51
|
Ito-Ishida A, Kakegawa W, Kohda K, Miura E, Okabe S, Yuzaki M. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells. Eur J Neurosci 2014; 39:1268-80. [PMID: 24467251 DOI: 10.1111/ejn.12487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 12/12/2013] [Accepted: 12/18/2013] [Indexed: 12/27/2022]
Abstract
The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.
Collapse
Affiliation(s)
- Aya Ito-Ishida
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
52
|
The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor γ2 subunit. J Neurosci 2013; 33:15567-77. [PMID: 24068823 DOI: 10.1523/jneurosci.1845-13.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal activity, neurogenesis, and depressive-like behaviors; however, downstream effectors by which BDNF exerts these varying actions remain to be determined. Here we reveal that BDNF induces long-lasting enhancements in the efficacy of synaptic inhibition by stabilizing γ2 subunit-containing GABA(A) receptors (GABA(A)Rs) at the cell surface, leading to persistent reductions in neuronal excitability. This effect is dependent upon enhanced phosphorylation of tyrosines 365 and 367 (Y365/7) in the GABA(A)R γ2 subunit as revealed using mice in which these residues have been mutated to phenyalanines (Y365/7F). Heterozygotes for this mutation exhibit an antidepressant-like phenotype, as shown using behavioral-despair models of depression. In addition, heterozygous Y365/7F mice show increased levels of hippocampal neurogenesis, which has been strongly connected with antidepressant action. Both the antidepressant phenotype and the increased neurogenesis seen in these mice are insensitive to further modulation by BDNF, which produces robust antidepressant-like activity and neurogenesis in wild-type mice. Collectively, our results suggest a critical role for GABA(A)R γ2 subunit Y365/7 phosphorylation and function in regulating the effects of BDNF.
Collapse
|
53
|
TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 2013; 33:15879-93. [PMID: 24089494 DOI: 10.1523/jneurosci.0530-13.2013] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inflammation has been implicated in the progression of neurological disease, yet precisely how inflammation affects neuronal function remains unclear. Tumor necrosis factor-α (TNFα) is a proinflammatory cytokine that regulates synapse function by controlling neurotransmitter receptor trafficking and homeostatic synaptic plasticity. Here we characterize the mechanisms through which TNFα regulates inhibitory synapse function in mature rat and mouse hippocampal neurons. Acute application of TNFα induces a rapid and persistent decrease of inhibitory synaptic strength and downregulation of cell-surface levels of GABA(A)Rs containing α1, α2, β2/3, and γ2 subunits. We show that trafficking of GABA(A)Rs in response to TNFα is mediated by neuronally expressed TNF receptor 1 and requires activation of p38 MAPK, phosphatidylinositol 3-kinase, protein phosphatase 1 (PP1), and dynamin GTPase. Furthermore, TNFα enhances the association of PP1 with GABA(A)R β3 subunits and dephosphorylates a site on β3 known to regulate phospho-dependent interactions with the endocytic machinery. Conversely, we find that calcineurin and PP2A are not essential components of the signaling pathway and that clustering of the scaffolding protein gephyrin is only reduced after the initial receptor endocytosis. Together, these findings demonstrate a distinct mechanism of regulated GABA(A)R endocytosis that may contribute to the disruption of circuit homeostasis under neuroinflammatory conditions.
Collapse
|
54
|
Connelly WM, Errington AC, Di Giovanni G, Crunelli V. Metabotropic regulation of extrasynaptic GABAA receptors. Front Neural Circuits 2013; 7:171. [PMID: 24298239 PMCID: PMC3829460 DOI: 10.3389/fncir.2013.00171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/03/2013] [Indexed: 01/28/2023] Open
Abstract
A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioral consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.
Collapse
Affiliation(s)
- William M Connelly
- Neuroscience Division, Cardiff School of Biosciences, Cardiff University Cardiff, UK
| | | | | | | |
Collapse
|
55
|
Abstract
In brain, properly balanced synaptic excitation and inhibition is critically important for network stability and efficient information processing. Here, we show that retinoic acid (RA), a synaptic signaling molecule whose synthesis is activated by reduced neural activity, induces rapid internalization of synaptic GABAA receptors in mouse hippocampal neurons, leading to significant reduction of inhibitory synaptic transmission. Similar to its action at excitatory synapses, action of RA at inhibitory synapses requires protein translation and is mediated by a nontranscriptional function of the RA-receptor RARα. Different from RA action at excitatory synapses, however, RA at inhibitory synapses causes a loss instead of the gain of a synaptic protein (i.e., GABAARs). Moreover, the removal of GABAARs from the synapses and the reduction of synaptic inhibition do not require the execution of RA's action at excitatory synapses (i.e., downscaling of synaptic inhibition is intact when upscaling of synaptic excitation is blocked). Thus, the action of RA at inhibitory and excitatory synapses diverges significantly after the step of RARα-mediated protein synthesis, and the regulations of GABAAR and AMPAR trafficking are independent processes. When both excitatory and inhibitory synapses are examined together in the same neuron, the synaptic excitation/inhibition ratio is significantly enhanced by RA. Importantly, RA-mediated downscaling of synaptic inhibition is completely absent in Fmr1 knock-out neurons. Thus, RA acts as a central organizer for coordinated homeostatic plasticity in both excitatory and inhibitory synapses, and impairment of this overall process alters the excitatory/inhibitory balance of a circuit and likely represents a major feature of fragile X-syndrome.
Collapse
|
56
|
Chaumont S, André C, Perrais D, Boué-Grabot E, Taly A, Garret M. Agonist-dependent endocytosis of γ-aminobutyric acid type A (GABAA) receptors revealed by a γ2(R43Q) epilepsy mutation. J Biol Chem 2013; 288:28254-65. [PMID: 23935098 DOI: 10.1074/jbc.m113.470807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.
Collapse
Affiliation(s)
- Severine Chaumont
- From the Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, F-33000 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
57
|
Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus. J Neurosci 2013; 33:12718-27. [PMID: 23904608 PMCID: PMC4400286 DOI: 10.1523/jneurosci.0388-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GABA-mediated tonic and phasic inhibition of thalamic relay neurons of the dorsal lateral geniculate nucleus (dLGN) was studied after ablating tyrosine (Y) phosphorylation of receptor γ2-subunits. As phosphorylation of γ2 Y365 and Y367 reduces receptor internalization, to understand their importance for inhibition we created a knock-in mouse in which these residues are replaced by phenylalanines. On comparing wild-type (WT) and γ2(Y365/367F)+/- (HT) animals (homozygotes are not viable in utero), the expression levels of GABAA receptor α4-subunits were increased in the thalamus of female, but not male mice. Raised δ-subunit expression levels were also observed in female γ2(Y365/367F) +/- thalamus. Electrophysiological analyses revealed no difference in the level of inhibition in male WT and HT dLGN, while both the spontaneous inhibitory postsynaptic activity and the tonic current were significantly augmented in female HT relay cells. The sensitivity of tonic currents to the δ-subunit superagonist THIP, and the blocker Zn(2+), were higher in female HT relay cells. This is consistent with upregulation of extrasynaptic GABAA receptors containing α4- and δ-subunits to enhance tonic inhibition. In contrast, the sensitivity of GABAA receptors mediating inhibition in the female γ2(Y356/367F) +/- to neurosteroids was markedly reduced compared with WT. We conclude that disrupting tyrosine phosphorylation of the γ2-subunit activates a sex-specific increase in tonic inhibition, and this most likely reflects a genomic-based compensation mechanism for the reduced neurosteroid sensitivity of inhibition measured in female HT relay neurons.
Collapse
|
58
|
Enhanced tonic inhibition influences the hypnotic and amnestic actions of the intravenous anesthetics etomidate and propofol. J Neurosci 2013; 33:7264-73. [PMID: 23616535 DOI: 10.1523/jneurosci.5475-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intravenous anesthetics exert a component of their actions via potentiating inhibitory neurotransmission mediated by γ-aminobutyric type-A receptors (GABAARs). Phasic and tonic inhibition is mediated by distinct populations of GABAARs, with the majority of phasic inhibition by subtypes composed of α1-3βγ2 subunits, whereas tonic inhibition is dependent on subtypes assembled from α4-6βδ subunits. To explore the contribution that these distinct forms of inhibition play in mediating intravenous anesthesia, we have used mice in which tyrosine residues 365/7 within the γ2 subunit are mutated to phenyalanines (Y365/7F). Here we demonstrate that this mutation leads to increased accumulation of the α4 subunit containing GABAARs in the thalamus and dentate gyrus of female Y365/7F but not male Y365/7F mice. Y365/7F mice exhibited a gender-specific enhancement of tonic inhibition in the dentate gyrus that was more sensitive to modulation by the anesthetic etomidate, together with a deficit in long-term potentiation. Consistent with this, female Y365/7F, but not male Y365/7F, mice exhibited a dramatic increase in the duration of etomidate- and propofol-mediated hypnosis. Moreover, the amnestic actions of etomidate were selectively potentiated in female Y365/7F mice. Collectively, these observations suggest that potentiation of tonic inhibition mediated by α4 subunit containing GABAARs contributes to the hypnotic and amnestic actions of the intravenous anesthetics, etomidate and propofol.
Collapse
|
59
|
Zhou C, Huang Z, Ding L, Deel ME, Arain FM, Murray CR, Patel RS, Flanagan CD, Gallagher MJ. Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome. J Biol Chem 2013; 288:21458-21472. [PMID: 23744069 DOI: 10.1074/jbc.m112.444372] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.
Collapse
Affiliation(s)
- Chengwen Zhou
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Zhiling Huang
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Ding
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - M Elizabeth Deel
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Fazal M Arain
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Clark R Murray
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Ronak S Patel
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Martin J Gallagher
- From the Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232.
| |
Collapse
|
60
|
Lee KH, Ho WK, Lee SH. Endocytosis of somatodendritic NCKX2 is regulated by Src family kinase-dependent tyrosine phosphorylation. Front Cell Neurosci 2013; 7:14. [PMID: 23431067 PMCID: PMC3576620 DOI: 10.3389/fncel.2013.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 11/13/2022] Open
Abstract
We have previously reported that the surface expression of K+-dependent Na+/Ca2+ exchanger 2 (NCKX2) in the somatodendritic compartment is kept low by constitutive endocytosis, which results in the polarization of surface NCKX2 to the axon. Clathrin-mediated endocytosis is initiated by interaction of the μ subunit of adaptor protein complex 2 (AP-2) with the canonical tyrosine motif (YxxΦ) of a target molecule. We examined whether endocytosis of NCKX2 involves two putative tyrosine motifs (365YGKL and 371YDTM) in the cytoplasmic loop of NCKX2. Coimmunoprecipitation assay revealed that the 365YGKL motif is essential for the interaction with the μ subunit of AP-2 (AP2M1). Consistently, either overexpression of NCKX2-Y365A mutant or knockdown of AP2M1 in cultured hippocampal neurons significantly reduced the internalization of NCKX2 from the somatodendritic surface and thus abolished the axonal polarization of surface NCKX2. Next, we tested whether the interaction between the tyrosine motif and AP2M1 is regulated by phosphorylation of the 365th tyrosine residue (Tyr-365). Tyrosine phosphorylation of heterologously expressed NCKX2-WT, but not NCKX2-Y365A, was increased by carbachol (CCh) in PC-12 cells. The effect of CCh was inhibited by PP2, a Src family kinase (SFK) inhibitor. Moreover, PP2 facilitated the endocytosis of NCKX2 in both the somatodendritic and axonal compartments, suggesting that tyrosine phosphorylation of NCKX2 by SFK negatively regulates its endocytosis. Supporting this idea, activation of SFK enhanced the NCKX activity in the proximal dendrites of dentate granule cells (GCs). These results suggest that endocytosis of somatodendritic NCKX2 is regulated by SFK-dependent phosphorylation of Tyr-365.
Collapse
Affiliation(s)
- Kyu-Hee Lee
- Department of Physiology, Biomembrane Plasticity Research Center and Neuroscience Research Institute, Seoul National University College of Medicine Seoul, Republic of Korea
| | | | | |
Collapse
|
61
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
62
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
63
|
Zhu Y, Dua S, Gold MS. Inflammation-induced shift in spinal GABA(A) signaling is associated with a tyrosine kinase-dependent increase in GABA(A) current density in nociceptive afferents. J Neurophysiol 2012; 108:2581-93. [PMID: 22914654 DOI: 10.1152/jn.00590.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To account for benzodiazepine-induced spinal analgesia observed in association with an inflammation-induced shift in the influence of the GABA(A) receptor antagonist gabazine on nociceptive threshold, the present study was designed to determine whether persistent inflammation is associated with the upregulation of high-affinity GABA(A) receptors in primary afferents. The cell bodies of afferents innervating the glabrous skin of the rat hind paw were retrogradely labeled, acutely dissociated, and studied before and after the induction of persistent inflammation. A time-dependent increase in GABA(A) current density was observed that was more than twofold by 72 h after the initiation of inflammation. This increase in current density included both high- and low-affinity currents and was restricted to neurons in which GABA increased intracellular Ca(2+). No increases in GABA(A) receptor subunit mRNA or protein were detected in whole ganglia. In contrast, the increased current density was completely reversed by 20-min preincubation with the tyrosine kinase inhibitor genistein and partially reversed with the Src kinase inhibitor PP2. Genistein reversal was partially blocked by the dynamin inhibitor peptide P4. Changes in nociceptive threshold following spinal administration of genistein and muscimol to inflamed rats indicated that the pronociceptive actions of muscimol observed in the presence of inflammation were reversed by genistein. These results suggest that persistent changes in relative levels of tyrosine kinase activity following inflammation provide not only a sensitive way to dynamically regulate spinal nociceptive signaling but a viable target for the development of novel therapeutic interventions for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neural and Pain Sciences, University of Maryland, Baltimore School of Dentistry, Baltimore, Maryland, USA
| | | | | |
Collapse
|
64
|
Seymour VAL, Curmi JP, Howitt SM, Casarotto MG, Laver DR, Tierney ML. Selective modulation of different GABAA receptor isoforms by diazepam and etomidate in hippocampal neurons. Int J Biochem Cell Biol 2012; 44:1491-500. [PMID: 22704937 DOI: 10.1016/j.biocel.2012.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Diazepam modulation of native γ2-containing GABA(A) (γGABA(A)) receptors increases channel conductance by facilitating protein interactions involving the γ2-subunit amphipathic (MA) region, which is found in the cytoplasmic loop between transmembrane domains 3 and 4 (Everitt et al., 2009). However, many drugs, predicted to act on different GABA(A) receptor subtypes, increase channel conductance leading us to hypothesize that conductance variation in GABA(A) receptors may be a general property, mediated by protein interactions involving the cytoplasmic MA stretch of amino acids. In this study we have tested this hypothesis by potentiating extrasynaptic GABA(A) currents with etomidate and examining the ability of peptides mimicking either the γ2- or δ-subunit MA region to affect conductance. In inside-out hippocampal patches from newborn rats the general anesthetic etomidate potentiated GABA currents, producing either an increase in open probability and single-channel conductance or an increase in open probability, as described previously (Seymour et al., 2009). In patches displaying high conductance channels application of a δ((392-422)) MA peptide, but not a scrambled version or the equivalent γ2((381-403)) MA peptide, reduced the potentiating effects of etomidate, significantly reducing single-channel conductance. In contrast, when GABA currents were potentiated by the γ2-specific drug diazepam the δ MA peptide had no effect. These data reveal that diazepam and etomidate potentiate different extrasynaptic GABA(A) receptor subtypes but both drugs modulate conductance similarly. One interpretation of the data is that these drugs elicit potentiation through protein interactions and that the MA peptides compete with these interactions to disrupt this process.
Collapse
Affiliation(s)
- Victoria A L Seymour
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
65
|
Lee KY, Gold MS. Inflammatory mediators potentiate high affinity GABA(A) currents in rat dorsal root ganglion neurons. Neurosci Lett 2012; 518:128-32. [PMID: 22580064 DOI: 10.1016/j.neulet.2012.04.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/25/2012] [Indexed: 11/30/2022]
Abstract
Following acute tissue injury action potentials may be initiated in afferent processes terminating in the dorsal horn of the spinal cord that are propagated back out to the periphery, a process referred to as a dorsal root reflex (DRR). The DRR is dependent on the activation of GABA(A) receptors. The prevailing hypothesis is that DRR is due to a depolarizing shift in the chloride equilibrium potential (E(Cl)) following an injury-induced activation of the Na(+)-K(+)-Cl(-)-cotransporter. Because inflammatory mediators (IM), such as prostaglandin E(2) are also released in the spinal cord following tissue injury, as well as evidence that E(Cl) is already depolarized in primary afferents, an alternative hypothesis is that an IM-induced increase in GABA(A) receptor mediated current (I(GABA)) could underlie the injury-induced increase in DRR. To test this hypothesis, we explored the impact of IM (prostaglandin E(2) (1 μM), bradykinin (10 μM), and histamine (1 μM)) on I(GABA) in dissociated rat dorsal root ganglion (DRG) neurons with standard whole cell patch clamp techniques. IM potentiated I(GABA) in a subpopulation of medium to large diameter capsaicin insensitive DRG neurons. This effect was dependent on the concentration of GABA, manifest only at low concentrations (<10 μM). THIP evoked current were also potentiated by IM and GABA (1 μM) induced tonic currents enhanced by IM were resistant to gabazine (20 μM). The present data are consistent with the hypothesis that an acute increase in I(GABA) contributes to the emergence of injury-induced DRR.
Collapse
Affiliation(s)
- Kwan Yeop Lee
- Dept of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
66
|
Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor β3 subunit. J Neurosci 2012; 32:2485-98. [PMID: 22396422 DOI: 10.1523/jneurosci.1622-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The strength of synaptic inhibition can be controlled by the stability and endocytosis of surface and synaptic GABA(A) receptors (GABA(A)Rs), but the surface receptor dynamics that underpin GABA(A)R recruitment to dendritic endocytic zones (EZs) have not been investigated. Stabilization of GABA(A)Rs at EZs is likely to be regulated by receptor interactions with the clathrin-adaptor AP2, but the molecular determinants of these associations remain poorly understood. Moreover, although surface GABA(A)R downmodulation plays a key role in pathological disinhibition in conditions such as ischemia and epilepsy, whether this occurs in an AP2-dependent manner also remains unclear. Here we report the characterization of a novel motif containing three arginine residues (405RRR407) within the GABA(A)R β3-subunit intracellular domain (ICD), responsible for the interaction with AP2 and GABA(A)R internalization. When this motif is disrupted, binding to AP2 is abolished in vitro and in rat brain. Using single-particle tracking, we reveal that surface β3-subunit-containing GABA(A)Rs exhibit highly confined behavior at EZs, which is dependent on AP2 interactions via this motif. Reduced stabilization of mutant GABA(A)Rs at EZs correlates with their reduced endocytosis and increased steady-state levels at synapses. By imaging wild-type or mutant super-ecliptic pHluorin-tagged GABA(A)Rs in neurons, we also show that, under conditions of oxygen-glucose deprivation to mimic cerebral ischemia, GABA(A)Rs are depleted from synapses in dendrites, depending on the 405RRR407 motif. Thus, AP2 binding to an RRR motif in the GABA(A)R β3-subunit ICD regulates GABA(A)R residency time at EZs, steady-state synaptic receptor levels, and pathological loss of GABA(A)Rs from synapses during simulated ischemia.
Collapse
|
67
|
Garcia-Oscos F, Salgado H, Hall S, Thomas F, Farmer GE, Bermeo J, Galindo LC, Ramirez RD, D’Mello S, Rose-John S, Atzori M. The stress-induced cytokine interleukin-6 decreases the inhibition/excitation ratio in the rat temporal cortex via trans-signaling. Biol Psychiatry 2012; 71:574-82. [PMID: 22196984 PMCID: PMC4732871 DOI: 10.1016/j.biopsych.2011.11.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically associated with stress. We hypothesized that IL-6 acutely and directly induces cortical hyper-excitability by altering the balance between synaptic excitation and inhibition. METHODS We used patch-clamp to determine the effects of exogenous or endogenous IL-6 on electrically evoked postsynaptic currents on a cortical rat slice preparation. We used control subjects or animals systemically injected with lipopolysaccharide or subjected to electrical foot-shock as rat models of stress. RESULTS In control animals, IL-6 did not affect excitatory postsynaptic currents but selectively and reversibly reduced the amplitude of inhibitory postsynaptic currents with a postsynaptic effect. The IL-6-induced inhibitory postsynaptic currents decrease was inhibited by drugs interfering with receptor trafficking and/or internalization, including wortmannin, Brefeldin A, 2-Br-hexadecanoic acid, or dynamin peptide inhibitor. In both animal models, stress-induced decrease in synaptic inhibition/excitation ratio was prevented by prior intra-ventricular injection of an analog of the endogenous IL-6 trans-signaling blocker gp130. CONCLUSIONS Our results suggest that stress-induced IL-6 shifts the balance between synaptic inhibition and excitation in favor of the latter, possibly by decreasing the density of functional γ-aminobutyric acid A receptors, accelerating their removal and/or decreasing their insertion rate from/to the plasma membrane. We speculate that this mechanism could contribute to stress-induced detrimental long-term increases in central excitability present in a variety of neurological and psychiatric conditions.
Collapse
|
68
|
Ohnishi H, Murata Y, Okazawa H, Matozaki T. Src family kinases: modulators of neurotransmitter receptor function and behavior. Trends Neurosci 2011; 34:629-37. [PMID: 22051158 DOI: 10.1016/j.tins.2011.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 08/11/2011] [Accepted: 09/29/2011] [Indexed: 01/01/2023]
Abstract
Src family kinases (SFKs) are non-receptor-type protein tyrosine kinases that were originally identified as the products of proto-oncogenes and were subsequently implicated in the regulation of cell proliferation and differentiation in the developing mammalian brain. Recent studies using transgenic mouse models have demonstrated that SFKs that are highly expressed in the adult brain regulate neuronal plasticity and behavior through tyrosine phosphorylation of key substrates such as neurotransmitter receptors. Here, we provide an overview of these recent studies, as well as discussing how modulation of the endocytosis of neurotransmitter receptors by SFKs contributes, in part, to this regulation. Deregulation of SFK-dependent tyrosine phosphorylation of such substrates might underlie certain brain disorders.
Collapse
Affiliation(s)
- Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | |
Collapse
|
69
|
Hines RM, Davies PA, Moss SJ, Maguire J. Functional regulation of GABAA receptors in nervous system pathologies. Curr Opin Neurobiol 2011; 22:552-8. [PMID: 22036769 DOI: 10.1016/j.conb.2011.10.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 01/01/2023]
Abstract
Inhibitory neurotransmission is primarily governed by γ-aminobutyric acid (GABA) type A receptors (GABAARs). GABAARs are heteropentameric ligand-gated channels formed by the combination of 19 possible subunits. GABAAR subunits are subject to multiple types of regulation, impacting the localization, properties, and function of assembled receptors. GABAARs mediate both phasic (synaptic) and tonic (extrasynaptic) inhibition. While the regulatory mechanisms governing synaptic receptors have begun to be defined, little is known about the regulation of extrasynaptic receptors. We examine the contributions of GABAARs to the pathogenesis of neurodevelopmental disorders, schizophrenia, depression, epilepsy, and stroke, with particular focus on extrasynaptic GABAARs. We suggest that extrasynaptic GABAARs are attractive targets for the treatment of these disorders, and that research should be focused on delineating the mechanisms that regulate extrasynaptic GABAARs, promoting new therapeutic approaches.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
70
|
Vithlani M, Terunuma M, Moss SJ. The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 2011; 91:1009-22. [PMID: 21742794 DOI: 10.1152/physrev.00015.2010] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABA(A)Rs); they mediate both phasic and tonic inhibition in the brain and are the principle sites of action for anticonvulsant, anxiolytic, and sedative-hypnotic agents that include benzodiazepines, barbiturates, neurosteroids, and some general anesthetics. GABA(A)Rs are heteropentameric ligand-gated ion channels that are found concentrated at inhibitory postsynaptic sites where they mediate phasic inhibition and at extrasynaptic sites where they mediate tonic inhibition. The efficacy of inhibition and thus neuronal excitability is critically dependent on the accumulation of specific GABA(A)R subtypes at inhibitory synapses. Here we evaluate how neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites. We then go on to examine the impact that these processes have on the strength of synaptic inhibition and behavior.
Collapse
Affiliation(s)
- Mansi Vithlani
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
71
|
Kelly BT, Owen DJ. Endocytic sorting of transmembrane protein cargo. Curr Opin Cell Biol 2011; 23:404-12. [DOI: 10.1016/j.ceb.2011.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023]
|
72
|
Jurd R, Moss SJ. Impaired GABA(A) receptor endocytosis and its correlation to spatial memory deficits. Commun Integr Biol 2011; 3:176-8. [PMID: 20585515 DOI: 10.4161/cib.3.2.10742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 11/19/2022] Open
Abstract
GABA(A) receptors mediate the majority of fast synaptic inhibition in the mammalian brain. Mechanisms that regulate GABA(A) function are thus of critical importance in modulating overall synaptic inhibition. Phosphorylation of GABA(A) receptor subunits is one such mechanism that leads to the dynamic modulation of GABA(A) receptor function. In particular, phosphorylation of tyrosine residues 365 and 367 (Y365, Y367) within the gamma2 subunit of GABA(A) receptors has been shown in previous in vitro studies to negatively regulate clathrin-dependent endocytosis of GABA(A) receptors and to enhance the efficacy of synaptic inhibition. With the aim of investigating the impact of this phosphorylation-dependent modulation of GABA(A) receptors on animal behavior, we recently developed a knock-in mouse in which these critical tyrosine residues within the gamma2 subunit have been mutated to phenylalanines (Y365/7F). These animals exhibited enhanced GABA(A) receptor accumulation at postsynaptic inhibitory synaptic specializations on pyramidal neurons within the hippocampus, primarily due to aberrant trafficking within the endocytic pathway. We found that this enhanced inhibition correlated with a specific deficit in spatial memory in these mice, without modifying a number of other behavioral paradigms. Here, we summarize our recently reported observations and further discuss their possible implications.
Collapse
Affiliation(s)
- Rachel Jurd
- Department of Neuroscience; School of Medicine; Tufts University; Boston, MA USA
| | | |
Collapse
|
73
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
74
|
Kang SU, Heo S, Lubec G. Mass spectrometric analysis of GABAA receptor subtypes and phosphorylations from mouse hippocampus. Proteomics 2011; 11:2171-81. [PMID: 21538884 DOI: 10.1002/pmic.201000374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/02/2011] [Accepted: 02/21/2011] [Indexed: 11/05/2022]
Abstract
The brain GABA(A) receptor (GABA(A) R) is a key element of signaling and neural transmission in health and disease. Recently, complete sequence analysis of the recombinant GABA(A) R has been reported, separation and mass spectrometrical (MS) characterisation from tissue, however, has not been published so far. Hippocampi were homogenised, put on a sucrose gradient 10-69% and the layer from 10 to 20% was used for extraction of membrane proteins by a solution of Triton X-100, 1.5 M aminocaproic acid in the presence of 0.3 M Bis-Tris. This mixture was subsequently loaded onto blue native PAGE (BN-PAGE) with subsequent analysis on denaturing gel systems. Spots from the 3-DE electrophoretic run were stained with Colloidal Coomassie Brilliant Blue, and spots with an apparent molecular weight between 40 and 60 kDa were picked and in-gel digested with trypsin, chymotrypsin and subtilisin. The resulting peptides were analysed by nano-LC-ESI-MS/MS (ion trap) and protein identification was carried out using MASCOT searches. In addition, known GABA(A) R-specific MS information taken from own previous studies was used for searches of GABA(A) R subunits. β-1, β-2 and β-3, θ and ρ-1 subunits were detected and six novel phosphorylation sites were observed and verified by phosphatase treatment. The method used herein enables identification of several GABA(A) R subunits from mouse hippocampus along with phosphorylations of β-1 (T227, Y230), β-2 (Y215, T439) and β-3 (T282, S406) subunits. The procedure forms the basis for GABA(A) R studies at the protein chemical rather than at the immunochemical level in health and disease.
Collapse
Affiliation(s)
- Sung Ung Kang
- Division of Neuroproteomics, Department of Pediatrics, Medical University of Vienna, Waehringer Guertel, Vienna, Austria
| | | | | |
Collapse
|
75
|
Rao Y, Rückert C, Saenger W, Haucke V. The early steps of endocytosis: from cargo selection to membrane deformation. Eur J Cell Biol 2011; 91:226-33. [PMID: 21458101 DOI: 10.1016/j.ejcb.2011.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/11/2011] [Accepted: 02/13/2011] [Indexed: 10/18/2022] Open
Abstract
Clathrin-mediated endocytosis mediates the internalization of signaling and nutrient receptors, ion channels and regulates the endocytic recycling of pre- and postsynaptic membrane proteins. During early stages endocytic adaptors recognize sorting signals within this diverse array of cargo proteins destined for internalization. Cargo sequestration is mechanistically coupled to membrane deformation, a process involving BAR domain proteins, resulting in the generation of endocytic intermediates that finally undergo dynamin-mediated fission. Here we summarize recent insights gathered from a combination of structural, biochemical, and cell biological studies that have revealed a remarkable complexity of the machinery for endocytic sorting and membrane deformation.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
76
|
Welling PA, Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. Physiology (Bethesda) 2011; 25:280-92. [PMID: 20940433 DOI: 10.1152/physiol.00022.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion and water transport by the kidney is continually adjusted in response to physiological cues. Selective endocytosis and endosomal trafficking of ion transporters are increasingly appreciated as mechanisms to acutely modulate renal function. Here, we discuss emerging paradigms in this new area of investigation.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
77
|
NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit. Proc Natl Acad Sci U S A 2010; 107:16679-84. [PMID: 20823221 DOI: 10.1073/pnas.1000589107] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification of the number of GABA(A) receptors (GABA(A)Rs) clustered at inhibitory synapses can regulate inhibitory synapse strength with important implications for information processing and nervous system plasticity and pathology. Currently, however, the mechanisms that regulate the number of GABA(A)Rs at synapses remain poorly understood. By imaging superecliptic pHluorin tagged GABA(A)R subunits we show that synaptic GABA(A)R clusters are normally stable, but that increased neuronal activity upon glutamate receptor (GluR) activation results in their rapid and reversible dispersal. This dispersal correlates with increases in the mobility of single GABA(A)Rs within the clusters as determined using single-particle tracking of GABA(A)Rs labeled with quantum dots. GluR-dependent dispersal of GABA(A)R clusters requires Ca(2+) influx via NMDA receptors (NMDARs) and activation of the phosphatase calcineurin. Moreover, the dispersal of GABA(A)R clusters and increased mobility of individual GABA(A)Rs are dependent on serine 327 within the intracellular loop of the GABA(A)R γ2 subunit. Thus, NMDAR signaling, via calcineurin and a key GABA(A)R phosphorylation site, controls the stability of synaptic GABA(A)Rs, with important implications for activity-dependent control of synaptic inhibition and neuronal plasticity.
Collapse
|
78
|
Smith KR, Kittler JT. The cell biology of synaptic inhibition in health and disease. Curr Opin Neurobiol 2010; 20:550-6. [PMID: 20650630 DOI: 10.1016/j.conb.2010.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/24/2022]
Abstract
Fast synaptic inhibition is largely mediated by GABA(A) receptors (GABA(A)Rs), ligand-gated chloride channels that play an essential role in the control of cell and network activity in the brain. Recent work has demonstrated that the delivery, number and stability of GABA(A)Rs at inhibitory synapses play a key role in the dynamic regulation of inhibitory synaptic efficacy and plasticity. The regulatory pathways essential for the fine-tuning of synaptic inhibition have also emerged as key sites of vulnerability during pathological changes in cell excitability in disease states.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
79
|
Thomson AM, Jovanovic JN. Mechanisms underlying synapse-specific clustering of GABA(A) receptors. Eur J Neurosci 2010; 31:2193-203. [PMID: 20550567 DOI: 10.1111/j.1460-9568.2010.07252.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A principle that arises from a body of previous work is that each presynaptic terminal recognises its postsynaptic partner and that each postsynaptic site recognises the origin of the synaptic bouton innervating it. In response, the presynaptic terminal sequesters the proteins whose interactions result in the dynamic transmitter release pattern and chemical modulation appropriate for that connection. In parallel, the postsynaptic site sequesters, inserts or captures the receptors and postsynaptic density proteins appropriate for that type of synapse. The focus of this review is the selective clustering of GABA(A) receptors (GABA(A)R) at synapses made by each class of inhibitory interneurone. This provides a system in which the mechanisms underlying transynaptic recognition can be explored. There are many synaptic proteins, often with several isoforms created by post-translational modifications. Complex cascades of interactions between these proteins, on either side of the synaptic cleft, are essential for normal function, normal transmitter release and postsynaptic responsiveness. Interactions between presynaptic and postsynaptic proteins that have binding domains in the synaptic cleft are proposed here to result in a local cleft structure that captures and stabilises only the appropriate subtype of GABA(A)Rs, allowing others to drift away from that synapse, either to be captured by another synapse, or internalised.
Collapse
Affiliation(s)
- Alex M Thomson
- The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
80
|
Abstract
Dopaminergic projections to the striatum, crucial for the correct functioning of this brain region in adulthood, are known to be established early in development, but their role is currently uncharacterized. We demonstrate here that dopamine, by activating D(1)- and/or D(2)-dopamine receptors, decreases the number of functional GABAergic synapses formed between the embryonic precursors of the medium spiny neurons, the principal output neurons of the striatum, with associated changes in spontaneous synaptic activity. Activation of these receptors reduces the size of postsynaptic GABA(A) receptor clusters and their overall cell-surface expression, without affecting the total number of clusters or the size or number of GABAergic nerve terminals. These changes result from an increased internalization of GABA(A) receptors, and are mediated by distinct signaling pathways converging at the level of GABA(A) receptors to cause a transient PP2A/PP1-dependent dephosphorylation. Thus, tonic D(1)- and D(2)-receptor activity limits the extent of collateral inhibitory synaptogenesis between medium spiny neurons, revealing a novel role of dopamine in controlling the development of intrinsic striatal microcircuits.
Collapse
|
81
|
Smith KR, Oliver PL, Lumb MJ, Arancibia-Carcamo IL, Revilla-Sanchez R, Brandon NJ, Moss SJ, Kittler JT. Identification and characterisation of a Maf1/Macoco protein complex that interacts with GABAA receptors in neurons. Mol Cell Neurosci 2010; 44:330-41. [PMID: 20417281 DOI: 10.1016/j.mcn.2010.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/09/2010] [Accepted: 04/09/2010] [Indexed: 01/16/2023] Open
Abstract
The majority of fast inhibitory synaptic transmission in the mammalian nervous system is mediated by GABA(A) receptors (GABA(A)Rs). Here we report a novel interaction between the protein Maf1 and GABA(A)R beta-subunit intracellular domains. We find Maf1 to be highly expressed in brain and enriched in the hippocampus and cortex. In heterologous cells and neurons we show Maf1 co-localises with GABA(A)Rs in intracellular compartments and at the cell surface. In neurons, Maf1 is found localised in the cytoplasm in dendrites, partially overlapping with GABA(A)Rs and inhibitory synapses and in addition is enriched in the neuronal nucleus. We also report that Maf1 interacts with a novel coiled-coil domain containing protein that we have called Macoco (for Maf1 interacting coiled-coil protein). Like Maf1, Macoco can also be found localised to inhibitory synapses and directly interacts with GABA(A)Rs. Expressing Macoco in neurons increases surface GABA(A)R levels. Our results suggest that Maf1 and Macoco are novel GABA(A)R interacting proteins important for regulating GABA(A)R surface expression and GABA(A)R signalling in the brain.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Jurd R, Tretter V, Walker J, Brandon NJ, Moss SJ. Fyn kinase contributes to tyrosine phosphorylation of the GABA(A) receptor gamma2 subunit. Mol Cell Neurosci 2010; 44:129-34. [PMID: 20233604 DOI: 10.1016/j.mcn.2010.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022] Open
Abstract
Phosphorylation of GABA(A) receptors is an important mechanism for dynamically modulating inhibitory synaptic function in the mammalian brain. In particular, phosphorylation of tyrosine residues 365 and 367 (Y365/7) within the GABA(A) receptor gamma2 subunit negatively regulates the endocytosis of GABA(A) receptors and enhances synaptic inhibition. Here we show that Fyn, a Src family kinase (SFK), interacts with the gamma2 subunit in a phosphorylation-dependent manner. Furthermore, we demonstrate that Fyn binds within a region of the gamma2 intracellular domain that is centered on residues Y365/7, with the phosphorylation of Y367 being particularly important for mediating this interaction. Tyrosine phosphorylation of the gamma2 subunit is significantly reduced in the hippocampus of Fyn knockout mice, suggesting that Fyn is an important kinase that contributes to the phosphorylation of this subunit in vivo. Tyrosine phosphorylation of the gamma2 subunit is not completely abolished in Fyn kinase mice, suggesting that other SFKs, such as Src, also contribute to maintaining and regulating the endogenous phosphorylation level of gamma2-containing GABA(A) receptors. In summary, we demonstrate Fyn as one of the SFKs that binds to and phosphorylates the gamma2 subunit of the GABA(A) receptor. This has important implications for the regulation of synaptic GABA(A) receptors via signaling pathways that lead to the activation of Fyn kinase.
Collapse
Affiliation(s)
- Rachel Jurd
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
83
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
84
|
Kahlfeldt N, Vahedi-Faridi A, Koo SJ, Schäfer JG, Krainer G, Keller S, Saenger W, Krauss M, Haucke V. Molecular basis for association of PIPKI gamma-p90 with clathrin adaptor AP-2. J Biol Chem 2010; 285:2734-49. [PMID: 19903820 PMCID: PMC2807329 DOI: 10.1074/jbc.m109.074906] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 11/06/2009] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the I gamma-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P(2) metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKI gamma-p90 associates with both the mu and beta2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKI gamma-p90 tail binds to a cognate recognition site on the sandwich subdomain of the beta2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2mu, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKI gamma-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKI gamma tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2 beta and AP-2mu. Our data also suggest that interactions between AP-2 and the tail domain of PIPKI gamma-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKI gamma-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P(2) synthesis during clathrin-mediated SV endocytosis.
Collapse
Affiliation(s)
- Nina Kahlfeldt
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ardeschir Vahedi-Faridi
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Seong Joo Koo
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johannes G. Schäfer
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Georg Krainer
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
- the Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Sandro Keller
- the Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Wolfram Saenger
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Krauss
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- From the Institute of Chemistry and Biochemistry, Departments of Membrane Biochemistry and Protein Crystallography, Freie Universität Berlin, 14195 Berlin, Germany
- the Charité Universitätsmedizin Berlin, 14195 Berlin, Germany, and
- the Leibniz Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
85
|
The role of GABAAR phosphorylation in the construction of inhibitory synapses and the efficacy of neuronal inhibition. Biochem Soc Trans 2010; 37:1355-8. [PMID: 19909275 DOI: 10.1042/bst0371355] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GABA(A)Rs [GABA (gamma-aminobutyric acid) type-A receptors] are heteropentameric chloride-selective ligand-gated ion channels that mediate fast inhibition in the brain and are key therapeutic targets for benzodiazepines, barbiturates, neurosteroids and general anaesthetics. In the brain, most of the benzodiazepine-sensitive synaptic receptor subtypes are assembled from alpha(1-3), beta(1-3) and gamma(2) subunits. Although it is evident that the pharmacological manipulation of GABA(A)R function can have profound effects on behaviour, the endogenous mechanisms that neurons use to promote sustained changes in the efficacy of neuronal inhibition remain to be documented. It is increasingly clear that GABA(A)Rs undergo significant rates of constitutive endocytosis and regulate recycling processes that can determine the efficacy of synaptic inhibition. Their endocytosis is regulated via the direct binding of specific endocytosis motifs within the intracellular domains of receptor beta(1-3) and gamma(2) subunits to the clathrin adaptor protein AP2 (adaptor protein 2). These binding motifs contain major sites of both serine and tyrosine phosphorylation within GABA(A)Rs. Their phosphorylation can have dramatic effects on binding to AP2. In the present review, we evaluate the role that these phospho-dependent interactions play in regulating the construction of inhibitory synapses, efficacy of neuronal inhibition and neuronal structure.
Collapse
|
86
|
Kanematsu T, Fujii M, Tanaka H, Umebayashi H, Hirata M. Surface Expression of GABAA Receptors. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
87
|
Fujii M, Kanematsu T, Ishibashi H, Fukami K, Takenawa T, Nakayama KI, Moss SJ, Nabekura J, Hirata M. Phospholipase C-related but catalytically inactive protein is required for insulin-induced cell surface expression of gamma-aminobutyric acid type A receptors. J Biol Chem 2009; 285:4837-46. [PMID: 19996098 DOI: 10.1074/jbc.m109.070045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type A (GABA(A)) receptors play a pivotal role in fast synaptic inhibition in the central nervous system. One of the key factors for determining synaptic strength is the number of receptors on the postsynaptic membrane, which is maintained by the balance between cell surface insertion and endocytosis of the receptors. In this study, we investigated whether phospholipase C-related but catalytically inactive protein (PRIP) is involved in insulin-induced GABA(A) receptor insertion. Insulin potentiated the GABA-induced Cl(-) current (I(GABA)) by about 30% in wild-type neurons, but not in PRIP1 and PRIP2 double-knock-out (DKO) neurons, suggesting that PRIP is involved in insulin-induced potentiation. The phosphorylation level of the GABA(A) receptor beta-subunit was increased by about 30% in the wild-type neurons but not in the mutant neurons, which were similar to the changes observed in I(GABA). We also revealed that PRIP recruited active Akt to the GABA(A) receptors by forming a ternary complex under insulin stimulation. The disruption of the binding between PRIP and the GABA(A) receptor beta-subunit by PRIP interference peptide attenuated the insulin potentiation of I(GABA). Taken together, these results suggest that PRIP is involved in insulin-induced GABA(A) receptor insertion by recruiting active Akt to the receptor complex.
Collapse
Affiliation(s)
- Makoto Fujii
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Deficits in spatial memory correlate with modified {gamma}-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proc Natl Acad Sci U S A 2009; 106:20039-44. [PMID: 19903874 DOI: 10.1073/pnas.0908840106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast synaptic inhibition in the brain is largely mediated by gamma-aminobutyric acid receptors (GABA(A)R). While the pharmacological manipulation of GABA(A)R function by therapeutic agents, such as benzodiazepines can have profound effects on neuronal excitation and behavior, the endogenous mechanisms neurons use to regulate the efficacy of synaptic inhibition and their impact on behavior remains poorly understood. To address this issue, we created a knock-in mouse in which tyrosine phosphorylation of the GABA(A)Rs gamma2 subunit, a posttranslational modification that is critical for their functional modulation, has been ablated. These animals exhibited enhanced GABA(A)R accumulation at postsynaptic inhibitory synaptic specializations on pyramidal neurons within the CA3 subdomain of the hippocampus, primarily due to aberrant trafficking within the endocytic pathway. This enhanced inhibition correlated with a specific deficit in spatial object recognition, a behavioral paradigm dependent upon CA3. Thus, phospho-dependent regulation of GABA(A)R function involving just two tyrosine residues in the gamma2 subunit provides an input-specific mechanism that not only regulates the efficacy of synaptic inhibition, but has behavioral consequences.
Collapse
|
89
|
Ubiquitin-dependent lysosomal targeting of GABA(A) receptors regulates neuronal inhibition. Proc Natl Acad Sci U S A 2009; 106:17552-7. [PMID: 19815531 DOI: 10.1073/pnas.0905502106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The strength of synaptic inhibition depends partly on the number of GABA(A) receptors (GABA(A)Rs) found at synaptic sites. The trafficking of GABA(A)Rs within the endocytic pathway is a key determinant of surface GABA(A)R number and is altered in neuropathologies, such as cerebral ischemia. However, the molecular mechanisms and signaling pathways that regulate this trafficking are poorly understood. Here, we report the subunit specific lysosomal targeting of synaptic GABA(A)Rs. We demonstrate that the targeting of synaptic GABA(A)Rs into the degradation pathway is facilitated by ubiquitination of a motif within the intracellular domain of the gamma2 subunit. Blockade of lysosomal activity or disruption of the trafficking of ubiquitinated cargo to lysosomes specifically increases the efficacy of synaptic inhibition without altering excitatory currents. Moreover, mutation of the ubiquitination site within the gamma2 subunit retards the lysosomal targeting of GABA(A)Rs and is sufficient to block the loss of synaptic GABA(A)Rs after anoxic insult. Together, our results establish a previously unknown mechanism for influencing inhibitory transmission under normal and pathological conditions.
Collapse
|
90
|
Tyagarajan SK, Fritschy JM. GABA(A) receptors, gephyrin and homeostatic synaptic plasticity. J Physiol 2009; 588:101-6. [PMID: 19752109 DOI: 10.1113/jphysiol.2009.178517] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Homeostatic synaptic plasticity describes the changes in synapse gain and function that occur in response to global changes in neuronal activity to maintain the stability of neuronal networks. In this review, we argue that a coordinated regulation of excitatory and inhibitory synaptic transmission is essential for maintaining CNS function while allowing both global and local changes in synaptic strength and connectivity. Therefore, we postulate that homeostatic synaptic plasticity depends on signalling cascades regulating in parallel the efficacy of glutamatergic and GABAergic transmission. Since neurotransmitter receptors interact closely with scaffolding proteins in the postsynaptic density, this coordinated regulation of excitatory and inhibitory synaptic transmission probably involves posttranslational modifications of scaffolding proteins, which in turn modulate local synaptic function. Here we review the current state of knowledge on the regulation of GABA(A) receptors and their main scaffolding protein gephyrin by posttranslational modifications; we outline future lines of research that might contribute to furthering our understanding of the molecular mechanisms regulating GABAergic synapse function and homeostatic plasticity.
Collapse
Affiliation(s)
- Shiva K Tyagarajan
- University of Zurich, Institute of Pharmacology and Toxicology, Winterhurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
91
|
Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 2009; 10:583-96. [PMID: 19696796 DOI: 10.1038/nrm2751] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clathrin-mediated endocytosis oversees the constitutive packaging of selected membrane cargoes into transport vesicles that fuse with early endosomes. The process is responsive to activation of signalling receptors and ion channels, promptly clearing post-translationally tagged forms of cargo off the plasma membrane. To accommodate the diverse array of transmembrane proteins that are variably gathered into forming vesicles, a dedicated sorting machinery cooperates to ensure that non-competitive uptake from the cell surface occurs within minutes. Recent structural and functional data reveal remarkable plasticity in how disparate sorting signals are recognized by cargo-selective clathrin adaptors, such as AP-2. Cargo loading also seems to govern whether coats ultimately bud or dismantle abortively at the cell surface.
Collapse
|
92
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
93
|
Abstract
GABA(A) receptors (GABA(A)Rs), the principal sites of synaptic inhibition in the brain, are dynamic entities on the neuronal cell surface, but the role their membrane trafficking plays in shaping neuronal activity remains obscure. Here, we examined this by using mutant receptor beta3 subunits (beta3S408/9A), which have reduced binding to the clathrin adaptor protein-2, a critical regulator of GABA(A)R endocytosis. Neurons expressing beta3S408/9A subunits exhibited increases in the number and size of inhibitory synapses, together with enhanced inhibitory synaptic transmission due to reduced GABA(A)R endocytosis. Furthermore, neurons expressing beta3S408/9A subunits had deficits in the number of mature spines and reduced accumulation of postsynaptic density protein-95 at excitatory synapses. This deficit in spine maturity was reversed by pharmacological blockade of GABA(A)Rs. Therefore, regulating the efficacy of synaptic inhibition by modulating GABA(A)R membrane trafficking may play a critical role in regulating spine maturity with significant implications for synaptic plasticity together with behavior.
Collapse
|
94
|
Long-term sensory deprivation selectively rearranges functional inhibitory circuits in mouse barrel cortex. Proc Natl Acad Sci U S A 2009; 106:12156-61. [PMID: 19584253 DOI: 10.1073/pnas.0900922106] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term whisker removal alters the balance of excitation and inhibition in rodent barrel cortex, yet little is known about the contributions of individual cells and synapses in this process. We studied synaptic inhibition in four major types of neurons in live tangential slices that isolate layer 4 in the posteromedial barrel subfield. Voltage-clamp recordings of layer 4 neurons reveal that fast decay of synaptic inhibition requires alpha1-containing GABA(A) receptors. After 7 weeks of deprivation, we found that GABA(A)-receptor-mediated inhibitory postsynaptic currents (IPSCs) in the inhibitory low-threshold-spiking (LTS) cell recorded in deprived barrels exhibited faster decay kinetics and larger amplitudes in whisker-deprived barrels than those in nondeprived barrels in age-matched controls. This was not observed in other cell types. Additionally, IPSCs recorded in LTS cells from deprived barrels show a marked increase in zolpidem sensitivity. To determine if the faster IPSC decay in LTS cells from deprived barrels indicates an increase in alpha1 subunit functionality, we deprived alpha1(H101R) mutant mice with zolpidem-insensitive alpha1-containing GABA(A) receptors. In these mice and matched wild-type controls, IPSC decay kinetics in LTS cells were faster after whisker removal; however, the deprivation-induced sensitivity to zolpidem was reduced in alpha1(H101R) mice. These data illustrate a change of synaptic inhibition in LTS cells via an increase in alpha1-subunit-mediated function. Because alpha1 subunits are commonly associated with circuit-specific plasticity in sensory cortex, this switch in LTS cell synaptic inhibition may signal necessary circuit changes required for plastic adjustments in sensory-deprived cortex.
Collapse
|
95
|
Smith KR, McAinsh K, Chen G, Arancibia-Carcamo IL, Haucke V, Yan Z, Moss SJ, Kittler JT. Regulation of inhibitory synaptic transmission by a conserved atypical interaction of GABA(A) receptor beta- and gamma-subunits with the clathrin AP2 adaptor. Neuropharmacology 2008; 55:844-50. [PMID: 18662706 DOI: 10.1016/j.neuropharm.2008.06.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
The number of surface and synaptic GABA(A) receptors is an important determinant of inhibitory synapse strength. Surface receptor number is in part controlled by removal of receptors from the membrane by interaction with the clathrin adaptor AP2. Here we demonstrate that there are two binding sites for AP2 in the gamma2-subunit: a Yxxvarphi type motif specific to gamma2-subunits and a basic patch AP2 binding motif, that is also found in GABA(A) receptor beta-subunits. Blocking GABA(A) receptor-AP2 interactions using a peptide that inhibits AP2 binding to GABA(A) receptors via the conserved basic patch mechanism increases synaptic responses within minutes, whereas simultaneously blocking both binding mechanisms has an additive effect. These data suggest that multiple AP2 internalization signals control the levels of surface and synaptic GABA(A) receptors to regulate synaptic inhibition.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Tretter V, Moss SJ. GABA(A) Receptor Dynamics and Constructing GABAergic Synapses. Front Mol Neurosci 2008; 1:7. [PMID: 18946540 PMCID: PMC2526003 DOI: 10.3389/neuro.02.007.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Accepted: 05/16/2008] [Indexed: 12/04/2022] Open
Abstract
GABAA receptors are located on the majority of neurons in the central and peripheral nervous system, where they mediate important actions of the neurotransmitter gamma-aminobutyric acid. Early in development the trophic properties of GABA allow a healthy development of the nervous system. Most neurons have a high intracellular Cl-concentration early in life due to the late functional expression of the Cl-pump KCC2, therefore GABA has excitatory effects at this stage. Upon higher expression and activation of KCC2 GABA takes on its inhibitory effects while glutamate functions as the major excitatory neurotransmitter. Like all multisubunit membrane proteins the GABAA receptor is assembled in the ER and travels through the Golgi and remaining secretory pathway to the cell surface, where it mediates GABA actions either directly at the synapses or at extrasynaptic sites responding to ambient GABA to provide a basal tonic inhibitory state. In order to adapt to changing needs and information states, the GABAergic system is highly dynamic. That includes subtype specific trafficking to different locations in the cell, regulation of mobility by interaction with scaffold molecules, posttranslational modifications, that either directly affect channel function or the interaction with other proteins and finally the dynamic exchange between surface and intracellular receptor pools, that either prepare receptors for recycling to the surface or degradation. Here we give an overview of the current understanding of GABAA receptor functional and molecular dynamics that play a major part in maintaining the balance between excitation and inhibition and in changes in network activity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Neuroscience, University of Pennsylvania Philadelphia, PA, USA
| | | |
Collapse
|
97
|
Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008; 9:331-43. [PMID: 18382465 PMCID: PMC2709246 DOI: 10.1038/nrn2370] [Citation(s) in RCA: 490] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.
Collapse
Affiliation(s)
- Tija C. Jacob
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Stephen J. Moss
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Pharmacology, University College London, WC1E 6BT, UK
| | - Rachel Jurd
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|