51
|
Liening S, Romp E, Werz O, Scriba GK, Garscha U. Liquid chromatography-coupled mass spectrometry analysis of glutathione conjugates of oxygenated polyunsaturated fatty acids. Prostaglandins Other Lipid Mediat 2019; 144:106350. [DOI: 10.1016/j.prostaglandins.2019.106350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/07/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
52
|
Munck Af Rosenschöld M, Johannesson P, Nikitidis A, Tyrchan C, Chang HF, Rönn R, Chapman D, Ullah V, Nikitidis G, Glader P, Käck H, Bonn B, Wågberg F, Björkstrand E, Andersson U, Swedin L, Rohman M, Andreasson T, Bergström EL, Jiang F, Zhou XH, Lundqvist AJ, Malmberg A, Ek M, Gordon E, Pettersen A, Ripa L, Davis AM. Discovery of the Oral Leukotriene C4 Synthase Inhibitor (1 S,2 S)-2-({5-[(5-Chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic Acid (AZD9898) as a New Treatment for Asthma. J Med Chem 2019; 62:7769-7787. [PMID: 31415176 DOI: 10.1021/acs.jmedchem.9b00555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While bronchodilators and inhaled corticosteroids are the mainstay of asthma treatment, up to 50% of asthmatics remain uncontrolled. Many studies show that the cysteinyl leukotriene cascade remains highly activated in some asthmatics, even those on high-dose inhaled or oral corticosteroids. Hence, inhibition of the leukotriene C4 synthase (LTC4S) enzyme could provide a new and differentiated core treatment for patients with a highly activated cysteinyl leukotriene cascade. Starting from a screening hit (3), a program to discover oral inhibitors of LTC4S led to (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) (36), a picomolar LTC4S inhibitor (IC50 = 0.28 nM) with high lipophilic ligand efficiency (LLE = 8.5), which displays nanomolar potency in cells (peripheral blood mononuclear cell, IC50,free = 6.2 nM) and good in vivo pharmacodynamics in a calcium ionophore-stimulated rat model after oral dosing (in vivo, IC50,free = 34 nM). Compound 36 mitigates the GABA binding, hepatic toxicity signal, and in vivo toxicology findings of an early lead compound 7 with a human dose predicted to be 30 mg once daily.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Rönn
- Orexo AB , Virdings allé 32A , SE-75450 Uppsala , Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Biringer RG. The Role of Eicosanoids in Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142560. [PMID: 31323750 PMCID: PMC6678666 DOI: 10.3390/ijerph16142560] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer's Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd., Bradenton, FL 34211, USA.
| |
Collapse
|
54
|
Kandikattu HK, Upparahalli Venkateshaiah S, Mishra A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev 2019; 47:83-98. [PMID: 31126874 PMCID: PMC6781864 DOI: 10.1016/j.cytogfr.2019.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Eosinophils are circulating granulocytes that have pleiotropic effects in response to inflammatory signals in the body. In response to allergens or pathogens, exposure eosinophils are recruited in various organs that execute pathological immune responses. IL-5 plays a key role in the differentiation, development, and survival of eosinophils. Eosinophils are involved in a variety of allergic diseases including asthma, dermatitis and various gastrointestinal disorders (EGID). IL-5 signal transduction involves JAK-STAT-p38MAPK-NFκB activation and executes extracellular matrix remodeling, EMT transition and immune responses in allergic diseases. IL-18 is a classical cytokine also involved in immune responses and has a critical role in inflammasome pathway. We recently identified the IL-18 role in the generation, transformation, and maturation of (CD101+CD274+) pathogenic eosinophils. In, addition, several other cytokines like IL-2, IL-4, IL-13, IL-21, and IL-33 also contribute in advancing eosinophils associated immune responses in innate and adaptive immunity. This review discusses with a major focus (1) Eosinophils and its constituents, (2) Role of IL-5 and IL-18 in eosinophils development, transformation, maturation, signal transduction of IL-5 and IL-18, (3) The role of eosinophils in allergic disorders and (4) The role of several other associated cytokines in promoting eosinophils mediated allergic diseases.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre (TEDC), Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
55
|
Abstract
![]()
Various
mechanisms for regulated cell death include the formation of oxidative mediators
such as lipid peroxides and nitric oxide (NO). In this respect, 15-lipoxygenase-1
(15-LOX-1) is a key enzyme that catalyzes the formation of lipid peroxides.
The actions of these peroxides are interconnected with nuclear factor-κB
signaling and NO production. Inhibition of 15-LOX-1 holds promise
to interfere with regulated cell death in inflammatory conditions.
In this study, a novel potent 15-LOX-1 inhibitor, 9c (i472), was developed and structure–activity relationships
were explored. In vitro, this inhibitor protected cells from lipopolysaccharide-induced
cell death, inhibiting NO formation and lipid peroxidation. Thus,
we provide a novel 15-LOX-1 inhibitor that inhibits cellular NO production
and lipid peroxidation, which set the stage for further exploration
of these mechanisms.
Collapse
|
56
|
Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 2019; 33:6140-6153. [PMID: 30735438 DOI: 10.1096/fj.201802509r] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
Collapse
Affiliation(s)
- Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Charles N Serhan
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
57
|
Magalhães KG, Luna-Gomes T, Mesquita-Santos F, Corrêa R, Assunção LS, Atella GC, Weller PF, Bandeira-Melo C, Bozza PT. Schistosomal Lipids Activate Human Eosinophils via Toll-Like Receptor 2 and PGD 2 Receptors: 15-LO Role in Cytokine Secretion. Front Immunol 2019; 9:3161. [PMID: 30740113 PMCID: PMC6355688 DOI: 10.3389/fimmu.2018.03161] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Parasite-derived lipids may play important roles in host-pathogen interactions and immune evasion mechanisms. Remarkable accumulation of eosinophils is a characteristic feature of inflammation associated with parasitic disease, especially caused by helminthes. Infiltrating eosinophils are implicated in the pathogenesis of helminth infection by virtue of their capacity to release an array of tissue-damaging and immunoregulatory mediators. However, the mechanisms involved in the activation of human eosinophils by parasite-derived molecules are not clear. Here we investigated the effects and mechanisms of schistosomal lipids-induced activation of human eosinophils. Our results showed that stimulation of human eosinophils in vitro with total lipid extracts from adult worms of S. mansoni induced direct activation of human eosinophils, eliciting lipid droplet biogenesis, synthesis of leukotriene (LT) C4 and eoxin (EX) C4 (14,15 LTC4) and secretion of eosinophil pre-formed TGFβ. We demonstrated that main eosinophil activating components within S. mansoni lipid extract are schistosomal-derived lysophosphatidylcholine (LPC) and prostaglandin (PG)D2. Moreover, TLR2 is up-regulated in human eosinophils upon stimulation with schistosomal lipids and pre-treatment with anti-TLR2 inhibited both schistosomal lipids- and LPC-, but not PGD2-, induced lipid droplet biogenesis and EXC4 synthesis within eosinophils, indicating that TLR2 mediates LPC-driven human eosinophil activation. By employing PGD2 receptor antagonists, we demonstrated that DP1 receptors are also involved in various parameters of human eosinophil activation induced by schistosomal lipids, but not by schistosomal LPC. In addition, schistosomal lipids and their active components PGD2 and LPC, triggered 15-LO dependent production of EXC4 and secretion of TGFβ. Taken together, our results showed that schistosomal lipids contain at least two components—LPC and PGD2—that are capable of direct activation of human eosinophils acting on distinct eosinophil-expressed receptors, noticeably TLR2 as well as DP1, trigger human eosinophil activation characterized by production/secretion of pro-inflammatory and immunoregulatory mediators.
Collapse
Affiliation(s)
- Kelly G Magalhães
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Laboratório Imunologia e Inflamação, Universidade de Brasília (UnB), Brasília, Brazil
| | - Tatiana Luna-Gomes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Mesquita-Santos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Pesquisas em Análise Clínicas, Unidade de Farmácia, Centro Universitário da Zona Oeste, Rio de Janeiro, Brazil
| | - Rafael Corrêa
- Laboratório Imunologia e Inflamação, Universidade de Brasília (UnB), Brasília, Brazil
| | | | - Georgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter F Weller
- Allergy and Inflammation, Harvard Medical School, Boston, MA, United States
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, Stefansdottir L, Jonsson S, Jensson BO, Arthur JG, Arnadottir GA, Sulem G, Halldorsson BV, Gunnarsson B, Halldorsson GH, Stefansson OA, Oskarsson GR, Deaton AM, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Onundarson PT, Gislason D, Gislason T, Ludviksson BR, Ludviksdottir D, Olafsdottir TA, Rafnar T, Masson G, Zink F, Bjornsdottir G, Magnusson OT, Bjornsdottir US, Thorleifsson G, Norddahl GL, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Sulem P, Stefansson K. A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet 2019; 51:267-276. [PMID: 30643255 DOI: 10.1038/s41588-018-0314-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Nasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10-27, odds ratio = 0.32; 95% confidence interval = 0.26, 0.39) and CRS (P = 1.1 × 10-8, odds ratio = 0.64; 95% confidence interval = 0.55, 0.75). p.Thr560Met, carried by around 1 in 20 Europeans, was previously shown to cause near total loss of 15-LO enzymatic activity. Our findings identify 15-LO as a potential target for therapeutic intervention in NP and CRS.
Collapse
Affiliation(s)
| | | | | | | | - Vinicius Tragante
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | | | | | | | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Pall T Onundarson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspítali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - David Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorarinn Gislason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Sleep, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjorn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Dora Ludviksdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Thorunn A Olafsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Unnur S Bjornsdottir
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.,The Medical Center Mjodd, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland. .,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
59
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
60
|
Kim D, McAlees JW, Bischoff LJ, Kaur D, Houshel LK, Gray J, Hargis J, Davis X, Dudas PL, Deshmukh H, Lewkowich IP. Combined administration of anti-IL-13 and anti-IL-17A at individually sub-therapeutic doses limits asthma-like symptoms in a mouse model of Th2/Th17 high asthma. Clin Exp Allergy 2018; 49:317-330. [PMID: 30353972 DOI: 10.1111/cea.13301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies have demonstrated that Th2 responses have the ability to antagonize Th17 responses. In mouse models of allergic asthma, blockade of Th2-effector cytokines results in elaboration of Th17 responses and associated increases in pulmonary neutrophilia. While these can be controlled by simultaneous blockade of Th17-associated effector cytokines, clinical trials of anti-IL-17/IL-17RA blocking therapies have demonstrated increased of risk of bacterial and fungal infections. Identification of minimally effective doses of cytokine-blocking therapies with the goal of reducing the potential emergence of infection-related complications is a translationally relevant goal. OBJECTIVE In the current report, we examine whether combined blockade of IL-13 and IL-17A, at individually sub-therapeutic levels, can limit the development of allergic asthma while sparing expression of IL-17A-associated anti-microbial effectors. METHODS House dust mite was given intratracheally to A/J mice. Anti-IL-13 and anti-IL-17A antibodies were administered individually, or concomitantly at sub-therapeutic doses. Airway hyper-reactivity, lung inflammation, magnitude of Th2- and Th17-associated cytokine production and expression of IL-13- and IL-17A-induced genes in the lungs was assessed. RESULTS Initial dosing studies identified sub-therapeutic levels of IL-13 and IL-17A blocking mAbs that have a limited effect on asthma parameters and do not impair responses to microbial products or infection. Subsequent studies demonstrated that combined sub-therapeutic dosing with IL-13 and IL-17A blocking mAbs resulted in significant improvement in airway hyperresponsiveness (AHR) and expression of IL-13-induced gene expression. Importantly, these doses neither exacerbated nor inhibited production of Th17-associated cytokines, or IL-17A-associated gene expression. CONCLUSION This study suggests that combining blockade of individual Th2 and Th17 effector cytokines, even at individually sub-therapeutic levels, may be sufficient to limit disease development while preserving important anti-microbial pathways. Such a strategy may therefore have reduced potential for adverse events associated with blockade of these pathways.
Collapse
Affiliation(s)
- Dasom Kim
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsay J Bischoff
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Davinder Kaur
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lauren K Houshel
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jerilyn Gray
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie Hargis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xenia Davis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul L Dudas
- Janssen Research & Development, LLC, Spring House, Pennsylvania
| | - Hitesh Deshmukh
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
61
|
Yan B, Wang Y, Li Y, Wang C, Zhang L. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 9:270-280. [PMID: 30452122 DOI: 10.1002/alr.22243] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Bing Yan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Yang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Ying Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy, Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
62
|
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2018; 19:ijms19113285. [PMID: 30360467 PMCID: PMC6274989 DOI: 10.3390/ijms19113285] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid and immune pathways are crucial in the pathophysiology of metabolic and cardiovascular disease. Arachidonic acid (AA) and its derivatives link nutrient metabolism to immunity and inflammation, thus holding a key role in the emergence and progression of frequent diseases such as obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. We herein present a synopsis of AA metabolism in human health, tissue homeostasis, and immunity, and explore the role of the AA metabolome in diverse pathophysiological conditions and diseases.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
63
|
Lu S, Herzlinger M, Cao W, Noble L, Yang D, Shapiro J, Kurtis J, LeLeiko N, Resnick M. Utility of 15(S)-HETE as a Serological Marker for Eosinophilic Esophagitis. Sci Rep 2018; 8:14498. [PMID: 30266946 PMCID: PMC6162315 DOI: 10.1038/s41598-018-32944-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of eosinophilic esophagitis (EoE) involves Th2-mediated eosinophil recruitment and degranulation into the esophagus. However, measuring serum Th2 cytokines, eosinophils, and eosinophil-derived products does not reliably distinguish EoE from control populations. Non-invasive methods to diagnose EoE are lacking. We evaluated the diagnostic value of a novel candidate biomarker of EoE: 15(S)-hydroxyeicosatetraenoic acid (HETE). We used immunoassay to measure 15(S)-HETE and cytokine profiles in patients undergoing endoscopy with known or suspected EoE. 31 subjects were enrolled, 16 with EoE, and 15 with an alternate diagnosis. 15(S)-HETE was elevated in the EoE group compared to non-EoE group. The sensitivity and specificity of 15(S)-HETE to be used as a non-invasive marker is 50% and 80%, respectively. 15(S)-HETE may aid in the diagnosis of EoE.
Collapse
Affiliation(s)
- Shaolei Lu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA.
| | - Michael Herzlinger
- Division of Pediatric Gastroenterology, Nutrition, and Liver Diseases, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Weibiao Cao
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Lelia Noble
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Jason Shapiro
- Division of Pediatric Gastroenterology, Nutrition, and Liver Diseases, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Neal LeLeiko
- Division of Pediatric Gastroenterology, Nutrition, and Liver Diseases, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| | - Murray Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, USA
| |
Collapse
|
64
|
Archambault AS, Turcotte C, Martin C, Provost V, Larose MC, Laprise C, Chakir J, Bissonnette É, Laviolette M, Bossé Y, Flamand N. Comparison of eight 15-lipoxygenase (LO) inhibitors on the biosynthesis of 15-LO metabolites by human neutrophils and eosinophils. PLoS One 2018; 13:e0202424. [PMID: 30118527 PMCID: PMC6097673 DOI: 10.1371/journal.pone.0202424] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022] Open
Abstract
Neutrophils and eosinophils are important sources of bioactive lipids from the 5- and the 15-lipoxygenase (LO) pathways. Herein, we compared the effectiveness of humans eosinophils and eosinophil-depleted neutrophils to synthesize 15-LO metabolites using a cocktail of different 15-LO substrates as well as their sensitivities to eight documented 15-lipoxygenase inhibitors. The treatment of neutrophils and eosinophils with linoleic acid, dihomo-γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid and arachidonyl-ethanolamide, led to the synthesis of 13-HODE, 15-HETrE, 15-HETE, 15-HEPE, 14-HDHA/17-HDHA, and 15-hydroxy-AEA. Neutrophils and eosinophils also metabolized the endocannabinoid 2-arachidonoyl-glycerol into 15-HETE-glycerol, although this required 2-arachidonoyl-glycerol hydrolysis inhibition. Neutrophils and eosinophils differed in regard to dihomo-γ-linolenic acid and linoleic acid utilization with 15-HETrE/13-HODE ratios of 0.014 ± 0.0008 and 0.474 ± 0.114 for neutrophils and eosinophils respectively. 15-LO metabolite synthesis by neutrophils and eosinophils also differed in regard to their relative production of 17-HDHA and 14-HDHA.The synthesis of 15-LO metabolites by neutrophils was concentration-dependent and rapid, reaching a plateau after one minute. While investigating the biosynthetic routes involved, we found that eosinophil-depleted neutrophils express the 15-lipoxygenase-2 but not the 15-LO-1, in contrast to eosinophils which express the 15-LO-1 but not the 15-LO-2. Moreover, 15-LO metabolite synthesis by neutrophils was not inhibited by the 15-LO-1 inhibitors BLX769, BLX3887, and ML351. However, 15-LO product synthesis was partially inhibited by 100 μM NDGA. Altogether, our data indicate that the best 15-LO-1 inhibitors in eosinophils are BLX3887, BLX769, NDGA and ML351 and that the synthesis of 15-LO metabolites by neutrophils does not involve the 15-LO-1 nor the phosphorylation of 5-LO on Ser-663 but is rather the consequence of 15-LO-2 or another unidentified 15-LO.
Collapse
Affiliation(s)
- Anne-Sophie Archambault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Caroline Turcotte
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Cyril Martin
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Marie-Chantal Larose
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Catherine Laprise
- Centre intégré universitaire de santé et services sociaux du Saguenay–Lac-Saint-Jean, Département de sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Jamila Chakir
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Élyse Bissonnette
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Ynuk Bossé
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
- * E-mail:
| |
Collapse
|
65
|
Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS, Lee JJ, Berdnikovs S. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-108. [PMID: 29656559 DOI: 10.1002/jlb.1mr1117-442rr] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease.
Collapse
Affiliation(s)
- Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mackenzie E Coden
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergio E Chiarella
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth A Jacobsen
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
66
|
Alavi SJ, Sadeghian H, Seyedi SM, Salimi A, Eshghi H. A novel class of human 15-LOX-1 inhibitors based on 3-hydroxycoumarin. Chem Biol Drug Des 2018; 91:1125-1132. [DOI: 10.1111/cbdd.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Seyed Jamal Alavi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Laboratory Sciences; School of Paramedical Sciences; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mohammad Seyedi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Alireza Salimi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| | - Hossein Eshghi
- Department of Chemistry; Faculty of Science; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
67
|
Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nat Immunol 2018; 19:302-314. [PMID: 29476184 DOI: 10.1038/s41590-018-0049-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
The quantification and characterization of circulating immune cells provide key indicators of human health and disease. To identify the relative effects of environmental and genetic factors on variation in the parameters of innate and adaptive immune cells in homeostatic conditions, we combined standardized flow cytometry of blood leukocytes and genome-wide DNA genotyping of 1,000 healthy, unrelated people of Western European ancestry. We found that smoking, together with age, sex and latent infection with cytomegalovirus, were the main non-genetic factors that affected variation in parameters of human immune cells. Genome-wide association studies of 166 immunophenotypes identified 15 loci that showed enrichment for disease-associated variants. Finally, we demonstrated that the parameters of innate cells were more strongly controlled by genetic variation than were those of adaptive cells, which were driven by mainly environmental exposure. Our data establish a resource that will generate new hypotheses in immunology and highlight the role of innate immunity in susceptibility to common autoimmune diseases.
Collapse
|
68
|
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther 2018; 186:98-113. [PMID: 29352860 DOI: 10.1016/j.pharmthera.2018.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disorder characterized by persistent inflammation of the airways with mucosal infiltration of eosinophils, T lymphocytes, and mast cells, and release of proinflammatory cytokines and lipid mediators. The natural resolution of airway inflammation is now recognized as an active host response, with highly coordinated cellular events under the control of endogenous pro-resolving mediators that enable the restoration of tissue homeostasis. Lead members of proresolving mediators are enzymatically derived from essential polyunsaturated fatty acids, including arachidonic acid-derived lipoxins, eicosapentaenoic acid-derived E-series resolvins, and docosahexaenoic acid-derived D-series resolvins, protectins, and maresins. Functionally, these specialized pro-resolving mediators can limit further leukocyte recruitment, induce granulocyte apoptosis, and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to lymphatics and blood vessels, and help initiate tissue repair and healing. In this review, we highlight cellular and molecular mechanisms for successful resolution of inflammation, and describe the main specialized pro-resolving mediators that drive these processes. Furthermore, we report recent data suggesting that the pathobiology of severe asthma may result in part from impaired resolution of airway inflammation, including defects in the biosynthesis of these specialized pro-resolving mediators. Finally, we discuss resolution-based therapeutic perspectives.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, 1, place de l'Hôpital, 67091 Strasbourg, France; EA 3072, University of Strasbourg, France.
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
69
|
Baothman BK, Smith J, Kay LJ, Suvarna SK, Peachell PT. Prostaglandin D2 generation from human lung mast cells is catalysed exclusively by cyclooxygenase-1. Eur J Pharmacol 2018; 819:225-232. [DOI: 10.1016/j.ejphar.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022]
|
70
|
A Role of the ABCC4 Gene Polymorphism in Airway Inflammation of Asthmatics. Mediators Inflamm 2017; 2017:3549375. [PMID: 28659663 PMCID: PMC5474232 DOI: 10.1155/2017/3549375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette subfamily C member 4 gene encodes a transmembrane protein involved in the export of proinflammatory molecules, including leukotriene, prostaglandin, and sphingosine-1-phosphate across the plasma membrane. Those metabolites play important roles in asthma. We investigated the potential associations between ABCC4 gene polymorphisms and asthma phenotype. In total, 270 asthma patients and 120 normal healthy controls were enrolled for a genetic association study. Two polymorphisms (-1508A>G and -642C>G) in the ABCC4 promoter were genotyped. The functional variability of the promoter polymorphisms was analyzed by luciferase reporter assay. Inflammatory cytokine levels were measured by enzyme-linked immunosorbent assay. Serum and urinary eicosanoid metabolites, sphingosine-1-phosphate, were evaluated by quadrupole time-of-flight mass spectrometry. Asthma patients carrying the G allele at -1508A>G had significantly higher serum levels of periostin, myeloperoxidase, and urinary levels of 15-hydroxyeicosatetraenoic acid and sphingosine-1-phosphate (P = 0.016, P = 0.027, P = 0.032, and P = 0.010, resp.) compared with noncarrier asthma patients. Luciferase activity was significantly enhanced in human epithelial A549 cells harboring a construct containing the -1508G allele (P < 0.01 for each) compared with a construct containing the -1508A allele. A functional polymorphism in the ABCC4 promoter, -1508A>G, may increase extracellular 15-hydroxyeicosatetraenoic acid, sphingosine-1-phosphate, and periostin levels, contributing to airway inflammation in asthmatics.
Collapse
|
71
|
O-prenylated 3-carboxycoumarins as a novel class of 15-LOX-1 inhibitors. PLoS One 2017; 12:e0171789. [PMID: 28182779 PMCID: PMC5300203 DOI: 10.1371/journal.pone.0171789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Allyloxy, Isopentenyloxy, geranyloxy and farnesyloxy derivatives of 3-carboxycoumarin, at position 5, 6, 7, and 8, were synthesized and their inhibitory potency against human 15-lipoxygenase-1 (human 15-LOX-1) were determined. Among the synthetic coumarins, O-allyl and O-isopentenyl derivatives demonstrated no considerable lipoxygenase inhibition while O-geranyl and O-farnesyl derivatives demonstrated potent inhibitory activity. 5-farnesyloxy-3-carboxycoumarin demonstrated the most potent inhibitory activity by IC50 = 0.74 μM while 6-farnesyloxy-3-carboxycoumarin was the weakest inhibitor among farnesyl analogs (IC50 = 10.4 μM). Bonding affinity of the designed molecular structures toward 15-LOX-1 3D structure complexed with RS75091, as potent 15-LOX-1 inhibitor, was studied by utilizing docking analysis. There was a direct relationship between lipoxygenase inhibitory potency and prenyl length chain. The ability of the prenyl portion to fill the lipophilic pocket which is formed by Ile663, Ala404, Arg403, Ile400, Ile173 and Phe167 side chains can explain the observed relationship. Similarity rate between the docked models and complexed form of RS75091, from point of view of configuration and conformation, could explain inhibitory potency variation between each prenyloxy substitution of 3-carboxycoumarins.
Collapse
|
72
|
Plasma 15-Hydroxyeicosatetraenoic Acid Predicts Treatment Outcomes in Aspirin-Exacerbated Respiratory Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:998-1007.e2. [PMID: 28159558 DOI: 10.1016/j.jaip.2016.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aspirin desensitization followed by daily aspirin provides therapeutic benefits to patients with aspirin-exacerbated respiratory disease (AERD). It is not well understood how eicosanoid levels change during aspirin treatment. OBJECTIVE To investigate associations between clinical outcomes of aspirin treatment and plasma eicosanoid levels in patients with AERD. METHODS Thirty-nine patients with AERD were offered aspirin treatment (650 mg twice daily) for 4 weeks. Respiratory parameters and plasma levels of multiple eicosanoids were recorded at baseline and after 4 weeks of aspirin therapy using the Asthma Control Test and Rhinoconjunctivitis Quality of Life Questionnaire. Respiratory function was evaluated using the FEV1 and nasal inspiratory peak flow. RESULTS After aspirin treatment, respiratory symptoms improved in 16 patients, worsened in 12 patients, and did not change in 4 patients. Seven patients were unable to complete the desensitization protocol. Patients with symptom improvement had higher baseline plasma 15-hydroxyeicosatetraenoic acid (15-HETE) levels than did patients with symptom worsening: 7006 pg/mL (interquartile range, 6056-8688 pg/mL) versus 4800 pg/mL (interquartile range, 4238-5575 pg/mL), P = .0005. Baseline 15-HETE plasma levels positively correlated with the change in Asthma Control Test score (r = 0.61; P = .001) and in FEV1 after 4 weeks of aspirin treatment (r = 0.49; P = .01). It inversely correlated with Rhinoconjunctivitis Quality of Life Questionnaire score (r = -0.58; P = .002). Black and Latino patients were more likely to have symptom worsening on aspirin or fail to complete the initial desensitization than white, non-Latino patients (P = .02). CONCLUSIONS In patients with AERD, low baseline 15-HETE plasma levels and black or Latino ethnicity are associated with worsening of respiratory symptoms during aspirin treatment.
Collapse
|
73
|
Han H, Liang X, Ekberg M, Kritikou JS, Brunnström Å, Pelcman B, Matl M, Miao X, Andersson M, Yuan X, Schain F, Parvin S, Melin E, Sjöberg J, Xu D, Westerberg LS, Björkholm M, Claesson HE. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation. FASEB J 2016; 31:491-504. [PMID: 27825104 DOI: 10.1096/fj.201600679rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Dendritic cells (DCs) involved in proinflammatory immune responses derive mainly from peripheral monocytes, and the cells subsequently mature and migrate into the inflammatory micromilieu. Here we report that suppressing of 15-lipoxygenase-1 led to a substantial reduction in DC spreading and podosome formation in vitro. The surface expression of CD83 was significantly lower in both sh-15-lipoxygenase-1 (15-LOX-1)-transduced cells and DCs cultivated in the presence of a novel specific 15-LOX-1 inhibitor. The T-cell response against tetanus-pulsed DCs was only affected to a minor extent on inhibition of 15-LOX-1. In contrast, endocytosis and migration ability of DCs were significantly suppressed on 15-LOX-1 inhibition. The expression of 15-LOX-1 in DCs was also demonstrated in affected human skin in atopic and contact dermatitis, showing that the enzyme is indeed expressed in inflammatory diseases in vivo. This study demonstrated that inhibiting 15-LOX-1 led to an impaired podosome formation in DCs, and consequently suppressed antigen uptake and migration capacity. These results indicated that 15-LOX-1 is a potential target for inhibiting the trafficking of DCs to lymphoid organs and inflamed tissues and decreasing the inflammatory response attenuating symptoms of certain immunologic and inflammatory disorders such as dermatitis.-Han, H., Liang, X., Ekberg, M., Kritikou, J. S., Brunnström, Å., Pelcman, B., Matl, M., Miao, X., Andersson, M., Yuan, X., Schain, F., Parvin, S., Melin, E., Sjöberg, J., Xu, D., Westerberg, L. S., Björkholm, M., Claesson, H.-E. Human 15-lipoxygenase-1 is a regulator of dendritic-cell spreading and podosome formation.
Collapse
Affiliation(s)
- Hongya Han
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; .,Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiuming Liang
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Monica Ekberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Brunnström
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Benjamin Pelcman
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Matl
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xinyan Miao
- Clinical Pharmacology Group, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; and
| | - Margareta Andersson
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaotian Yuan
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Frida Schain
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Selina Parvin
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Eva Melin
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Jan Sjöberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Dawei Xu
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Björkholm
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
74
|
Ban GY, Cho K, Kim SH, Yoon MK, Kim JH, Lee HY, Shin YS, Ye YM, Cho JY, Park HS. Metabolomic analysis identifies potential diagnostic biomarkers for aspirin-exacerbated respiratory disease. Clin Exp Allergy 2016; 47:37-47. [PMID: 27533637 DOI: 10.1111/cea.12797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/13/2016] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND To date, there has been no reliable in vitro test to diagnose aspirin-exacerbated respiratory disease (AERD). OBJECTIVE To investigate potential diagnostic biomarkers for AERD using metabolomic analysis. METHODS An untargeted profile of serum from asthmatics in the first cohort (group 1) comprising 45 AERD, 44 patients with aspirin-tolerant asthma (ATA), and 28 normal controls was developed using the ultra-high-performance liquid chromatography (UHPLC)/Q-ToF MS system. Metabolites that discriminate AERD from ATA were quantified in both serum and urine, which were collected before (baseline) and after the lysine-aspirin bronchoprovocation test (Lys-ASA BPT). The serum metabolites were validated in the second cohort (group 2) comprising 50 patients with AERD and 50 patients with ATA. RESULTS A clear discrimination of metabolomes was found between patients with AERD and ATA. In group 1, serum levels of LTE4 and LTE4 /PGF2 α ratio before and after the Lys-ASA BPT were significantly higher in patients with AERD than in patients with ATA (P < 0.05 for each), and urine baseline levels of these two metabolites were significantly higher in patients with AERD. Significant differences of serum metabolite levels between patients with AERD and ATA were replicated in group 2 (P < 0.05 for each). Moreover, serum baseline levels of LTE4 and LTE4 /PGF2 α ratio discriminated AERD from ATA with 70.5%/71.6% sensitivity and 41.5%/62.8% specificity, respectively (AUC = 0.649 and 0.732, respectively P < 0.001 for each). Urine baseline LTE4 levels were significantly correlated with the fall in FEV1 % after the Lys-ASA BPT in patients with AERD (P = 0.008, r = 0.463). CONCLUSIONS AND CLINICAL RELEVANCE Serum metabolite level of LTE4 and LTE4 /PGF2 α ratio was identified as potential in vitro diagnostic biomarkers for AERD using the UHPLC/Q-ToF MS system, which were closely associated with major pathogenetic mechanisms underlying AERD.
Collapse
Affiliation(s)
- G-Y Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - K Cho
- Department of Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - S-H Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - M K Yoon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - J-H Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - H Y Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Y S Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Y-M Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - J-Y Cho
- Department of Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - H-S Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
75
|
Banthiya S, Kalms J, Galemou Yoga E, Ivanov I, Carpena X, Hamberg M, Kuhn H, Scheerer P. Structural and functional basis of phospholipid oxygenase activity of bacterial lipoxygenase from Pseudomonas aeruginosa. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1681-1692. [PMID: 27500637 DOI: 10.1016/j.bbalip.2016.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 01/18/2023]
Abstract
Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system.
Collapse
Affiliation(s)
- Swathi Banthiya
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Jacqueline Kalms
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Etienne Galemou Yoga
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Igor Ivanov
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Xavi Carpena
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, 08028 Barcelona, Spain; XALOC beamline, ALBA synchrotron (CELLS), 08290 Cerdanyola del Vallès, Spain
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hartmut Kuhn
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik, Group Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
76
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
77
|
Eleftheriadis N, Poelman H, Leus NGJ, Honrath B, Neochoritis CG, Dolga A, Dömling A, Dekker FJ. Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. Eur J Med Chem 2016; 122:786-801. [PMID: 27477687 DOI: 10.1016/j.ejmech.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/18/2023]
Abstract
The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under hypoxic conditions. In order to further explore applications in the CNS, novel 15-LOX-1 inhibitors with favorable physicochemical properties need to be developed. Here, we present Substitution Oriented Screening (SOS) in combination with Multi Component Chemistry (MCR) as an effective strategy to identify a diversely substituted small heterocyclic inhibitors for 15-LOX-1, denoted ThioLox, with physicochemical properties superior to previously identified inhibitors. Ex vivo biological evaluation in precision-cut lung slices (PCLS) showed inhibition of pro-inflammatory gene expression and in vitro studies on neuronal HT-22 cells showed a strong protection against glutamate toxicity for this 15-LOX-1 inhibitor. This provides a novel approach to identify novel small with favorable physicochemical properties for exploring 15-LOX-1 as a drug target in inflammatory diseases and neurodegeneration.
Collapse
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Hessel Poelman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Niek G J Leus
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Constantinos G Neochoritis
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
78
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
79
|
|
80
|
Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 2015; 12:199. [PMID: 26520095 PMCID: PMC4628268 DOI: 10.1186/s12974-015-0419-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Oxidative stress and inflammation are important factors contributing to the pathophysiology of numerous neurological disorders, including Alzheimer’s disease, Parkinson’s disease, acute stroke, and infections of the brain. There is well-established evidence that proinflammatory cytokines and glutamate, as well as reactive oxygen species (ROS) and nitric oxide (NO), are produced upon microglia activation, and these are important factors contributing to inflammatory responses and cytotoxic damage to surrounding neurons and neighboring cells. Microglial cells express relatively high levels of cytosolic phospholipase A2 (cPLA2), an enzyme known to regulate membrane phospholipid homeostasis and release of arachidonic acid (AA) for synthesis of eicosanoids. The goal for this study is to elucidate the role of cPLA2IV in mediating the oxidative and inflammatory responses in microglial cells. Methods Experiments involved primary microglia cells isolated from transgenic mice deficient in cPLA2α or iPLA2β, as well as murine immortalized BV-2 microglial cells. Inhibitors of cPLA2/iPLA2/cyclooxygenase (COX)/lipoxygenase (LOX) were used in BV-2 microglial cell line. siRNA transfection was employed to knockdown cPLA2 expression in BV-2 cells. Griess reaction protocol was used to determine NO concentration, and CM-H2DCF-DA was used to detect ROS production in primary microglia and BV-2 cells. WST-1 assay was used to assess cell viability. Western blotting was used to assess protein expression levels. Immunocytochemical staining for phalloidin against F-actin was used to demonstrate cell morphology. Results In both primary and BV-2 microglial cells, stimulation with lipopolysaccharide (LPS) or interferon gamma (IFNγ) resulted in a time-dependent increase in phosphorylation of cPLA2 together with ERK1/2. In BV-2 cells, LPS- and IFNγ-induced ROS and NO production was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3) and pyrrophenone as well as RNA interference, but not BEL, suggesting a link between cPLA2, and not iPLA2, on LPS/IFNγ-induced nitrosative and oxidative stress in microglial cells. Primary microglial cells isolated from cPLA2α-deficient mice generated significantly less NO and ROS as compared with the wild-type mice. Microglia isolated from iPLA2β-deficient mice did not show a decrease in LPS-induced NO and ROS production. LPS/IFNγ induced morphological changes in primary microglia, and these changes were mitigated by AACOCF3. Interestingly, despite that LPS and IFNγ induced an increase in phospho-cPLA2 and prostaglandin E2 (PGE2) release, LPS- and IFNγ-induced NO and ROS production were not altered by the COX-1/2 inhibitor but were suppressed by the LOX-12 and LOX-15 inhibitors instead. Conclusions In summary, the results in this study demonstrated the role of cPLA2 in microglial activation with metabolic links to oxidative and inflammatory responses, and this was in part regulated by the AA metabolic pathways, namely the LOXs. Further studies with targeted inhibition of cPLA2/LOX in microglia during neuroinflammatory conditions can be valuable to investigate the therapeutic potential in ameliorating neurological disease pathology. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0419-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dennis Y Chuang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA
| | - Agnes Simonyi
- Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Paul T Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zezong Gu
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA.,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA.,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA.,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA. .,Center for Translational Neuroscience, University of Missouri, Columbia, MO, USA. .,Center for Botanical Interaction Studies, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
81
|
Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr 2015; 6:513-40. [PMID: 26374175 PMCID: PMC4561827 DOI: 10.3945/an.114.007732] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n-3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n-3 PUFAs, oxylipins from n-6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Harold M Aukema
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; and Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
82
|
Endogenous secreted phospholipase A2 group X regulates cysteinyl leukotrienes synthesis by human eosinophils. J Allergy Clin Immunol 2015; 137:268-277.e8. [PMID: 26139511 DOI: 10.1016/j.jaci.2015.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Phospholipase A2s mediate the rate-limiting step in the formation of eicosanoids such as cysteinyl leukotrienes (CysLTs). Group IVA cytosolic PLA2α (cPLA2α) is thought to be the dominant PLA2 in eosinophils; however, eosinophils also have secreted PLA2 (sPLA2) activity that has not been fully defined. OBJECTIVES To examine the expression of sPLA2 group X (sPLA2-X) in eosinophils, the participation of sPLA2-X in the formation of CysLTs, and the mechanism by which sPLA2-X initiates the synthesis of CysLTs in eosinophils. METHODS Peripheral blood eosinophils were obtained from volunteers with asthma and/or allergy. A rabbit polyclonal anti-sPLA2-X antibody identified sPLA2-X by Western blot. We used confocal microscopy to colocalize the sPLA2-X to intracellular structures. An inhibitor of sPLA2-X (ROC-0929) that does not inhibit other mammalian sPLA2s, as well as inhibitors of the mitogen-activated kinase cascade (MAPK) and cPLA2α, was used to examine the mechanism of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-mediated formation of CysLT. RESULTS Eosinophils express the mammalian sPLA2-X gene (PLA2G10). The sPLA2-X protein is located in the endoplasmic reticulum, golgi, and granules of eosinophils and moves to the granules and lipid bodies during fMLP-mediated activation. Selective sPLA2-X inhibition attenuated the fMLP-mediated release of arachidonic acid and CysLT formation by eosinophils. Inhibitors of p38, extracellular-signal-regulated kinases 1/2 (p44/42 MAPK), c-Jun N-terminal kinase, and cPLA2α also attenuated the fMLP-mediated formation of CysLT. The sPLA2-X inhibitor reduced the phosphorylation of p38 and extracellular-signal-regulated kinases 1/2 (p44/42 MAPK) as well as cPLA2α during cellular activation, indicating that sPLA2-X is involved in activating the MAPK cascade leading to the formation of CysLT via cPLA2α. We further demonstrate that sPLA2-X is activated before secretion from the cell during activation. Short-term priming with IL-13 and TNF/IL-1β increased the expression of PLA2G10 by eosinophils. CONCLUSIONS These results demonstrate that sPLA2-X plays a significant role in the formation of CysLTs by human eosinophils. The predominant role of the enzyme is the regulation of MAPK activation that leads to the phosphorylation of cPLA2α. The sPLA2-X protein is regulated by proteolytic cleavage, suggesting that an inflammatory environment may promote the formation of CysLTs through this mechanism. These results have important implications for the treatment of eosinophilic disorders such as asthma.
Collapse
|
83
|
Identification of Metabolites and Metabolic Pathways Related to Treatment with Bufei Yishen Formula in a Rat COPD Model Using HPLC Q-TOF/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:956750. [PMID: 26170891 PMCID: PMC4485497 DOI: 10.1155/2015/956750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/15/2015] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
Abstract
As a traditional Chinese medicine, Bufei Yishen Formula (BYF) is widely used in China as an effective treatment for chronic obstructive pulmonary disease (COPD). Because of the component complexity and multiple activities of Chinese herbs, the mechanism whereby BYF affects COPD is not yet fully understood. Herein, pulmonary function experiments and histomorphological assessments were used to evaluate the curative effect of BYF, which showed that BYF had an effect on COPD. Additionally, a high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC QTOF/MS) metabonomics method was used to analyze the mechanism of the actions of BYF on rats with COPD induced by a combination of bacteria and smoking. Partial least squares discriminate analysis (PLS-DA) was used to screen biomarkers related to BYF treatment. Candidate biomarkers were selected and pathways analysis of these metabolites showed that three types of metabolic pathways (unsaturated fatty acid metabolism-related pathways, phenylalanine metabolism-related pathways, and phospholipid metabolism-related pathways) were associated with BYF treatment. Importantly, arachidonic acid and related metabolic pathways might be useful targets for novel COPD therapies.
Collapse
|
84
|
Ayuso P, Plaza-Serón MDC, Blanca-López N, Doña I, Campo P, Canto G, Laguna JJ, Bartra J, Soriano-Gomis V, Blanca M, Cornejo-García JA, Perkins JR. Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics 2015; 16:825-39. [PMID: 26067486 DOI: 10.2217/pgs.15.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM NSAIDs are the most frequent cause of hypersensitivity drug reactions. We have examined the association between NSAID-exacerbated respiratory disease (NERD) and genetic variants in arachidonic acid metabolism genes. PATIENTS & METHODS We included 250 NERD patients, 260 NSAID-tolerant asthmatic (NTA) subjects and 315 healthy controls. RESULTS Significant associations with NERD were identified for: ALOX15 rs3892408 C/C homozygous genotype (NERD vs NTA; p = 0.0001, pc = 0.0011; NERD vs controls; p = 0.0001, pc = 0.0011), PTGS-1 rs5789 A/A homozygous genotype (NERD vs NTA; p = 0.0001, pc = 0.0011; NERD vs controls; p = 0.0001, pc = 0.0011), PTGS-1 rs10306135 A/A homozygous genotype (NERD vs NTA; p = 0.0009, pc = 0.0091; NERD vs controls; p = 0.0064, pc = 0.045). Differences in ALOX5 copy number variations were also found (NERD vs NTA; p = 0.010; NERD vs controls; p = 0.0001). CONCLUSION These results improve our understanding of the underlying mechanisms of NERD and may help develop a predictive test for this pathology. Original submitted 3 November 2014; Revision submitted 2 April 2015.
Collapse
Affiliation(s)
- Pedro Ayuso
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain.,Allergy Service, Infanta Leonor Hospital, Madrid, Spain
| | - María Del Carmen Plaza-Serón
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain.,Allergy Service, Infanta Leonor Hospital, Madrid, Spain
| | | | - Inmaculada Doña
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - Paloma Campo
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | | | | | - Joan Bartra
- Allergy Unit, Pneumology & Allergy Department, Hospital Clinic, Barcelona, Spain
| | | | - Miguel Blanca
- Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - José A Cornejo-García
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain.,Allergy Unit, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - James R Perkins
- Research Laboratory, IBIMA, Regional University Hospital of Malaga, UMA, Malaga, Spain
| |
Collapse
|
85
|
Brunnström Å, Tryselius Y, Feltenmark S, Andersson E, Leksell H, James A, Mannervik B, Dahlén B, Claesson HE. On the biosynthesis of 15-HETE and eoxin C4 by human airway epithelial cells. Prostaglandins Other Lipid Mediat 2015; 121:83-90. [PMID: 26026713 DOI: 10.1016/j.prostaglandins.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/18/2023]
Abstract
Several lines of evidence indicate that 15-lipoxygenase type 1 (15-LO-1) plays a pathophysiological role in asthma. The aim for this study was to investigate the 15-LO-1 expression and activity in primary human airway epithelial cells cultivated on micro-porous filters at air-liquid interface. Incubation of human airway epithelial cells with arachidonic acid led to the formation of 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and exposing the cells to bacteria or physical injury markedly increased their production of 15-HETE. The cells were also found to convert arachidonic acid to eoxin C4 (EXC4). Subcellular fractionation revealed that the conversion of EXA4 to EXC4 was catalyzed by a soluble glutathione transferase (GST). The GST P1-1 enzyme was found to possess the highest activity of the investigated soluble GSTs. Following IL-4 treatment of airway epithelial cells, microarray analysis confirmed high expression of 15-LO-1 and GST P1-1, and immunohistochemical staining of bronchial biopsies revealed co-localization of 15-LO-1 and GST P1-1 in airway epithelial cells. These results indicate that respiratory infection and cell injury may activate the 15-LO pathway in airway epithelial cells. Furthermore, we also demonstrate that airway epithelial cells have the capacity to produce EXC4.
Collapse
Affiliation(s)
- Åsa Brunnström
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | | | | | - Helene Leksell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden
| | - Anna James
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; The Centre for Allergy Research, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Barbro Dahlén
- The Centre for Allergy Research, Sweden; Department of Medicine, Karolinska University Hospital Huddinge, Sweden
| | - Hans-Erik Claesson
- Department of Medicine, Karolinska University Hospital and Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
86
|
Pelcman B, Sanin A, Nilsson P, Schaal W, Olofsson K, Krog-Jensen C, Forsell P, Hallberg A, Larhed M, Boesen T, Kromann H, Claesson HE. N-Substituted pyrazole-3-carboxamides as inhibitors of human 15-lipoxygenase. Bioorg Med Chem Lett 2015; 25:3017-23. [PMID: 26037319 DOI: 10.1016/j.bmcl.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
High-throughput screening was used to find selective inhibitors of human 15-lipoxygenase-1 (15-LOX-1). One hit, a 1-benzoyl substituted pyrazole-3-carboxanilide (1a), was used as a starting point in a program to develop potent and selective 15-LOX-1 inhibitors.
Collapse
Affiliation(s)
- Benjamin Pelcman
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - Andrei Sanin
- Biolipox AB, Berzelius väg 3, SE-171 65 Solna, Sweden
| | - Peter Nilsson
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden; Biolipox AB, Berzelius väg 3, SE-171 65 Solna, Sweden
| | - Wesley Schaal
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden; Biolipox AB, Berzelius väg 3, SE-171 65 Solna, Sweden
| | | | | | | | - Anders Hallberg
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Thomas Boesen
- MedChem ApS, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - Hasse Kromann
- MedChem ApS, Fruebjergvej 3, DK-2100 Copenhagen, Denmark
| | - Hans-Erik Claesson
- Biolipox AB, Berzelius väg 3, SE-171 65 Solna, Sweden; Department of Medicine, Building A3:02, Karolinska University Hospital Solna and Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
87
|
Identification of 6-benzyloxysalicylates as a novel class of inhibitors of 15-lipoxygenase-1. Eur J Med Chem 2015; 94:265-75. [PMID: 25771032 DOI: 10.1016/j.ejmech.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Lipoxygenases metabolize polyunsaturated fatty acids into signalling molecules such as leukotrienes and lipoxins. 15-lipoxygenase-1 (15-LOX-1) is an important mammalian lipoxygenase and plays a crucial regulatory role in several respiratory diseases such as asthma, COPD and chronic bronchitis. Novel potent and selective inhibitors of 15-LOX-1 are required to explore the role of this enzyme in drug discovery. In this study we describe structure activity relationships for 6-benzyloxysalicylates as inhibitors of human 15-LOX-1. Kinetic analysis suggests competitive inhibition and the binding model of these compounds can be rationalized using molecular modelling studies. The most potent derivative 37a shows a Ki value of 1.7 μM. These structure activity relationships provide a basis to design improved inhibitors and to explore 15-LOX-1 as a drug target.
Collapse
|
88
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
89
|
Larose MC, Turcotte C, Chouinard F, Ferland C, Martin C, Provost V, Laviolette M, Flamand N. Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoyl-glycerol. J Allergy Clin Immunol 2014; 133:1480-2, 1482.e1-3. [PMID: 24530098 DOI: 10.1016/j.jaci.2013.12.1081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/20/2013] [Accepted: 12/20/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Marie-Chantal Larose
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Caroline Turcotte
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - François Chouinard
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Claudine Ferland
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Cyril Martin
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Véronique Provost
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Michel Laviolette
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5
| | - Nicolas Flamand
- Faculté de médecine, Département de médecine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada G1V 4G5.
| |
Collapse
|
90
|
Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol 2014; 10:229-41. [DOI: 10.1038/nrrheum.2014.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
91
|
Quantum dot–NBD–liposome luminescent probes for monitoring phospholipase A2 activity. Anal Bioanal Chem 2013; 405:9729-37. [DOI: 10.1007/s00216-013-7422-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
|
92
|
Ma C, Wang Y, Shen T, Zhang C, Ma J, Zhang L, Liu F, Zhu D. Placenta growth factor mediates angiogenesis in hypoxic pulmonary hypertension. Prostaglandins Leukot Essent Fatty Acids 2013; 89:159-68. [PMID: 24001991 DOI: 10.1016/j.plefa.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/10/2013] [Accepted: 08/10/2013] [Indexed: 12/21/2022]
Abstract
Our previous studies have proved that hypoxia enhances the 15-lipoxygenase (15-LO) expression and increases endogenous 15-hydroxyeicosatetraenoic acid (15-HETE) production to promote pulmonary vascular remodeling and angiogenesis, while the mechanisms of how hypoxia regulates 15-LO expression in endothelium is still unknown. As placenta growth factor (PlGF) promotes pathological angiogenesis by acting on the growth, migration and survival of endothelial cells, there may be some connections between PlGF and 15-LO in hypoxia induced endothelial cells proliferation. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and bromodeoxyuridine incorporation to determine the role of PlGF in pulmonary remodeling induced by hypoxia. Our results showed that hypoxia up-regulated PlGF expression, which was mediated by 15-LO/15-HETE pathway. Furthermore, we found that PlGF had a positive feedback regulation with 15-LO expression and 15-HETE generation. The interaction in hypoxia between 15-HETE and PlGF created a PlGF-15-LO-15-HETE loop, leading to endothelial dysfunction. Thus, these findings suggest a new therapeutic agent in combination with the blockade of PlGF as well as 15-LO in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Cui Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Klil-Drori AJ, Ariel A. 15-Lipoxygenases in cancer: a double-edged sword? Prostaglandins Other Lipid Mediat 2013; 106:16-22. [PMID: 23933488 DOI: 10.1016/j.prostaglandins.2013.07.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/11/2013] [Accepted: 07/30/2013] [Indexed: 11/26/2022]
Abstract
Among the lipoxygenases, a diverse family of fatty acid dioxygenases with varying tissue-specific expression, 15-lipoxygenase (15-LOX) was found to be involved in many aspects of human cancer, such as angiogenesis, chronic inflammation, metastasis formation, and direct and indirect tumor suppression. Herein, evidence for the expression and action of 15-LOX and its orthologs in various neoplasms, including solid tumors and hematologic malignancies, is reviewed. The debate surrounding the impact of 15-LOX as either a tumor-promoting or a tumor-suppressing enzyme is highlighted and discussed in the context of its role in other biological systems.
Collapse
Affiliation(s)
- Adi J Klil-Drori
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, P.O. Box 9602, Haifa 31096, Israel
| | | |
Collapse
|
94
|
Balgoma D, Larsson J, Rokach J, Lawson JA, Daham K, Dahlén B, Dahlén SE, Wheelock CE. Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: controlling matrix effects. Anal Chem 2013; 85:7866-74. [PMID: 23863083 DOI: 10.1021/ac401461b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Eicosanoids (e.g., prostaglandins and leukotrienes) are inflammatory signaling molecules that are metabolized and excreted in urine. The quantification of eicosanoid metabolites in human urine has been demonstrated to provide insight into the inflammatory and oxidative stress status of the individual. However, urine is a complex matrix that can exhibit profound matrix effects for quantification via liquid chromatography coupled to mass spectrometry (LC-MS/MS). This phenomenon can lead to impairment and biasing of results, because the sample background is dependent on the fluid intake and water-salt balance. Herein we describe an analytical methodology to address these limitations via the normalization of extracted urine volume by the ratio of absorbance at 300 nm to an optimized reference material. The platform is composed of 4 LC-MS/MS methods that collectively quantify 26 lipid mediators and their metabolites, with on-column limits of detection between 0.55 and 15 fmol. Prior to optimization, internal standards exhibited strong matrix effects with up to 50% loss of signal. Notably, the accuracy of exact deuterated structural analogues was found to vary based upon the number of incorporated deteurium. The platform was used to analyze urine from 16 atopic asthmatics under allergen provocation, showing increases in metabolites of prostaglandin D2, cysteinyl leukotrienes, and isoprostanes following the challenge. This method presents a functional and reproducible approach to addressing urine-specific matrix effects that can be readily formatted for quantifying large numbers of samples.
Collapse
Affiliation(s)
- David Balgoma
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
James A, Daham K, Backman L, Brunnström A, Tingvall T, Kumlin M, Edenius C, Dahlén SE, Dahlén B, Claesson HE. The influence of aspirin on release of eoxin C4, leukotriene C4 and 15-HETE, in eosinophilic granulocytes isolated from patients with asthma. Int Arch Allergy Immunol 2013; 162:135-42. [PMID: 23921438 DOI: 10.1159/000351422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The effect of aspirin on the release of key arachidonic acid metabolites in activated eosinophils from subjects with aspirin-intolerant asthma (AIA) has not been investigated previously, despite the characteristic eosinophilia in AIA. METHODS Peripheral blood eosinophils were isolated from four groups of subjects: healthy volunteers (HV; n = 8), mild asthma (MA; n = 8), severe asthma (SA; n = 9) and AIA (n = 7). In the absence or presence of lysine-aspirin, eosinophils were stimulated with arachidonic acid or calcium ionophore to trigger the 15-lipoxygenase-1 (15-LO) and 5-lipoxygenase (5-LO) pathways, respectively. 15(S)-hydroxy-eicosatetraenoic acid (15-HETE) and eoxin C4 (EXC4) were measured as 15-LO products and leukotriene (LT)C4 as a product of the 5-LO pathway. RESULTS Activated eosinophils from patients with SA and AIA produced approximately five times more 15-HETE than eosinophils from HV or MA patients. In the presence of lysine-aspirin, eosinophils from AIA, MA and SA patients generated higher levels of 15-HETE than in the absence of lysine-aspirin. Furthermore, in the presence of lysine-aspirin, formation of EXC4 was also significantly increased in eosinophils from AIA patients, and LTC4 synthesis was increased both in AIA and SA patients. CONCLUSIONS Taken together, this study shows an increased release of the recently discovered lipid mediator EXC4, as well as the main indicator of 15-LO activity, 15-HETE, in activated eosinophils from severe and aspirin-intolerant asthmatics, and also elevated EXC4 and LTC4 formation in eosinophils from AIA patients after cellular activation in the presence of lysine-aspirin. The findings support a pathophysiological role of the 15-LO pathway in SA and AIA.
Collapse
Affiliation(s)
- Anna James
- The Centre for Allergy Research, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Gene-metabolite expression in blood can discriminate allergen-induced isolated early from dual asthmatic responses. PLoS One 2013; 8:e67907. [PMID: 23844124 PMCID: PMC3699462 DOI: 10.1371/journal.pone.0067907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/21/2013] [Indexed: 01/07/2023] Open
Abstract
Some asthmatic individuals undergoing allergen inhalation challenge develop an isolated early response whereas others develop a dual response (early plus late response). In the present study we have used transcriptomics (microarrays) and metabolomics (mass spectrometry) of peripheral blood to identify molecular patterns that can discriminate allergen-induced isolated early from dual asthmatic responses. Peripheral blood was obtained prior to (pre-) and 2 hours post allergen inhalation challenge from 33 study participants. In an initial cohort of 14 participants, complete blood counts indicated significant differences in neutrophil and lymphocyte counts at pre-challenge between early and dual responders. At post-challenge, significant genes (ALOX15, FADS2 and LPCAT2) and metabolites (lysolipids) were enriched in lipid metabolism pathways. Enzymes encoding for these genes are involved in membrane biogenesis and metabolism of fatty acids into pro-inflammatory and anti-inflammatory mediators. Correlation analysis indicated a strong negative correlation between ALOX15, FADS2, and IL5RA expression with 2-arachidonoylglycerophosphocholine levels in dual responders. However, measuring arachidonic acid and docosahexaenoic acid levels in a validation cohort of 19 participants indicated that the free form of DHA (nmoles/µg of protein) was significantly (p = 0.03) different between early and dual responders after allergen challenge. Collectively these results may suggest an imbalance in lipid metabolism which dictates pro- (anti-) inflammatory and pro-resolving mechanisms. Future studies with larger sample sizes may reveal novel mechanisms and therapeutic targets of the late phase asthmatic response.
Collapse
|
97
|
Lagarde M, Bernoud-Hubac N, Calzada C, Véricel E, Guichardant M. Lipidomics of essential fatty acids and oxygenated metabolites. Mol Nutr Food Res 2013; 57:1347-58. [PMID: 23818385 DOI: 10.1002/mnfr.201200828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023]
Abstract
Polyunsaturated fatty acids in mammals may be oxygenated into a myriad of bioactive products through di- and monooxygenases, products that are rapidly degraded to control their action. To evaluate the phenotypes of biological systems regarding this wide family of compounds, a lipidomics approach in function of time and compartments would be relevant. The current review takes into consideration most of the diverse oxygenated metabolites of essential fatty acids at large and their immediate degradation products. Their biological function and life span are considered. Overall, this is a fluxolipidomics approach that is emerging.
Collapse
Affiliation(s)
- Michel Lagarde
- Université de Lyon, UMR 1060 Inserm, IMBL, INSA-Lyon, Villeurbanne, France.
| | | | | | | | | |
Collapse
|
98
|
Synthesis of new series of pyrimido[4,5-b][1,4] benzothiazines as 15-lipoxygenase inhibitors and study of their inhibitory mechanism. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0506-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
99
|
Jin J, Zheng Y, Boeglin WE, Brash AR. Biosynthesis, isolation, and NMR analysis of leukotriene A epoxides: substrate chirality as a determinant of the cis or trans epoxide configuration. J Lipid Res 2012; 54:754-761. [PMID: 23242647 DOI: 10.1194/jlr.m033746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotriene (LT)A₄ and closely related allylic epoxides are pivotal intermediates in lipoxygenase (LOX) pathways to bioactive lipid mediators that include the leukotrienes, lipoxins, eoxins, resolvins, and protectins. Although the structure and stereochemistry of the 5-LOX product LTA₄ is established through comparison to synthetic standards, this is the exception, and none of these highly unstable epoxides has been analyzed in detail from enzymatic synthesis. Understanding of the mechanistic basis of the cis or trans epoxide configuration is also limited. To address these issues, we developed methods involving biphasic reaction conditions for the LOX-catalyzed synthesis of LTA epoxides in quantities sufficient for NMR analysis. As proof of concept, human 15-LOX-1 was shown to convert 15S-hydroperoxy-eicosatetraenoic acid (15S-HPETE) to the LTA analog 14S,15S-trans-epoxy-eicosa-5Z,8Z,10E,12E-tetraenoate, confirming the proposed structure of eoxin A₄. Using this methodology we then showed that recombinant Arabidopsis AtLOX1, an arachidonate 5-LOX, converts 5S-HPETE to the trans epoxide LTA₄ and converts 5R-HPETE to the cis epoxide 5-epi-LTA₄, establishing substrate chirality as a determinant of the cis or trans epoxide configuration. The results are reconciled with a mechanism based on a dual role of the LOX nonheme iron in LTA epoxide biosynthesis, providing a rational basis for understanding the stereochemistry of LTA epoxide intermediates in LOX-catalyzed transformations.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Yuxiang Zheng
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
100
|
Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R, Teran LM. Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 2012; 46:566-78. [PMID: 23246457 DOI: 10.1016/j.clinbiochem.2012.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 12/30/2022]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a distinct clinical entity characterized by eosinophilic rhinosinusitis, asthma and often nasal polyposis. Exposure to aspirin or other nonsteroid anti-inflammatory drugs (NSAIDs) exacerbates bronchospasms with asthma and rhinitis. Disease progression suggests a skewing towards TH2 type cellular response along with moderate to severe eosinophil and mast cell infiltration. Alterations in upper and lower airway cellular milieu with abnormalities in eicosanoid metabolism and altered eicosanoid receptor expression are the key features underlying AERD pathogenesis. Dysregulation of arachidonic acid (AA) metabolism, notably reduced prostaglandin E2 (PGE2) synthesis compared to their aspirin tolerant counterpart and relatively increased PGD2 production, a TH2/eosinophil chemoattractant are reported in AERD. Underproduced PGE2 is metabolized by overexpression of 15 prostaglandin dehydrogenase (15-PGDH) to inactive products further reducing PGE2 at real time. This relives the inhibitory effect of PGE2 on 5-lipoxygenase (5-LOX) resulting in overproduction of cysteinyl leukotrienes (CysLTs). Diminished formation of CysLT antagonists called lipoxins (LXs) also augments CysLTs responsiveness. Occasional intake of NSAIDs favors even more 5-LOX product formation, further narrowing the bronchoconstrictive bottle neck, resulting in acute asthmatic exacerbations along with increased mucus production. This review focuses on abnormalities in biochemical and molecular mechanisms in eicosanoid biosynthesis, eicosanoid receptor dysregulation and associated polymorphisms with special reference to arachidonic acid metabolism in AERD.
Collapse
Affiliation(s)
- Arun Narayanankutty
- Department of Immunoallergy and Asthma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico.
| | | | | | | |
Collapse
|