51
|
Marshall AR, Galea GL, Copp AJ, Greene NDE. The surface ectoderm exhibits spatially heterogenous tension that correlates with YAP localisation during spinal neural tube closure in mouse embryos. Cells Dev 2023; 174:203840. [PMID: 37068590 PMCID: PMC10618430 DOI: 10.1016/j.cdev.2023.203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
The single cell layer of surface ectoderm (SE) which overlies the closing neural tube (NT) plays a crucial biomechanical role during mammalian NT closure (NTC), challenging previous assumptions that it is only passive to the force-generating neuroepithelium (NE). Failure of NTC leads to congenital malformations known as NT defects (NTDs), including spina bifida (SB) and anencephaly in the spine and brain respectively. In several mouse NTD models, SB is caused by misexpression of SE-specific genes and is associated with disrupted SE mechanics, including loss of rostrocaudal cell elongation believed to be important for successful closure. In this study, we asked how SE mechanics affect NT morphology, and whether the characteristic rostrocaudal cell elongation at the progressing closure site is a response to tension anisotropy in the SE. We show that blocking SE-specific E-cadherin in ex utero mouse embryo culture influences NT morphology, as well as the F-actin cable. Cell border ablation shows that cell shape is not due to tension anisotropy, but that there are regional differences in SE tension. We also find that YAP nuclear translocation reflects regional tension heterogeneity, and that its expression is sensitive to pharmacological reduction of tension. In conclusion, our results confirm that the SE is a biomechanically important tissue for spinal NT morphogenesis and suggest a possible role of spatial regulation of cellular tension which could regulate downstream gene expression via mechanically-sensitive YAP activity.
Collapse
Affiliation(s)
- Abigail R Marshall
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK.
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, UK
| |
Collapse
|
52
|
Jebeli M, Lopez SK, Goldblatt ZE, McCollum D, Mana-Capelli S, Wen Q, Billiar K. Multicellular aligned bands disrupt global collective cell behavior. Acta Biomater 2023; 163:117-130. [PMID: 36306982 PMCID: PMC10334361 DOI: 10.1016/j.actbio.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stress patterns emerging from collective cell behavior have been shown to play critical roles in morphogenesis, tissue repair, and cancer metastasis. In our previous work, we constrained valvular interstitial cell (VIC) monolayers on circular protein islands to study emergent behavior in a controlled manner and demonstrated that the general patterns of cell alignment, size, and apoptosis correlate with predicted mechanical stress fields if radially increasing stiffness or contractility are used in the computational models. However, these radially symmetric models did not predict the existence of local regions of dense aligned cells observed in seemingly random locations of individual aggregates. The goal of this study is to determine how the heterogeneities in cell behavior emerge over time and diverge from the predicted collective cell behavior. Cell-cell interactions in circular multicellular aggregates of VICs were studied with time-lapse imaging ranging from hours to days, and migration, proliferation, and traction stresses were measured. Our results indicate that elongated cells create strong local alignment within preconfluent cell populations on the microcontact printed protein islands. These cells influence the alignment of additional cells to create dense, locally aligned bands of cells which disrupt the predicted global behavior. Cells are highly elongated at the endpoints of the bands yet have decreased spread area in the middle and reduced mobility. Although traction stresses at the endpoints of bands are enhanced, even to the point of detaching aggregates from the culture surface, the cells in dense bands exhibit reduced proliferation, less nuclear YAP, and increased apoptotic rates indicating a low stress environment. These findings suggest that strong local cell-cell interactions between primary fibroblastic cells can disrupt the global collective cellular behavior leading to substantial heterogeneity of cell behaviors in constrained monolayers. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues. STATEMENT OF SIGNIFICANCE: Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
Collapse
Affiliation(s)
- Mahvash Jebeli
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Samantha K Lopez
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Zachary E Goldblatt
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Dannel McCollum
- University of Massachusetts Medical School, Worcester MA, USA
| | | | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA.
| |
Collapse
|
53
|
Chaqour B. CCN-Hippo YAP signaling in vision and its role in neuronal, glial and vascular cell function and behavior. J Cell Commun Signal 2023:10.1007/s12079-023-00759-6. [PMID: 37191840 DOI: 10.1007/s12079-023-00759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The retina is a highly specialized tissue composed of a network of neurons, glia, and vascular and epithelial cells; all working together to coordinate and transduce visual signals to the brain. The retinal extracellular matrix (ECM) shapes the structural environment in the retina but also supplies resident cells with proper chemical and mechanical signals to regulate cell function and behavior and maintain tissue homeostasis. As such, the ECM affects virtually all aspects of retina development, function and pathology. ECM-derived regulatory cues influence intracellular signaling and cell function. Reversibly, changes in intracellular signaling programs result in alteration of the ECM and downstream ECM-mediated signaling network. Our functional studies in vitro, genetic studies in mice, and multi omics analyses have provided evidence that a subset of ECM proteins referred to as cellular communication network (CCN) affects several aspects of retinal neuronal and vascular development and function. Retinal progenitor, glia and vascular cells are major sources of CCN proteins particularly CCN1 and CCN2. We found that expression of the CCN1 and CCN2 genes is dependent on the activity of YAP, the core component of the hippo-YAP signaling pathway. Central to the Hippo pathway is a conserved cascade of inhibitory kinases that regulate the activity of YAP, the final transducer of this pathway. Reversibly, YAP expression and/or activity is dependent on CCN1 and CCN2 downstream signaling, which creates a positive or negative feedforward loop driving developmental processes (e.g., neurogenesis, gliogenesis, angiogenesis, barriergenesis) and, when dysregulated, disease progression in a range of retinal neurovascular disorders. Here we describe mechanistic hints involving the CCN-Hippo-YAP regulatory axis in retina development and function. This regulatory pathway represents an opportunity for targeted therapies in neurovascular and neurodegenerative diseases. The CCN-YAP regulatory loop in development and pathology.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
54
|
Singh DR, Nelson SE, Pawelski AS, Kansra AS, Fogarty SA, Bristol JA, Ohashi M, Johannsen EC, Kenney SC. Epstein-Barr virus LMP1 protein promotes proliferation and inhibits differentiation of epithelial cells via activation of YAP and TAZ. Proc Natl Acad Sci U S A 2023; 120:e2219755120. [PMID: 37155846 PMCID: PMC10193989 DOI: 10.1073/pnas.2219755120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection promotes undifferentiated nasopharyngeal carcinomas (NPCs) in humans, but the mechanism(s) for this effect has been difficult to study because EBV cannot transform normal epithelial cells in vitro and the EBV genome is often lost when NPC cells are grown in culture. Here we show that the latent EBV protein, LMP1 (Latent membrane protein 1), induces cellular proliferation and inhibits spontaneous differentiation of telomerase-immortalized normal oral keratinocytes (NOKs) in growth factor-deficient conditions by increasing the activity of the Hippo pathway effectors, YAP (Yes-associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif). We demonstrate that LMP1 enhances YAP and TAZ activity in NOKs both by decreasing Hippo pathway-mediated serine phosphorylation of YAP and TAZ and increasing Src kinase-mediated Y357 phosphorylation of YAP. Furthermore, knockdown of YAP and TAZ is sufficient to reduce proliferation and promote differentiation in EBV-infected NOKs. We find that YAP and TAZ are also required for LMP1-induced epithelial-to-mesenchymal transition. Importantly, we demonstrate that ibrutinib (an FDA-approved BTK inhibitor that blocks YAP and TAZ activity through an off-target effect) restores spontaneous differentiation and inhibits proliferation of EBV-infected NOKs at clinically relevant doses. These results suggest that LMP1-induced YAP and TAZ activity contributes to the development of NPC.
Collapse
Affiliation(s)
- Deo R. Singh
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Scott E. Nelson
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Abigail S. Pawelski
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Alisha S. Kansra
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Stuart A. Fogarty
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Jillian A. Bristol
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Eric C. Johannsen
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| | - Shannon C. Kenney
- Department of Oncology, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, WIMR II, Madison, WI53705
| |
Collapse
|
55
|
Toh PJY, Sudol M, Saunders TE. Optogenetic control of YAP can enhance the rate of wound healing. Cell Mol Biol Lett 2023; 28:39. [PMID: 37170209 PMCID: PMC10176910 DOI: 10.1186/s11658-023-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Tissues need to regenerate to restore function after injury. Yet, this regenerative capacity varies significantly between organs and between species. For example, in the heart, some species retain full regenerative capacity throughout their lifespan but human cardiac cells display a limited ability to repair the injury. After a myocardial infarction, the function of cardiomyocytes is impaired and reduces the ability of the heart to pump, causing heart failure. Therefore, there is a need to restore the function of an injured heart post myocardial infarction. We investigate in cell culture the role of the Yes-associated protein (YAP), a transcriptional co-regulator with a pivotal role in growth, in driving repair after injury. METHODS We express optogenetic YAP (optoYAP) in three different cell lines. We characterised the behaviour and function of optoYAP using fluorescence imaging and quantitative real-time PCR of downstream YAP target genes. Mutant constructs were generated using site-directed mutagenesis. Nuclear localised optoYAP was functionally tested using wound healing assay. RESULTS Utilising optoYAP, which enables precise control of pathway activation, we show that YAP induces the expression of downstream genes involved in proliferation and migration. optoYAP can increase the speed of wound healing in H9c2 cardiomyoblasts. Interestingly, this is not driven by an increase in proliferation, but by collective cell migration. We subsequently dissect specific phosphorylation sites in YAP to identify the molecular driver of accelerated healing. CONCLUSIONS This study shows that optogenetic YAP is functional in H9c2 cardiomyoblasts and its controlled activation can potentially enhance wound healing in a range of conditions.
Collapse
Affiliation(s)
- Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Edward Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
56
|
Meli VS, Veerasubramanian PK, Downing TL, Wang W, Liu WF. Mechanosensation to inflammation: Roles for YAP/TAZ in innate immune cells. Sci Signal 2023; 16:eadc9656. [PMID: 37130167 PMCID: PMC10625748 DOI: 10.1126/scisignal.adc9656] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
| | - Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92697
- Institute for Immunology, University of California Irvine, CA 92697
| |
Collapse
|
57
|
Bhattacharya S, Mukherjee A, Pisano S, Dimri S, Knaane E, Altshuler A, Nasser W, Dey S, Shi L, Mizrahi I, Blum N, Jokel O, Amitai-Lange A, Kaganovsky A, Mimouni M, Socea S, Midlij M, Tiosano B, Hasson P, Feral C, Wolfenson H, Shalom-Feuerstein R. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ 2023:10.1038/s41418-023-01156-7. [PMID: 37095157 DOI: 10.1038/s41418-023-01156-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The cell fate decisions of stem cells (SCs) largely depend on signals from their microenvironment (niche). However, very little is known about how biochemical niche cues control cell behavior in vivo. To address this question, we focused on the corneal epithelial SC model in which the SC niche, known as the limbus, is spatially segregated from the differentiation compartment. We report that the unique biomechanical property of the limbus supports the nuclear localization and function of Yes-associated protein (YAP), a putative mediator of the mechanotransduction pathway. Perturbation of tissue stiffness or YAP activity affects SC function as well as tissue integrity under homeostasis and significantly inhibited the regeneration of the SC population following SC depletion. In vitro experiments revealed that substrates with the rigidity of the corneal differentiation compartment inhibit nuclear YAP localization and induce differentiation, a mechanism that is mediated by the TGFβ-SMAD2/3 pathway. Taken together, these results indicate that SC sense biomechanical niche signals and that manipulation of mechano-sensory machinery or its downstream biochemical output may bear fruits in SC expansion for regenerative therapy.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Abhishek Mukherjee
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sabrina Pisano
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Shalini Dimri
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Eman Knaane
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Altshuler
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Sunanda Dey
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Lidan Shi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ido Mizrahi
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Noam Blum
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Ophir Jokel
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Anna Kaganovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Michael Mimouni
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Sergiu Socea
- Department of Ophthalmology, Rambam Health Care Campus, 31096, Haifa, Israel
| | - Mohamad Midlij
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Beatrice Tiosano
- Department of Ophthalmology, Hilel Yafe Medical Center, Hadera, Israel
| | - Peleg Hasson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel
| | - Chloe Feral
- Université Côte d'Azur, INSERM, CNRS, IRCAN, 06107, Nice, France
| | - Haguy Wolfenson
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, 31096, Haifa, Israel.
| |
Collapse
|
58
|
Zhang X, Cao D, Xu L, Xu Y, Gao Z, Pan Y, Jiang M, Wei Y, Wang L, Liao Y, Wang Q, Yang L, Xu X, Gao Y, Gao S, Wang J, Yue R. Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell 2023; 30:378-395.e8. [PMID: 37028404 DOI: 10.1016/j.stem.2023.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/23/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
Hematopoietic stem cell (HSC) self-renewal and aging are tightly regulated by paracrine factors from the bone marrow niche. However, whether HSC rejuvenation could be achieved by engineering a bone marrow niche ex vivo remains unknown. Here, we show that matrix stiffness fine-tunes HSC niche factor expression by bone marrow stromal cells (BMSCs). Increased stiffness activates Yap/Taz signaling to promote BMSC expansion upon 2D culture, which is largely reversed by 3D culture in soft gelatin methacrylate hydrogels. Notably, 3D co-culture with BMSCs promotes HSC maintenance and lymphopoiesis, reverses aging hallmarks of HSCs, and restores their long-term multilineage reconstitution capacity. In situ atomic force microscopy analysis reveals that mouse bone marrow stiffens with age, which correlates with a compromised HSC niche. Taken together, this study highlights the biomechanical regulation of the HSC niche by BMSCs, which could be harnessed to engineer a soft bone marrow niche for HSC rejuvenation.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dandan Cao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liting Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhua Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zehua Gao
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanzhong Pan
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Jiang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yue Liao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
59
|
De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to Advanced Therapies for Epidermolysis Bullosa. Cold Spring Harb Perspect Biol 2023; 15:a041229. [PMID: 36167646 PMCID: PMC10071437 DOI: 10.1101/cshperspect.a041229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermolysis bullosa (EB) is a devastating genetic skin disease typified by a plethora of different phenotypes and ranking from severe, early lethal, to mild localized forms. Although there is no cure for EB, recent progress in pharmacology and molecular and cellular biology is boosting the development of new advanced therapeutic strategies. Here we will focus on two main categories of such therapies: (1) those aimed at controlling inflammation and inducing reepithelialization of the wounds, and (2) those, perhaps more challenging and ambitious, that aim to permanently regenerate a fully functional epidermis, which requires targeting of epidermal stem cells. In both cases, the genetic variants underlying the different EB forms and factors, such as genetic background, modifier genes, comorbidities, and lifestyle, all of which impinge on EB genotype-phenotype correlation, need to be defined.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate, S.r.l., 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
60
|
Jia X, He L, Yang Z. Recent advances in the role of Yes-associated protein in dermatosis. Skin Res Technol 2023; 29:e13285. [PMID: 36973973 PMCID: PMC10155855 DOI: 10.1111/srt.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 03/04/2023]
Abstract
BACKGROUND Dermatosis is a general term for diseases of the skin and skin appendages including scleroderma, psoriasis, bullous disease, atopic dermatitis, basal cell carcinoma, squamous cell carcinoma, and melanoma. These diseases affect millions of individuals globally and are a serious public health concern. However, the pathogenesis of skin diseases is not fully understood, and treatments are not optimal. Yes-associated protein (YAP) is a transcriptional coactivator that plays a role in the regulation of gene transcription and signal transduction. AIMS To study the role of Yes-associated protein in skin diseases. MATERIALS AND METHODS The present review summarizes recent advances in our understanding of the role of YAP in skin diseases, current treatments that target YAP, and potential avenues for novel therapies. RESULTS Abnormal YAP expression has been implicated in occurrence and development of dermatosis. YAP regulates the cell homeostasis, proliferation, differentiation, apoptosis, angiopoiesis, and epithelial-to-mesenchymal transition, among other processes. As well as, it serves as a potential target in many biological processes for treating dermatosis. CONCLUSIONS The effects of YAP on the skin are complex and require multidimensional investigational approaches. YAP functions as an oncoprotein that can promote the occurrence and development of cancer, but there is currently limited information on the therapeutic potential of YAP inhibition for cancer treatment. Additional studies are also needed to clarify the role of YAP in the development and maturation of dermal fibroblasts; skin barrier function, homeostasis, aging, and melanin production; and dermatosis.
Collapse
Affiliation(s)
- Xiaorong Jia
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Li He
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Zhi Yang
- Department of DermatologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
61
|
Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomater 2023; 161:80-99. [PMID: 36804538 DOI: 10.1016/j.actbio.2023.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
The regenerative capabilities including self-renewal, migration and differentiation potentials shift from the embryonic phase to the mature period of endogenous tendon stem/progenitor cells (TSPCs) characterize restricted functions and disabilities following tendon injuries. Recent studies have shown that tendon regeneration and repair rely on multiple specific transcription factors to maintain TSPCs characteristics and functions. Here, we demonstrate Yap, a Hippo pathway downstream effector, is associated with TSPCs phenotype and regenerative potentials through gene expression analysis of tendon development and repair process. Exosomes have been proven an efficient transport platform for drug delivery. In this study, purified exosomes derived from donor platelets are loaded with recombinant Yap1 protein (PLT-Exo-Yap1) via electroporation to promote the stemness and differentiation potentials of TSPCs in vitro. Programmed TSPCs with Yap1 import maintain stemness and functions after long-term passage in vitro. The increased oxidative stress levels of TSPCs are related to the phenotype changes in duplicative senescent processes. The results show that treatment with PLT-Exo-Yap1 significantly protects TSPCs against oxidative stressor-induced stemness loss and senescence-associated secretory phenotype (SASP) through the NF-κB signaling pathway. In addition, we fabricate an Exos-Yap1-functioned GelMA hydrogel with a parallel-aligned substrate structure to enhance TSPCs adhesion, promote cell stemness and force regenerative cells toward the tendon lineage for in vitro and in vivo tendon regeneration. The application of Exos-Yap1 functioned implant assists new tendon-like tissue formation with good mechanical properties and locomotor functions in a full-cut Achilles tendon defect model. Thus, PLT-Exo-Yap1-functionalized GelMA promotes the rejuvenation of TSPCs to facilitate functional tendon regeneration. STATEMENT OF SIGNIFICANCE: This is the first study to explore that the hippo pathway downstream effector Yap is involved in tendon aging and repair processes, and is associated with the regenerative capabilities of TSPCs. In this syudy, Platelet-derived exosomes (PLT-Exos) act as an appropriate carrier platform for the delivery of recombinant Yap1 into TSPCs to regulate Yap activity. Effective Yap1 delivery inhibit oxidative stress-induced senescence associated phenotype of TSPCs by blocking ROS-mediated NF-κb signaling pathway activation. This study emphasizes that combined application of biomimetic scaffolds and Yap1 loaded PLT-Exos can provide structural support and promote rejuvenation of resident cells to assist functional regeneration for Achilles tendon defect, and has the prospect of clinical setting.
Collapse
|
62
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
63
|
Liu YN, Lv X, Chen X, Yan M, Guo LC, Liu G, Yao L, Jiang HF. Specific Overexpression of YAP in Vascular Smooth Muscle Attenuated Abdominal Aortic Aneurysm Formation by Activating Elastic Fiber Assembly via LTBP4. J Cardiovasc Transl Res 2023; 16:65-76. [PMID: 35708897 DOI: 10.1007/s12265-022-10278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a fatal vascular disease. Vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of AAA. Increasing evidence has shown that Yes-associated protein (YAP) is involved in diverse vascular diseases. However, the role of YAP in AAA remains unclear. The current study aimed to determine the role of YAP in AAA formation and the underlying mechanism. We found that YAP expression in VSMCs was markedly decreased in human and experimental AAA samples. Furthermore, VSMC-specific YAP overexpression prevented several pathogenic factor-induced AAA. Mechanistically, YAP overexpression in VSMCs promoted latent transforming growth factor-β binding protein 4 (LTBP4) expression, an important factor in elastic fiber assembly. Finally, silencing of LTBP4 in VSMCs abolished the protective role of YAP in AAA formation in vivo. Our results suggest that YAP promotes LTBP4-mediated elastic fibril assembly in VSMCs, which mitigates elastin degradation and AAA formation.
Collapse
Affiliation(s)
- Ya-Nan Liu
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune; The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Chen
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune; The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China
| | - Meng Yan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ling-Chuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.
| | - Liu Yao
- Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune; The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| | - Hong-Feng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
64
|
Yang J, Song DH, Kim CH, Kim MH, Jo HC, Kim H, Park JE, Baek JC. Expression of the Hippo Pathway Core Components in Endometrial Cancer and Its Association with Clinicopathologic Features. Diagnostics (Basel) 2022; 12:2973. [PMID: 36552980 PMCID: PMC9776728 DOI: 10.3390/diagnostics12122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The Hippo signaling pathway has a key role in tumorigenesis. This study aimed to evaluate the relationship between the expression of core components of the Hippo signaling pathway and its association with clinicopathological features in endometrial cancer. MATERIALS AND METHODS We retrospectively collected endometrioid endometrial cancer specimens from 60 patients between January 2002 and December 2009 at Gyeongsang National University Hospital. Relevant clinicopathological data were obtained through electronic medical records of patients. The expression patterns of six core components (YAP, p-YAP, LATS1/2, MST1/2, KIBRA, and Merlin) were identified by immunohistochemistry on tissue microarray sections. RESULTS The positive expression ratio was 75.0% for YAP, 73.3% for p-YAP, 26.7% for MST1/2, 16.7% for KIBRA, 15.0% for Merlin, and 15.0% for LATS1/2. YAP expression was negatively correlated with MST 1/2 kinases (p = 0.045) and positively correlated with p-YAP (p = 0.012). Merlin, and MST 1/2 kinases (p = 0.043) showed a positive correlation. A subgroup of patients aged below 60 years (p = 0.004) and with myometrial invasion depth of less than 1/2 (p = 0.041) showed a positive association with YAP expression. p-YAP expression was negatively associated with a subset of patients with primary tumour size ≥4 cm (p = 0.03). Logistic regression analysis showed a significant association between age and YAP expression. The odds ratio of p-YAP expression was significantly lower in the group with tumour size ≥4 cm. CONCLUSION Two prognostic factors, age and tumour size, were significantly associated with the expression of YAP and p-YAP in endometrial cancer. Further research should focus on their expression as a marker for prediction of clinicopathological implications in endometrial cancer.
Collapse
Affiliation(s)
- Juseok Yang
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Dae Hyun Song
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Cho Hee Kim
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Min Hye Kim
- Department of Pathology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyen Chul Jo
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hyoeun Kim
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
| | - Ji Eun Park
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jong Chul Baek
- Department of Obstetrics and Gynecology, Gyeongsang National University Changwon Hospital, 11, Samjeongja-ro, Seongsan-gu, Changwon-si 51472, Republic of Korea
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
65
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
66
|
Sun X, Zhang J, Dong J, Liu L, Li X, Xing P, Ying J, Che Y, Li J, Yang L. Prognostic significance of YAP1 expression and its association with neuroendocrine markers in resected pulmonary large cell neuroendocrine carcinoma (LCNEC). Transl Oncol 2022; 25:101538. [PMID: 36103754 PMCID: PMC9478447 DOI: 10.1016/j.tranon.2022.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
It is the first study to determine the prognostic relevance of YAP1 in pulmonary LCNEC. And we found YAP1 is a prognostic factor for worse survival, especially for DFS. We investigated the relationship between YAP1 and NE markers (INSM1, DLL3, NeuroD1) and found that YAP1 expression was negatively correlated with INSM1 and DLL3, but not significantly correlated with NeuroD1. Our sample size is large and the clinical data is complete. The exploration of the prognostic mechanism of LCNEC is of great significance to its subtype classification and stratification of treatment and prognosis.
Background YAP1 (Yes-associated protein 1), an important effector of the Hippo pathway, acts as an oncogene and is overexpressed in various malignant tumors. However, the function and expression pattern of YAP1 in pulmonary large cell neuroendocrine carcinoma (LCNEC) have not been systematically established. This study aimed to explore the relationship between YAP1 expression and neuroendocrine differentiation markers and their prognostic significance in LCNEC. Materials and methods YAP1 protein and neuroendocrine markers (INSM1, NeuroD1 and DLL3) expression were examined by immunohistochemical (IHC) staining in 80 resected pulmonary LCNEC cases. The possible association between these markers and clinicopathological features was evaluated and survival analyses were performed. Results YAP1 was highly expressed in 25% LCNECs (20/80) , especially at a relatively higher T stage (p = 0.015). YAP1 expression was negatively correlated with INSM1 (χ2=11.53, p = 0.001) and DLL3(χ2=8.55, p = 0.004), but not with NeuroD1 (p = 0.482). For survival analyses, YAP1 expression was associated with worse disease-free survival (DFS) and overall survival (OS) (median DFS: 13 months vs. not reached (NR), p = 0.0096; median OS: not reached, NR vs. NR, p = 0.038), and was an unfavorable prognostic factor for DFS (HR:3.285; 95%CI: 1.526-7.071, p = 0.002) and OS (HR: 2.864, 95% CI: 0.932-8.796, p = 0.066). Conclusions YAP1 was found to be conversely correlated with neuroendocrine markers and a prognostic factor for worse survival in resected LCNEC patients, and mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinyao Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiqun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing 100050, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
67
|
Zhu H, Xing C, Dou X, Zhao Y, Peng Y, Feng C, Fang Y. Chiral Hydrogel Accelerates Re-Epithelization in Chronic Wounds via Mechanoregulation. Adv Healthc Mater 2022; 11:e2201032. [PMID: 36052735 DOI: 10.1002/adhm.202201032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Chronic wounds, such as diabetic foot ulcers (DFU), are a serious clinical problem. It is a challenge for the conventional wound dressings to achieve the desirable therapeutic efficacy due to the lack of biomimetic structural environment for rapid re-epithelization. Inspired by the naturally existing chiral structures in skin, a novel amino acid-based chiral hydrogel dressing is developed, consisting of left-handed or right-handed helical fibers self-assembled by l/d-phenylalanine derivatives. Compared to the levorotatory chiral hydrogel (LH), the dextral chiral hydrogel (DH) shows the ability to enhance cell adhesion, proliferation, and migration, and strongly promotes diabetic wound healing and re-epithelialization with a drug-free mode. Interestingly, the dextral chiral hydrogel is able to actively increase adsorption of type I collagen and promote proliferation and migration of keratinocyte in an integrin and YAP-mediated manner. This study not only provides a novel strategy for treatment of chronic wounds by utilizing dextral chiral hydrogel dressings, but also unveils the molecular mechanism for effect of dextral chiral structures on the promoted proliferation of keratinocyte.
Collapse
Affiliation(s)
- Hanting Zhu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinbo Peng
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China.,Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China
| |
Collapse
|
68
|
Mermoud L, Shutova M, Diaz‐Barreiro A, Talabot‐Ayer D, Drukala J, Wolnicki M, Kaya G, Boehncke W, Palmer G, Borowczyk J. IL-38 orchestrates proliferation and differentiation in human keratinocytes. Exp Dermatol 2022; 31:1699-1711. [PMID: 35833307 PMCID: PMC9796879 DOI: 10.1111/exd.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Interleukin (IL)-38 is a member of the IL-1 cytokine family with reported anti-inflammatory activity. The highest constitutive IL-38 expression is detected in the skin, where it is mainly produced by differentiating keratinocytes. However, little data are available regarding its biological functions. In this study, we investigated the role of IL-38 in skin physiology. We demonstrate here that dermal fibroblasts and epithelial cells of skin appendages, such as eccrine sweat glands and sebaceous glands, also express IL-38. Next, using two- and three-dimensional cell cultures, we show that endogenous expression of IL-38 correlates with keratinocyte differentiation and its ectopic overexpression inhibits keratinocyte proliferation and enhances differentiation. Accordingly, immunohistochemical analysis revealed downregulation of IL-38 in skin pathologies characterized by keratinocyte hyperproliferation, such as psoriasis and basal or squamous cell carcinoma. Finally, intracellular IL-38 can shuttle between the nucleus and the cytoplasm and its overexpression modulates the activity of the transcription regulators YAP and ID1. Our results indicate that IL-38 can act independently from immune system activation and suggest that it may affect the epidermis directly by decreasing proliferation and promoting differentiation of keratinocytes. These data suggest an important role of keratinocyte-derived IL-38 in skin homeostasis and pathologies characterized by epidermal alterations.
Collapse
Affiliation(s)
- Loïc Mermoud
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Shutova
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Alejandro Diaz‐Barreiro
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dominique Talabot‐Ayer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Michal Wolnicki
- Department of Pediatric UrologyJagiellonian University Medical CollegeCracowPoland
| | - Gürkan Kaya
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Clinical PathologyUniversity Hospital of GenevaGenevaSwitzerland
| | - Wolf‐Henning Boehncke
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Dermatology and VenereologyUniversity HospitalsGenevaSwitzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julia Borowczyk
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
69
|
Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp Dermatol 2022; 31:1477-1499. [PMID: 35913427 PMCID: PMC9804452 DOI: 10.1111/exd.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Skin cancers are by far the most frequently diagnosed human cancers. The closely related transcriptional co-regulator proteins YAP and TAZ (WWTR1) have emerged as important drivers of tumour initiation, progression and metastasis in melanoma and non-melanoma skin cancers. YAP/TAZ serve as an essential signalling hub by integrating signals from multiple upstream pathways. In this review, we summarize the roles of YAP/TAZ in skin physiology and tumorigenesis and discuss recent efforts of therapeutic interventions that target YAP/TAZ in in both preclinical and clinical settings, as well as their prospects for use as skin cancer treatments.
Collapse
Affiliation(s)
| | - Jodie Bojko
- Department of Life SciencesUniversity of BathBathUK
| | | | - Sophie Bowen
- Department of Life SciencesUniversity of BathBathUK
| | - Ute Jungwirth
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| | - Gernot Walko
- Department of Life SciencesUniversity of BathBathUK,Centre for Therapeutic InnovationUniversity of BathBathUK
| |
Collapse
|
70
|
Depletion of VGLL4 Causes Perinatal Lethality without Affecting Myocardial Development. Cells 2022; 11:cells11182832. [PMID: 36139407 PMCID: PMC9496954 DOI: 10.3390/cells11182832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease is one of the leading causes of pediatric morbidity and mortality, thus highlighting the importance of deciphering the molecular mechanisms that control heart development. As the terminal transcriptional effectors of the Hippo-YAP pathway, YAP and TEAD1 form a transcriptional complex that regulates the target gene expression and depletes either of these two genes in cardiomyocytes, thus resulting in cardiac hypoplasia. Vestigial-like 4 (VGLL4) is a transcriptional co-factor that interacts with TEAD and suppresses the YAP/TEAD complex by competing against YAP for TEAD binding. To understand the VGLL4 function in the heart, we generated two VGLL4 loss-of-function mouse lines: a germline Vgll4 depletion allele and a cardiomyocyte-specific Vgll4 depletion allele. The whole-body deletion of Vgll4 caused defective embryo development and perinatal lethality. The analysis of the embryos at day 16.5 revealed that Vgll4 knockout embryos had reduced body size, malformed tricuspid valves, and normal myocardium. Few whole-body Vgll4 knockout pups could survive up to 10 days, and none of them showed body weight gain. In contrast to the whole-body Vgll4 knockout mutants, cardiomyocyte-specific Vgll4 knockout mice had no noticeable heart growth defects and had normal heart function. In summary, our data suggest that VGLL4 is required for embryo development but dispensable for myocardial growth.
Collapse
|
71
|
Mascharak S, desJardins-Park HE, Davitt MF, Guardino NJ, Gurtner GC, Wan DC, Longaker MT. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2022; 11:479-495. [PMID: 34465219 PMCID: PMC9245727 DOI: 10.1089/wound.2021.0040] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Collapse
Affiliation(s)
- Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Michael F. Davitt
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Nicholas J. Guardino
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery; Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
72
|
Lyu Y, Guan Y, Deliu L, Humphrey E, Frontera JK, Yang YJ, Zamler D, Kim KH, Mohanty V, Jin K, Mohanty V, Liu V, Dou J, Veillon LJ, Kumar SV, Lorenzi PL, Chen Y, McAndrews KM, Grivennikov S, Song X, Zhang J, Xi Y, Wang J, Chen K, Nagarajan P, Ge Y. KLF5 governs sphingolipid metabolism and barrier function of the skin. Genes Dev 2022; 36:gad.349662.122. [PMID: 36008138 PMCID: PMC9480852 DOI: 10.1101/gad.349662.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023]
Abstract
Stem cells are fundamental units of tissue remodeling whose functions are dictated by lineage-specific transcription factors. Home to epidermal stem cells and their upward-stratifying progenies, skin relies on its secretory functions to form the outermost protective barrier, of which a transcriptional orchestrator has been elusive. KLF5 is a Krüppel-like transcription factor broadly involved in development and regeneration whose lineage specificity, if any, remains unclear. Here we report KLF5 specifically marks the epidermis, and its deletion leads to skin barrier dysfunction in vivo. Lipid envelopes and secretory lamellar bodies are defective in KLF5-deficient skin, accompanied by preferential loss of complex sphingolipids. KLF5 binds to and transcriptionally regulates genes encoding rate-limiting sphingolipid metabolism enzymes. Remarkably, skin barrier defects elicited by KLF5 ablation can be rescued by dietary interventions. Finally, we found that KLF5 is widely suppressed in human diseases with disrupted epidermal secretion, and its regulation of sphingolipid metabolism is conserved in human skin. Altogether, we established KLF5 as a disease-relevant transcription factor governing sphingolipid metabolism and barrier function in the skin, likely representing a long-sought secretory lineage-defining factor across tissue types.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yinglu Guan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lisa Deliu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ericka Humphrey
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joanna K Frontera
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Youn Joo Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Daniel Zamler
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kevin Jin
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Vakul Mohanty
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Virginia Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lucas J Veillon
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sergei Grivennikov
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yejing Ge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
73
|
Micro RNA-411 Expression Improves Cardiac Phenotype Following Myocardial Infarction in Mice. JACC Basic Transl Sci 2022; 7:859-875. [PMID: 36317138 PMCID: PMC9617134 DOI: 10.1016/j.jacbts.2022.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
Induction of endogenous regenerative capacity has emerged as one promising approach to repair damaged hearts following myocardial infarction (MI). Re-expression of factors that are exclusively expressed during embryonic development may reactivate the ability of adult cardiomyocytes to regenerate. Here, we identified miR-411 as a potent inducer of cardiomyocyte proliferation. Overexpression of miR-411 in the heart significantly increased cardiomyocyte proliferation and survival in a model MI. We found that miR-411 enhances the activity of YAP, the main downstream effector of the Hippo pathway, in cardiomyocytes. In conclusion, miR-411 induces cardiomyocyte regeneration and improves cardiac function post-MI likely by modulating the Hippo/YAP pathway.
Collapse
Key Words
- CVEC, cardiac vascular endothelial cells
- EdU, 5-ethynyl-2'-deoxyuridine
- Hippo pathway
- LAD, left anterior descending coronary artery
- MI, myocardial infarction
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NFAT, nuclear factor of activated T cells
- NRCF, neonatal rat cardiac fibroblast
- NRCM, neonatal rat cardiomyocytes
- PCR, polymerase chain reaction
- PEI, polyethylenimine
- cTnI, cardiac troponin I
- cardiac remodeling
- heart failure
- miRNA, microRNA
- microRNA-411
- myocardial infarction
- pHH3, phosphohistone H3
- qPCR, quantitative PCR
Collapse
|
74
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
75
|
Machcinska S, Walendzik K, Kopcewicz M, Wisniewska J, Rokka A, Pääkkönen M, Slowinska M, Gawronska-Kozak B. Hypoxia reveals a new function of Foxn1 in the keratinocyte antioxidant defense system. FASEB J 2022; 36:e22436. [PMID: 35792861 DOI: 10.1096/fj.202200249rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023]
Abstract
Skin exposed to environmental threats, including injuries and oxidative stress, develops an efficient but not fully recognized system of repair and antioxidant protection. Here, using mass spectrometry analysis (LC-MS/MS), followed by in vitro and in vivo experiments, we provided evidence that Foxn1 in keratinocytes regulates elements of the electron transport chain and participates in the thioredoxin system (Txn2, Txnrd3, and Srxn1) induction, particularly in a hypoxic environment. We first showed that Foxn1 in keratinocytes upregulates glutathione thioredoxin reductase 3 (Txnrd3) protein expression, and high levels of Txnrd3 mRNA were detected in injured skin of Foxn1+/+ mice. We also showed that Foxn1 strongly downregulated the Ccn2 protein expression, participating in epidermal reconstruction after injury. An in vitro assay revealed that Foxn1 controls keratinocyte migration, stimulating it under normoxia and suppressing it under hypoxia. Keratinocytes overexpressing Foxn1 and exposed to hypoxia displayed a reduced ability to promote angiogenesis by downregulating Vegfa expression. In conclusion, this study showed a new mechanism in which Foxn1, along with hypoxia, participates in the activation of antioxidant defense and controls the functional properties of keratinocytes.
Collapse
Affiliation(s)
- Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mariola Slowinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
76
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
77
|
Toh PJY, Lai JKH, Hermann A, Destaing O, Sheetz MP, Sudol M, Saunders TE. Optogenetic control of YAP cellular localisation and function. EMBO Rep 2022; 23:e54401. [PMID: 35876586 PMCID: PMC9442306 DOI: 10.15252/embr.202154401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.
Collapse
Affiliation(s)
- Pearlyn J Y Toh
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Jason K H Lai
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Anke Hermann
- Department of Nephrology, Hypertension and RheumatologyUniversity Hospital MünsterMünsterGermany
| | - Olivier Destaing
- Institute for Advanced BiosciencesUniversité Grenoble AlpesGrenobleFrance,INSERM U1209Institute for Advanced BiosciencesLa TroncheFrance,CNRS UMR 5039Institute for Advanced BiosciencesLa TroncheFrance
| | - Michael P Sheetz
- Mechanobiology InstituteNational University of SingaporeSingapore,Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Marius Sudol
- Mechanobiology InstituteNational University of SingaporeSingapore,Icahn School of Medicine at Mount SinaiNew York CityNYUSA
| | - Timothy E Saunders
- Mechanobiology InstituteNational University of SingaporeSingapore,Institute of Molecular and Cell BiologyA*STARSingapore,Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
78
|
THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nat Cell Biol 2022; 24:1049-1063. [PMID: 35798842 DOI: 10.1038/s41556-022-00944-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
Anchored cells of the basal epidermis constantly undergo proliferation in an overcrowded environment. An important regulator of epidermal proliferation is YAP, which can be controlled by both cell-matrix and cell-cell interactions. Here, we report that THY1, a GPI-anchored protein, inhibits epidermal YAP activity through converging molecular mechanisms. THY1 deficiency leads to increased adhesion by activating the integrin-β1-SRC module. Notably, regardless of high cellular densities, the absence of THY1 leads to the dissociation of an adherens junction complex that enables the release and translocation of YAP. Due to increased YAP-dependent proliferation, Thy1-/- mice display enhanced wound repair and hair follicle regeneration. Taken together, our work reveals THY1 as a crucial regulator of cell-matrix and cell-cell interactions that controls YAP activity in skin homeostasis and regeneration.
Collapse
|
79
|
Yang Y, Santos DM, Pantano L, Knipe R, Abe E, Logue A, Pronzati G, Black KE, Spinney JJ, Giacona F, Bieler M, Godbout C, Nicklin P, Wyatt D, Tager AM, Seither P, Herrmann FE, Medoff BD. Screening for Inhibitors of YAP Nuclear Localization Identifies Aurora Kinase A as a Modulator of Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 67:36-49. [PMID: 35377835 PMCID: PMC9798384 DOI: 10.1165/rcmb.2021-0428oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease with limited therapeutic options that is characterized by pathological fibroblast activation and aberrant lung remodeling with scar formation. YAP (Yes-associated protein) is a transcriptional coactivator that mediates mechanical and biochemical signals controlling fibroblast activation. We previously identified HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitors (statins) as YAP inhibitors based on a high-throughput small-molecule screen in primary human lung fibroblasts. Here we report that several Aurora kinase inhibitors were also identified from the top hits of this screen. MK-5108, a highly selective inhibitor for AURKA (Aurora kinase A), induced YAP phosphorylation and cytoplasmic retention and significantly reduced profibrotic gene expression in human lung fibroblasts. The inhibitory effect on YAP nuclear translocation and profibrotic gene expression is specific to inhibition of AURKA, but not Aurora kinase B or C, and is independent of the Hippo pathway kinases LATS1 and LATS2 (Large Tumor Suppressor 1 and 2). Further characterization of the effects of MK-5108 demonstrate that it inhibits YAP nuclear localization indirectly via effects on actin polymerization and TGFβ (Transforming Growth Factor β) signaling. In addition, MK-5108 treatment reduced lung collagen deposition in the bleomycin mouse model of pulmonary fibrosis. Our results reveal a novel role for AURKA in YAP-mediated profibrotic activity in fibroblasts and highlight the potential of small-molecule screens for YAP inhibitors for identification of novel agents with antifibrotic activity.
Collapse
Affiliation(s)
- Yang Yang
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniela M Santos
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lorena Pantano
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Rachel Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gina Pronzati
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katharine E Black
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francesca Giacona
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Franziska E Herrmann
- Immunology and Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
80
|
Lim JH, Kim DH, Noh KH, Jung CR, Kang HM. The proliferative and multipotent epidermal progenitor cells for human skin reconstruction in vitro and in vivo. Cell Prolif 2022; 55:e13284. [PMID: 35723171 PMCID: PMC9436902 DOI: 10.1111/cpr.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES The skin exhibits tremendous regenerative potential, as different types of progenitor and stem cells regulate skin homeostasis and damage. However, in vitro primary keratinocytes present with several drawbacks, such as high donor variability, short lifespan, and limited donor tissue availability. Therefore, more stable primary keratinocytes are needed to generate multiple uniform in vitro and in vivo skin models. RESULTS We identified epidermal progenitor cells from primary keratinocytes using Integrin beta 1 (ITGB1) an epidermal stem cell marker markedly decreased after senescence in vitro. Epidermal progenitor cells exhibited unlimited proliferation and the potential for multipotent differentiation capacity. Moreover, they could completely differentiate to form an organotypic skin model including conversed mesenchymal cells in the dermis and could mimic the morphologic and biochemical processes of human epidermis. We also discovered that proliferation and the multipotent differentiation capacity of these cells relied on ITGB1 expression. Eventually, we examined the in vitro and in vivo wound healing capacity of these epidermal progenitor cells. CONCLUSIONS Overall, the findings suggest that these stable and reproducible cells can differentiate into multiple lineages, including human skin models. They are a potentially powerful tool for studying skin regeneration, skin diseases, and are an alternative for in vivo experiments.
Collapse
Affiliation(s)
- Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dae Hun Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyung Hee Noh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyun Mi Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
81
|
Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight 2022; 7:158207. [PMID: 35708907 PMCID: PMC9431681 DOI: 10.1172/jci.insight.158207] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Senescent cells have long been associated with deleterious effects in aging-related pathologies, although recent studies have uncovered their beneficial roles in certain contexts, such as wound healing. We have found that hepatic stellate cells (HSCs) underwent senescence within 2 days after 2/3 partial hepatectomy (PHx) in young (2–3 months old) mice, and the elimination of these senescent cells by using the senolytic drug ABT263 or by using a genetic mouse model impaired liver regeneration. Senescent HSCs secrete IL-6 and CXCR2 ligands as part of the senescence-associated secretory phenotype, which induces multiple signaling pathways to stimulate liver regeneration. IL-6 activates STAT3, induces Yes-associated protein (YAP) activation through SRC family kinases, and synergizes with CXCL2 to activate ERK1/2 to stimulate hepatocyte proliferation. The administration of either IL-6 or CXCL2 partially restored liver regeneration in mice with senescent cell elimination, and the combination of both fully restored liver weight recovery. Furthermore, the matricellular protein central communication network factor 1 (CCN1, previously called CYR61) was rapidly elevated in response to PHx and induced HSC senescence. Knockin mice expressing a mutant CCN1 unable to bind integrin α6β1 were deficient in senescent cells and liver regeneration after PHx. Thus, HSC senescence, largely induced by CCN1, is a programmed response to PHx and plays a critical role in liver regeneration through signaling pathways activated by IL-6 and ligands of CXCR2.
Collapse
Affiliation(s)
- Naiyuan Cheng
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Ki-Hyun Kim
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| | - Lester F Lau
- Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, United States of America
| |
Collapse
|
82
|
Golal E, Balci CN, Ustunel I, Acar N. The investigation of hippo signaling pathway in mouse uterus during peri-implantation period. Arch Gynecol Obstet 2022; 307:1795-1809. [PMID: 35708783 DOI: 10.1007/s00404-022-06660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Events in the uterus during the peri-implantation period include embryo development, acquisition of uterine receptivity, implantation and decidualization. Hippo signaling pathway regulates cell proliferation, apoptosis and differentiation. We aimed to determine localization and expressions of pYAP (Phospho Yes-associated protein), YAP (Yes-associated protein), TEAD1 (TEA domain family member 1) and CTGF (Connective tissue growth factor), members of the Hippo signaling pathway, in the mouse uterus during the peri-implantation period. METHODS Pregnant mice were randomly separated into 5 groups: 1st, 4th, 5th, 6th, and 8th days of pregnancy groups. Non-pregnant female mice in estrous phase were included in the estrous group. Uteri and implantation sites were collected. Also, inter-implantation sites were collected from the 5th day of pregnancy group. pYAP, YAP, TEAD-1 and CTGF were detected by immunohistochemistry and Western blotting. RESULTS We observed that the expressions of YAP, TEAD-1 and CTGF were increased in the luminal and glandular epithelium on the 1st and 4th days of pregnancy when epithelial proliferation occurred. pYAP expression was high, and YAP and CTGF expressions were low in the luminal epithelium of the implantation sites on the 5th day of pregnancy, when epithelial differentiation occurred. pYAP expression was low, YAP and CTGF expressions were high at implantation sites on the 6th and 8th days of pregnancy, where decidua was formed. CONCLUSION Our findings suggest that the Hippo signaling pathway might be involved in implantation and decidualization. Our findings will guide further studies and may help to elucidate underlying causes of implantation failure and pregnancy loss.
Collapse
Affiliation(s)
- Ezgi Golal
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
83
|
Role of Yes-Associated Protein in Psoriasis and Skin Tumor Pathogenesis. J Pers Med 2022; 12:jpm12060978. [PMID: 35743763 PMCID: PMC9225571 DOI: 10.3390/jpm12060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis and skin tumors (such as basal cell carcinoma, squamous cell carcinoma, and melanoma) are chronic diseases that endanger physical and mental health, and yet the causes are largely unknown and treatment options limited. The development of targeted drugs requires a better understanding of the exact pathogenesis of these diseases, and Yes-associated protein (YAP), a member of the Hippo signaling pathway, is believed to play an important role. Psoriasis and skin tumors are characterized by excessive cell proliferation, abnormal differentiation, vasodilation, and proliferation. Here, we review the literature related to YAP-associated disease mechanisms and discuss the latest research. YAP regulates cell apoptosis, proliferation, and differentiation; inhibits cell density and intercellular contacts and angiogenesis; and maintains the three-dimensional structure of the skin. These mechanisms may be associated with the occurrence and development of psoriasis and skin tumors. The results of recent studies have shown that YAP expression is increased in psoriasis and skin tumors. High expression of YAP in psoriasis and skin tumors may indicate its positive functions in skin inflammation and malignancies and may play an important role in disease pathogenesis. The study of new drugs targeting YAP can provide novel approaches for the treatment of skin diseases.
Collapse
|
84
|
Fan S, Smith MS, Keeney J, O’Leary MN, Nusrat A, Parkos CA. JAM-A signals through the Hippo pathway to regulate intestinal epithelial proliferation. iScience 2022; 25:104316. [PMID: 35602956 PMCID: PMC9114518 DOI: 10.1016/j.isci.2022.104316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
JAM-A is a tight-junction-associated protein that contributes to regulation of intestinal homeostasis. We report that JAM-A interacts with NF2 and LATS1, functioning as an initiator of the Hippo signaling pathway, well-known for regulation of proliferation. Consistent with these findings, we observed increased YAP activity in JAM-A-deficient intestinal epithelial cells (IEC). Furthermore, overexpression of a dimerization-deficient mutant, JAM-A-DL1, failed to initiate Hippo signaling, phenocopying JAM-A-deficient IEC, whereas overexpression of JAM-A-WT activated Hippo signaling and suppressed proliferation. Lastly, we identify EVI1, a transcription factor reported to promote cellular proliferation, as a contributor to the pro-proliferative phenotype in JAM-A-DL1 overexpressing IEC downstream of YAP. Collectively, our findings establish a new role for JAM-A as a cell-cell contact sensor, raising implications for understanding the contribution(s) of JAM-A to IEC proliferation in the mammalian epithelium.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle Sydney Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin Keeney
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Monique N. O’Leary
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
85
|
Effect of TDP43-CTFs35 on Brain Endothelial Cell Functions in Cerebral Ischemic Injury. Mol Neurobiol 2022; 59:4593-4611. [PMID: 35581521 DOI: 10.1007/s12035-022-02869-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Pathological changes in the brain endothelium play an important role in the progression of ischemic stroke and the compromised BBB under ischemic stroke conditions cause neuronal damage. However, the pathophysiological mechanisms of the BBB under normal conditions and under ischemic stroke conditions have not been fully elucidated. The present study demonstrated that knockdown of TAR DNA-binding protein 43 (TDP-43) or overexpression of TDP43-CTFs35 inhibited tight junction protein expression, and mammalian sterile-20-like 1/2 (MST1/2) and YES-associated protein (YAP) phosphorylation in brain ECs and suppressed brain EC migration in vitro. The cytoplasmic TDP43-CTFs35 level was increased in brain ECs 24 h and 72 h after MCAO, but it disappeared 1 week after cerebral ischemia. The expression of tight junction proteins was also significantly deceased 24 h after MCAO and then gradually recovered at 72 h and 1 week after MCAO. The level of YAP phosphorylation was first significantly decreased 24 h after MCAO and then increased 72 h and 1 week after MCAO, accompanied by nuclear YAP translocation. The underlying mechanism is TDP43-CTFs35-mediated inhibition of Hippo signaling pathway activity through the dephosphorylation of MST1/2, which leads to the inhibition of YAP phosphorylation and the subsequent impairment of brain EC migration and tight junction protein expression. This study provides new insights into the mechanisms of brain vascular EC regulation, which may impact on BBB integrity after cerebral ischemic injury.
Collapse
|
86
|
The AMPK-related kinase NUAK2 suppresses glutathione peroxidase 4 expression and promotes ferroptotic cell death in breast cancer cells. Cell Death Dis 2022; 8:253. [PMID: 35523770 PMCID: PMC9076840 DOI: 10.1038/s41420-022-01044-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022]
Abstract
Ferroptosis is a caspase-independent form of regulated cell death strongly linked to the accumulation of reactive lipid hydroperoxides. Lipid hydroperoxides are neutralized in cells by glutathione peroxidase 4 (GPX4) and inhibitors of GPX4 are potent ferroptosis inducers with therapeutic potential in cancer. Here we report that siRNA-mediated silencing of the AMPK-related kinase NUAK2 suppresses cell death by small-molecule inducers of ferroptosis but not apoptosis. Mechanistically we find that NUAK2 suppresses the expression of GPX4 at the RNA level and enhances ferroptosis triggered by GPX4 inhibitors in a manner independent of its kinase activity. NUAK2 is amplified along with MDM4 in a subset of breast cancers, particularly the claudin-low subset, suggesting that this may predict vulnerability to GPX4 inhibitors. These findings identify a novel pathway regulating GPX4 expression as well as ferroptotic sensitivity with potential as a biomarker of breast cancer patients that might respond to GPX4 inhibition as a therapeutic strategy.
Collapse
|
87
|
Mechanosignaling in vertebrate development. Dev Biol 2022; 488:54-67. [DOI: 10.1016/j.ydbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022]
|
88
|
Caire R, Dalix E, Chafchafi M, Thomas M, Linossier MT, Normand M, Guignandon A, Vico L, Marotte H. YAP Transcriptional Activity Dictates Cell Response to TNF In Vitro. Front Immunol 2022; 13:856247. [PMID: 35401557 PMCID: PMC8989468 DOI: 10.3389/fimmu.2022.856247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023] Open
Abstract
YAP/TAZ are transcription co-factors recently described responsive to pro-inflammatory cytokines and involved in inflammatory-related disorders. However, the role of tumor necrosis factor (TNF), a major pro-inflammatory cytokine, on YAP signaling is not well understood and controversial. Here, we observe in vitro, using wild type and YAP knockout HEK293 cells, that TNF triggers YAP nuclear translocation and transcriptional activity, thus being dependent on Rho family of GTPases. In response to TNF, YAP transcriptional activity orientates cell fate toward survival. Transcriptional analysis with Nanostring technology reveals that YAP modulates TNF-induced increase in fibro-inflammatory pathways such as NF-κB, inflammasomes, cytokines or chemokines signaling and pro-fibrotic pathways involving TGF-β and extracellular matrix remodeling. Therefore, in response to TNF, YAP acts as a sustainer of the inflammatory response and as a molecular link between inflammation and fibrotic processes. This work identifies that YAP is critical to drive several biological effects of TNF which are involved in cancer and inflammatory disorders.
Collapse
Affiliation(s)
- Robin Caire
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Elisa Dalix
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Marwa Chafchafi
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Mireille Thomas
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | | | - Myriam Normand
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Alain Guignandon
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Laurence Vico
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France
| | - Hubert Marotte
- INSERM, U1059-SAINBIOSE, Université de Lyon, Saint-Etienne, France.,Department of Rheumatology, Hôpital Nord, University Hospital Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
89
|
Kaplan MM, Flucher BE. Counteractive and cooperative actions of muscle β-catenin and CaV1.1 during early neuromuscular synapse formation. iScience 2022; 25:104025. [PMID: 35340430 PMCID: PMC8941212 DOI: 10.1016/j.isci.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Activity-dependent calcium signals in developing muscle play a crucial role in neuromuscular junction (NMJ) formation. However, its downstream effectors and interactions with other regulators of pre- and postsynaptic differentiation are poorly understood. Here, we demonstrate that the skeletal muscle calcium channel CaV1.1 and β-catenin interact in various ways to control NMJ development. They differentially regulate nerve branching and presynaptic innervation patterns during the initial phase of NMJ formation. Conversely, they cooperate in regulating postsynaptic AChR clustering, synapse formation, and the proper organization of muscle fibers in mouse diaphragm. CaV1.1 does not directly regulate β-catenin expression but differentially controls the activity of its transcriptional co-regulators TCF/Lef and YAP. These findings suggest a crosstalk between CaV1.1 and β-catenin in the activity-dependent transcriptional regulation of genes involved in specific pre- and postsynaptic aspects of NMJ formation. Neuromuscular junction formation requires either muscle calcium or β-catenin signaling Complementary actions of CaV1.1 and β-catenin control presynaptic innervation patterns Parallel actions of CaV1.1 and β-catenin are crucial for postsynaptic AChR clustering Loss of CaV1.1 differentially regulates activity of β-catenin targets TCF/Lef and YAP
Collapse
Affiliation(s)
- Mehmet Mahsum Kaplan
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
- Corresponding author
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
90
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
91
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
92
|
Symons RA, Colella F, Collins FL, Rafipay AJ, Kania K, McClure JJ, White N, Cunningham I, Ashraf S, Hay E, Mackenzie KS, Howard KA, Riemen AHK, Manzo A, Clark SM, Roelofs AJ, De Bari C. Targeting the IL-6-Yap-Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Ann Rheum Dis 2022; 81:214-224. [PMID: 34844926 PMCID: PMC8762018 DOI: 10.1136/annrheumdis-2021-220875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1β, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.
Collapse
Affiliation(s)
- Rebecca A Symons
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fabio Colella
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fraser L Collins
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexandra J Rafipay
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Karolina Kania
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Nathan White
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Iain Cunningham
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Elizabeth Hay
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kevin S Mackenzie
- Microscopy and Histology Core Facility, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna H K Riemen
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Susan M Clark
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
93
|
Yokota M, Kamiya Y, Suzuki T, Ishikawa S, Takeda A, Kondo S, Tohgasaki T, Nakashima T, Takahashi Y, Ōmura S, Sakurai T. Trehangelins ameliorate inflammation-induced skin senescence by suppressing the epidermal YAP-CCN1 axis. Sci Rep 2022; 12:952. [PMID: 35046484 PMCID: PMC8770704 DOI: 10.1038/s41598-022-04924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Trehangelins (THG) are newly identified trehalose compounds derived from broth cultures of an endophytic actinomycete, Polymorphospora rubra. THG are known to suppress Cellular Communication Network factor 1 (CCN1), which regulates collagen homeostasis in the dermis. Although the physical properties of THG suggest a high penetration of the stratum corneum, the effect of THG on the epidermis has not been reported. Here we describe a possible mechanism involved in skin aging focusing on the effect of THG on epidermal CCN1. This study shows that: (1) THG suppress epidermal CCN1 expression by inhibiting the translocation of Yes-Associated Protein (YAP) to nuclei. (2) Epidermal CCN1, localized at the basement membrane, regulates the balance between the growth and differentiation of keratinocytes. (3) Keratinocytes secrete more CCN1 than fibroblasts, which leads to disruption of the basement membrane and extracellular matrix components. (4) The secretion of CCN1 from keratinocytes is increased by ultraviolet B exposure, especially in aged keratinocytes, and deteriorates the elastic fiber structures in the underlying dermis. (5) Topical application of THG ameliorates the structure of the basement membrane in ex vivo human skin explants. Taken together, THG might be a promising treatment for aged skin by suppressing the aberrant YAP-CCN1 axis.
Collapse
Affiliation(s)
- Mami Yokota
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan.
| | - Yoshiyuki Kamiya
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Tamie Suzuki
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Shinsuke Ishikawa
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Akira Takeda
- Department of Plastic and Aesthetic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Shinya Kondo
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Tohgasaki
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovation, Waseda University, 530 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, Japan
| | - Yoko Takahashi
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Tetsuhito Sakurai
- FANCL Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
94
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
95
|
Lui JW, Moore SP, Huang L, Ogomori K, Li Y, Lang D. YAP facilitates melanoma migration through regulation of actin-related protein 2/3 complex subunit 5 (ARPC5). Pigment Cell Melanoma Res 2022; 35:52-65. [PMID: 34468072 PMCID: PMC8958630 DOI: 10.1111/pcmr.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 07/31/2021] [Accepted: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators that have been implicated in driving metastasis and progression in many cancers, mainly through their transcriptional regulation of downstream targets. Although YAP and TAZ have shown redundancy in many contexts, it is still unknown whether or not this is true in melanoma. Here, we show that while both YAP and TAZ are expressed in a panel of melanoma cell lines, depletion of YAP results in decreased cell numbers, focal adhesions, and the ability to invade matrigel. Using non-biased RNA-sequencing analysis, we find that melanoma cells depleted of YAP, TAZ, or YAP/TAZ exhibit drastically different transcriptomes. We further uncover the ARP2/3 subunit ARPC5 as a specific target of YAP but not TAZ and that ARPC5 is essential for YAP-dependent maintenance of melanoma cell focal adhesion numbers. Our findings suggest that in melanoma, YAP drives melanoma progression, survival, and invasion.
Collapse
Affiliation(s)
- Jason W. Lui
- Department of Dermatology, Boston University, Boston MA, 02118,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637,These authors contributed equally
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston MA, 02118,These authors contributed equally
| | - Lee Huang
- Department of Dermatology, Boston University, Boston MA, 02118
| | - Kelsey Ogomori
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago Il, 60637
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago Il, 60637
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston MA, 02118
| |
Collapse
|
96
|
Saytburkhanov RR, Kubanov AA, Kondrakhina IN, Plakhova XI. Modern understanding of the pathogenesis of basal cell skin cancer. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The incidence of basal cell skin cancer is increasing worldwide. The initiation and progression of basal cell skin cancer is due to the interaction of environmental factors and the patient's genetic characteristics. Aberrant activation of the transmission of the Hedgehog signaling pathway is the main pathogenetic pathway of carcinogenesis.
Since basal cell skin cancer is manifested by significant variability of morphological structure, aggressiveness and response to treatment, the disclosure of the molecular genetics of pathogenesis will become the basis for developing new approaches and increasing the effectiveness of treatment, as well as overcoming tumor resistance to treatment.
To search for the necessary literature, the PubMed, MedLine, Web of Science and RSCI databases were used.
Collapse
|
97
|
Yan S, Ripamonti R, Kawabe H, Ben-Yehuda Greenwald M, Werner S. NEDD4-1 is a key regulator of epidermal homeostasis and wound repair. J Invest Dermatol 2021; 142:1703-1713.e11. [PMID: 34756879 DOI: 10.1016/j.jid.2021.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin ligase Nedd4-1 plays key roles in organ development, tissue homeostasis and cancer, but its functions in the skin are largely unknown. Here we show perturbations in keratinocyte proliferation and terminal differentiation, epidermal barrier function, and hair follicle cycling as well as increased UV-induced apoptosis in mice lacking Nedd4-1 in keratinocytes. In particular, re-epithelialization of full-thickness excisional wounds was delayed in the mutant mice. This was caused by severely impaired migration and proliferation of Nedd4-1-deficient keratinocytes. Therefore, a few keratinocytes, which had escaped recombination and expressed Nedd4-1, obtained a growth advantage and contributed to re-epithelialization. Mechanistically, Nedd4-1-deficient keratinocytes failed to efficiently activate the Erk1/2 mitogen-activated kinases and the YAP transcriptional co-activator. These results identify Nedd4-1 as an essential player in wound repair through its effect on mitogenic and motogenic signaling pathways in keratinocytes.
Collapse
Affiliation(s)
- Shen Yan
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Raphael Ripamonti
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 317-8511, Japan
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
98
|
The Balance between Differentiation and Terminal Differentiation Maintains Oral Epithelial Homeostasis. Cancers (Basel) 2021; 13:cancers13205123. [PMID: 34680271 PMCID: PMC8534139 DOI: 10.3390/cancers13205123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Oral cancer affecting the oral cavity represents the most common cancer of the head and neck region. Oral cancer develops in a multistep process in which normal cells gradually accumulate genetic and epigenetic modifications to evolve into a malignant disease. Mortality for oral cancer patients is high and morbidity has a significant long-term impact on the health and wellbeing of affected individuals, typically resulting in facial disfigurement and a loss of the ability to speak, chew, taste, and swallow. The limited scope to which current treatments are able to control oral cancer underlines the need for novel therapeutic strategies. This review highlights the molecular differences between oral cell proliferation, differentiation and terminal differentiation, defines terminal differentiation as an important tumour suppressive mechanism and establishes a rationale for clinical investigation of differentiation-paired therapies that may improve outcomes in oral cancer. Abstract The oral epithelium is one of the fastest repairing and continuously renewing tissues. Stem cell activation within the basal layer of the oral epithelium fuels the rapid proliferation of multipotent progenitors. Stem cells first undergo asymmetric cell division that requires tightly controlled and orchestrated differentiation networks to maintain the pool of stem cells while producing progenitors fated for differentiation. Rapidly expanding progenitors subsequently commit to advanced differentiation programs towards terminal differentiation, a process that regulates the structural integrity and homeostasis of the oral epithelium. Therefore, the balance between differentiation and terminal differentiation of stem cells and their progeny ensures progenitors commitment to terminal differentiation and prevents epithelial transformation and oral squamous cell carcinoma (OSCC). A recent comprehensive molecular characterization of OSCC revealed that a disruption of terminal differentiation factors is indeed a common OSCC event and is superior to oncogenic activation. Here, we discuss the role of differentiation and terminal differentiation in maintaining oral epithelial homeostasis and define terminal differentiation as a critical tumour suppressive mechanism. We further highlight factors with crucial terminal differentiation functions and detail the underlying consequences of their loss. Switching on terminal differentiation in differentiated progenitors is likely to represent an extremely promising novel avenue that may improve therapeutic interventions against OSCC.
Collapse
|
99
|
Mélin L, Abdullayev S, Fnaiche A, Vu V, González Suárez N, Zeng H, Szewczyk MM, Li F, Senisterra G, Allali-Hassani A, Chau I, Dong A, Woo S, Annabi B, Halabelian L, LaPlante SR, Vedadi M, Barsyte-Lovejoy D, Santhakumar V, Gagnon A. Development of LM98, a Small-Molecule TEAD Inhibitor Derived from Flufenamic Acid. ChemMedChem 2021; 16:2982-3002. [PMID: 34164919 DOI: 10.1002/cmdc.202100432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.
Collapse
Affiliation(s)
- Léa Mélin
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Shuay Abdullayev
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Ahmed Fnaiche
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Narjara González Suárez
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Simon Woo
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Borhane Annabi
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Steven R LaPlante
- INRS-Centre Armand Frappier Santé Biotechnologie, Université du Québec, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Vijayaratnam Santhakumar
- Structural Genomics Consortium, University of Toronto, 101 College St. MaRS South Tower, Toronto, ON, M5G 1 L7, Canada
| | - Alexandre Gagnon
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
100
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|