60590 Frankfurt am Main, Germany; Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
56
|
Haworth NL, Wouters MA. Cross-strand disulfides in the non-hydrogen bonding site of antiparallel β-sheet (aCSDns): poised for biological switching. RSC Adv 2015. [DOI: 10.1039/c5ra10672a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
aCSDns are forbidden disulfides with protein redox-activity. Within the aCSDn structural motif, a cognate substrate of Trx-like enzymes, the disulfide bonds are strained and metastable, facilitating their role as redox-regulated protein switches.
Collapse
Affiliation(s)
- Naomi L. Haworth
- Life and Environmental Sciences
- Deakin University
- Geelong 3217
- Australia
- Victor Chang Cardiac Research Institute
| | - Merridee A. Wouters
- Olivia Newton-John Cancer Research Institute
- Heidelberg 3084
- Australia
- School of Cancer Medicine
- La Trobe University
| |
Collapse
|
57
|
Zhang W, Zheng W, Mao M, Yang Y. Highly efficient folding of multi-disulfide proteins in superoxidizingEscherichia colicytoplasm. Biotechnol Bioeng 2014; 111:2520-7. [DOI: 10.1002/bit.25309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Wenyao Zhang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Wenyun Zheng
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Miaowei Mao
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory; State Key Laboratory of Bioreactor Engineering; Shanghai Collaborative Innovation Center for Biomanufacturing Technology; School of Pharmacy; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
58
|
Yin Q, Huang C, Zhang C, Zhu W, Xu Y, Qian X, Yang Y. In situ visualization and detection of protein sulfenylation responses in living cells through a dimedone-based fluorescent probe. Org Biomol Chem 2014; 11:7566-73. [PMID: 24097070 DOI: 10.1039/c3ob41434e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sulfenylation is one of the reversible post-translational modifications, playing significant roles in cellular redox homeostasis and signaling systems. Herein, small fluorescent probe (CPD and CPDDM) based live-cell labelling technology for the visualization of protein sulfenylation responses in living cells has been developed. This approach enables the detection of protein sulfenylation without the need for cell lysis, fixation or purification, and permits the noninvasive study of protein sulfenylation in live cells through the direct fluorescent readout. This technology also can realize dynamic tracking of protein sulfenylation in situ with minimal perturbation to sulfenylated proteins and less interference with cellular function. Information on the global distribution and dynamic changes of endogenous protein sulfenylation has been obtained.
Collapse
Affiliation(s)
- Qin Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | | | | | | | | | | | | |
Collapse
|
59
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
60
|
Rudyk O, Eaton P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2014; 2:803-13. [PMID: 25009782 PMCID: PMC4085346 DOI: 10.1016/j.redox.2014.06.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/11/2023] Open
Abstract
Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1.
Collapse
Affiliation(s)
- Olena Rudyk
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| | - Philip Eaton
- King's College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
61
|
Moreno ML, Escobar J, Izquierdo-Álvarez A, Gil A, Pérez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martínez-Ruiz A, Sastre J. Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 2014; 70:265-77. [PMID: 24456905 DOI: 10.1016/j.freeradbiomed.2014.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022]
Abstract
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.
Collapse
Affiliation(s)
- Mari-Luz Moreno
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain; Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Alicia Izquierdo-Álvarez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Anabel Gil
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain
| | - Inés Zapico
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Máximo Vento
- Division of Neonatology, University Hospital Materno-Infantil La Fe, 46026 Valencia, Spain
| | - Luis Sabater
- Department of Surgery, University Clinic Hospital, University of Valencia, 46010 Valencia, Spain
| | - Anabel Marina
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
62
|
Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 2014; 98:56-62. [DOI: 10.1016/j.biochi.2013.07.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/25/2013] [Indexed: 12/25/2022]
|
63
|
Metabolic changes in Klebsiella oxytoca in response to low oxidoreduction potential, as revealed by comparative proteomic profiling integrated with flux balance analysis. Appl Environ Microbiol 2014; 80:2833-41. [PMID: 24584239 DOI: 10.1128/aem.03327-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidoreduction potential (ORP) is an important physiological parameter for biochemical production in anaerobic or microaerobic processes. However, the effect of ORP on cellular physiology remains largely unknown, which hampers the design of engineering strategies targeting proteins associated with ORP response. Here we characterized the effect of altering ORP in a 1,3-propanediol producer, Klebsiella oxytoca, by comparative proteomic profiling combined with flux balance analysis. Decreasing the extracellular ORP from -150 to -240 mV retarded cell growth and enhanced 1,3-propanediol production. Comparative proteomic analysis identified 61 differentially expressed proteins, mainly involved in carbohydrate catabolism, cellular constituent biosynthesis, and reductive stress response. A hypothetical oxidoreductase (HOR) that catalyzes 1,3-propanediol production was markedly upregulated, while proteins involved in biomass precursor synthesis were downregulated. As revealed by subsequent flux balance analysis, low ORP induced a metabolic shift from glycerol oxidation to reduction and rebalancing of redox and energy metabolism. From the integrated protein expression profiles and flux distributions, we can construct a rational analytic framework that elucidates how (facultative) anaerobes respond to extracellular ORP changes.
Collapse
|
64
|
Bošnjak I, Bojović V, Šegvić-Bubić T, Bielen A. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank. Protein Eng Des Sel 2014; 27:65-72. [PMID: 24407015 DOI: 10.1093/protein/gzt063] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (<200 amino acids) this correlation is negative. Medium-sized proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.
Collapse
Affiliation(s)
- I Bošnjak
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
65
|
The mitochondrial translocator protein, TSPO, inhibits HIV-1 envelope glycoprotein biosynthesis via the endoplasmic reticulum-associated protein degradation pathway. J Virol 2014; 88:3474-84. [PMID: 24403586 DOI: 10.1128/jvi.03286-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 Env glycoprotein is folded in the endoplasmic reticulum (ER), which is necessary for viral entry and replication. Currently, it is still unclear how this process is regulated. The glycoprotein folding in the ER is controlled by the ER-associated protein degradation (ERAD) pathway, which specifically targets misfolded proteins for degradation. Previously, we reported that HIV-1 replication is restricted in the human CD4(+) T cell line CEM.NKR (NKR). To understand this mechanism, we first analyzed cellular protein expression in NKR cells and discovered that levels of the mitochondrial translocator protein TSPO were upregulated by ∼64-fold. Notably, when NKR cells were treated with TSPO antagonist PK-11195, Ro5-4864, or diazepam, HIV restriction was completely disrupted, and TSPO knockdown by short hairpin RNAs (shRNAs) achieved a similar effect. We next analyzed viral protein expression, and, interestingly, we discovered that Env expression was specifically inhibited. Both TSPO knockdown and treatment with TSPO antagonist could restore Env expression in NKR cells. We further discovered that Env proteins were rapidly degraded and that kifunensine, an ERAD pathway inhibitor, could restore Env expression and viral replication, indicating that Env proteins were misfolded and degraded through the ERAD pathway in NKR cells. We also knocked out the TSPO gene in 293T cells using CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeat [CRISPR]/CRISPR-associated-9) technology and found that TSPO could similarly inhibit Env expression in these cells. Taken together, these results demonstrate that TSPO inhibits Env protein expression through the ERAD pathway and suggest that mitochondria play an important role in regulating the Env folding process. IMPORTANCE The HIV-1 Env glycoprotein is absolutely required for viral infection, and an understanding of its expression pathway in infected cells will identify new targets for antiretroviral therapies. Env proteins are folded in the ER and secreted through the classical secretory pathway. The Env folding process involves extensive cross-linking of 10 Cys residues by disulfide bond formation and heavy N-glycosylation on ∼30 Asn residues. Currently, it is still unclear how this process is regulated. Here, we studied this mechanism in the HIV nonpermissive human CD4(+) T cell line CEM.NKR. We found that Env proteins were rapidly degraded through a cellular pathway that specifically targets misfolded proteins, resulting in inhibition of Env expression. Importantly, we have identified a mitochondrial translocator protein, TSPO, which could trigger this degradation by interfering with the Env folding process. Further characterization of TSPO antiviral activity will reveal a novel antiretroviral mechanism that targets the Env protein.
Collapse
|
66
|
Chouhan RS, Qureshi A, Niazi JH. Quantum dot conjugated S. cerevisiae as smart nanotoxicity indicators for screening the toxicity of nanomaterials. J Mater Chem B 2014; 2:3618-3625. [DOI: 10.1039/c4tb00495g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Quantum dot conjugatedS. cerevisiaeas smart nanotoxicity indicators for screening the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Raghuraj S. Chouhan
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| | - Anjum Qureshi
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| | - Javed H. Niazi
- Sabanci University Nanotechnology Research and Application Center
- 34956 Istanbul, Turkey
| |
Collapse
|
67
|
Handy DE, Loscalzo J, Leopold JA. Systems analysis of oxidant stress in the vasculature. IUBMB Life 2013; 65:911-20. [PMID: 24265198 DOI: 10.1002/iub.1221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Systems biology and network analysis are emerging as valuable tools for the discovery of novel relationships, the identification of key regulatory factors, and the prediction of phenotypic changes in complex biological systems. Redox homeostasis in the vasculature is maintained by an intricate balance between oxidant-generating and antioxidant systems. When these systems are perturbed, conditions are permissive for oxidant stress, which, in turn, promotes vascular dysfunction and structural remodeling. Owing to the number of elements involved in redox regulation and the different vascular pathophenotypes associated with oxidant stress, vascular oxidant stress represents an ideal system to study by network analysis. Networks offer a method to organize experimentally derived factors, including proteins, metabolites, and DNA, that are represented as nodes into an unbiased comprehensive platform for study. Through analysis of the network, it is possible to determine essential or regulatory nodes, identify previously unknown connections between nodes, and locate modules, which are groups of nodes located within the same neighborhood that function together and have implications for phenotype. Investigators have only recently begun to construct oxidant stress-related networks to examine vascular structure and function; however, these early studies have provided mechanistic insight to further our understanding of this complicated biological system.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
68
|
Destroy and exploit: catalyzed removal of hydroperoxides from the endoplasmic reticulum. Int J Cell Biol 2013; 2013:180906. [PMID: 24282412 PMCID: PMC3824332 DOI: 10.1155/2013/180906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Peroxidases are enzymes that reduce hydroperoxide substrates. In many cases, hydroperoxide reduction is coupled to the formation of a disulfide bond, which is transferred onto specific acceptor molecules, the so-called reducing substrates. As such, peroxidases control the spatiotemporal distribution of diffusible second messengers such as hydrogen peroxide (H2O2) and generate new disulfides. Members of two families of peroxidases, peroxiredoxins (Prxs) and glutathione peroxidases (GPxs), reside in different subcellular compartments or are secreted from cells. This review discusses the properties and physiological roles of PrxIV, GPx7, and GPx8 in the endoplasmic reticulum (ER) of higher eukaryotic cells where H2O2 and—possibly—lipid hydroperoxides are regularly produced. Different peroxide sources and reducing substrates for ER peroxidases are critically evaluated. Peroxidase-catalyzed detoxification of hydroperoxides coupled to the productive use of disulfides, for instance, in the ER-associated process of oxidative protein folding, appears to emerge as a common theme. Nonetheless, in vitro and in vivo studies have demonstrated that individual peroxidases serve specific, nonoverlapping roles in ER physiology.
Collapse
|
69
|
Evangelista AM, Kohr MJ, Murphy E. S-nitrosylation: specificity, occupancy, and interaction with other post-translational modifications. Antioxid Redox Signal 2013; 19:1209-19. [PMID: 23157187 PMCID: PMC3785808 DOI: 10.1089/ars.2012.5056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE S-nitrosylation (SNO) has been identified throughout the body as an important signaling modification both in physiology and a variety of diseases. SNO is a multifaceted post-translational modification, in that it can either act as a signaling molecule itself or as an intermediate to other modifications. RECENT ADVANCES AND CRITICAL ISSUES Through extensive SNO research, we have made progress toward understanding the importance of single cysteine-SNO sites; however, we are just beginning to explore the importance of specific SNO within the context of other SNO sites and post-translational modifications. Additionally, compartmentalization and SNO occupancy may play an important role in the consequences of the SNO modification. FUTURE DIRECTIONS In this review, we will consider the context of SNO signaling and discuss how the transient nature of SNO, its role as an oxidative intermediate, and the pattern of SNO, should be considered when determining the impact of SNO signaling.
Collapse
Affiliation(s)
- Alicia M Evangelista
- 1 Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
70
|
Snodgrass RG, Huang S, Choi IW, Rutledge JC, Hwang DH. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. THE JOURNAL OF IMMUNOLOGY 2013; 191:4337-47. [PMID: 24043885 DOI: 10.4049/jimmunol.1300298] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many studies have shown that TLR4- and TLR2-deficient mice are protected from high-fat diet-induced inflammation and insulin resistance, suggesting that saturated fatty acids derived from the high-fat diet activate TLR-mediated proinflammatory signaling pathways and induce insulin resistance. However, evidence that palmitic acid, the major dietary saturated fatty acid, can directly activate TLR has not been demonstrated. In this article, we present multiple lines of evidence showing that palmitic acid directly activates TLR2, a major TLR expressed on human monocytes, by inducing heterodimerization with TLR1 in an NADPH oxidase-dependent manner. Dimerization of TLR2 with TLR1 was inhibited by the n-3 fatty acid docosahexaenoic acid. Activation of TLR2 by palmitic acid leads to expression of pro-IL-1β that is cleaved by caspase-1, which is constitutively present in monocytes, to release mature IL-1β. Our results reveal mechanistic insight about how palmitic acid activates TLR2, upregulates NALP3 expression, and induces inflammasome-mediated IL-1β production in human monocytes, which can trigger enhanced inflammation in peripheral tissues, and suggest that these processes are dynamically modulated by the types of dietary fat we consume.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- U.S. Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616
| | | | | | | | | |
Collapse
|
71
|
Zito E. PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation. Antioxid Redox Signal 2013; 18:1666-74. [PMID: 23025503 DOI: 10.1089/ars.2012.4966] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Peroxiredoxin 4 (PRDX4) is an endoplasmic reticulum (ER)-resident peroxiredoxin that has the characteristic of coupling hydrogen peroxide (H(2)O(2)) catabolism with oxidative protein folding. This enzymatic arrangement involves the ingenious use of H(2)O(2) as a substrate to streamline protein metabolism. RECENT ADVANCES Mice with compound mutations in Prdx4 and Ero1 have revealed the physiological implication that PRDX4 is a fine-tuned enzymatic mediator of oxidative folding. Remarkably, by simultaneously triggering slow disulfide bond formation and the buildup of H(2)O(2), the lack of PRDX4 and endoplasmic oxidoreductin 1 (ERO1) exposes the thiols of new client proteins to competing H(2)O(2)-mediated oxidation, which leads to an increase in sulfenylated proteins. Such oxygenated thiol derivatives exploit ascorbate as their reductant, thus accelerating its clearance. This relay of events culminates in an altered extracellular matrix (ECM) and a senescent phenotype. CRITICAL ISSUES AND FUTURE DIRECTIONS By combining H(2)O(2) metabolism with oxidative folding, PRDX4 protects nascent proteins from an alternative oxidative fate, and cells from the consequences of having misfolded proteins. This highlights the importance of kinetic-regulated disulfide formation at physiological level, and the presence of an exquisite backup system to protect ER redox homeostasis. By altering ECM architecture, ascorbate depletion in the cells triggers an integrated signaling cascade. This sequence of events is part of a multifaceted response linking the ER and the nucleus, which helps cells to overcome ER redox impairment. Furthermore, the relationship between the protein sulfenylation and ascorbate depletion suggests that it would be interesting to explore the metabolism of ascorbate in pathological conditions accompanied by oxidative stress and a defective ECM.
Collapse
Affiliation(s)
- Ester Zito
- NIHR Cambridge Biomedical Research Centre, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom.
| |
Collapse
|
72
|
Ghosh S, Willard B, Comhair SAA, Dibello P, Xu W, Shiva S, Aulak KS, Kinter M, Erzurum SC. Disulfide bond as a switch for copper-zinc superoxide dismutase activity in asthma. Antioxid Redox Signal 2013; 18:412-23. [PMID: 22867017 PMCID: PMC3526896 DOI: 10.1089/ars.2012.4566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Loss of superoxide dismutase (SOD) activity is a defining biochemical feature of asthma. However, mechanisms for the reduced activity are unknown. We hypothesized that loss of asthmatic SOD activity is due to greater susceptibility to oxidative inactivation. RESULT Activity assays of blood samples from asthmatics and healthy controls revealed impaired dismutase activity of copper-zinc SOD (CuZnSOD) in asthma. CuZnSOD purified from erythrocytes or airway epithelial cells from asthmatic was highly susceptible to oxidative inactivation. Proteomic analyses identified that inactivation was related to oxidation of cysteine 146 (C146), which is usually disulfide bonded to C57. The susceptibility of cysteines pointed to an alteration in protein structure, which is likely related to the loss of disulfide bond. We speculated that a shift to greater intracellular reducing potential might account for the change. Strikingly, measures of reduced and oxidized glutathione confirmed greater reducing intracellular state in asthma, compared with controls. Similarly, greater free thiol in CuZnSOD was confirmed by ~2-fold greater N-ethylmaleimide binding to C146 in asthma as compared with controls. INNOVATION Greater reducing potential under a chronic inflammatory state of asthma, thus, leads to susceptibility of CuZnSOD to oxidative inactivation due to cleavage of C57-C146 disulfide bond and exposure of usually unavailable cysteines. CONCLUSION Vulnerability of CuZnSOD influenced by redox likely amplifies injury and inflammation during acute asthma attacks when reactive oxygen species are explosively generated. Overall, this study identifies a new paradigm for understanding the chemical basis of inflammation, in which redox regulation of thiol availability dictates protein susceptibility to environmental and endogenously generated reactive species.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hempel N, Bartling TR, Mian B, Melendez JA. Acquisition of the metastatic phenotype is accompanied by H2O2-dependent activation of the p130Cas signaling complex. Mol Cancer Res 2013; 11:303-12. [PMID: 23345605 DOI: 10.1158/1541-7786.mcr-12-0478] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species (ROS) have emerged as cellular signaling molecules and are implicated in metastatic disease by their ability to drive invasion and migration. Here, we define the signaling adaptor protein p130Cas (Crk-associated substrate) as a key redox-responsive molecular trigger that is engaged in highly invasive metastatic bladder tumor cell lines. Endogenous shifts in steady-state hydrogen peroxide (H2O2) that accompany the metastatic phenotype increase p130Cas phosphorylation, membrane recruitment and association with the scaffolding protein Crk, and subsequent Rac1 activation and actin reorganization. Both enzymatic and nonenzymatic scavenging of H2O2 abrogates p130Cas-dependent signaling and the migratory and invasive activity of the metastatic bladder tumor cells. Disruption of p130Cas attenuates both invasion and migration of the metastatic variant (253J-BV). 253J-BV cells displayed an increase in global thiol oxidation and a concomitant decrease in total phosphatase activity, common target proteins of active-site cysteine oxidation. The dependence of phosphatases on regulation of p130Cas was highlighted when depletion of PTPN12 enhanced p130cas phosphorylation and the migratory behavior of a noninvasive parental bladder tumor control (253J). These data show that the metastatic phenotype is accompanied by increases in steady-state H2O2 production that drive promigratory signaling and suggest that antioxidant-based therapeutics may prove useful in limiting bladder tumor invasiveness.
Collapse
Affiliation(s)
- Nadine Hempel
- College of Nanoscale Sciences and Engineering, University at Albany, SUNY, Albany, NY 12203, USA
| | | | | | | |
Collapse
|
74
|
Maron BA, Tang SS, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 2013; 18:270-87. [PMID: 22770551 PMCID: PMC3518544 DOI: 10.1089/ars.2012.4744] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/26/2012] [Accepted: 07/08/2012] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. RECENT ADVANCES Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. CRITICAL ISSUES Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. FUTURE DIRECTIONS Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
75
|
Yeste M, Flores E, Estrada E, Bonet S, Rigau T, Rodríguez-Gil JE. Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reprod Fertil Dev 2013; 25:1036-50. [DOI: 10.1071/rd12230] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/25/2012] [Indexed: 01/18/2023] Open
Abstract
One important change the head of boar spermatozoa during freeze–thawing is the destabilisation of its nucleoprotein structure due to a disruption of disulfide bonds. With the aim of better understanding these changes in frozen–thawed spermatozoa, two agents, namely reduced glutathione (GSH) and procaine hydrochloride (ProHCl), were added at different concentrations to the freezing media at different concentrations and combinations over the range 1–2 mM. Then, 30 and 240 min after thawing, cysteine-free residue levels of boar sperm nucleoproteins, DNA fragmentation and other sperm functional parameters were evaluated. Both GSH and ProHCl, at final concentrations of 2 mM, induced a significant (P < 0.05) increase in the number of non-disrupted sperm head disulfide bonds 30 and 240 min after thawing compared with the frozen–thawed control. This effect was accompanied by a significant (P < 0.05) decrease in DNA fragmentation 240 min after thawing. Concomitantly, 1 and 2 mM GSH, but not ProHCl at any of the concentrations tested, partially counteracted the detrimental effects caused by freeze–thawing on sperm peroxide levels, motility patterns and plasma membrane integrity. In conclusion, the results show that both GSH and ProHCl have a stabilising effect on the nucleoprotein structure of frozen–thawed spermatozoa, although only GSH exerts an appreciable effect on sperm viability.
Collapse
|
76
|
Haworth NL, Wouters MA. Between-strand disulfides: forbidden disulfides linking adjacent β-strands. RSC Adv 2013. [DOI: 10.1039/c3ra42486c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
77
|
Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP. Aging, age-related diseases and peroxisomes. Subcell Biochem 2013; 69:45-65. [PMID: 23821142 DOI: 10.1007/978-94-007-6889-5_3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 601, B-3000, Leuven, Belgium,
| | | | | | | | | |
Collapse
|
78
|
Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1363-73. [DOI: 10.1016/j.bbadis.2011.12.001] [Citation(s) in RCA: 412] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/25/2011] [Accepted: 12/02/2011] [Indexed: 12/27/2022]
|
79
|
Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16:1323-67. [PMID: 22146081 PMCID: PMC3324814 DOI: 10.1089/ars.2011.4123] [Citation(s) in RCA: 398] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 02/06/2023]
Abstract
Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function.
Collapse
Affiliation(s)
- Diane E Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
80
|
Abstract
SIGNIFICANCE The biogenesis of most secreted and outer membrane proteins involves the formation of structure stabilizing disulfide bonds. Hence knowledge of the mechanisms for their formation is critical for understanding a myriad of cellular processes and associated disease states. RECENT ADVANCES Until recently it was thought that members of the Ero1 sulfhydryl oxidase family were responsible for catalyzing the majority of disulfide bond formation in the endoplasmic reticulum. However, multiple eukaryotic organisms are now known to show no or minor phenotypes when these enzymatic pathways are disrupted, suggesting that other pathways can catalyze disulfide bond formation to an extent sufficient to maintain normal physiology. CRITICAL ISSUES AND FUTURE DIRECTIONS This lack of a strong phenotype raises multiple questions regarding what pathways are acting and whether they themselves constitute the major route for disulfide bond formation. This review critically examines the potential low molecular oxidants that maybe involved in the catalyzed or noncatalyzed formation of disulfide bonds, with an emphasis on the mammalian endoplasmic reticulum, via an examination of their thermodynamics, kinetics, and availability and gives pointers to help guide future experimental work.
Collapse
|
81
|
Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology 2011; 76:1450-64. [DOI: 10.1016/j.theriogenology.2011.05.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
|
82
|
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:1957-97. [PMID: 21087145 PMCID: PMC3159114 DOI: 10.1089/ars.2010.3586] [Citation(s) in RCA: 830] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species, such as superoxide and hydrogen peroxide, are generated in all cells by mitochondrial and enzymatic sources. Left unchecked, these reactive species can cause oxidative damage to DNA, proteins, and membrane lipids. Glutathione peroxidase-1 (GPx-1) is an intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. Certain reactive oxygen species, such as hydrogen peroxide, are also essential for growth factor-mediated signal transduction, mitochondrial function, and maintenance of normal thiol redox-balance. Thus, by limiting hydrogen peroxide accumulation, GPx-1 also modulates these processes. This review explores the molecular mechanisms involved in regulating the expression and function of GPx-1, with an emphasis on the role of GPx-1 in modulating cellular oxidant stress and redox-mediated responses. As a selenocysteine-containing enzyme, GPx-1 expression is subject to unique forms of regulation involving the trace mineral selenium and selenocysteine incorporation during translation. In addition, GPx-1 has been implicated in the development and prevention of many common and complex diseases, including cancer and cardiovascular disease. This review discusses the role of GPx-1 in these diseases and speculates on potential future therapies to harness the beneficial effects of this ubiquitous antioxidant enzyme.
Collapse
Affiliation(s)
- Edith Lubos
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
83
|
Bulleid NJ, Ellgaard L. Multiple ways to make disulfides. Trends Biochem Sci 2011; 36:485-92. [PMID: 21778060 DOI: 10.1016/j.tibs.2011.05.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 12/16/2022]
Abstract
Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides. However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
84
|
Huang C, Yin Q, Zhu W, Yang Y, Wang X, Qian X, Xu Y. Highly Selective Fluorescent Probe for Vicinal-Dithiol-Containing Proteins and In Situ Imaging in Living Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
85
|
Huang C, Yin Q, Zhu W, Yang Y, Wang X, Qian X, Xu Y. Highly Selective Fluorescent Probe for Vicinal-Dithiol-Containing Proteins and In Situ Imaging in Living Cells. Angew Chem Int Ed Engl 2011; 50:7551-6. [DOI: 10.1002/anie.201101317] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/21/2011] [Indexed: 01/08/2023]
|
86
|
Lindahl M, Mata-Cabana A, Kieselbach T. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 2011; 14:2581-642. [PMID: 21275844 DOI: 10.1089/ars.2010.3551] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | | | |
Collapse
|
87
|
Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, Gladyshev VN. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 2011; 14:2327-36. [PMID: 21194350 PMCID: PMC3096499 DOI: 10.1089/ars.2010.3526] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selenium (Se) is an essential trace element in mammals that has been shown to exert its function through selenoproteins. Whereas optimal levels of Se in the diet have important health benefits, a recent clinical trial has suggested that supplemental intake of Se above the adequate level potentially may raise the risk of type 2 diabetes mellitus. However, the molecular mechanisms for the effect of dietary Se on the development of this disease are not understood. In the present study, we examined the contribution of selenoproteins to increased risk of developing diabetes using animal models. C57BL/6J mice (n=6-7 per group) were fed either Se-deficient Torula yeast-based diet or diets supplemented with 0.1 and 0.4 parts per million Se. Our data show that mice maintained on an Se-supplemented diet develop hyperinsulinemia and have decreased insulin sensitivity. These effects are accompanied by elevated expression of a selective group of selenoproteins. We also observed that reduced synthesis of these selenoproteins caused by overexpression of an i(6)A(-) mutant selenocysteine tRNA promotes glucose intolerance and leads to a diabetes-like phenotype. These findings indicate that both high expression of selenoproteins and selenoprotein deficiency may dysregulate glucose homeostasis and suggest a role for selenoproteins in development of diabetes.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
88
|
Appenzeller-Herzog C. Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum. J Cell Sci 2011; 124:847-55. [PMID: 21378306 DOI: 10.1242/jcs.080895] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The redox-active tripeptide glutathione is an endogenous reducing agent that is found in abundance and throughout the cell. In the endoplasmic reticulum (ER), the ratio of glutathione to glutathione disulfide is lower compared with non-secretory organelles. This relatively oxidizing thiol-disulfide milieu is essential for the oxidative folding of nascent proteins in the ER and, at least in part, maintained by the activity of ER-resident endoplasmic oxidoreductin 1 (Ero1) enzymes that oxidize cysteine side chains at the expense of molecular oxygen. Glutathione disulfide and hydrogen peroxide formed as a consequence of Ero1 activity are widely considered as being inoperative and potentially dangerous by-products of oxidative protein folding in the ER. In contrast to this common view, this Commentary highlights the importance of glutathione- and non glutathione-based homeostatic redox control mechanisms in the ER. Stability in the thiol-disulfide system that prominently includes the protein disulfide isomerases is ensured by the contribution of tightly regulated Ero1 activity, ER-resident peroxidases and the glutathione-glutathione-disulfide redox pair that acts as a potent housekeeper of redox balance. Accordingly, the widely held concept that Ero1-mediated over-oxidation in the ER constitutes a common cause of cellular demise is critically re-evaluated.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
89
|
Indu S, Kochat V, Thakurela S, Ramakrishnan C, Varadarajan R. Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets. Proteins 2011; 79:244-60. [PMID: 21058397 DOI: 10.1002/prot.22878] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel β-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive χ¹ value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1°C in T(m). All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (ΔΔG⁰ = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity.
Collapse
Affiliation(s)
- S Indu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
90
|
Shah SR, Esni F, Jakub A, Paredes J, Lath N, Malek M, Potoka DA, Prasadan K, Mastroberardino PG, Shiota C, Guo P, Miller KA, Hackam DJ, Burns RC, Tulachan SS, Gittes GK. Embryonic mouse blood flow and oxygen correlate with early pancreatic differentiation. Dev Biol 2011; 349:342-9. [PMID: 21050843 PMCID: PMC3018562 DOI: 10.1016/j.ydbio.2010.10.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/27/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022]
Abstract
The mammalian embryo represents a fundamental paradox in biology. Its location within the uterus, especially early during development when embryonic cardiovascular development and placental blood flow are not well-established, leads to an obligate hypoxic environment. Despite this hypoxia, the embryonic cells are able to undergo remarkable growth, morphogenesis, and differentiation. Recent evidence suggests that embryonic organ differentiation, including pancreatic β-cells, is tightly regulated by oxygen levels. Since a major determinant of oxygen tension in mammalian embryos after implantation is embryonic blood flow, here we used a novel survivable in utero intracardiac injection technique to deliver a vascular tracer to living mouse embryos. Once injected, the embryonic heart could be visualized to continue contracting normally, thereby distributing the tracer specifically only to those regions where embryonic blood was flowing. We found that the embryonic pancreas early in development shows a remarkable paucity of blood flow and that the presence of blood flow correlates with the differentiation state of the developing pancreatic epithelial cells in the region of the blood flow.
Collapse
Affiliation(s)
- Sohail R. Shah
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15261
| | - Adam Jakub
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Jose Paredes
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Nikesh Lath
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Marcus Malek
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Douglas A. Potoka
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Krishna Prasadan
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Pier G. Mastroberardino
- Pittsburgh Institute for Neurodegenerative Diseases & Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chiyo Shiota
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Ping Guo
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Kelly A. Miller
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - David J. Hackam
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - R. Cartland Burns
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - Sidhartha S. Tulachan
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| | - George K. Gittes
- Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, 45 Street and Penn Avenue, Pittsburgh, PA 15201, USA
| |
Collapse
|
91
|
Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol Cell 2010; 40:787-97. [PMID: 21145486 PMCID: PMC3026605 DOI: 10.1016/j.molcel.2010.11.010] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/11/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.
Collapse
Affiliation(s)
- Ester Zito
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Eduardo Pinho Melo
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Portugal
| | - Yun Yang
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Åsa Wahlander
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Thomas A. Neubert
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016 USA
| | - David Ron
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016 USA
- Department of Medicine, New York University School of Medicine, New York, New York 10016 USA
- Institute of Metabolic Sciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
92
|
Appenzeller-Herzog C, Riemer J, Zito E, Chin KT, Ron D, Spiess M, Ellgaard L. Disulphide production by Ero1α-PDI relay is rapid and effectively regulated. EMBO J 2010; 29:3318-29. [PMID: 20802462 PMCID: PMC2957208 DOI: 10.1038/emboj.2010.203] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022] Open
Abstract
The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady-state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1-deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed-disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI-family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1- and glutathione disulphide-mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jan Riemer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ester Zito
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - King-Tung Chin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - David Ron
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
93
|
Abstract
Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox Pioneer because he has published two articles in the field of antioxidant/redox biology that have been cited more than 1,000 times and 22 articles that have been cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to our understanding of the vascular biology of nitric oxide. His initial discovery that the antiplatelet effects of organic nitrates are potentiated by thiols through a mechanism that involved metabolism to S-nitrosothiols was followed by the demonstration that S-nitrosothiols are formed endogenously through S-transnitrosation, stabilize nitric oxide, and facilitate the transport and transfer of nitric oxide between and within cells of the vessel wall. These properties led to the development of S-nitrosothiol-containing pharmacotherapies to treat disease states characterized by nitric oxide deficiency. Dr. Loscalzo's other scientific contributions include identifying the vascular functional consequences of genetic deficiencies of antioxidant enzymes that decrease nitric oxide bioavailability, collectively termed the "oxidative enzymopathies," and demonstrating the role of mitochondria in modulating the disulfide subproteome, and in redox signaling in hypoxia. He has received numerous awards and honors for his scientific contributions, including election to the Institute of Medicine of the National Academy of Sciences.
Collapse
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
94
|
Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 2010; 35:505-13. [PMID: 20430626 PMCID: PMC2933303 DOI: 10.1016/j.tibs.2010.04.002] [Citation(s) in RCA: 720] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have historically been viewed as toxic metabolic byproducts and causal agents in a myriad of human pathologies. More recent work, however, indicates that ROS are critical intermediates of cellular signaling pathways. Although it is clear that dedicated cellular ROS producers such as NADPH oxidases participate in signaling, evidence suggests that mitochondrial production of ROS is also a tightly controlled process, and plays a role in the maintenance of cellular oxidative homeostasis and propagation of cellular signaling pathways. Production of ROS at mitochondria thus integrates cellular energy state, metabolite concentrations, and other upstream signaling events and has important implications in cellular stress signaling, maintenance of stem cell populations, cellular survival, and oncogenic transformation.
Collapse
Affiliation(s)
| | - Navdeep S. Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
95
|
Boivin B, Tonks NK. Analysis of the redox regulation of protein tyrosine phosphatase superfamily members utilizing a cysteinyl-labeling assay. Methods Enzymol 2010; 474:35-50. [PMID: 20609903 DOI: 10.1016/s0076-6879(10)74003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The catalytic activity of protein tyrosine phosphatase (PTP) superfamily members is regulated by the reversible oxidation of their invariant catalytic Cys residue in vivo. Transient and specific regulation of PTP activity by reactive oxygen species (ROS) attenuates dephosphorylation and, thereby, promotes phosphorylation, hence facilitating signal transduction. We have recently developed a modified cysteinyl-labeling assay [Boivin, B., Zhang, S., Arbiser, J. L., Zhang, Z. Y., and Tonks, N. K. (2008). Proc. Natl. Acad. Sci. USA105, 9959-9964.] that showed broad selectivity in detecting reversible oxidation of members from different PTP subclasses in platelet-derived growth factor (PDGF)-BB overexpressing cells. Herein, we applied this assay, which utilizes the unique chemistry of the invariant catalytic Cys residue to enrich and identify PTPs that are reversibly oxidized upon acute growth factor stimulation. Performing the cysteinyl-labeling assay with Rat-1 fibroblasts enabled us to capture both PTEN and SHP-2 as a consequence to acute PDGF-BB stimulation. Given the ability of this assay to detect reversible oxidation of a broad array of members of the PTP family, we anticipate that it should permit profiling of the entire ROS-regulated PTPome in a wide array of signaling paradigms.
Collapse
Affiliation(s)
- Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
96
|
Abstract
The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
Collapse
Affiliation(s)
- Wayne Chris Hawkes
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| | - Zeynep Alkan
- USDA Agricultural Research Service, Western Human Nutrition Research Center, University of California at Davis, Davis, USA
| |
Collapse
|
97
|
Chen X, Gao L, Fang W, Phillips DL. Theoretical Insight into the Photodegradation of a Disulfide Bridged Cyclic Tetrapeptide in Solution and Subsequent Fast Unfolding−Refolding Events. J Phys Chem B 2010; 114:5206-14. [DOI: 10.1021/jp1003616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Lianghui Gao
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Weihai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - David Lee Phillips
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie #19, Beijing 100875, P. R. China, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| |
Collapse
|
98
|
Wouters MA, Fan SW, Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 2010; 12:53-91. [PMID: 19634988 DOI: 10.1089/ars.2009.2510] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30-40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redox-sensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.
Collapse
Affiliation(s)
- Merridee A Wouters
- Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | | | |
Collapse
|
99
|
Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Conformational changes in redox pairs of protein structures. Protein Sci 2009; 18:1745-65. [PMID: 19598234 PMCID: PMC2776962 DOI: 10.1002/pro.175] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Disulfides are conventionally viewed as structurally stabilizing elements in proteins but emerging evidence suggests two disulfide subproteomes exist. One group mediates the well known role of structural stabilization. A second redox-active group are best known for their catalytic functions but are increasingly being recognized for their roles in regulation of protein function. Redox-active disulfides are, by their very nature, more susceptible to reduction than structural disulfides; and conversely, the Cys pairs that form them are more susceptible to oxidation. In this study, we searched for potentially redox-active Cys Pairs by scanning the Protein Data Bank for structures of proteins in alternate redox states. The PDB contains over 1134 unique redox pairs of proteins, many of which exhibit conformational differences between alternate redox states. Several classes of structural changes were observed, proteins that exhibit: disulfide oxidation following expulsion of metals such as zinc; major reorganisation of the polypeptide backbone in association with disulfide redox-activity; order/disorder transitions; and changes in quaternary structure. Based on evidence gathered supporting disulfide redox activity, we propose disulfides present in alternate redox states are likely to have physiologically relevant redox activity.
Collapse
Affiliation(s)
- Samuel W Fan
- Structural and Computational Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
100
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 426] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|