51
|
Meng XN, Chen QM, Fan HY, Song TF, Cui N, Zhao JY, Jia SM, Meng KX. Molecular characterization, expression analysis and heterologous expression of two translationally controlled tumor protein genes from Cucumis sativus. PLoS One 2017; 12:e0184872. [PMID: 28926624 PMCID: PMC5605047 DOI: 10.1371/journal.pone.0184872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/03/2017] [Indexed: 11/19/2022] Open
Abstract
The translationally controlled tumor protein (TCTP) is a family of abundant and ubiquitous proteins involved in several important primary functions. Cucumbers harbor two TCTP genes, CsTCTP1 and CsTCTP2; however, their functional roles remain unclear. In this study, we isolated CsTCTP1 and CsTCTP2 (XP-004134215 and XP-004135602, respectively) promoters, full-length cDNA and genomic sequences from Cucumis sativus. Bioinformatics analysis, containing cis-acting elements, structural domains, phylogenetic tree and conserved motifs, suggested the conservation and divergence of CsTCTP1 and CsTCTP2, thus providing knowledge regarding their functions. Expression analysis indicated that CsTCTP1 and CsTCTP2 exhibited tissue-specific expression and were regulated by biotic or abiotic stresses in C. sativus. Furthermore, CsTCTP1 and CsTCTP2 were regulated by ABA and may be associated with the TOR (target of rapamycin) signaling pathway. In a prokaryotic expression analysis, CsTCTP1 and CsTCTP2 showed positive responses to salt and heat stresses and a negative response to drought and HgCl2 stresses. TCTP may exert multiple functions in various cellular processes.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Amino Acid Sequence
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cucumis sativus/metabolism
- DNA, Plant/chemistry
- DNA, Plant/isolation & purification
- DNA, Plant/metabolism
- Droughts
- Gene Expression Regulation, Plant
- Mercuric Chloride/toxicity
- Phylogeny
- Plant Proteins/classification
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic
- Sequence Alignment
- Sequence Analysis, DNA
- Signal Transduction/drug effects
- Sodium Chloride/pharmacology
- Stress, Physiological
- TOR Serine-Threonine Kinases/metabolism
- Temperature
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Xiang nan Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Qiu min Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Hai yan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, People’s Republic of China
- * E-mail:
| | - Tie feng Song
- Liaoning Academy of Agricultural Sciences, Shenyang, People’s Republic of China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Ju yong Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, People’s Republic of China
| | - Shu min Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Ke xin Meng
- Foreign Languages Department, Shenyang Agricultural University, Shenyang, People’s Republic of China
| |
Collapse
|
52
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
53
|
Bossard G, Bartoli M, Fardeau ML, Holzmuller P, Ollivier B, Geiger A. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria. Gut Microbes 2017; 8:413-427. [PMID: 28586253 PMCID: PMC5628649 DOI: 10.1080/19490976.2017.1331833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.
Collapse
Affiliation(s)
- Géraldine Bossard
- CIRAD, UMR INTERTRYP, Montpellier, France,CONTACT Géraldine Bossard Centre de coopération International en Recherche Agronomique pour le Développement (CIRAD), Campus international de Baillarguet TA-A/17G 34398 Montpellier, France
| | | | | | - Philippe Holzmuller
- CIRAD, UMR CMAEE (control des maladies animales exotiques et émergentes), Montpellier, France
| | | | | |
Collapse
|
54
|
de Carvalho M, Acencio ML, Laitz AVN, de Araújo LM, de Lara Campos Arcuri M, do Nascimento LC, Maia IG. Impacts of the overexpression of a tomato translationally controlled tumor protein (TCTP) in tobacco revealed by phenotypic and transcriptomic analysis. PLANT CELL REPORTS 2017; 36:887-900. [PMID: 28260122 DOI: 10.1007/s00299-017-2117-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE Overexpression of a tomato TCTP impacts plant biomass production and performance under stress. These phenotypic alterations were associated with the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. The translationally controlled tumor protein (TCTP) is a multifaceted and highly conserved eukaryotic protein. In plants, despite the existence of functional data implicating this protein in cell proliferation and growth, the detailed physiological roles of many plant TCTPs remain poorly understood. Here we focused on a yet uncharacterized TCTP from tomato (SlTCTP). We show that, when overexpressed in tobacco, SlTCTP may promote plant biomass production and affect performance under salt and osmotic stress. Transcriptomic analysis of the transgenic plants revealed the up-regulation of genes mainly related to photosynthesis, fatty acid metabolism and water transport. This induced photosynthetic gene expression was paralleled by an increase in the photosynthetic rate and stomatal conductance of the transgenic plants. Moreover, the transcriptional modulation of genes involved in ABA-mediated regulation of stomatal movement was detected. On the other hand, genes playing a pivotal role in ethylene biosynthesis were found to be down-regulated in the transgenic lines, thus suggesting deregulated ethylene accumulation in these plants. Overall, these results point to a role of TCTP in photosynthesis and hormone signaling.
Collapse
Affiliation(s)
- Márcio de Carvalho
- Departamento de Genética, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brazil
| | - Márcio Luís Acencio
- Departamento de Física e Biofísica, Instituto de Biociências, UNESP, Botucatu, SP, Brazil
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, 8905, MH 7491, Norway
| | | | | | | | - Leandro Costa do Nascimento
- Laboratório Central de Tecnologias de Alto Desempenho em Ciências da Vida (LaCTAD), UNICAMP, Campinas, SP, Brazil
| | - Ivan G Maia
- Departamento de Genética, Instituto de Biociências, UNESP, Botucatu, SP, 18618-970, Brazil.
| |
Collapse
|
55
|
Bruckner FP, Xavier ADS, Cascardo RDS, Otoni WC, Zerbini FM, Alfenas‐Zerbini P. Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus. MOLECULAR PLANT PATHOLOGY 2017; 18:672-683. [PMID: 27159273 PMCID: PMC6638207 DOI: 10.1111/mpp.12426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/20/2023]
Abstract
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus-induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post-inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non-infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.
Collapse
Affiliation(s)
- Fernanda Prieto Bruckner
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - André Da Silva Xavier
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Renan De Souza Cascardo
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGROUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| | - Poliane Alfenas‐Zerbini
- Departamento de Microbiologia/BIOAGRO/National Institute of Science and Technology in Plant‐Pest InteractionsUniversidade Federal de ViçosaViçosaMG36570‐900Brazil
| |
Collapse
|
56
|
Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration. PLoS One 2017; 12:e0175319. [PMID: 28403226 PMCID: PMC5389791 DOI: 10.1371/journal.pone.0175319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae.
Collapse
|
57
|
Nawrot R, Lippmann R, Matros A, Musidlak O, Nowicki G, Mock HP. Proteomic comparison of Chelidonium majus L. latex in different phases of plant development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:312-325. [PMID: 28131060 DOI: 10.1016/j.plaphy.2017.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
Chelidonium majus L. (Papaveraceae) latex is used in traditinonal folk medicine to treat papillae, warts, condylomas, which are visible effects of human papilloma virus (HPV) infections. The aim of this work was to provide new insights into the biology and medicinal use of C. majus milky sap in the flowering and fruit ripening period of the plant by comparing the protein content between samples collected on respective developmental stages using LC-MS-based label-free proteome approach. For quantification, the multiplexed LC-MS data were processed using comparative chemometric approach. Progenesis LC-MS results showed that in green fruit phase (stage IV), comparing to flowering phase (stage III) of plant development, a range of proteins with higher abundance were identified as stress- and defense-related. On the other hand at stage III very intense protein synthesis, processes of transcription, protein folding and active transport of molecules (ABC transporters) are well represented. 2-DE protein maps showed an abundant set of spots with similar MWs (about 30-35 kDa) and pIs (ca. 5.5-6.5), which were identified as major latex proteins (MLPs). Therefore we suggest that biological activity of C. majus latex could be related to its protein content, which shifts during plant development from intense biosynthetic processes (biosynthesis and transport of small molecules, like alkaloids) to plant defense mechanisms against pathogens. Further studies will help to elucidate if these defense-related and pathogenesis-related proteins, like MLP, together with small-molecule compounds, could inhibit viral infection, what could be a step to fully understand the medicinal activity of C. majus latex.
Collapse
Affiliation(s)
- Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland.
| | - Rico Lippmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Oskar Musidlak
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, PL-61-614 Poznań, Poland
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| |
Collapse
|
58
|
Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A, Vidal M. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol 2017; 96:83-98. [PMID: 28110910 DOI: 10.1016/j.ejcb.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (Tpt1/TCTP) is a multi-functional cytosolic protein whose cellular levels are finely tuned. TCTP regulates protein behavior by favoring stabilization of protein partners or on the contrary by promoting degradation of others. TCTP has been shown to be transcriptionally and translationally regulated, but much less is known about its degradation process. In this study, we present evidence that chaperone-mediated autophagy (CMA) contributes to TCTP regulation. CMA allows lysosomal degradation of specific cytosolic proteins on a molecule-by-molecule basis. It contributes to cellular homeostasis especially by acting as a quality control for cytosolic proteins in response to stress and as a way of regulating the level of specific proteins. Using a variety of approaches, we show that CMA degradation of TCTP is Hsc70 and LAMP-2A dependent. Our data indicate that (i) TCTP directly interacts with Hsc70; (ii) silencing LAMP-2A in MEFs using siRNA leads to inhibition of TCTP downregulation; (iii) TCTP is relocalized from a diffuse cytosolic pattern to a punctate lysosomal pattern when CMA is upregulated; (iv) TCTP is degraded in vitro by purified lysosomes. Importantly, using lysine-mutated forms of TCTP, we show that acetylation of Lysine 19 generates a KFERQ-like motif and promotes binding to Hsc70, lysosome targeting and TCTP degradation by CMA. Altogether these results indicate that TCTP is degraded by chaperone-mediated autophagy in an acetylation dependent manner.
Collapse
Affiliation(s)
- Anne Bonhoure
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Alice Vallentin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Marianne Martin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Andrea Senff-Ribeiro
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Robert Amson
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Adam Telerman
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Michel Vidal
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France.
| |
Collapse
|
59
|
Betsch L, Savarin J, Bendahmane M, Szecsi J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl Cell Differ 2017; 64:149-172. [PMID: 29149407 DOI: 10.1007/978-3-319-67591-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
60
|
Zhang J, Shim G, de Toledo SM, Azzam EI. The Translationally Controlled Tumor Protein and the Cellular Response to Ionizing Radiation-Induced DNA Damage. Results Probl Cell Differ 2017; 64:227-253. [DOI: 10.1007/978-3-319-67591-6_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
61
|
Function of Translationally Controlled Tumor Protein in Organ Growth: Lessons from Drosophila Studies. Results Probl Cell Differ 2017; 64:173-191. [PMID: 29149408 DOI: 10.1007/978-3-319-67591-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regulation of cell growth and proliferation is crucial for development and function of organs in all animals. Genetic defects in growth control can lead to developmental disorders and cancers. Translationally controlled tumor protein (TCTP) is a family of evolutionarily conserved proteins implicated in cancer. Recent studies have revealed multiple roles of TCTP in diverse cellular events, but TCTP functions in vivo are poorly understood in vertebrate systems. We have used Drosophila melanogaster, the fruit fly, as a model organism for genetic dissection of Tctp function. Our studies have shown that Tctp is essential for organ development by regulating growth signaling. Furthermore, it is required for genome stability by promoting DNA repair and chromatin remodeling in the nucleus. Thus, Tctp acts as a multifaceted cytosolic and nuclear factor for regulating organ growth and genome stability. In this chapter, we describe an overview of our findings on Tctp functions in Drosophila and discuss their implications in cancer.
Collapse
|
62
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
63
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
64
|
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
65
|
Jing Y, He LL, Mei CL. Translationally-controlled tumor protein activates the transcription of Oct-4 in kidney-derived stem cells. Exp Ther Med 2016; 13:280-284. [PMID: 28123502 DOI: 10.3892/etm.2016.3955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms underlying translationally-controlled tumor protein (TCTP) in the activation of octamer-binding transcription factor 4 (Oct-4) in kidney-derived stem cells have not been characterized. The aim of the present study was to identify the transcriptional activation of Oct-4 by TCTP in kidney-derived stem cells. Homology-directed repair cDNA inserted into Fisher 344 transgenic (Tg) rats and the mouse strain 129/Svj were used for the experiments. Diphtheria toxin (DT; 10 ng/kg) injected into the Tg rats created the kidney injury, which was rapidly restored by the activation of kidney-derived stem cells. Kidney-derived stem cells were isolated from the DT-injured Tg rats using cell culture techniques. The co-expression of Oct-4 and TCTP were observed in the isolated kidney-derived stem cells. Immunoblotting and reverse transcription-polymerase chain reaction analysis of TCTP null mutant (TCTP-/-) embryos at day 9.5 (E9.5) demonstrated the absence of co-expression of Oct-4 and TCTP, but expression of paired box-2 was detected. This was in contrast with the E9.5 control embryos, which expressed all three proteins. In conclusion, the results of the present study demonstrated that TCTP activates the transcription of Oct-4 in kidney-derived stem cells, as TCTP-/- embryos exhibited knock down of TCTP and Oct-4 without disturbing the expression of Pax-2 The characteristics and functional nature of TCTP in association with Oct-4 in kidney-derived stem cells was identified.
Collapse
Affiliation(s)
- Ying Jing
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Liang-Liang He
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Chang-Lin Mei
- Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
66
|
Shi H, Mu WD, Zhang B, Meng T, Zhang ST, Zhou DS. Potential role of S-adenosylmethionine in osteosarcoma development. Onco Targets Ther 2016; 9:3653-9. [PMID: 27382303 PMCID: PMC4920229 DOI: 10.2147/ott.s101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The metastatic form of osteosarcoma is a life threatening one since it metastasizes to the lungs. The major cause of metastatic osteosarcoma is hypomethylation of numerous genes that undergo overexpression to enable the progression of the disease. In the present study, S-adenosylmethionine (SAM), a predominant methyl donor, was administered to find out its effects on osteosarcoma progression. As evidence of tumor suppression, the SAM-treated mouse tissue was analyzed histologically, which exemplifies the control that SAM has over abnormal cell proliferation, especially on primary osteosarcoma, but it lacks positive effects on metastatic osteosarcoma. At the molecular level, the successful inhibition of primary osteosarcoma was found to be associated with a lower expression of Sox2, a protein highly expressed in osteosarcoma stem cells, along with an upregulated expression of TCTP. The data suggest that the administration of SAM has a positive role in treating primary osteosarcoma, but it has no role in suppressing metastatic osteosarcoma. The decreased expression of Sox2 together with upregulation of TCTP following SAM administration indicates that SAM has a control over primary osteosarcoma.
Collapse
Affiliation(s)
- Hui Shi
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan; Department of Bone and Joint Surgery
| | - Wei-Dong Mu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Bing Zhang
- Department of Urology Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Tao Meng
- Department of Bone and Joint Surgery
| | | | - Dong-Sheng Zhou
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
67
|
Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW. 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun 2016; 7:11501. [PMID: 27151460 PMCID: PMC4859069 DOI: 10.1038/ncomms11501] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
14-3-3 family proteins regulate multiple signalling pathways. Understanding biological functions of 14-3-3 proteins has been limited by the functional redundancy of conserved isotypes. Here we provide evidence that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, translationally controlled tumour protein (Tctp) and Rheb GTPase. Single knockdown of 14-3-3ɛ or 14-3-3ζ isoform does not show obvious defects in organ development but causes synergistic genetic interaction with Tctp and Rheb to impair tissue growth. 14-3-3 proteins physically interact with Tctp and Rheb. Knockdown of both 14-3-3 isoforms abolishes the binding between Tctp and Rheb, disrupting organ development. Depletion of 14-3-3s also reduces the level of phosphorylated S6 kinase, phosphorylated Thor/4E-BP and cyclin E (CycE). Growth defects from knockdown of 14-3-3 and Tctp are suppressed by CycE overexpression. This study suggests a novel mechanism of Tor regulation mediated by 14-3-3 interaction with Tctp and Rheb. 14-3-3 proteins regulate several signalling pathways but often act redundantly; however, the molecular mechanisms behind such redundancy are unclear. Here, the authors show that 14-3-3 proteins regulate two interacting components of Tor signalling in Drosophila, Tctp and Rheb, disrupting organ development.
Collapse
Affiliation(s)
- Thao Phuong Le
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Ah-Ram Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Sherman Fairchild 358A, 7 Divinity Avenue Cambridge, Massachusetts 02138, USA
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
68
|
Hafidh S, Potěšil D, Fíla J, Čapková V, Zdráhal Z, Honys D. Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 2016; 17:81. [PMID: 27139692 PMCID: PMC4853860 DOI: 10.1186/s13059-016-0928-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective. RESULTS We performed genome-wide quantitative liquid chromatography-tandem mass spectrometry analysis of a pistil-stimulated pollen tube secretome and identified 801 pollen tube-secreted proteins. Interestingly, in silico analysis reveals that the pollen tube secretome is dominated by proteins that are secreted unconventionally, representing 57 % of the total secretome. In support, we show that an unconventionally secreted protein, translationally controlled tumor protein, is secreted to the apoplast. Remarkably, we discovered that this protein could be secreted by infiltrating through the initial phases of the conventional secretory pathway and could reach the apoplast via exosomes, as demonstrated by co-localization with Oleisin1 exosome marker. We demonstrate that translationally controlled tumor protein-knockdown Arabidopsis thaliana plants produce pollen tubes that navigate poorly to the target ovule and that the mutant allele is poorly transmitted through the male. Further, we show that regulators of the endoplasmic reticulum-trans-Golgi network protein secretory pathway control secretion of Nicotiana tabacum Pollen tube-secreted cysteine-rich protein 2 and Lorelei-like GPI-anchor protein 3 and that a regulator of endoplasmic reticulum-trans-Golgi protein translocation is essential for pollen tube growth, pollen tube guidance and ovule-targeting competence. CONCLUSIONS This work, the first study on the pollen tube secretome, identifies novel genome-wide pollen tube-secreted proteins with potential functions in pollen tube guidance towards ovules for sexual reproduction. Functional analysis highlights a potential mechanism for unconventional secretion of pollen tube proteins and reveals likely regulators of conventional pollen tube protein secretion. The association of pollen tube-secreted proteins with marker proteins shown to be secreted via exosomes in other species suggests exosome secretion is a possible mechanism for cell-cell communication between the pollen tube and female reproductive cells.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| | - David Potěšil
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Věra Čapková
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Zbyněk Zdráhal
- Research group Proteomics, CEITEC-MU, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany ASCR, Rozvojová 263, 165 02, Prague 6, Czech Republic.
| |
Collapse
|
69
|
Chou M, Xia C, Feng Z, Sun Y, Zhang D, Zhang M, Wang L, Wei G. A translationally controlled tumor protein gene Rpf41 is required for the nodulation of Robinia pseudoacacia. PLANT MOLECULAR BIOLOGY 2016; 90:389-402. [PMID: 26711634 DOI: 10.1007/s11103-015-0424-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Translationally controlled tumor protein (TCTP) is fundamental for the regulation of development and general growth in eukaryotes. Its multiple functions have been deduced from its involvement in several cell pathways, but its potential involvement in symbiotic nodulation of legumes cannot be suggested a priori. In the present work, we identified and characterized from the woody leguminous tree Robinia pseudoacacia a homolog of TCTP, Rpf41, which was up-regulated in the infected roots at 15 days post-inoculation but decreased in the matured nodules. Subcellular location assay showed that Rpf41 protein was located in the plasma membrane, cytoplasm, nucleus, and also maybe in cytoskeleton. Knockdown of Rpf41 via RNA interference (RNAi) resulted in the impaired development of both nodule and root hair. Compared with wild plants, the root and stem length, fresh weight and nodule number per plant was decreased dramatically in Rpf41 RNAi plants. The number of ITs or nodule primordia was also significantly reduced in the Rpf41 RNAi roots. The analyses of nodule ultrastructure showed that the infected cell development in Rpf41 RNAi nodules remained in zone II, which had fewer infected cells. Furthermore, the symbiosomes displayed noticeable shrinkage of bacteroid and peribacteroid space enlargement in the infected cells of Rpf41 RNAi nodules. In the deeper cell layers, a more remarkable aberration of the infected cell ultrastructure was observed, and electron-transparent lesions in the bacteroid cytoplasm were detected. These results identify TCTP as an important regulator of symbiotic nodulation in legume for the first time, and it may be involved in symbiotic cell differentiation and preventing premature aging of the young nodules in R. pseudoacacia.
Collapse
Affiliation(s)
- Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Congcong Xia
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zhao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yali Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mingzhe Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
70
|
Sabetta W, Vannini C, Sgobba A, Marsoni M, Paradiso A, Ortolani F, Bracale M, Viggiano L, Blanco E, de Pinto MC. Cyclic AMP deficiency negatively affects cell growth and enhances stress-related responses in tobacco Bright Yellow-2 cells. PLANT MOLECULAR BIOLOGY 2016; 90:467-83. [PMID: 26786166 DOI: 10.1007/s11103-016-0431-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 05/24/2023]
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) is a recognized second messenger; however, knowledge of cAMP involvement in plant physiological processes originates primarily from pharmacological studies. To obtain direct evidence for cAMP function in plants, tobacco Bright Yellow-2 (BY-2) cells were transformed with the cAMP sponge, which is a genetically encoded tool that reduces cAMP availability. BY-2 cells expressing the cAMP sponge (cAS cells), showed low levels of free cAMP and exhibited growth inhibition that was not proportional to the cAMP sponge transcript level. Growth inhibition in cAS cells was closely related to the precocious inhibition of mitosis due to a delay in cell cycle progression. The cAMP deficiency also enhanced antioxidant systems. Remarkable changes occurred in the cAS proteomic profile compared with that of wild-type (WT) cells. Proteins involved in translation, cytoskeletal organization, and cell proliferation were down-regulated, whereas stress-related proteins were up-regulated in cAS cells. These results support the hypothesis that BY-2 cells sense cAMP deficiency as a stress condition. Finally, many proteasome subunits were differentially expressed in cAS cells compared with WT cells, indicating that cAMP signaling broadly affects protein degradation via the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Wilma Sabetta
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Ortolani
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via H. J. Dunant 3, 21100, Varese, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Emanuela Blanco
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
71
|
Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q. The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1461-75. [PMID: 26685188 DOI: 10.1093/jxb/erv538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multicellular organisms co-ordinate cell proliferation and cell expansion to maintain organ growth. In animals, the Hippo tumor suppressor pathway is a master regulator of organ size. Central to this pathway is a kinase cascade composed of Hippo and Warts, and their activating partners Salvador and Mob1/Mats. In plants, the Mob1/Mats homolog MOB1A has been characterized as a regulator of cell proliferation and sporogenesis. Nonetheless, no Hippo homologs have been identified. Here we show that the Arabidopsis serine/threonine kinase 1 (SIK1) is a Hippo homolog, and that it interacts with MOB1A to control organ size. SIK1 complements the function of yeast Ste20 in bud site selection and mitotic exit. The sik1 null mutant is dwarf with reduced cell numbers, endoreduplication, and cell expansion. A yeast two-hybrid screen identified Mob1/Mats homologs MOB1A and MOB1B as SIK1-interacting partners. The interaction between SIK1 and MOB1 was found to be mediated by an N-terminal domain of SIK1 and was further confirmed by bimolecular fluorescence complementation. Interestingly, sik1 mob1a is arrested at the seedling stage, and overexpression of neither SIK1 in mob1a nor MOB1A in sik1 can rescue the dwarf phenotypes, suggesting that SIK1 and MOB1 may be components of a larger protein complex. Our results pave the way for constructing a complete Hippo pathway that controls organ growth in higher plants.
Collapse
Affiliation(s)
- Jie Xiong
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuefei Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangrong Yuan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiulian Yu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jialei Sun
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqiu Gong
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
72
|
Roque CG, Wong HHW, Lin JQ, Holt CE. Tumor protein Tctp regulates axon development in the embryonic visual system. Development 2016; 143:1134-48. [PMID: 26903505 PMCID: PMC4852495 DOI: 10.1242/dev.131060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis. We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly. Highlighted article: The cancer-associated protein Tctp controls neural circuitry in Xenopus via its regulation of pro-survival signalling and axonal mitochondrial homeostasis.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Julie Qiaojin Lin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
73
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. AtTCTP2 mRNA and protein movement correlates with formation of adventitious roots in tobacco. PLANT SIGNALING & BEHAVIOR 2016; 11:e1071003. [PMID: 26237533 PMCID: PMC4883931 DOI: 10.1080/15592324.2015.1071003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/01/2015] [Accepted: 07/04/2015] [Indexed: 05/11/2023]
Abstract
The Translationally Controlled Tumor Proteins, or TCTP, is a superfamily of exclusively eukaryotic proteins essential in the regulation of proliferation and general growth. However, it is clear that these are multifunctional proteins given (1) the pleiotropic effects of its mutations, and (2), the multiple processes in which this protein is involved. TCTP function in general is conserved, since Arabidopsis AtTCTP1 can rescue a Drosophila mutant, and vice versa. It has become clear, however, that these proteins may have "taxon-specific" functions. In the case of plants, mRNA and/or proteins have been found in the phloem translocation stream of different species, suggesting a role in long-distance signaling. We have found that a second Arabidopsis TCTP gene, AtTCTP2, codes for a protein that moves long-distance through a graft union in tobacco. Interestingly, the mRNA is also transported long-distance. Both mRNA and protein move long-distance; interestingly, the movement, while more efficient from source to sink tissues, also occurs in the opposite direction. The protein reaches the nuclei of parenchyma cells and adventitious roots. Furthermore, it is clear that the long-distance delivery of AtTCTP2 protein and mRNA is required for the induction of adventitious roots. A model is presented that accounts for these observations.
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering; CINVESTAV; Zacatenco, Mexico DF, Mexico
| |
Collapse
|
74
|
Deng Z, Chen J, Leclercq J, Zhou Z, Liu C, Liu H, Yang H, Montoro P, Xia Z, Li D. Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis). FRONTIERS IN PLANT SCIENCE 2016; 7:789. [PMID: 27375647 PMCID: PMC4896220 DOI: 10.3389/fpls.2016.00789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
As a highly conserved protein, the translationally controlled tumor protein (TCTP) carries out vital roles in various life processes. In rubber tree, two TCTP genes, HbTCTP and HbTCTP1, were cloned, but only HbTCTP1 was studied in details. In this study, cis-acting regulatory elements, expression patterns, subcellular localization, interacting proteins, and antioxidant activity of HbTCTP were systematically analyzed. Besides the common cis-acting regulatory elements, HbTCTP promoter also harbored various known cis-elements that respond to hormone/stresses. Being consistent with the aforementioned results, HbTCTP was regulated by drought, low temperature, high salt, ethylene (ET), wounding, H2O2, and methyl jasmonate (MeJA) treatments. HbTCTP was expressed throughout different tissues and developmental stages of leaves. In addition, HbTCTP was associated with tapping panel dryness (TPD). HbTCTP was localized in the membrane, cytoplasm and the nucleus, and interacted with four proteins rubber elongation factor (REF), 17.5 kDa heat shock family protein, annexin, and REF-like stress related protein 1. Being similar to HbTCTP1, HbTCTP also indicated antioxidant activity in metal-catalyzed oxidation (MCO) system. Our results are useful for further understanding the molecular characterization and expression profiles of HbTCTP, but also lay a solid foundation for elucidating the function of HbTCTP in rubber tree.
Collapse
Affiliation(s)
- Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Jiangshu Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | | | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Changren Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | | | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
- *Correspondence: Zhihui Xia
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Dejun Li
| |
Collapse
|
75
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
76
|
Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. PLANT PHYSIOLOGY 2015; 169:96-114. [PMID: 25941315 PMCID: PMC4577386 DOI: 10.1104/pp.15.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Rong Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
77
|
Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 2015; 27:1557-68. [PMID: 25936523 DOI: 10.1016/j.cellsig.2015.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | - Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Bianca Knoch
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | | |
Collapse
|
78
|
Abstract
Alternaria alternata is mainly an outdoor fungus whose spores disseminate in warm, dry air, so in temperate climates, their count peaks in the summers. Alternaria may also be found in damp, insufficiently ventilated houses, where its allergenic properties cocreate the sick building syndrome. Mold-induced respiratory allergies and research on Alternaria both have a lengthy history: the first was described as early as 1698 and the second dates back to 1817. However, the two were only linked in 1930 when Alternaria spores were found to cause allergic asthma. The allergenic extracts from Alternaria hyphae and spores still remain in use but are variable and insufficiently standardized as they are often a random mixture of allergenic ingredients and coincidental impurities. In contrast, contemporary biochemistry and molecular biology make it possible to obtain pure allergen molecules. To date, 16 allergens of A. alternata have been isolated, many of which are enzymes: Alt a 4 (disulfide isomerase), Alt a 6 (enolase), Alt a 8 (mannitol dehydrogenase), Alt a 10 (alcohol dehydrogenase), Alt a 13 (glutathione-S-transferase), and Alt a MnSOD (Mn superoxide dismutase). Others have structural and regulatory functions: Alt a 5 and Alt a 12 comprise the structure of large ribosomal subunits and mediate translation, Alt a 3 is a molecular chaperone, Alt a 7 regulates transcription, Alt a NTF2 facilitates protein import into the nucleus, and Alt a TCTP acts like a cytokine. The function of four allergenic proteins, Alt a 1, Alt a 2, Alt a 9, and Alt a 70 kDa, remains unknown.
Collapse
|
79
|
Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, Hinojosa-Moya J, Ruiz-Salas JL, Galván-Gordillo SV, Guevara-González RG, Ruiz-Medrano R. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. FRONTIERS IN PLANT SCIENCE 2015; 6:468. [PMID: 26191065 PMCID: PMC4489097 DOI: 10.3389/fpls.2015.00468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.
Collapse
Affiliation(s)
- Roberto Toscano-Morales
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | | | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPuebla, Mexico
| | - Jorge L. Ruiz-Salas
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Santiago V. Galván-Gordillo
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Ramón G. Guevara-González
- CA Ingenieria de Biosistemas, Centro Universitario Cerro de las Campanas, Universidad Autónoma de QuerétaroSantiago de Querétaro, Mexico
| | - Roberto Ruiz-Medrano
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| |
Collapse
|
80
|
Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC PLANT BIOLOGY 2015; 15:123. [PMID: 25990386 PMCID: PMC4438481 DOI: 10.1186/s12870-015-0500-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mercury (Hg) is not only a threat to public health but also a growth risk factor to plants, as it is readily accumulated by higher plants. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development; however, the detoxification and tolerance mechanisms of plants to Hg stress are still not fully understood. Exposure to toxic Hg also occurs in some crops cultivated under anoxic conditions, such as rice (Oryza sativa L.), a model organism and one of the most important cultivated plants worldwide. In this study, we functionally characterized a rice translationally controlled tumor protein gene (Os11g43900, OsTCTP) involved in Hg stress tolerance. RESULTS OsTCTP was ubiquitously expressed in all examined plant tissues, especially in actively dividing and differentiating tissues, such as roots and nodes. OsTCTP was found to localize both the cytosol and the nucleus. OsTCTP was induced by mercuric chloride, cupric sulfate, abscisic acid, and hydrogen peroxide at the protein level in a time-dependent manner. Overexpression of OsTCTP potentiated the activities of several antioxidant enzymes, reduced the Hg-induced H2O2 levels, and promoted Hg tolerance in rice, whereas knockdown of OsTCTP produced opposite effects. And overexpression of OsTCTP did not prevent Hg absorption and accumulation in rice. We also demonstrated that Asn 48 and Asn 97 of OsTCTP amino acids were not the potential N-glycosylation sites. CONCLUSIONS Our results suggest that OsTCTP is capable of decreasing the Hg-induced reactive oxygen species (ROS), therefore, reducing the damage of ROS and enhancing the tolerance of rice plants to Hg stress. Thus, OsTCTP is a valuable gene for genetic engineering to improve rice performance under Hg contaminated paddy soils.
Collapse
Affiliation(s)
- Zhan Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ge Zi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao Qiao Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
81
|
Han YJ, Kim YM, Hwang OJ, Kim JI. Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. PLANT CELL REPORTS 2015; 34:265-75. [PMID: 25410250 DOI: 10.1007/s00299-014-1705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/25/2014] [Accepted: 11/05/2014] [Indexed: 05/19/2023]
Abstract
A plant-derived 0.3 kb constitutive promoter was obtained from AtTCTP expression analysis, and successfully applied to the expression of a selectable marker gene for production of transgenic creeping bentgrass plants. The isolation and use of an efficient promoter is essential to develop a vector system for efficient genetic transformation of plants, and constitutive promoters are particularly useful for the expression of selectable marker genes. In this study, we characterized a small size of the constitutive promoter from the expression analysis of Arabidopsis thaliana translationally controlled tumor protein (AtTCTP) gene. Histochemical and fluorometric GUS analyses revealed that a 303 bp upstream region from the start codon of the AtTCTP gene showed strong GUS expression throughout all plant tissues, which is approximately 55 % GUS activity compared with the cauliflower mosaic virus 35S promoter (35Spro). To examine the possible application of this promoter for the development of genetically engineered crops, we introduced pCAMBIA3301 vector harboring the 0.3 kb promoter of AtTCTP (0.3kbpro) that was fused to the herbicide resistance BAR gene (0.3kb pro ::BAR) into creeping bentgrass. Our transformation results demonstrate that transgenic creeping bentgrass plants with herbicide resistance were successfully produced using 0.3kb pro ::BAR as a selectable marker. Northern blot analysis revealed that the transgenic plants with 0.3kb pro ::BAR showed reduced but comparable expression levels of BAR to those with 35S pro ::BAR. Moreover, the transcription activity of the 0.3 kb promoter could be increased by the fusion of an enhancer sequence. These results indicate that the 0.3 kb AtTCTP promoter can be used as a plant-derived constitutive promoter for the expression of selectable marker genes, which facilitates its use as an alternative to the 35S promoter for developing genetically engineered crops.
Collapse
Affiliation(s)
- Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | |
Collapse
|
82
|
Osteoclastogenic activity of translationally-controlled tumor protein (TCTP) with reciprocal repression of p21. FEBS Lett 2014; 588:4026-31. [PMID: 25263704 DOI: 10.1016/j.febslet.2014.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 11/24/2022]
Abstract
Translationally-controlled tumor protein (TCTP) plays a role in a number of cellular processes, but there is limited information about its function in cell differentiation. Previous observations of a twofold induction of TCTP mRNA during osteoclast differentiation prompted us to investigate its involvement in osteoclast differentiation. The osteoclastogenicity of TCTP gradually expressed during osteoclast differentiation was confirmed in mouse and human cells using loss-of-function studies and TCTP heterogeneous mice and transgenic mice. Higher expression ratios of TCTP to p21 could represent TCTP-mediated phenotypic induction of osteoclast differentiation accompanied by p21 down-regulation, attenuating the proliferation of osteoclast precursor cells.
Collapse
|
83
|
A comparative proteomic analysis of parthenogenetic lines and amphigenetic lines of silkworm. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
84
|
De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3-GENES GENOMES GENETICS 2014; 4:2147-57. [PMID: 25193496 PMCID: PMC4232540 DOI: 10.1534/g3.114.013409] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.
Collapse
|
85
|
TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 2014; 4:2986. [PMID: 24352200 DOI: 10.1038/ncomms3986] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/21/2013] [Indexed: 02/03/2023] Open
Abstract
Translationally controlled tumour protein (TCTP) is implicated in growth regulation and cancer. Recently, human TCTP has been suggested to play a role in the DNA damage response by forming a complex with ataxia telangiectasia-mutated (ATM) kinase . However, the exact nature of this interaction and its roles in vivo remained unclear. Here, we utilize Drosophila as an animal model to study the nuclear function of Drosophila TCTP (dTCTP). dTCTP mutants show increased radiation sensitivity during development as well as strong genetic interaction with dATM mutations, resulting in severe defects in developmental timing, organ size and chromosome stability. We identify Drosophila ATM (dATM) as a direct binding partner of dTCTP and describe a mechanistic basis for dATM activation by dTCTP. Altogether, this study provides the first in vivo evidence for direct modulation of dATM activity by dTCTP in the control of genome stability and organ development.
Collapse
|
86
|
Sablowski R, Carnier Dornelas M. Interplay between cell growth and cell cycle in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2703-14. [PMID: 24218325 DOI: 10.1093/jxb/ert354] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marcelo Carnier Dornelas
- Instituto de Biologia, Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, CEP 13083-862, Brazil
| |
Collapse
|
87
|
Chen W, Wang H, Tao S, Zheng Y, Wu W, Lian F, Jaramillo M, Fang D, Zhang DD. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 2014; 12:2321-8. [PMID: 24067374 DOI: 10.4161/cc.25404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumor suppressor p53 maintains genome stability by differentially activating target genes that control diverse cellular responses, such as the antioxidant response, cell cycle arrest and apoptosis. Despite the fact that many p53 downstream genes have been well characterized, novel p53 target genes are continuously being identified. Here, we report that Tpt1 is a direct target gene of p53. We found that p53 upregulates the transcription of Tpt1 and identified a p53-responsive element in the promoter of the mouse Tpt1 gene. Furthermore, p53-dependent induction of Tpt1 was able to reduce oxidative stress, minimize apoptosis, and promote cell survival in response to H 2O2 challenge. In addition, a positive correlation between the expression of p53 and Tpt1 only existed in normal lung tissues, not in lung tumors. Such positive correlation was also found in lung cell lines that contain wild-type p53, but not mutated p53. Based on the important role of Tpt1 in cancer development, chemoresistance, and cancer reversion, identification of Tpt1 as a direct target gene of p53 not only adds to the complexity of the p53 network, but may also open up a new avenue for cancer prevention and intervention.
Collapse
Affiliation(s)
- Weimin Chen
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Wang X, Tang D, Huang D. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:96-104. [PMID: 24429133 DOI: 10.1016/j.plaphy.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The physiological and differential proteomic responses of pakchoi leaves and roots to glycine-nitrogen (Gly-N) treatments were determined. Two pakchoi (Brassica campestris ssp. chinensis L. Makino. var. communis Tsen et Lee) cultivars, 'Huawang' and 'Wuyueman', were grown under sterile hydroponic conditions with different N forms (Gly-N and nitrate-N). Gly-N-treated pakchoi exhibited decreased fresh weights, total N uptake, leaf areas, and net photosynthetic rates than those treated with nitrate-N. Differentially regulated proteins were selected after image analysis and identified using MALDI-TOF MS. A total of 23 proteins was up- or down-regulated following Gly-N treatment. These spots are involved in several processes, such as energy synthesis, N metabolism, photosynthesis, and active antioxidant defense mechanisms, that could enhance plant adaptation to Gly-N. The superior Gly tolerance of 'Huawang' was predominantly associated with a less severe down-regulation of proteins that are involved in the electron transport chain and N metabolism. Other factors could include less ribulose-1,5-bisphosphate carboxylase/oxygenase turnover or a higher up-regulation of stress defense proteins. These characteristics demonstrated that maintaining ATP synthesis, N metabolism, photosynthesis, and active defense mechanisms play a critical role in pakchoi adaptation to Gly-N.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Horticulture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, PR China
| | - Dongmei Tang
- Department of Horticulture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, PR China
| | - Danfeng Huang
- Department of Horticulture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, PR China.
| |
Collapse
|
89
|
The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 2014; 9:e85514. [PMID: 24465583 PMCID: PMC3894975 DOI: 10.1371/journal.pone.0085514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host's immune response.
Collapse
|
90
|
Santa Brígida AB, dos Reis SP, de Nazaré Monteiro Costa C, Cardoso CMY, Lima AM, de Souza CRB. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 2014; 41:1787-97. [DOI: 10.1007/s11033-014-3028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/03/2014] [Indexed: 12/28/2022]
|
91
|
Nayarisseri A, Yadav M, Wishard R. Computational evaluation of new homologous down regulators of translationally controlled tumor protein (TCTP) targeted for tumor reversion. Interdiscip Sci 2014; 5:274-9. [DOI: 10.1007/s12539-013-0183-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 01/13/2023]
|
92
|
Szécsi J, Wippermann B, Bendahmane M. Genetic and phenotypic analyses of petal development in Arabidopsis. Methods Mol Biol 2014; 1110:191-202. [PMID: 24395257 DOI: 10.1007/978-1-4614-9408-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The link between gene regulation/function and organ shape (morphogenesis) is poorly understood and remains one of the major issues in developmental biology. Petals are attractive model organs for studying organogenesis mainly because they have a simple laminar structure with a small number of cell types. Moreover, because petals are dispensable for plant growth and reproduction, one can experimentally manipulate petal development and dissect the genetic mechanisms behind the changes without serious effects on plant viability. Here, we describe the methods used to study petal development at the molecular, cytological, and genetic level, and more specifically mitotic and post-mitotic growth control during petal morphogenesis.
Collapse
Affiliation(s)
- Judit Szécsi
- Laboratory Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, Lyon, France
| | | | | |
Collapse
|
93
|
Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. Structural divergence of plant TCTPs. FRONTIERS IN PLANT SCIENCE 2014; 5:361. [PMID: 25120549 PMCID: PMC4114181 DOI: 10.3389/fpls.2014.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/07/2014] [Indexed: 05/02/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a highly conserved protein at the level of sequence, considered to play an essential role in the regulation of growth and development in eukaryotes. However, this function has been inferred from studies in a few model systems, such as mice and mammalian cell lines, Drosophila and Arabidopsis. Thus, the knowledge regarding this protein is far from complete. In the present study bioinformatic analysis showed the presence of one or more TCTP genes per genome in plants with highly conserved signatures and subtle variations at the level of primary structure but with more noticeable differences at the level of predicted three-dimensional structures. These structures show differences in the "pocket" region close to the center of the protein and in its flexible loop domain. In fact, all predictive TCTP structures can be divided into two groups: (1) AtTCTP1-like and (2) CmTCTP-like, based on the predicted structures of an Arabidopsis TCTP and a Cucurbita maxima TCTP; according to this classification we propose that their probable function in plants may be inferred in principle. Thus, different TCTP genes in a single organism may have different functions; additionally, in those species harboring a single TCTP gene this could carry multiple functions. On the other hand, in silico analysis of AtTCTP1-like and CmTCTP-like promoters suggest that these share common motifs but with different abundance, which may underscore differences in their gene expression patterns. Finally, the absence of TCTP genes in most chlorophytes with the exception of Coccomyxa subellipsoidea, indicates that other proteins perform the roles played by TCTP or the pathways regulated by TCTP occur through alternative routes. These findings provide insight into the evolution of this gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|
94
|
Toscano-Morales R, Xoconostle-Cázares B, Martínez-Navarro AC, Ruiz-Medrano R. Long distance movement of an Arabidopsis Translationally Controlled Tumor Protein (AtTCTP2) mRNA and protein in tobacco. FRONTIERS IN PLANT SCIENCE 2014; 5:705. [PMID: 25566280 PMCID: PMC4269120 DOI: 10.3389/fpls.2014.00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/25/2014] [Indexed: 05/21/2023]
Abstract
Translationally Controlled Tumor Protein (TCTP) is an almost ubiquitous protein found in eukaryotes, fundamental for the regulation of development and general growth. The multiple functions of TCTP have been inferred from its involvement in several cell pathways, but the specific function of TCTP is still not known in detail. On the other hand, TCTP seems to respond to a plethora of external signals, and appears to be regulated at the transcriptional and/or translational levels by mechanisms yet to be determined. In the present work, we analyzed the capacity of AtTCTP2 gene products (mRNA and protein) to translocate long distance through tobacco heterografts (transgenic/WT and WT/transgenic). The results indicate that both AtTCTP2 mRNA and protein are capable of moving long distance in both directions (stock-scion and scion-stock) with a tendency for movement from source to sink tissue (stock to scion). Interestingly, aerial roots emerged only in heterografts where the protein was detected in both stock and scion, suggesting a correlation between the presence of AtTCTP2 and aerial root appearance. More detailed analysis showed that these aerial roots harbored the transgene and expressed both transcript and protein. In addition, the protein localization pattern in transgenic aerial and primary roots was basically the same, indicating specific nuclear destination in roots, but also in leaves. These findings provide an approach to understand the role of long-distance movement in the function of plant TCTPs, supporting the notion that some of these act in a non-cell autonomous manner, as the human counterpart, the Histamine Releasing Factor (HRF).
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|
95
|
Badowiec A, Swigonska S, Weidner S. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:315-24. [PMID: 24012770 DOI: 10.1016/j.plaphy.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Amongst many factors restricting geographical distribution of plants and crop productivity, low temperature is one of the most important. To gain better understanding of the molecular response of germinating pea (Pisum sativum L.) to low temperature, we investigated the influence of long and short chilling stress as well as post-stress recovery on the alterations in the root proteomes. The impact of long stress was examined on the pea seeds germinating in the continuous chilling conditions of 10 °C for 8 days (LS). To examine the impact of short stress, pea seeds germinating for 72 h in the optimal temperature of 20 °C were subjected to 24-h chilling (SS). Additionally, both stress treatments were followed by 24 h of recovery in the optimal conditions (accordingly LSR and SR). Using the 2D gel electrophoresis and MALDI-TOF MS protein identification, it was revealed, that most of the proteins undergoing regulation under the applied conditions were implicated in metabolism, protection against stress, cell cycle regulation, cell structure maintenance and hormone synthesis, which altogether may influence root growth and development in the early stages of plant life. The obtained results have shown that most of detected alterations in the proteome patterns of pea roots are dependent on stress duration. However, there are some analogical response pathways which are triggered regardless of stress length. The functions of proteins which accumulation has been changed by chilling stress and post-stress recovery are discussed here in relation to their impact on pea roots development.
Collapse
Affiliation(s)
- Anna Badowiec
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1a, 10-957 Olsztyn, Poland.
| | | | | |
Collapse
|
96
|
Hinojosa-Moya JJ, Xoconostle-Cázares B, Toscano-Morales R, Ramírez-Ortega F, Luis Cabrera-Ponce J, Ruiz-Medrano R. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP. PLANT SIGNALING & BEHAVIOR 2013; 8:e26477. [PMID: 24065051 PMCID: PMC4091340 DOI: 10.4161/psb.26477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/13/2013] [Indexed: 05/17/2023]
Abstract
In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling.
Collapse
Affiliation(s)
- J Jesús Hinojosa-Moya
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
- Facultad de Ingeniería Química; Benemérita Universidad Autónoma de Puebla; Colonia San Manuel; Ciudad Universitaria; Puebla, México
| | | | | | | | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética de Plantas; CINVESTAV-IPN Unidad Guanajuato; Irapuato, Guanajuato México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
| |
Collapse
|
97
|
Hoepflinger MC, Reitsamer J, Geretschlaeger AM, Mehlmer N, Tenhaken R. The effect of translationally controlled tumour protein (TCTP) on programmed cell death in plants. BMC PLANT BIOLOGY 2013; 13:135. [PMID: 24040826 PMCID: PMC3847524 DOI: 10.1186/1471-2229-13-135] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 09/12/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND Translationally controlled tumour protein (TCTP), a well known protein of the animal kingdom, was shown to be a Ca(2+)-binding protein with important functions in many different cellular processes (e.g. protection against stress and apoptosis, cell growth, cell cycle progression, and microtubule organization). However, only little is known about TCTP in plants. Transcript and protein levels of plant TCTPs were shown to be altered by various stress conditions (e.g. cold, salt, draught, aluminium, and pathogen infection), and Arabidopsis thaliana TCTP (AtTCTP) was described as an important regulator of growth. The aim of this study was to further characterize plant TCTP relating to one of its major functions in animals: the protection against cell death. RESULTS We used two different activators of programmed cell death (PCD) in plants: the mammalian pro-apoptotic protein BAX and tunicamycin, an inhibitor of glycosylation and trigger of unfolded protein response (UPR). Over-expression of AtTCTP significantly decreased cell death in tobacco leaf discs in both studies. A (45)Ca overlay assay showed AtTCTP to be a Ca(2+)-binding protein and localization experiments revealed cytosolic distribution of AtTCTP-GFP in Arabidopsis seedlings. CONCLUSIONS Our study showed cytoprotective effects of plant TCTP for the first time. Furthermore, we showed the ability of AtTCTP to bind to Ca(2+) and its cytosolic distribution within the cell. If these results are combined, two putative modes of action can be assumed: 1) AtTCTP acts as Ca(2+) sequester, preventing PCD by reducing cytosolic Ca(2+) levels as described for animals. 2) AtTCTP could directly or indirectly interact with other cytosolic or membrane-bound proteins of the cell death machinery, thereby inhibiting cell death progression. As no homologous proteins of the anti-apoptotic machinery of animals were found in plants, and functional homologues still remain to be elucidated, future work will provide more insight.
Collapse
Affiliation(s)
- Marion Christine Hoepflinger
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Johannes Reitsamer
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Anja Maria Geretschlaeger
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, 82152 Martinsried, Germany
| | - Raimund Tenhaken
- Department of Cell Biology, Division of Plant Physiology, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
98
|
cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 2013; 529:150-8. [PMID: 23933269 DOI: 10.1016/j.gene.2013.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis.
Collapse
|
99
|
Gupta M, Yoshioka H, Ohnishi K, Mizumoto H, Hikichi Y, Kiba A. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2013; 54:1403-14. [PMID: 23788648 DOI: 10.1093/pcp/pct090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have been isolating and characterizing Ralstonia solanacearum-responsive genes (RsRGs) in Nicotiana plants. In this study we focused on RsRG308, which we renamed NbTCTP (N. benthamiana translationally controlled tumor protein) because it encodes a polypeptide showing similarity to translationally controlled tumor proteins. Induction of the hypersensitive response (HR) was accelerated in NbTCTP-silenced N. benthamiana plants challenged with R. solanacearum 8107 (Rs8107). The Rs8107 population decreased significantly, whereas hin1 gene expression was enhanced in the silenced plant. Accelerated induction of HR was observed in NbTCTP-silenced plants inoculated with Pseudomonas cichorii and P. syringae pv. syringae. Silencing of NbTCTP also accelerated the induction of HR cell death by Agrobacterium-mediated transient expression of HR inducers, such as AvrA, BAX, INF1 and NbMEK2(DD). NbTCTP silencing enhanced NbrbohB- and NbMEK2-mediated reactive oxygen species production, leading to HR. Transient expression of both the full-length sequence and the Bcl-xL domain of NbTCTP decreased HR cell death induced by Agrobacterium-mediated transient expression of HR inducers. NbTCTP-silenced plants also showed slightly dwarf phenotypes. Therefore, NbTCTP might have a role in cell death regulation during HR to fine-tune programmed cell death-associated plant defense responses.
Collapse
Affiliation(s)
- Meenu Gupta
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | | | |
Collapse
|
100
|
TCTP overexpression is associated with the development and progression of glioma. Tumour Biol 2013; 34:3357-61. [DOI: 10.1007/s13277-013-0906-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023] Open
|