51
|
Cytoplasmic hnRNPK interacts with GSK3β and is essential for the osteoclast differentiation. Sci Rep 2015; 5:17732. [PMID: 26638989 PMCID: PMC4671015 DOI: 10.1038/srep17732] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
Osteoclast differentiation is a complex and finely regulated physiological process that involves a variety of signaling pathways and factors. Recent studies suggested that the Ser9 phosphorylation of Glycogen synthase kinase-3β (GSK3β) is required for the osteoclast differentiation. However, the precise underlying mechanism remains unclear. We have previously identified the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a putative GSK3β interactor. In the present study, we demonstrate that, during the RANKL-induced osteoclast differentiation, the PI3K/Akt-mediated Ser9 phosphorylation of GSK3β provokes the nuclear-cytoplasmic translocation of hnRNPK in an ERK-dependent manner, enhancing the cytoplasmic co-localization and interaction of GSK3β and hnRNPK. We show that hnRNPK is essential for the osteoclast differentiation, and is involved in several reported functions of GSK3β, including the activation of NF-κB, the expression of NFATc1, and the acetylation of tubulin, all known to be critical for osteoclast differentiation and functions. We find that hnRNPK is localized in the actin belt, and is important for the mature osteoclast formation. Taken together, we demonstrate here the critical role of hnRNPK in osteoclast differentiation, and depict a model in which the cytoplasmic hnRNPK interacts with GSK3β and regulates its function.
Collapse
|
52
|
Zeng R, Faccio R, Novack DV. Alternative NF-κB Regulates RANKL-Induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms. J Bone Miner Res 2015; 30:2287-99. [PMID: 26094846 PMCID: PMC4834842 DOI: 10.1002/jbmr.2584] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/02/2015] [Accepted: 06/19/2015] [Indexed: 12/17/2022]
Abstract
Mitochondrial biogenesis, the generation of new mitochondrial DNA and proteins, has been linked to osteoclast (OC) differentiation and function. In this study we used mice with mutations in key alternative NF-κB pathway proteins, RelB and NF-κB-inducing kinase (NIK), to dissect the complex relationship between mitochondrial biogenesis and osteoclastogenesis. In OC precursors lacking either NIK or RelB, receptor activator of NF-κB ligand (RANKL) was unable to increase mitochondrial DNA or oxidative phosphorylation (OxPhos) protein expression, which was associated with lower oxygen consumption rates. Transgenic OC precursors expressing constitutively active NIK showed normal RANKL-induced mitochondrial biogenesis (OxPhos expression and mitochondria copy number) compared to controls, but larger mitochondrial dimensions and increased oxygen consumption rates, suggesting increased mitochondrial function. To deduce the mechanism for mitochondrial biogenesis defects in NIK-deficient and RelB-deficient precursors, we examined expression of genes known to control this process. PGC-1β (Ppargc1b) expression, but not PGC-1α, PPRC1, or ERRα, was significantly reduced in RelB(-/-) and NIK(-/-) OCs. Because PGC-1β has been reported to positively regulate both mitochondrial biogenesis and differentiation in OCs, we retrovirally overexpressed PGC-1β in RelB(-/-) cells, but surprisingly found that it did not affect differentiation, nor did it restore RANKL-induced mitochondrial biogenesis. To determine whether the blockade in osteoclastogenesis in RelB-deficient cells precludes mitochondrial biogenesis, we rescued RelB(-/-) differentiation via overexpression of NFATc1. Mitochondrial parameters in neither WT nor RelB-deficient cultures were affected by NFATc1 overexpression, and bone resorption in RelB(-/-) was not restored. Furthermore, NFATc1 co-overexpression with PGC-1β, although allowing OC differentiation, did not rescue mitochondrial biogenesis or bone resorption in RelB(-/-) OCs, by CTX-I levels. Thus, our results indicate that the alternative NF-κB pathway plays dual, but distinct, roles in controlling the independent processes of OC differentiation and OC mitochondrial biogenesis. Furthermore, the inability of PGC-1β to drive mitochondrial biogenesis in OCs without RelB indicates a cell-type specificity in mitochondria regulation.
Collapse
Affiliation(s)
- Rong Zeng
- Division of Bone and Mineral Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah V Novack
- Division of Bone and Mineral Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
53
|
Ventura S, Aryee DNT, Felicetti F, De Feo A, Mancarella C, Manara MC, Picci P, Colombo MP, Kovar H, Carè A, Scotlandi K. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 2015; 35:3944-54. [PMID: 26616853 DOI: 10.1038/onc.2015.463] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Sarcomas are mesenchymal tumors characterized by blocked differentiation process. In Ewing sarcoma (EWS) both CD99 and EWS-FLI1 concur to oncogenesis and inhibition of differentiation. Here, we demonstrate that uncoupling CD99 from EWS-FLI1 by silencing the former, nuclear factor-κB (NF-κB) signaling is inhibited and the neural differentiation program is re-established. NF-κB inhibition passes through miR-34a-mediated repression of Notch pathway. CD99 counteracts EWS-FLI1 in controlling NF-κB signaling through the miR-34a, which is increased and secreted into exosomes released by CD99-silenced EWS cells. Delivery of exosomes from CD99-silenced cells was sufficient to induce neural differentiation in recipient EWS cells through miR-34a inhibition of Notch-NF-κB signaling. Notably, even the partial delivery of CD99 small interfering RNA may have a broad effect on the entire tumor cell population owing to the spread operated by their miR-34a-enriched exosomes, a feature opening to a new therapeutic option.
Collapse
Affiliation(s)
- S Ventura
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Istituto Ortopedico, Bologna, Italy
| | - D N T Aryee
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University, Vienna, Austria
| | - F Felicetti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A De Feo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - C Mancarella
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Istituto Ortopedico, Bologna, Italy
| | - M C Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Istituto Ortopedico, Bologna, Italy
| | - P Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Istituto Ortopedico, Bologna, Italy
| | - M P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS 'Istituto Nazionale dei Tumori', Milan, Italy
| | - H Kovar
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria.,Department of Pediatrics, Medical University, Vienna, Austria
| | - A Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - K Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Istituto Ortopedico, Bologna, Italy
| |
Collapse
|
54
|
Spilmont M, Léotoing L, Davicco MJ, Lebecque P, Miot-Noirault E, Pilet P, Rios L, Wittrant Y, Coxam V. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro. Nutrients 2015; 7:9265-84. [PMID: 26569295 PMCID: PMC4663593 DOI: 10.3390/nu7115465] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/23/2022] Open
Abstract
The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.
Collapse
Affiliation(s)
- Mélanie Spilmont
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
- GREENTECH SA Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France.
| | - Laurent Léotoing
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Marie-Jeanne Davicco
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Patrice Lebecque
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Thérapie Vectorisée, Université d'Auvergne, Clermont Université, UMR 990, INSERM, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Paul Pilet
- Laboratoire d'Ingénierie Ostéo-Articulaire et Dentaire-LIOAD, Université de Nantes, UMR 791, INSERM, F-44042 Nantes, France.
| | - Laurent Rios
- GREENTECH SA Biopôle Clermont-Limagne, F-63360 Saint-Beauzire, France.
| | - Yohann Wittrant
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
| | - Véronique Coxam
- Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France.
- Unité de Nutrition Humaine, Université d'Auvergne, Clermont Université, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
55
|
Maijer KI, Noort AR, de Hair MJH, van der Leij C, van Zoest KPM, Choi IY, Gerlag DM, Maas M, Tak PP, Tas SW. Nuclear Factor-κB-inducing Kinase Is Expressed in Synovial Endothelial Cells in Patients with Early Arthritis and Correlates with Markers of Inflammation: A Prospective Cohort Study. J Rheumatol 2015; 42:1573-81. [PMID: 26178280 DOI: 10.3899/jrheum.150245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The nuclear factor-κB (NF-κB) family of transcription factors is strongly involved in synovial inflammation. We have previously shown that NF-κB-inducing kinase (NIK) is a key regulator of inflammation-induced angiogenesis in rheumatoid arthritis (RA) synovial tissue (ST). Here, we investigated synovial NIK expression in patients with early arthritis and in autoantibody-positive individuals at risk of developing RA. METHODS ST biopsies were obtained by arthroscopy from 154 patients with early arthritis (duration < 1 yr) with various diagnoses and 54 IgM rheumatoid factor-positive and/or anticitrullinated protein antibodies-positive individuals without evidence of arthritis. ST was stained for NIK and endothelial cell (EC) markers. Additionally, measures of disease activity were collected and contrast-enhanced magnetic resonance imaging (MRI) was performed in a subset of these patients. RESULTS In patients with early arthritis, NIK was predominantly expressed in EC of small blood vessels. Further, NIK expression correlated with erythrocyte sedimentation rate (r 0.184, p = 0.024), C-reactive protein (r 0.194, p = 0.017), joint swelling (r 0.297, p < 0.001), synovial immune cell markers (lining r 0.585, p < 0.001; sublining macrophages r 0.728, p < 0.001; T cells r 0.733, p < 0.001; and B cells r 0.264, p = 0.040), MRI effusion (r 0.665, p < 0.001), MRI synovitis (r 0.632, p < 0.001), and MRI total score (r 0.569, p < 0.001). In 18.5% of autoantibody-positive individuals, ST NIK(+)EC were present, but this was not predictive of the development of arthritis. CONCLUSION NIK(+)EC are present in the earliest phase of synovial inflammation and may be indicative of high angiogenic activity in the inflamed ST. Therefore, NIK(+)EC may play an important role in the persistence of synovitis. Collectively, our data underscore the importance of angiogenesis in synovial inflammation and identify NIK as a potential therapeutic target in arthritis.
Collapse
Affiliation(s)
- Karen I Maijer
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Ae Ri Noort
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Maria J H de Hair
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Christiaan van der Leij
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Katinka P M van Zoest
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Ivy Y Choi
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Daniëlle M Gerlag
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Mario Maas
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Paul P Tak
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam
| | - Sander W Tas
- From the Division of Clinical Immunology and Rheumatology, the Department of Experimental Immunology, and the Department of Radiology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands; GlaxoSmithKline, Stevenage; University of Cambridge, Cambridge, UK.K.I. Maijer, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; A.R. Noort, MSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; M.J. de Hair, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; C. van der Leij, MD, Department of Radiology, Academic Medical Center/University of Amsterdam; K.P. van Zoest, BSc, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam; I.Y. Choi, MD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam; D.M. Gerlag, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline; M. Maas, MD, PhD, Department of Radiology, Academic Medical Center/University of Amsterdam; P.P. Tak, MD, PhD, Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, and GlaxoSmithKline, Stevenage, and University of Cambridge; S.W. Tas, MD, PhD, Division of Clinical Immunology and Rheumatology, and Department of Experimental Immunology, Academic Medical Center/University of Amsterdam.
| |
Collapse
|
56
|
Zhao Z, Hou X, Yin X, Li Y, Duan R, Boyce BF, Yao Z. TNF Induction of NF-κB RelB Enhances RANKL-Induced Osteoclastogenesis by Promoting Inflammatory Macrophage Differentiation but also Limits It through Suppression of NFATc1 Expression. PLoS One 2015; 10:e0135728. [PMID: 26287732 PMCID: PMC4545392 DOI: 10.1371/journal.pone.0135728] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/26/2015] [Indexed: 12/19/2022] Open
Abstract
TNF induces bone loss in common bone diseases by promoting osteoclast formation directly and indirectly, but it also limits osteoclast formation by inducing expression of NF-κB p100. Osteoclast precursors (OCPs) are derived from M1 (inflammatory) and M2 (resident) macrophages. However, it is not known if TNF stimulates or limits osteoclast formation through regulation of M1 or M2 differentiation or if RelB, a partner of p100, is involved. To investigate these questions, we treated bone marrow cells (BMCs) with M-CSF alone or in combination with TNF to enrich for OCPs, which we called M-OCPs and T-OCPs, respectively. We found that TNF switched CD11b+F4/80+ M-OCPs from Ly6C-Gr1- M2 to Ly6C+Gr1-CD11c+ and Ly6C-Gr1-CD11c+ M1 cells. RANKL induced osteoclast formation from both Ly6C+Gr1- and Ly6C-Gr1- T-OCPs, but only from Ly6C+Gr1- M-OCPs, which formed significantly fewer osteoclasts than T-OCPs. Importantly, Ly6C+Gr1- cells from both M- and T-OCPs have increased expression of the M1 marker genes, iNOS, TNF, IL-1β and TGFβ1, compared to Ly6C-Gr1- cells, and Ly6C-Gr1- cells from T-OCPs also have increased expression of iNOS and TGFβ1 compared to cells from M-OCPs. Both RANKL and TNF increased RelB mRNA expression. TNF significantly increased RelB protein levels, but RANKL did not because it also induced RelB proteasomal degradation. TNF inhibited RANKL-induced NFATc1 mRNA expression and osteoclast formation from M-OCPs, but not from T-OCPs, and it did not induce Ly6C+Gr1-CD11c+ or Ly6C-Gr1-CD11c+ M1 macrophages from RelB-/- BMCs. Furthermore, overexpression of RelB in M-OCPs reduced RANKL-induced osteoclast formation and NFATc1 mRNA expression, but it increased TNF-induced OC formation without affecting NFATc1 levels. Thus, TNF induction of RelB directly mediates terminal osteoclast differentiation independent of NFATc1 and limits RANKL-induced osteoclastogenesis by inhibiting NFATc1 activation. However, the dominant role of TNF is to expand the OCP pool by switching the differentiation of M-CSF-induced M2 to M1 macrophages with enhanced osteoclast forming potential. Strategies to degrade RelB could prevent TNF-induced M2/M1 switching and reduce osteoclast formation.
Collapse
Affiliation(s)
- Zhijun Zhao
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
| | - Xiaodong Hou
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Xiaoxiang Yin
- Department of Medical Imaging, Henan University First Affiliated Hospital, 357 Ximen Street, Kaifeng, Henan 475001, P.R. China
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Yanyun Li
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Rong Duan
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Brendan F. Boyce
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
| | - Zhenqiang Yao
- University of Rochester Medical Center, Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, Box 626, Room 1–2105, 601 Elmwood Ave, Rochester, NY 14642, United States of America
- * E-mail:
| |
Collapse
|
57
|
NLRP12 provides a critical checkpoint for osteoclast differentiation. Proc Natl Acad Sci U S A 2015; 112:10455-60. [PMID: 26240332 DOI: 10.1073/pnas.1500196112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The alternative or noncanonical nuclear factor kappa B (NF-κB) pathway regulates the osteoclast (OC) response to receptor activator of nuclear factor kappa B ligand (RANKL) and thus bone metabolism. Although several lines of evidence support the emerging concept that nucleotide-binding leucine-rich repeat and pyrin domain-containing receptor 12 (NLRP12) impedes alternative NF-κB activation in innate immune cells, a functional role for NLRP12 outside an inflammatory disease model has yet to be reported. Our study demonstrates that NLRP12 has a protective role in bone via suppression of alternative NF-κB-induced osteoclastogenesis and is down-modulated in response to osteoclastogenic stimuli. Here, we show that retroviral overexpression of NLRP12 suppressed RelB nuclear translocation and OC formation. Conversely, genetic ablation of NLRP12 promoted NIK stabilization, RelB nuclear translocation, and increased osteoclastogenesis in vitro. Using radiation chimeras, we demonstrated these in vitro observations dovetail with our in vivo findings that NLRP12 deficiency leads to enhanced OC numbers accompanied by a significant decline in bone mass under physiological conditions. Consistent with the basal bone phenotype, we also observed an enhanced osteolytic response following RANKL injection over the calvaria of NLRP12-deficient chimeric mice compared with wild-type control mice. Thus, modulation of NLRP12 levels controls alternative NF-κB signaling in OC precursors, altering bone homeostasis and osteolytic responses.
Collapse
|
58
|
Visualization of the entire differentiation process of murine M cells: suppression of their maturation in cecal patches. Mucosal Immunol 2015; 8:650-60. [PMID: 25336168 DOI: 10.1038/mi.2014.99] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/21/2014] [Indexed: 02/04/2023]
Abstract
The microfold (M) cell residing in the follicle-associated epithelium is a specialized epithelial cell that initiates mucosal immune responses by sampling luminal antigens. The differentiation process of M cells remains unclear due to limitations of analytical methods. Here we found that M cells were classified into two functionally different subtypes based on the expression of Glycoprotein 2 (GP2) by newly developed image cytometric analysis. GP2-high M cells actively took up luminal microbeads, whereas GP2-negative or low cells scarcely ingested them, even though both subsets equally expressed the other M-cell signature genes, suggesting that GP2-high M cells represent functionally mature M cells. Further, the GP2-high mature M cells were abundant in Peyer's patch but sparse in the cecal patch: this was most likely due to a decrease in the nuclear translocation of RelB, a downstream transcription factor for the receptor activator of nuclear factor-κB signaling. Given that murine cecum contains a protrusion of beneficial commensals, the restriction of M-cell activity might contribute to preventing the onset of any excessive immune response to the commensals through decelerating the M-cell-dependent uptake of microorganisms.
Collapse
|
59
|
Yamaguchi M, Vikulina T, Arbiser JL, Weitzmann MN. Suppression of NF-κB activation by gentian violet promotes osteoblastogenesis and suppresses osteoclastogenesis. Curr Mol Med 2015; 14:783-92. [PMID: 25056540 DOI: 10.2174/1566524014666140724104842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/28/2014] [Accepted: 04/12/2014] [Indexed: 01/23/2023]
Abstract
Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-κB ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-κB) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-κB activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass.
Collapse
Affiliation(s)
| | | | | | - M N Weitzmann
- (M.N. Weitzmann) 101 Woodruff Circle, 1305 WMRB, Atlanta, Georgia 30322, USA.
| |
Collapse
|
60
|
Abstract
Osteoclasts are multinucleated cells formed mainly on bone surfaces in response to cytokines by fusion of bone marrow-derived myeloid lineage precursors that circulate in the blood. Major advances in understanding of the molecular mechanisms regulating osteoclast formation and functions have been made in the past 20 years since the discovery that their formation requires nuclear factor-κB (NF-κB) signaling and that this is activated in response to the essential osteoclastogenic cytokine, receptor activator of NF-κB ligand (RANKL), which also controls osteoclast activation to resorb (degrade) bone. These studies have revealed that RANKL and some pro-inflammatory cytokines, including tumor necrosis factor, activate NF-κB and downstream signaling, including c-Fos and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and inhibition of repressors of NFATc1 signaling, to positively regulate osteoclast formation and functions. However, these cytokines also activate NF-κB signaling that can limit osteoclast formation through the NF-κB signaling proteins, TRAF3 and p100, and the suppressors of c-Fos/NFATc1 signaling, IRF8, and RBP-J. This paper reviews current understanding of how NF-κB signaling is involved in the positive and negative regulation of cytokine-mediated osteoclast formation and activation.
Collapse
Affiliation(s)
- Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yan Xiu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
61
|
Noort AR, Tak PP, Tas SW. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther 2015; 17:15. [PMID: 25774937 PMCID: PMC4308835 DOI: 10.1186/s13075-015-0527-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is essential for the expression of pro-inflammatory cytokines, but can also induce regulatory pathways. NF-κB can be activated via two distinct pathways: the classical or canonical pathway, and the alternative or non-canonical pathway. It is well established that the canonical NF-κB pathway is essential both in acute inflammatory responses and in chronic inflammatory diseases, including rheumatoid arthritis (RA). Although less extensively studied, the non-canonical NF-κB pathway is not only central in lymphoid organ development and adaptive immune responses, but is also thought to play an important role in the pathogenesis of RA. Importantly, this pathway appears to have cell type-specific functions and, since many different cell types are involved in the pathogenesis of RA, it is difficult to predict the net overall contribution of the non-canonical NF-κB pathway to synovial inflammation. In this review, we describe the current understanding of non-canonical NF-κB signaling in various important cell types in the context of RA and consider the relevance to the pathogenesis of the disease. In addition, we discuss current drugs targeting this pathway, as well as future therapeutic prospects.
Collapse
|
62
|
Noort AR, van Zoest KPM, Weijers EM, Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO, Tak PP, Tas SW. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol 2014; 234:375-85. [PMID: 25043127 PMCID: PMC4194146 DOI: 10.1002/path.4403] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
Abstract
Angiogenesis is essential during development and in pathological conditions such as chronic inflammation and cancer progression. Inhibition of angiogenesis by targeting vascular endothelial growth factor (VEGF) blocks disease progression, but most patients eventually develop resistance which may result from compensatory signalling pathways. In endothelial cells (ECs), expression of the pro-angiogenic chemokine CXCL12 is regulated by non-canonical nuclear factor (NF)-κB signalling. Here, we report that NF-κB-inducing kinase (NIK) and subsequent non-canonical NF-κB signalling regulate both inflammation-induced and tumour-associated angiogenesis. NIK is highly expressed in endothelial cells (ECs) in tumour tissues and inflamed rheumatoid arthritis synovial tissue. Furthermore, non-canonical NF-κB signalling in human microvascular ECs significantly enhanced vascular tube formation, which was completely blocked by siRNA targeting NIK. Interestingly, Nik(-/-) mice exhibited normal angiogenesis during development and unaltered TNFα- or VEGF-induced angiogenic responses, whereas angiogenesis induced by non-canonical NF-κB stimuli was significantly reduced. In addition, angiogenesis in experimental arthritis and a murine tumour model was severely impaired in these mice. These studies provide evidence for a role of non-canonical NF-κB signalling in pathological angiogenesis, and identify NIK as a potential therapeutic target in chronic inflammatory diseases and tumour neoangiogenesis.
Collapse
Affiliation(s)
- Ae R Noort
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of AmsterdamThe Netherlands
- Department of Experimental Immunology, Academic Medical Center/University of AmsterdamThe Netherlands
| | - Katinka PM van Zoest
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of AmsterdamThe Netherlands
- Department of Experimental Immunology, Academic Medical Center/University of AmsterdamThe Netherlands
| | - Ester M Weijers
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU Medical CenterAmsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU Medical CenterAmsterdam, The Netherlands
| | - Chrissta X Maracle
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of AmsterdamThe Netherlands
- Department of Experimental Immunology, Academic Medical Center/University of AmsterdamThe Netherlands
| | - Deborah V Novack
- Division of Bone and Mineral Diseases, Departments of Medicine and Pathology, Washington University School of MedicineSt Louis, Missouri, USA
| | - Martin J Siemerink
- Ocular Angiogenesis Group, Department of Ophthalmology and Department of Cell Biology and Histology, Academic Medical Center/University of AmsterdamThe Netherlands
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology and Department of Cell Biology and Histology, Academic Medical Center/University of AmsterdamThe Netherlands
| | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of AmsterdamThe Netherlands
- Department of Medicine, University of CambridgeCambridge, UK
| | - Sander W Tas
- Department of Clinical Immunology and Rheumatology, Academic Medical Center/University of AmsterdamThe Netherlands
- Department of Experimental Immunology, Academic Medical Center/University of AmsterdamThe Netherlands
| |
Collapse
|
63
|
Suzuki E, Mellins ED, Gershwin ME, Nestle FO, Adamopoulos IE. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev 2014; 13:496-502. [PMID: 24424175 PMCID: PMC3995976 DOI: 10.1016/j.autrev.2014.01.050] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
Psoriatic arthritis (PsA) is an immune-mediated chronic inflammatory disease, affecting both the skin and joints. Disease progression is associated with aberrant cytokine expression, and TNF blockade is the most successful therapy to date. However, not all patients are responsive to anti-TNF treatment, highlighting the need to better understand the cellular and molecular mechanisms that govern the disease. PsA associations with single nucleotide polymorphisms in IL23R as well as TRAF3IP2 (Act1), a molecule downstream of the IL-17 receptor (IL-17R), have linked the IL-23/IL-17 axis to disease pathology. Although both cytokines are implicated in PsA, a full picture of their cellular targets and pathogenic mechanisms has not yet emerged. In this review, we focus on the IL-23/IL-17 axis-elicited responses mediated by osteoclasts, keratinocytes and neutrophils. Expanding our understanding of the cellular and molecular mechanisms that dictate pathogenicity in PsA will contribute to developing novel treatment strategies to combat disease.
Collapse
Affiliation(s)
- Erika Suzuki
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Pediatric Rheumatology, Program in Immunology, Stanford University, Palo Alto, CA 94305, USA
| | - M Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - Frank O Nestle
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, CA 95817, USA.
| |
Collapse
|
64
|
Yao Z, Li Y, Yin X, Dong Y, Xing L, Boyce BF. NF-κB RelB negatively regulates osteoblast differentiation and bone formation. J Bone Miner Res 2014; 29:866-77. [PMID: 24115294 PMCID: PMC3961566 DOI: 10.1002/jbmr.2108] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/08/2013] [Accepted: 09/19/2013] [Indexed: 11/08/2022]
Abstract
RelA-mediated NF-κB canonical signaling promotes mesenchymal progenitor cell (MPC) proliferation, but inhibits differentiation of mature osteoblasts (OBs) and thus negatively regulates bone formation. Previous studies suggest that NF-κB RelB may also negatively regulate bone formation through noncanonical signaling, but they involved a complex knockout mouse model, and the molecular mechanisms involved were not investigated. Here, we report that RelB(-/-) mice develop age-related increased trabecular bone mass associated with increased bone formation. RelB(-/-) bone marrow stromal cells expanded faster in vitro and have enhanced OB differentiation associated with increased expression of the osteoblastogenic transcription factor, Runt-related transcription factor 2 (Runx2). In addition, RelB directly targeted the Runx2 promoter to inhibit its activation. Importantly, RelB(-/-) bone-derived MPCs formed bone more rapidly than wild-type cells after they were injected into a murine tibial bone defect model. Our findings indicate that RelB negatively regulates bone mass as mice age and limits bone formation in healing bone defects, suggesting that inhibition of RelB could reduce age-related bone loss and enhance bone repair.
Collapse
Affiliation(s)
- Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xiaoxiang Yin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yufeng Dong
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
65
|
Tchoghandjian A, Jennewein C, Eckhardt I, Momma S, Figarella-Branger D, Fulda S. Smac mimetic promotes glioblastoma cancer stem-like cell differentiation by activating NF-κB. Cell Death Differ 2014; 21:735-47. [PMID: 24488095 DOI: 10.1038/cdd.2013.200] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/05/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023] Open
Abstract
Recently, a broader role of inhibitor of apoptosis (IAP) proteins besides their antiapoptotic functions has been described. Therefore, we investigated the effect of non-toxic concentrations of the small-molecule Smac mimetic BV6, which antagonizes IAP proteins, on differentiation of cancer stem-like cells (CSLCs) derived from primary glioblastoma (GBM) specimens. Here, we identify a novel function of BV6 in regulating differentiation of GBM CSLCs by activating NF-κB. BV6 at non-lethal doses stimulates morphological changes associated with the differentiation of GBM CSLCs. BV6 increases transcriptional activity, mRNA and protein levels of the astrocytic marker GFAP without altering expression of the neuronal marker β-III-tubulin, indicating that BV6 induces astrocytic differentiation of GBM CSLCs. Molecular studies reveal that BV6 triggers processing of the NF-κB subunit p100 to p52, nuclear translocation of p52 and p50 and increased NF-κB DNA-binding. Intriguingly, inhibition of NF-κB by overexpression of dominant-negative IκBα super-repressor (IκBα-SR) blocks the BV6-stimulated increase in GFAP and differentiation. Interestingly, this BV6-stimulated differentiation is associated with reduced expression of stemness markers such as CD133, Nanog and Sox2 in GBM CSLCs. In contrast, BV6 does not alter cell morphology, differentiation and expression of stemness markers in non-malignant neural stem cells. Importantly, BV6 treatment reduces clonogenicity of GBM CSLCs in vitro and in vivo, suppresses their tumorigenicity in orthotopic and subcutaneous mouse models and significantly increases the survival of mice. By identifying a novel role of BV6 in promoting differentiation of GBM CSLCs, these findings provide new insights into Smac mimetic-regulated non-apoptotic functions with important implications for targeting GBM CSLCs.
Collapse
Affiliation(s)
- A Tchoghandjian
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, Frankfurt, Germany
| | - C Jennewein
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, Frankfurt, Germany
| | - I Eckhardt
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, Frankfurt, Germany
| | - S Momma
- Institute of Neuropathology, Goethe-University, Frankfurt, Germany
| | | | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, Frankfurt, Germany
| |
Collapse
|
66
|
Taniguchi R, Fukushima H, Osawa K, Maruyama T, Yasuda H, Weih F, Doi T, Maki K, Jimi E. RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα. J Biol Chem 2014; 289:7349-61. [PMID: 24488495 DOI: 10.1074/jbc.m113.538314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing.
Collapse
Affiliation(s)
- Rei Taniguchi
- From the Division of Molecular Signaling and Biochemistry and
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Xiu Y, Xu H, Zhao C, Li J, Morita Y, Yao Z, Xing L, Boyce BF. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J Clin Invest 2013; 124:297-310. [PMID: 24316970 DOI: 10.1172/jci66947] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022] Open
Abstract
The cytokines RANKL and TNF activate NF-κB signaling in osteoclast precursors (OCPs) to induce osteoclast (OC) formation. Conversely, TNF can limit OC formation through NF-κB p100, which acts as an inhibitor, and TNF receptor-associated receptor 3 (TRAF3); however, a role for TRAF3 in RANKL-mediated OC formation is unknown. We found that TRAF3 limits RANKL-induced osteoclastogenesis by suppressing canonical and noncanonical NF-κB signaling. Conditional OC-specific Traf3-KO (cKO) mice had mild osteoporosis and increased OC formation. RANKL induced TRAF3 degradation via the lysosome/autophagy system. The autophagy/lysosome inhibitor chloroquine reduced RANKL-induced OC formation and function by increasing TRAF3 expression in OCPs in vitro and in vivo. Although chloroquine had no effect on basal bone resorption, it inhibited parathyroid hormone- and ovariectomy-induced OC activation in WT, but not cKO, mice. Deletion of the transcription factor gene Relb resulted in increased TRAF3 expression in OCPs, which was associated with decreased RANKL-induced TRAF3 degradation. RelB directly increased expression of BECN1, a key autophagy regulator, by binding to its promoter. These data indicate that autophagic/lysosomal degradation of TRAF3 is an important step in RANKL-induced NF-κB activation in OCPs. Furthermore, treatments that increase TRAF3 levels in OCPs, including pharmacological inhibition of its degradation with compounds such as chloroquine, may limit bone destruction in common bone diseases.
Collapse
|
68
|
|
69
|
Yang C, Novack DV. Anti-cancer IAP antagonists promote bone metastasis: a cautionary tale. J Bone Miner Metab 2013; 31:496-506. [PMID: 23740289 PMCID: PMC3962044 DOI: 10.1007/s00774-013-0479-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/03/2013] [Indexed: 12/30/2022]
Abstract
The bone microenvironment is complex, containing bone-forming osteoblasts, bone-resorbing osteoclasts, bone-maintaining osteocytes, hematopoietic lineage cells, as well as blood vessels, nerves, and stromal cells. Release of embedded growth factors from the bone matrix via osteoclast resorption has been shown to participate in the alteration of bone microenvironment to facilitate tumor metastasis to this organ. Many types of malignancies including solid tumors and leukemias are associated with elevated levels of inhibitor of apoptosis (IAP) proteins, and IAP antagonists represent an important emerging class of anti-cancer agents. IAPs exert anti-apoptotic roles by inhibiting caspases and upregulating pro-survival proteins, at least in part by activating classical NF-κB signaling. In addition, IAPs act as negative regulators in the alternative NF-κB pathway, so that IAP antagonists stimulate this pathway. The role of the classical NF-κB pathway in IAP antagonist-induced apoptosis has been extensively studied, whereas much less attention has been paid to the role of these agents in the alternative pathway. Thus far, several IAP antagonists have been tested in preclinical and early stage clinical trials, and have shown promise in sensitizing tumor cells to apoptosis without significant side effects. However, recent preclinical evidence suggests an increased risk of bone metastasis caused by IAP antagonists, along with potential for promoting osteoporosis. In this review, the connection between IAP antagonists, the alternative NF-κB pathway, osteoclasts, and bone metastasis are discussed. In light of these effects of IAP antagonists on the bone microenvironment, more attention should be paid to this and other host tissues as these drugs are developed further.
Collapse
Affiliation(s)
- Chang Yang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Box 8301, St. Louis, MO, 63110, USA,
| | | |
Collapse
|
70
|
Abstract
The transcription factor NF-κB is a family of proteins involved in signaling pathways essential for normal cellular functions and development. Deletion of various components of this pathway resulted with abnormal skeletal development. Research in the last decade has established that NF-κB signaling mediates RANK ligand-induced osteoclastogenesis. Consistently, it was shown that inhibition of NF-κB was an effective approach to inhibit osteoclast formation and bone resorptive activity. Identification of the molecular machinery underlying NF-κB activation permitted osteoclast-specific deletion of the major components of this pathway. As a result, it was clear that deletion of members of the proximal IKK kinase complex and the distal NF-κB subunits and downstream regulators affected skeletal development. These studies provided several targets of therapeutic intervention in osteolytic diseases. NF-κB activity has been also described as the centerpiece of inflammatory responses and is considered a potent mediator of inflammatory osteolysis. Indeed, inflammatory insults exacerbate physiologic RANKL-induced NF-κB signals leading to exaggerated responses and to inflammatory osteolysis. These superimposed NF-κB activities appear to underlie several bone pathologies. This review will describe the individual roles of NF-κB molecules in bone resorption and inflammatory osteolysis.
Collapse
Affiliation(s)
- Y Abu-Amer
- Department of Orthopedic Surgery, Department of Cell Biology & Physiology, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
71
|
Casimiro S, Alho I, Bettencourt M, Pires R, Lipton A, Costa L. RANKL enhances the effect of an antagonist of inhibitor of apoptosis proteins (cIAPs) in RANK-positive breast cancer cells. J Bone Oncol 2013; 2:116-22. [PMID: 26909281 PMCID: PMC4723389 DOI: 10.1016/j.jbo.2013.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
Objective Between 65% and 75% of patients with metastatic breast cancer will have decreased 5-year survival and increased morbidity due to cancer relapse in bone. At this stage of disease treatment is palliative, but tumor-targeted compounds could add to the benefits of anti-resorptive agents, improving clinical outcome. Inhibitor-of-apoptosis proteins (IAPs) are overexpressed in many tumors and second mitochondria-derived activator of caspases (Smac) mimetics have been designed to antagonize IAPs. In this work we explored the use of AT-406, a Smac mimetic, to target the tumor compartment of bone metastases. Methods Effect of AT-406 on cancer cells apoptosis, expression of IAPs and osteogenic potential was addressed in vitro using the RANK-positive MDA-MB-231 breast cancer cell line. Effect of AT-406 on osteoclastogenesis was determined by inducing the differentiation of the RAW 264.7 mouse monocytic cell line. Osteoclastogenesis was measured by TRAP staining and TRACP 5b quantification. Results AT-406 increased apoptosis in MDA-MB-231 breast cancer cells in vitro, and activation of RANK-pathway improved this effect. RANKL stimuli induced a strong increase in c-IAP2. AT-406 increased osteoclast differentiation and activity, by up-regulating the osteogenic transcription factor Nfatc1, but also increased the apoptosis of mature osteoclasts in the absence of RANKL. Conclusions Our results indicate that despite the anti-tumoral effect of AT-406, its use in the context of bone metastatic disease needs to be carefully monitored for the induction of increased bone resorption. We also hypothesize that the combination of AT-406 with anti-RANKL directed therapies could have a beneficial effect, especially in RANK-positive tumors.
Collapse
Affiliation(s)
- S Casimiro
- Clinical and Translational Oncology Research Unit, Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal
| | - I Alho
- Clinical and Translational Oncology Research Unit, Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal
| | - M Bettencourt
- Clinical and Translational Oncology Research Unit, Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal
| | - R Pires
- Clinical and Translational Oncology Research Unit, Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal
| | - A Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - L Costa
- Clinical and Translational Oncology Research Unit, Institute of Molecular Medicine, Lisbon Medical School, Lisbon, Portugal; Oncology Department, Hospital de Santa Maria-CHLN, Lisbon, Portugal
| |
Collapse
|
72
|
Nepal M, Choi HJ, Choi BY, Yang MS, Chae JI, Li L, Soh Y. Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-κB and NFATc1 pathways. Eur J Pharmacol 2013; 715:96-104. [PMID: 23791609 DOI: 10.1016/j.ejphar.2013.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 01/15/2023]
Abstract
Hispidulin, a flavonoid that is known to have anti-inflammatory and anti-oxidant effects, attenuates osteoclastogenesis and bone resorption. To investigate the molecular mechanism of its inhibitory effect on osteoclastogenesis, we employed the receptor activator of the nuclear factor κB (NF-κB) ligand (RANKL)-induced murine monocyte/macrophage RAW 264.7 cells and bone marrow-derived macrophages (BMMs) for osteoclastic differentiation in vitro. The inhibitory effect on in vitro osteoclastogenesis was evaluated by counting the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and by measuring the expression levels of osteoclast-specific genes such as matrix metalloproteinase 9 (MMP9), TRAP and cathepsin K. Similarly, hispidulin significantly inhibited osteoclast activity in RAW 264.7 cell as well as stimulated the ALP activity of MC3T3E1 cells. Furthermore, the in vivo suppressive effect on bone loss was assessed quantitatively in a lipopolysaccharide (LPS)-induced mouse model using microcomputational tomography (μCT) and histochemical analyses. Hispidulin was found to inhibit RANKL-induced activation of Jun N-terminal kinase (JNK) and p38, in addition to NF-κB in vitro experiment. Additionally, hispidulin decreased NFATc1 transcriptional activity in RANKL-induced osteoclastogenesis. This study identifies hispidulin as a potent inhibitor of osteoclastogenesis and bone resorption and provides evidence for its therapeutic potential to treat diseases involving abnormal bone lysis.
Collapse
Affiliation(s)
- Manoj Nepal
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 project, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, Wang D, Tan A, Gillespie TL, O'Shea M, Roe AJ, Shaw DJ, Gally DL, Lengeling A, Mabbott NA, Haas J, Mahajan A. Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 2013; 12:645-56. [PMID: 23159054 DOI: 10.1016/j.chom.2012.10.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022]
Abstract
Salmonella Typhimurium specifically targets antigen-sampling microfold (M) cells to translocate across the gut epithelium. Although M cells represent a small proportion of the specialized follicular-associated epithelium (FAE) overlying mucosa-associated lymphoid tissues, their density increases during Salmonella infection, but the underlying molecular mechanism remains unclear. Using in vitro and in vivo infection models, we demonstrate that the S. Typhimurium type III effector protein SopB induces an epithelial-mesenchymal transition (EMT) of FAE enterocytes into M cells. This cellular transdifferentiation is a result of SopB-dependent activation of Wnt/β-catenin signaling leading to induction of both receptor activator of NF-κB ligand (RANKL) and its receptor RANK. The autocrine activation of RelB-expressing FAE enterocytes by RANKL/RANK induces the EMT-regulating transcription factor Slug that marks epithelial transdifferentiation into M cells. Thus, via the activity of a single secreted effector, S. Typhimurium transforms primed epithelial cells into M cells to promote host colonization and invasion.
Collapse
Affiliation(s)
- Amin Tahoun
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Etzrodt M, Cortez-Retamozo V, Newton A, Zhao J, Ng A, Wildgruber M, Romero P, Wurdinger T, Xavier R, Geissmann F, Meylan E, Nahrendorf M, Swirski FK, Baltimore D, Weissleder R, Pittet MJ. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep 2013; 1:317-24. [PMID: 22545247 DOI: 10.1016/j.celrep.2012.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Monocytes serve as a central defense system against infection and injury but can also promote pathological inflammatory responses. Considering the evidence that monocytes exist in at least two subsets committed to divergent functions, we investigated whether distinct factors regulate the balance between monocyte subset responses in vivo. We identified a microRNA (miRNA), miR-146a, which is differentially regulated both in mouse (Ly-6C(hi)/Ly-6C(lo)) and human (CD14(hi)/CD14(lo)CD16(+)) monocyte subsets. The single miRNA controlled the amplitude of the Ly-6C(hi) monocyte response during inflammatory challenge whereas it did not affect Ly-6C(lo) cells. miR-146a-mediated regulation was cell-intrinsic and depended on Relb, a member of the noncanonical NF-κB/Rel family, which we identified as a direct miR-146a target. These observations not only provide mechanistic insights into the molecular events that regulate responses mediated by committed monocyte precursor populations but also identify targets for manipulating Ly-6C(hi) monocyte responses while sparing Ly-6Clo monocyte activity.
Collapse
Affiliation(s)
- Martin Etzrodt
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Weitzmann MN. The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. SCIENTIFICA 2013; 2013:125705. [PMID: 24278766 PMCID: PMC3820310 DOI: 10.1155/2013/125705] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/24/2012] [Indexed: 05/30/2023]
Abstract
Although it has long been recognized that inflammation, a consequence of immune-driven processes, significantly impacts bone turnover, the degree of centralization of skeletal and immune functions has begun to be dissected only recently. It is now recognized that formation of osteoclasts, the bone resorbing cells of the body, is centered on the key osteoclastogenic cytokine, receptor activator of NF- κ B ligand (RANKL). Although numerous inflammatory cytokines are now recognized to promote osteoclast formation and skeletal degradation, with just a few exceptions, RANKL is now considered to be the final downstream effector cytokine that drives osteoclastogenesis and regulates osteoclastic bone resorption. The biological activity of RANKL is moderated by its physiological decoy receptor, osteoprotegerin (OPG). New discoveries concerning the sources and regulation of RANKL and OPG in physiological bone turnover as well as under pathological (osteoporotic) conditions continue to be made, opening a window to the complex regulatory processes that control skeletal integrity and the depth of integration of the skeleton within the immune response. This paper will examine the interconnection between bone turnover and the immune system and the implications thereof for physiological and pathological bone turnover.
Collapse
Affiliation(s)
- M. Neale Weitzmann
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA 30033, USA
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 1305 WMRB, Atlanta, GA 30322, USA
| |
Collapse
|
76
|
Yang C, Davis JL, Zeng R, Vora P, Su X, Collins LI, Vangveravong S, Mach RH, Piwnica-Worms D, Weilbaecher KN, Faccio R, Novack DV. Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation. Cancer Discov 2012; 3:212-23. [PMID: 23269702 DOI: 10.1158/2159-8290.cd-12-0271] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED Inhibitor of apoptosis (IAP) proteins play a central role in many types of cancer, and IAP antagonists are in development as anticancer agents. IAP antagonists cause apoptosis in many cells, but they also activate alternative NF-κB signaling through NF-κB-inducing kinase (NIK), which regulates osteoclasts. In bone metastasis, a positive feedback loop between tumors and osteoclasts promotes tumor growth and osteolysis. We therefore tested the effect of IAP antagonists on the bone microenvironment for metastasis. In both drug-sensitive and drug-resistant tumors, growth in bone was favored, as compared with other sites during IAP antagonist treatment. These drugs also caused osteoporosis and increased osteoclastogenesis, mediated by NIK, and enhanced tumor-associated osteolysis. Cotreatment with zoledronic acid, a potent osteoclast inhibitor, reduced IAP antagonist-enhanced tumor growth in bone and osteolysis. Thus, IAP antagonist-based cancer treatment may be compromised by osteoporosis and enhanced skeletal metastasis, which may be prevented by antiresorptive agents. SIGNIFICANCE Although IAP antagonists are a class of anticancer agents with proven efficacy in multiple cancers, we show that these agents can paradoxically increase tumor growth and metastasis in the bone by stabilizing NIK and activating the alternative NF-κB pathway in osteoclasts. Future clinical trials of IAP antagonist-based therapy may require detailed examination of this potential for enhanced bone metastasis and osteoporosis, as well as possible combination with antiresorptive agents.
Collapse
Affiliation(s)
- Chang Yang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Yamaguchi N, Yokota M, Taguchi Y, Gohda J, Inoue JI. cIAP1/2 negatively regulate RANKL-induced osteoclastogenesis through the inhibition of NFATc1 expression. Genes Cells 2012; 17:971-81. [PMID: 23126497 DOI: 10.1111/gtc.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 09/29/2012] [Indexed: 01/15/2023]
Abstract
Receptor activator of nuclear factor κB (RANK) is a member of the tumor necrosis factor receptor superfamily (TNFRSF) and triggers osteoclastogenesis by inducing the expression of NFATc1 through the activation of the NF-κB and MAPK pathways. Cellular inhibitors of apoptosis proteins 1 and 2 (cIAP1/2), which are ubiquitin E3 ligases, are involved in the activation of the NF-κB and MAPK pathways by various members of the TNFRSF. However, the involvement of cIAP1/2 in RANK signaling has remained largely unknown. In this study, we reveal the involvement of cIAP1/2 in RANK ligand (RANKL)-induced osteoclastogenesis. The over-expression of cIAP1 or cIAP2 in the mouse monocytic cell line Raw264.7 resulted in the significant suppression of RANKL-induced NFATc1 mRNA expression and osteoclastogenesis, whereas the activation of the NF-κB and MAPK pathways was barely changed by these over-expressions. The depletion of endogenous cIAP1/2 by their specific inhibitor MV1 or their siRNA-mediated knockdown resulted in enhanced RANKL-induced NFATc1 expression and osteoclastogenesis without affecting the activation of the NF-κB and MAPK pathways. In combination, these results indicate that cIAP1/2 negatively regulate osteoclastogenesis by inhibiting NFATc1 mRNA expression in a manner that is distinct from the previously identified functions of cIAP1/2.
Collapse
Affiliation(s)
- Noritaka Yamaguchi
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
78
|
Akiyama T, Shinzawa M, Akiyama N. RANKL-RANK interaction in immune regulatory systems. World J Orthop 2012; 3:142-50. [PMID: 23173110 PMCID: PMC3502610 DOI: 10.5312/wjo.v3.i9.142] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/21/2012] [Accepted: 09/15/2012] [Indexed: 02/06/2023] Open
Abstract
The interaction between the receptor activator of NF-κB ligand (RANKL) and its receptor RANK plays a critical role in the development and function of diverse tissues. This review summarizes the studies regarding the functions of RANKL signaling in immune regulatory systems. Previous in vitro and in vivo studies have indicated that the RANKL signal promotes the survival of dendritic cells (DCs), thereby activating the immune response. In addition, RANKL signaling to DCs in the body surface barriers controls self-tolerance and oral-tolerance through regulatory T cell functions. In addition to regulating DC functions, the RANKL and RANK interaction is critical for the development and organization of several lymphoid organs. The RANKL signal initiates the formation of clusters of lymphoid tissue inducer cells, which is crucial for lymph node organogenesis. Moreover, the RANKL-RANK interaction controls the differentiation of M cells, specialized epithelial cells in mucosal tissues, that take up and transcytose antigen particles to control the immune response to pathogens or commensal bacterium. The development of epithelial cells localized in the thymic medulla (mTECs) is also regulated by the RANKL-RANK signal. Given that the unique property of mTECs to express a wide variety of tissue-specific self-antigens is critical for the elimination of self-antigen reactive T cells in the thymus, the RANKL-RANK interaction contributes to the suppression of autoimmunity. Future studies on the roles of the RANKL-RANK system in immune regulatory functions would be informative for the development and application of inhibitors of RANKL signaling for disease treatment.
Collapse
|
79
|
MIP-1δ activates NFATc1 and enhances osteoclastogenesis: involvement of both PLCγ2 and NFκB signaling. PLoS One 2012; 7:e40799. [PMID: 22792407 PMCID: PMC3392212 DOI: 10.1371/journal.pone.0040799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Pathological bone resorption is a source of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, periodontitis, and cancer metastasis to bone. Evidence indicates that elevated levels of inflammatory mediators such as IL-1, IL-6, and TNF-α play a role in this process by promoting the formation of bone-resorbing osteoclasts. Additionally, current studies have identified inflammatory chemokines of the macrophage inflammatory protein (MIP) family as potential mediators of pathological bone resorption, where both MIP-1α and -3α have been shown to enhance osteoclast (OCL) development. In this study we provide evidence that MIP-1δ, whose expression is associated with renal cell carcinoma bone metastasis and rheumatoid arthritis, enhances OCL formation in vitro via a direct effect on OCL precursors. Consistent with this ability, exposure of OCL precursors to MIP-1δ resulted in the activation of PLCγ2 and NF-κB, two signaling pathways known to regulate OCL differentiation. Moreover, MIP-1δ induced expression and nuclear translocation of NFATc1, a master regulator of osteoclastogenesis, which was dependent on activation of both the PLCγ2 and NFκB signaling pathways. Lastly, consistent with in vitro studies, in vivo administration of MIP-1δ significantly increased OCL number and resorption area as determined using a murine calvarial bone resorption model. Taken together, these data highlight the potential of MIP-1δ as a mediator of pathological bone resorption and provide insight into the molecular mechanism through which MIP-1δ enhances osteoclastogenesis.
Collapse
|
80
|
Abstract
Both embryonic and adult neurogenesis involves the self-renewal/proliferation, survival, migration and lineage differentiation of neural stem/progenitor cells. Such dynamic process is tightly regulated by intrinsic and extrinsic factors and complex signaling pathways. Misregulated neurogenesis contributes much to a large range of neurodevelopmental defects and neurodegenerative diseases. The signaling of NFκB regulates many genes important in inflammation, immunity, cell survival and neural plasticity. During neurogenesis, NFκB signaling mediates the effect of numerous niche factors such as cytokines, chemokines, growth factors, extracellular matrix molecules, but also crosstalks with other signaling pathways such as Notch, Shh, Wnt/β-catenin. This review summarizes current progress on the NFκB signaling in all aspects of neurogenesis, focusing on the novel role of NFκB signaling in initiating early neural differentiation of neural stem cells and embryonic stem cells.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
81
|
Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One 2012; 7:e35979. [PMID: 22558291 PMCID: PMC3338787 DOI: 10.1371/journal.pone.0035979] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.
Collapse
|
82
|
Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 2012; 209:319-34. [PMID: 22249448 PMCID: PMC3280875 DOI: 10.1084/jem.20111566] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/19/2011] [Indexed: 01/28/2023] Open
Abstract
Tumor necrosis factor (TNF) plays a key role in the pathogenesis of inflammatory bone resorption and associated morbidity in diseases such as rheumatoid arthritis and periodontitis. Mechanisms that regulate the direct osteoclastogenic properties of TNF to limit pathological bone resorption in inflammatory settings are mostly unknown. Here, we show that the transcription factor recombinant recognition sequence binding protein at the J(κ) site (RBP-J) strongly suppresses TNF-induced osteoclastogenesis and inflammatory bone resorption, but has minimal effects on physiological bone remodeling. Myeloid-specific deletion of RBP-J converted TNF into a potent osteoclastogenic factor that could function independently of receptor activator of NF-κB (RANK) signaling. In the absence of RBP-J, TNF effectively induced osteoclastogenesis and bone resorption in RANK-deficient mice. Activation of RBP-J selectively in osteoclast precursors suppressed inflammatory osteoclastogenesis and arthritic bone resorption. Mechanistically, RBP-J suppressed induction of the master regulator of osteoclastogenesis (nuclear factor of activated T cells, cytoplasmic 1) by attenuating c-Fos activation and suppressing induction of B lymphocyte-induced maturation protein-1, thereby preventing the down-regulation of transcriptional repressors such as IRF-8 that block osteoclast differentiation. Thus, RBP-J regulates the balance between activating and repressive signals that regulate osteoclastogenesis. These findings identify RBP-J as a key upstream negative regulator of osteoclastogenesis that restrains excessive bone resorption in inflammatory settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Shannon N. Grimes
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Susan Li
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Xiaoyu Hu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| |
Collapse
|
83
|
Shinzawa M, Maruyama Y, Qin J, Akiyama N, Miyauchi M, Yanai H, Takami M, Inoue JI, Akiyama T. Splenic extramedullary hemopoiesis caused by a dysfunctional mutation in the NF-κB-inducing kinase gene. Biochem Biophys Res Commun 2011; 414:773-8. [PMID: 22005462 DOI: 10.1016/j.bbrc.2011.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/01/2011] [Indexed: 12/12/2022]
Abstract
NF-κB-inducing kinase (NIK) plays critical roles in the development of lymph nodes and Peyer's patches, and microarchitecture of the thymus and spleen via NF-κB activation. Alymphoplasia (aly/aly) mice have a point mutation in the NIK gene that causes a defect in the activation of an NF-κB member RelB. Here, we developed a novel method to determine the aly mutation by genetic typing using PCR. This method facilitated the easy establishment of a congeneic aly/aly mouse line. Indeed, we generated a mouse line with aly mutation on a BALB/cA background (BALB/cA-aly/aly). BALB/cA-aly/aly mice showed significant splenomegaly with extramedullary hemopoiesis, which was not significant in aly/aly mice on a C57BL/6 background. Interestingly, the splenomegaly and extramedullary hemopoiesis caused by the aly mutation was gender-dependent. These data together with previous reports on extramedullary hemopoiesis in RelB-deficient mice suggest that NIK-RelB signaling may be involved in the suppression of extramedullary hemopoiesis in adult mice.
Collapse
Affiliation(s)
- Miho Shinzawa
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Yamaguchi M, Neale Weitzmann M. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 2011; 359:399-407. [DOI: 10.1007/s11010-011-1034-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
|
85
|
Yamaguchi M, Weitzmann MN, Murata T. Exogenous regucalcin stimulates osteoclastogenesis and suppresses osteoblastogenesis through NF-κB activation. Mol Cell Biochem 2011; 359:193-203. [PMID: 21842421 DOI: 10.1007/s11010-011-1014-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Regucalcin plays a pivotal role in regulating intracellular calcium homeostasis and consequently has a profound effect on multiple intracellular signal transduction pathways. The regucalcin transgenic rat displays pronounced bone loss, and bone marrow from these animals exhibits significantly elevated osteoclast formation. Consistent with these effects exogenous regucalcin promotes osteoclastogenesis in mouse bone marrow cultures, but interestingly regucalcin suppresses the differentiation and mineralization of MC3T3 osteoblast precursors. However, the molecular mechanisms involved are presently unclear. As the nuclear factor-kappa B (NF-κB) signal transduction pathway is critical to osteoclastogenesis but inhibitory of osteoblastogenesis, we hypothesized that regucalcin may promote osteoclastogenesis and suppress osteoblastogenesis upregulating NF-κB signal transduction. In this study, we examined the effect of regucalcin on receptor activator of NF-κB (RANK) ligand (RANKL) -induced osteoclast formation using the RAW264.7 monocytic cell line and osteoblast formation using the pre-osteoblastic cell line MC3T3. As expected, culture with exogenous regucalcin was found to enhance RANKL-induced osteoclastogenesis. Consistent with this effect regucalcin increased basal and RANKL-induced NF-κB activation as assessed by NF-κB luciferase assay. The capacity of regucalcin to augment RANKL-induced NF-κB activity was inhibited by menaquinone-7, a potent NF-κB antagonist, while the Erk inhibitor PD98059 and staurosporine had no effect, demonstrating a specific effect on NF-κB signaling. By contrast, regucalcin inhibited mineralization of MC3T3 cells and enhanced tumor necrosis factor-α (TNFα)-induced NF-κB activation. As with NF-κB induction in osteoclasts, NF-κB activation was abolished by addition of the NF-κB antagonist menaquinone-7, but not by PD98059 and staurosporine. Transforming growth factor-β (TGFβ) and bone morphogenic protein-2 (BMP2) are potent early commitment and late osteoblast differentiation factors, respectively, and both mediate their actions through the Smad-signal transduction pathway, a system that is extremely sensitive to and inhibited by TNFα-induced NF-κB. We consequently examined the effect of regucalcin on TGFβ and BMP2-induced Smad activation in the presence and absence of TNFα. While regucalcin had no effect on basal Smad activation by TGFβ and BMP2, it enhanced the suppressive effect of TNFα on both TGFβ- and BMP2-induced Smad activations. Taken together, present data suggest that regucalcin may induce bone loss in vivo by promoting osteoclasts and simultaneously suppressing osteoblasts through amplification of basal and/or cytokine-induced NF-κB activation. Regucalcin may have a role as a modulator in NF-κB activation.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Medicine, Division of Endocrinology and Metabolism and Lipids, Emory University School of Medicine, 101 Woodruff Circle, 1329 WMRB, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
86
|
Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA, Harsha HC, Shankar S, Prasad TSK, Mohan SS, Bader GD, Wani MR, Pandey A. A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2011; 2011:bar021. [PMID: 21742767 PMCID: PMC3170171 DOI: 10.1093/database/bar021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor activator of nuclear factor-kappa B ligand (RANKL) is a member of tumor necrosis factor (TNF) superfamily that plays a key role in the regulation of differentiation, activation and survival of osteoclasts and also in tumor cell migration and bone metastasis. Osteoclast activation induced by RANKL regulates hematopoietic stem cell mobilization as part of homeostasis and host defense mechanisms thereby linking regulation of hematopoiesis with bone remodeling. Binding of RANKL to its receptor, Receptor activator of nuclear factor-kappa B (RANK) activates molecules such as NF-kappa B, mitogen activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT) and phosphatidyl 3-kinase (PI3K). Although the molecular and cellular roles of these molecules have been reported previously, a systematic cataloging of the molecular events induced by RANKL/RANK interaction has not been attempted. Here, we present a comprehensive reaction map of the RANKL/RANK-signaling pathway based on an extensive manual curation of the published literature. We hope that the curated RANKL/RANK-signaling pathway model would enable new biomedical discoveries, which can provide novel insights into disease processes and development of novel therapeutic interventions. Database URL:http://www.netpath.org/pathways?path_id=NetPath_21
Collapse
Affiliation(s)
- Rajesh Raju
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic findings of tumour-bone interactions have uncovered numerous therapeutic opportunities that focus on the bone microenvironment to prevent and treat bone metastases.
Collapse
Affiliation(s)
- Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
88
|
Abstract
When cancer metastasizes to bone, considerable pain and deregulated bone remodelling occurs, greatly diminishing the possibility of cure. Metastasizing tumour cells mobilize and sculpt the bone microenvironment to enhance tumour growth and to promote bone invasion. Understanding the crucial components of the bone microenvironment that influence tumour localization, along with the tumour-derived factors that modulate cellular and protein matrix components of bone to favour tumour expansion and invasion, is central to the pathophysiology of bone metastases. Basic findings of tumour-bone interactions have uncovered numerous therapeutic opportunities that focus on the bone microenvironment to prevent and treat bone metastases.
Collapse
|
89
|
Yamaguchi M, Weitzmann MN. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 2011; 355:179-86. [DOI: 10.1007/s11010-011-0852-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/20/2011] [Indexed: 12/21/2022]
|
90
|
Ha H, Lee JH, Kim HN, Lee ZH. α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity. Biochem Biophys Res Commun 2011; 406:546-51. [DOI: 10.1016/j.bbrc.2011.02.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 12/27/2022]
|
91
|
TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc Natl Acad Sci U S A 2011; 108:1573-8. [PMID: 21220349 DOI: 10.1073/pnas.1010030108] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute activation of cells by tumor necrosis factor (TNF) has been well characterized, but little is known about later phases of TNF responses that are relevant for cells exposed to TNF for several days during inflammation. We found that prolonged exposure of human macrophages to TNF resulted in a wave of delayed but sustained activation of c-Jun and nuclear factor κB (NF-κB) proteins and of calcium oscillations that became apparent 1-3 d after TNF stimulation. These signaling events culminated in the induction and activation of the calcium-dependent transcription factor, nuclear factor of activated T cells (NFAT)c1, which mediated a gene expression program leading to cell fusion and osteoclast differentiation. TNF-induced NFATc1 activity primed macrophages for enhanced osteoclastogenesis in response to RANKL. High NFATc1 expression was apparent in synovial macrophages in a subset of patients with TNF-driven inflammatory arthritis. Thus, long-term exposure to TNF activates calcium-dependent signaling and an NFATc1-mediated gene activation program important for cell fusion and osteoclastogenesis. These findings identify a signaling pathway activated by TNF that is important for myeloid cell differentiation and suggest a role for TNF-induced calcium and NFAT signaling in chronic inflammation and associated bone resorption.
Collapse
|
92
|
Novack DV. Unique Personalities Within the NF-κB Family: Distinct Functions for p65 and RelB in the Osteoclast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:163-7. [DOI: 10.1007/978-1-4419-6612-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
93
|
Abstract
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, The University of Texas Graduate School of Biomedical Sciences at Houston, 7455 Fannin Street, Box 902, Houston, TX 77030, USA.
| |
Collapse
|
94
|
Novack DV, Faccio R. Osteoclast motility: putting the brakes on bone resorption. Ageing Res Rev 2011; 10:54-61. [PMID: 19788940 PMCID: PMC2888603 DOI: 10.1016/j.arr.2009.09.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 11/28/2022]
Abstract
As the skeleton ages, the balanced formation and resorption of normal bone remodeling is lost, and bone loss predominates. The osteoclast is the specialized cell that is responsible for bone resorption. It is a highly polarized cell that must adhere to the bone surface and migrate along it while resorbing, and cytoskeletal reorganization is critical. Podosomes, highly dynamic actin structures, mediate osteoclast motility. Resorbing osteoclasts form a related actin complex, the sealing zone, which provides the boundary for the resorptive microenvironment. Similar to podosomes, the sealing zone rearranges itself to allow continuous resorption while the cell is moving. The major adhesive protein controlling the cytoskeleton is αvβ3 integrin, which collaborates with the growth factor M-CSF and the ITAM receptor DAP12. In this review, we discuss the signaling complexes assembled by these molecules at the membrane, and their downstream mediators that control OC motility and function via the cytoskeleton.
Collapse
|
95
|
Abstract
Two distinct nuclear factor κB (NFκB) signaling pathways have been described; the canonical pathway that mediates inflammatory responses, and the non-canonical pathway that is involved in immune cell differentiation and maturation and secondary lymphoid organogenesis. The former is dependent on the IκB kinase adaptor molecule NEMO, the latter is independent of it. Here, we review the molecular mechanisms of regulation in each signaling axis and attempt to relate the apparent regulatory logic to the physiological function. Further, we review the recent evidence for extensive cross-regulation between these two signaling axes and summarize them in a wiring diagram. These observations suggest that NEMO-dependent and -independent signaling should be viewed within the context of a single NFκB signaling system, which mediates signaling from both inflammatory and organogenic stimuli in an integrated manner. As in other regulatory biological systems, a systems approach including mathematical models that include quantitative and kinetic information will be necessary to characterize the network properties that mediate physiological function, and that may break down to cause or contribute to pathology.
Collapse
|
96
|
Abstract
Since the discovery that deletion of the NF-κB subunits p50 and p52 causes osteopetrosis in mice, there has been considerable interest in the role of NF-κB signaling in bone. NF-κB controls the differentiation or activity of the major skeletal cell types - osteoclasts, osteoblasts, osteocytes and chondrocytes. However, with five NF-κB subunits and two distinct activation pathways, not all NF-κB signals lead to the same physiologic responses. In this review, we will describe the roles of various NF-κB proteins in basal bone homeostasis and disease states, and explore how NF-κB inhibition might be utilized therapeutically.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
97
|
Yang C, McCoy K, Davis JL, Schmidt-Supprian M, Sasaki Y, Faccio R, Novack DV. NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS One 2010; 5:e15383. [PMID: 21151480 PMCID: PMC2975662 DOI: 10.1371/journal.pone.0015383] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/31/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway. METHODOLOGY/PRINCIPAL FINDINGS Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis. CONCLUSIONS Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Chang Yang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kathleen McCoy
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jennifer L. Davis
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Deborah Veis Novack
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
98
|
Krum SA, Chang J, Miranda-Carboni G, Wang CY. Novel functions for NFκB: inhibition of bone formation. Nat Rev Rheumatol 2010; 6:607-11. [PMID: 20703218 DOI: 10.1038/nrrheum.2010.133] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
NFκB is a family of transcription factors involved in immunity and the normal functioning of many tissues. It has been well studied in osteoclasts, and new data indicate an important role for NFκB in the negative regulation of bone formation. In this article, we discuss how NFκB activation affects osteoblast function and bone formation. In particular, we describe how reduced NFκB activity in osteoblasts results in an increase in bone formation via enhanced c-Jun N-terminal kinase (JNK) activity, which regulates FOSL1 (also known as Fra1) expression. Furthermore, we discuss how estrogen and NFκB crosstalk in osteoblasts acts to oppositely regulate bone formation. Future NFκB-targeting treatments for osteoporosis, rheumatoid arthritis and other inflammatory bone diseases could lead to increased bone formation concurrent with decreased bone resorption.
Collapse
Affiliation(s)
- Susan A Krum
- UCLA Orthopaedic Hospital, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
99
|
Thu YM, Richmond A. NF-κB inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev 2010; 21:213-26. [PMID: 20685151 PMCID: PMC2939163 DOI: 10.1016/j.cytogfr.2010.06.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022]
Abstract
NF-κB inducing kinase (NIK) is a kinase that activates the canonical and non-canonical NF-κB pathways to control transcriptional expression of certain proteins such as cytokines, chemokines and NF-κB signaling molecules. Many advances have been made in understanding the molecular mechanisms by which the stability of NIK is regulated to affect downstream signaling. Genetic mouse models suggest that NIK plays an essential role in the regulation of the immune system as well as in the bone microenvironment. Increasing evidence links NIK to the tumorigenesis of hematological cancers, such as multiple myeloma, and solid tumors, such as pancreatic carcinoma and melanoma. Understanding the mechanism by which NIK is de-regulated will potentially provide therapeutic options for certain diseases such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Veterans Affairs Medical Center, Department of Cancer Biology, Vanderbilt University School of Medicine, 432 PRB, 23 Avenue South at Pierce, Nashville, TN 37232, USA
| | - Ann Richmond
- Department of Veterans Affairs Medical Center, Department of Cancer Biology, Vanderbilt University School of Medicine, 432 PRB, 23 Avenue South at Pierce, Nashville, TN 37232, USA
| |
Collapse
|
100
|
Gupta N, Barhanpurkar AP, Tomar GB, Srivastava RK, Kour S, Pote ST, Mishra GC, Wani MR. IL-3 inhibits human osteoclastogenesis and bone resorption through downregulation of c-Fms and diverts the cells to dendritic cell lineage. THE JOURNAL OF IMMUNOLOGY 2010; 185:2261-72. [PMID: 20644169 DOI: 10.4049/jimmunol.1000015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
IL-3 is an important cytokine that regulates hematopoiesis and functions as a link between the immune and the hematopoietic system. In this study, we investigated the role and mechanism of IL-3 action on human osteoclast formation and bone resorption using PBMCs. PBMCs differentiate into functional osteoclasts in the presence of M-CSF and receptor activator of NF-kappaB ligand as evaluated by 23c6 expression and bone resorption. We found that IL-3 dose-dependently inhibited formation of 23c6-positive osteoclasts, bone resorption and C-terminal telopeptide of type I collagen, a collagen degradation product. The inhibitory effect of IL-3 on bone resorption was irreversible. To investigate the mechanism of IL-3 action, we analyzed the effect of IL-3 on the receptor activator of NF-kappaB and c-Fms receptors and c-Fos, PU.1, NFAT cytoplasmic 1, and RelB transcription factors essential for osteoclastogenesis. IL-3 significantly inhibited c-Fms and downregulated both PU.1 and c-Fos at both mRNA and protein level. Furthermore, IL-3-treated cells showed increased expression of dendritic cell markers CD1a and CD80 and decreased expression of monocyte/macrophage marker CD14. Interestingly, IL-3 inhibited formation of human osteoclasts derived from blood monocytes and bone marrow cells of osteoporotic individuals. Thus, IL-3 may have therapeutic potential as an antiosteolytic agent in treatment of osteoporosis.
Collapse
Affiliation(s)
- Navita Gupta
- National Center for Cell Science, University of Pune Campus, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|