51
|
Egg M, Tischler A, Schwerte T, Sandbichler A, Folterbauer C, Pelster B. Endurance exercise modifies the circadian clock in zebrafish (Danio rerio) temperature independently. Acta Physiol (Oxf) 2012; 205:167-76. [PMID: 22044585 DOI: 10.1111/j.1748-1716.2011.02382.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM Several rodent and human studies revealed that physical exercise acts as a non-photic zeitgeber for the circadian clock. The intrinsic entraining mechanism is still unknown, although it was assumed that the exercise-mediated increase in core temperature could be the underlying zeitgeber. As the homoeostatic control of mammalian core temperature interferes strongly with the investigation of this hypothesis, the present study used the poikilotherm zebrafish to answer this question. METHODS Gene transcription levels of the two circadian core clock genes period1 and clock1 were quantified using real-time qPCR of whole animal zebrafish larvae. RESULTS Long-term endurance exercise of zebrafish larvae aged 9-15 days post-fertilization (dpf) or 21-32 dpf at a constant water temperature of 25 °C caused significantly altered transcription levels of the circadian genes period1 and clock1. Cosinor analysis of diurnal transcription profiles obtained after 3 days of swim training revealed significant differences regarding acrophase, mesor and amplitude of period1, resulting in a phase delay of the gene oscillation. After termination of the exercise bout, at 15 dpf, oscillation amplitudes of both circadian genes were significantly reduced. CONCLUSION The results showed that physical exercise is able to affect the transcription of circadian genes in developing zebrafish larvae. Considering the poikilothermy of zebrafish, an exercise-mediated change in body core temperature could be excluded as the underlying intrinsic zeitgeber. However, the day-active zebrafish arises as a useful model to address the synchronizing effect of exercise on the circadian clock.
Collapse
Affiliation(s)
- M Egg
- Institut für Zoologie, Universität Innsbruck, Technikerstr, Austria.
| | | | | | | | | | | |
Collapse
|
52
|
Meijer JH, Colwell CS, Rohling JHT, Houben T, Michel S. Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. PROGRESS IN BRAIN RESEARCH 2012; 199:143-162. [PMID: 22877664 DOI: 10.1016/b978-0-444-59427-3.00009-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, the suprachiasmatic nuclei (SCNs) function as a circadian pacemaker that drives 24-h rhythms in physiology and behavior. The SCN is a multicellular clock in which the constituent oscillators show dynamics in their functional organization and phase coherence. Evidence has emerged that plasticity in phase synchrony among SCN neurons determines (i) the amplitude of the rhythm, (ii) the response to continuous light, (iii) the capacity to respond to seasonal changes, and (iv) the phase-resetting capacity. A decrease in circadian amplitude and phase-resetting capacity is characteristic during aging and can be a result of disease processes. Whether the decrease in amplitude is caused by a loss of synchronization or by a loss of single-cell rhythmicity remains to be determined and is important for the development of strategies to ameliorate circadian disorders.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Christopher S Colwell
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands; Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jos H T Rohling
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs Houben
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
53
|
DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011; 333:1881-5. [PMID: 21960634 PMCID: PMC3204309 DOI: 10.1126/science.1206022] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In animals, circadian oscillators are based on a transcription-translation circuit that revolves around the transcription factors CLOCK and BMAL1. We found that the JumonjiC (JmjC) and ARID domain-containing histone lysine demethylase 1a (JARID1a) formed a complex with CLOCK-BMAL1, which was recruited to the Per2 promoter. JARID1a increased histone acetylation by inhibiting histone deacetylase 1 function and enhanced transcription by CLOCK-BMAL1 in a demethylase-independent manner. Depletion of JARID1a in mammalian cells reduced Per promoter histone acetylation, dampened expression of canonical circadian genes, and shortened the period of circadian rhythms. Drosophila lines with reduced expression of the Jarid1a homolog, lid, had lowered Per expression and similarly altered circadian rhythms. JARID1a thus has a nonredundant role in circadian oscillator function.
Collapse
Affiliation(s)
- Luciano DiTacchio
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hiep D. Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Vollmers
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Witcher
- Department of Oncology, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
54
|
Abstract
Biological rhythms are orchestrated by a cell-autonomous clock system that drives the rhythmic cascade of clock genes. We established an assay system using NIH 3T3 cells stably expressing the Bmal1 promoter-driven luciferase reporter gene and used it to analyse circadian oscillation of the gene. Modulators of PKC (protein kinase C) revealed that an activator and an inhibitor represented short- and long-period phenotypes respectively which were consistent with reported effects of PKC on the circadian clock and validated the assay system. We examined the effects of the alkaloid harmine, contained in Hoasca, which has a wide spectrum of pharmacological actions, on circadian rhythms using the validated assay system. Harmine dose dependently elongated the period. Furthermore, EMSA (electrophoretic mobility-shift assay) and Western-blot analysis showed that harmine enhanced the transactivating function of RORα (retinoid-related orphan receptor α), probably by increasing its nuclear translocation. Exogenous expression of RORα also caused a long period, confirming the phenotype indicated by harmine. These results suggest that harmine extends the circadian period by enhancing RORα function and that harmine is a new candidate that contributes to the control of period length in mammalian cells.
Collapse
|
55
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
56
|
The light responsive transcriptome of the zebrafish: function and regulation. PLoS One 2011; 6:e17080. [PMID: 21390203 PMCID: PMC3039656 DOI: 10.1371/journal.pone.0017080] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
Most organisms possess circadian clocks that are able to anticipate the day/night cycle and are reset or “entrained” by the ambient light. In the zebrafish, many organs and even cultured cell lines are directly light responsive, allowing for direct entrainment of the clock by light. Here, we have characterized light induced gene transcription in the zebrafish at several organizational levels. Larvae, heart organ cultures and cell cultures were exposed to 1- or 3-hour light pulses, and changes in gene expression were compared with controls kept in the dark. We identified 117 light regulated genes, with the majority being induced and some repressed by light. Cluster analysis groups the genes into five major classes that show regulation at all levels of organization or in different subset combinations. The regulated genes cover a variety of functions, and the analysis of gene ontology categories reveals an enrichment of genes involved in circadian rhythms, stress response and DNA repair, consistent with the exposure to visible wavelengths of light priming cells for UV-induced damage repair. Promoter analysis of the induced genes shows an enrichment of various short sequence motifs, including E- and D-box enhancers that have previously been implicated in light regulation of the zebrafish period2 gene. Heterologous reporter constructs with sequences matching these motifs reveal light regulation of D-box elements in both cells and larvae. Morpholino-mediated knock-down studies of two homologues of the D-box binding factor Tef indicate that these are differentially involved in the cell autonomous light induction in a gene-specific manner. These findings suggest that the mechanisms involved in period2 regulation might represent a more general pathway leading to light induced gene expression.
Collapse
|
57
|
Brown TM, Gias C, Hatori M, Keding SR, Semo M, Coffey PJ, Gigg J, Piggins HD, Panda S, Lucas RJ. Melanopsin contributions to irradiance coding in the thalamo-cortical visual system. PLoS Biol 2010; 8:e1000558. [PMID: 21151887 PMCID: PMC2998442 DOI: 10.1371/journal.pbio.1000558] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ∼40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.
Collapse
Affiliation(s)
- Timothy M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Carlos Gias
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Megumi Hatori
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Sheena R. Keding
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Ma'ayan Semo
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peter J. Coffey
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - John Gigg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hugh D. Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Satchidananda Panda
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
58
|
Ko CH, Yamada YR, Welsh DK, Buhr ED, Liu AC, Zhang EE, Ralph MR, Kay SA, Forger DB, Takahashi JS. Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 2010; 8:e1000513. [PMID: 20967239 PMCID: PMC2953532 DOI: 10.1371/journal.pbio.1000513] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022] Open
Abstract
Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN) of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscillations intrinsically. Inhibition of intercellular communication or cyclic-AMP signaling in SCN slices, which provide a positive feed-forward signal to drive the intracellular negative feedback loop, abolished the stochastic oscillations. Propagation of this feed-forward signal between SCN neurons then promotes quasi-circadian oscillations that arise as an emergent property of the SCN network. Experimental analysis and mathematical modeling argue that both intercellular coupling and molecular noise are required for the stochastic rhythms, providing a novel biological example of noise-induced oscillations. The emergence of stochastic circadian oscillations from the SCN network in the absence of cell-autonomous circadian oscillatory function highlights a previously unrecognized level of circadian organization.
Collapse
Affiliation(s)
- Caroline H. Ko
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Yujiro R. Yamada
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Welsh
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Ethan D. Buhr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
| | - Andrew C. Liu
- Genomics Institute of Novartis Research Foundation, San Diego, California, United States of America
| | - Eric E. Zhang
- Genomics Institute of Novartis Research Foundation, San Diego, California, United States of America
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Center for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, Canada
| | - Steve A. Kay
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Daniel B. Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
59
|
Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC, Hirota T, Nusinow DA, Sun X, Landais S, Kodama Y, Brenner DA, Montminy M, Kay SA. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 2010; 16:1152-6. [PMID: 20852621 PMCID: PMC2952072 DOI: 10.1038/nm.2214] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/18/2010] [Indexed: 01/15/2023]
Abstract
During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Eric E. Zhang
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yi Liu
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P.R. China
| | - Renaud Dentin
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pagkapol Y. Pongsawakul
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
| | - Andrew C. Liu
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
- Department of Biological Sciences, The University of Memphis, 3774 Walker Avenue, Memphis, TN 38152, USA
| | - Tsuyoshi Hirota
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Dmitri A. Nusinow
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
| | - Xiujie Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, P.R. China
| | - Severine Landais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuzo Kodama
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David A. Brenner
- School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Marc Montminy
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Steve A. Kay
- Section of Cell & Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0130, USA
| |
Collapse
|
60
|
Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 2010; 16:435-46. [PMID: 20810319 DOI: 10.1016/j.molmed.2010.07.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
The adaptation of behavior and physiology to changes in the ambient light level is of crucial importance to life. These adaptations include the light modulation of neuroendocrine function and temporal alignment of physiology and behavior to the day:night cycle by the circadian clock. These non-image-forming (NIF) responses can function independent of rod and cone photoreceptors but depend on ocular light reception, suggesting the participation of novel photoreceptors in the eye. The discovery of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) and genetic proof for its important role in major NIF responses have offered an exciting entry point to comprehend how mammals adapt to the light environment. Here, we review the recent advances in our understanding of the emerging roles of melanopsin and ipRGCs. These findings now offer new avenues to understand the role of ambient light in sleep, alertness, dependent physiologies and potential pharmacological intervention as well as lifestyle modifications to improve the quality of life.
Collapse
Affiliation(s)
- Megumi Hatori
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
61
|
Abstract
Systems biology is a natural extension of molecular biology; it can be defined as biology after identification of key gene(s). Systems-biological research is a multistage process beginning with (a) the comprehensive identification and (b) quantitative analysis of individual system components and their networked interactions, which lead to the ability to (c) control existing systems toward the desired state and (d) design new ones based on an understanding of the underlying structure and dynamical principles. In this review, we use the mammalian circadian clock as a model system and describe the application of systems-biological approaches to fundamental problems in this model. This application has allowed the identification of transcriptional/posttranscriptional circuits, the discovery of a temperature-insensitive period-determining process, and the discovery of desynchronization of individual clock cells underlying the singularity behavior of mammalian clocks.
Collapse
Affiliation(s)
- Hideki Ukai
- Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Hyogo, Japan
| | | |
Collapse
|
62
|
Leclerc B, Kang SW, Mauro LJ, Kosonsiriluk S, Chaiseha Y, El Halawani ME. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus. J Neuroendocrinol 2010; 22:119-28. [PMID: 20002961 DOI: 10.1111/j.1365-2826.2009.01942.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premammillary nucleus (PMM) has been shown to contain a daily endogenous dual-oscillation in dopamine (DA)/melatonin (MEL) as well as c-fos mRNA expression that is associated with the daily photo-inducible phase of gonad growth in turkeys. In the present study, the expression of clock genes (Bmal1, Clock, Cry1, Cry2, Per2 and Per3) in the PMM was determined under short (8 : 16 h light/dark cycle) and long (16 : 8 h light/dark cycle) photoperiods relative to changes associated with the diurnal rhythm of DA and MEL. Constant darkness (0 : 24 h light/dark cycle) was used to assess the endogenous response of clock genes. In addition, light pulses were given at zeitgeber time (ZT) 8, 14 and 20 to ascertain whether clock gene expression is modulated by light pulse stimulation and therefore has a daily phase-related response. In the PMM, the temporal clock gene expression profiles were similar under short and long photoperiods, except that Per3 gene was phase-delayed by approximately 16 h under long photoperiod. In addition, Cry1 and Per3 genes were light-induced at ZT 14, the photosensitive phase for gonad recrudescence, whereas the Clock gene was repressed. Gene expression in established circadian pacemakers, the visual suprachiasmatic nucleus (vSCN) and the pineal, was also determined. Clock genes in the pineal gland were rhythmic under both photoperiods, and were not altered after light pulses at ZT 14, which suggests that pineal clock genes may not be associated with the photosensitive phase and reproductive activities. In the vSCN, clock gene expression was phase-shifted depending on the photoperiod, with apexes at night under short day length and during the day under long day length. Furthermore, light pulses at ZT 14 induced the Per2 gene, whereas it repressed the Bmal1 gene. Taken together, the changes in clock gene expression observed within the PMM were unique compared to the pineal and vSCN, and were induced by long photoperiod and light during the daily photosensitive phase; stimuli that are also documented to promote reproductive activity. These results show that Cry1 and Per3 are involved in the photic response associated with the PMM neuronal activation and are coincident with an essential circadian mechanism (photosensitive phase) controlling the reproductive neuroendocrine system.
Collapse
Affiliation(s)
- B Leclerc
- Department of Animal Science, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
63
|
Moldrup ML, Georg B, Falktoft B, Mortensen R, Hansen JL, Fahrenkrug J. Light inducesFosexpression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells. J Neurochem 2010; 112:797-806. [DOI: 10.1111/j.1471-4159.2009.06504.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
64
|
Abstract
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
Collapse
Affiliation(s)
- David K Welsh
- Department of Psychiatry, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
65
|
Quantification of circadian rhythms in single cells. PLoS Comput Biol 2009; 5:e1000580. [PMID: 19956762 PMCID: PMC2776301 DOI: 10.1371/journal.pcbi.1000580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 10/26/2009] [Indexed: 11/19/2022] Open
Abstract
Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber).
Collapse
|
66
|
Yoshikawa T, Sellix M, Pezuk P, Menaker M. Timing of the ovarian circadian clock is regulated by gonadotropins. Endocrinology 2009; 150:4338-47. [PMID: 19520783 PMCID: PMC2736075 DOI: 10.1210/en.2008-1280] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The timing of ovulation is critically important to the success of reproduction. Current thinking attributes the timing of ovulation to LH secretion by the pituitary, itself timed by signals from the hypothalamus. The discovery of an internal circadian timer in the ovary raises the possibility that ovulation is in fact timed by an interaction between clocks in the hypothalamus/pituitary and those in the ovary. We asked whether ovarian clocks were influenced by signals from the brain and pituitary. Ovaries of Period1-luciferase transgenic rats display circadian rhythms in vitro. To determine whether the phase of these rhythms is set by neural or endocrine signals, we surgically denervated or heterotopically transplanted ovaries with or without encapsulation in dialysis membranes. Animals' light-dark cycles were phase advanced or delayed 6 h, and the resetting of the ovarian clock was tracked by culturing ovaries at intervals over the next 12 d. Resetting trajectories of control, surgically denervated, and encapsulated ovaries were similar, demonstrating that endocrine signals are sufficient to transmit phase information to the ovary. We next evaluated LH and FSH as potential endocrine signals. Using the phase of Per1-luc expression in granulosa cell cultures, we demonstrated that both of these pituitary hormones caused large phase shifts when applied to the cultured cells. We hypothesize that the ovarian circadian clock is entrained by hormonal signals from the pituitary and that ovulation depends, in part, on the phase in the ovarian circadian cycle at which these signals occur.
Collapse
Affiliation(s)
- Tomoko Yoshikawa
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA
| | | | | | | |
Collapse
|
67
|
Abstract
Many mammalian cell types show daily rhythms in gene expression driven by a circadian pacemaker. For example, cultured astrocytes display circadian rhythms in Period1 and Period2 expression. It is not known, however, how or which intercellular factors synchronize and sustain rhythmicity in astrocytes. Because astrocytes are highly sensitive to vasoactive intestinal polypeptide (VIP), a neuropeptide released by neurons and important for the coordination of daily cycling, the authors hypothesized that VIP entrains circadian rhythms in astrocytes. They used astrocyte cultures derived from knock-in mice containing a bioluminescent reporter of PERIOD2 (PER2) protein, to assess the effects of VIP on the rhythmic properties of astrocytes. VIP induced a dose-dependent increase in the peak-to-trough amplitude of the ensemble rhythms of PER2 expression with maximal effects near 100 nM VIP and threshold values between 0.1 and 1 nM. VIP also induced dose- and phase-dependent shifts in PER2 rhythms and daily VIP administration entrained bioluminescence rhythms of astrocytes to a predicted phase angle. This is the first demonstration that a neuropeptide can entrain glial cells to a phase predicted by a phase-response curve. The authors conclude that VIP potently entrains astrocytes in vitro and is a candidate for coordinating daily rhythms among glia in the brain.
Collapse
Affiliation(s)
- Luciano Marpegan
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA
| | | | | |
Collapse
|
68
|
vanderLeest HT, Rohling JHT, Michel S, Meijer JH. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization. PLoS One 2009; 4:e4976. [PMID: 19305510 PMCID: PMC2655235 DOI: 10.1371/journal.pone.0004976] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/25/2009] [Indexed: 01/29/2023] Open
Abstract
Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system.
Collapse
Affiliation(s)
- Henk Tjebbe vanderLeest
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos H. T. Rohling
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | - Stephan Michel
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H. Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
69
|
Vollmers C, Panda S, DiTacchio L. A high-throughput assay for siRNA-based circadian screens in human U2OS cells. PLoS One 2008; 3:e3457. [PMID: 18941634 PMCID: PMC2565498 DOI: 10.1371/journal.pone.0003457] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/23/2008] [Indexed: 11/26/2022] Open
Abstract
The advent of siRNA-based screens has revolutionized the efficiency by which functional components of biological processes are identified. A notable exception has been the field of mammalian circadian rhythms. Here, we outline a medium- to high-throughput siRNA-based approach that, in combination with real-time bioluminescence measurement of a circadian reporter gene, can be utilized to elucidate the effects of gene knockdown across several days in human cells.
Collapse
Affiliation(s)
- Christopher Vollmers
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | | | | |
Collapse
|
70
|
Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 2008; 3:e2451. [PMID: 18545654 PMCID: PMC2396502 DOI: 10.1371/journal.pone.0002451] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 05/14/2008] [Indexed: 12/26/2022] Open
Abstract
Rod/cone photoreceptors of the outer retina and the melanopsin-expressing retinal ganglion cells (mRGCs) of the inner retina mediate non-image forming visual responses including entrainment of the circadian clock to the ambient light, the pupillary light reflex (PLR), and light modulation of activity. Targeted deletion of the melanopsin gene attenuates these adaptive responses with no apparent change in the development and morphology of the mRGCs. Comprehensive identification of mRGCs and knowledge of their specific roles in image-forming and non-image forming photoresponses are currently lacking. We used a Cre-dependent GFP expression strategy in mice to genetically label the mRGCs. This revealed that only a subset of mRGCs express enough immunocytochemically detectable levels of melanopsin. We also used a Cre-inducible diphtheria toxin receptor (iDTR) expression approach to express the DTR in mRGCs. mRGCs develop normally, but can be acutely ablated upon diphtheria toxin administration. The mRGC-ablated mice exhibited normal outer retinal function. However, they completely lacked non-image forming visual responses such as circadian photoentrainment, light modulation of activity, and PLR. These results point to the mRGCs as the site of functional integration of the rod/cone and melanopsin phototransduction pathways and as the primary anatomical site for the divergence of image-forming and non-image forming photoresponses in mammals.
Collapse
|