51
|
Platt JL, Cascalho M. Non-canonical B cell functions in transplantation. Hum Immunol 2019; 80:363-377. [PMID: 30980861 PMCID: PMC6544480 DOI: 10.1016/j.humimm.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
B cells are differentiated to recognize antigen and respond by producing antibodies. These activities, governed by recognition of ancillary signals, defend the individual against microorganisms and the products of microorganisms and constitute the canonical function of B cells. Despite the unique differentiation (e.g. recombination and mutation of immunoglobulin gene segments) toward this canonical function, B cells can provide other, "non-canonical" functions, such as facilitating of lymphoid organogenesis and remodeling and fashioning T cell repertoires and modifying T cell responses. Some non-canonical functions are exerted by antibodies, but most are mediated by other products and/or direct actions of B cells. The diverse set of non-canonical functions makes the B cell as much as any cell a central organizer of innate and adaptive immunity. However, the diverse products and actions also confound efforts to weigh the importance of individual non-canonical B cell functions. Here we shall describe the non-canonical functions of B cells and offer our perspective on how those functions converge in the development and governance of immunity, particularly immunity to transplants, and hurdles to advancing understanding of B cell functions in transplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States.
| | - Marilia Cascalho
- Departments of Surgery and of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
52
|
Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia 2019; 67:2125-2141. [DOI: 10.1002/glia.23637] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life SciencesTel Aviv University Tel Aviv Israel
| | - Boaz Barak
- The School of Psychological Sciences, Faculty of Social Sciences, and The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
- The Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| |
Collapse
|
53
|
Ma Y, Liu Y, Zhang Z, Yang GY. Significance of Complement System in Ischemic Stroke: A Comprehensive Review. Aging Dis 2019; 10:429-462. [PMID: 31011487 PMCID: PMC6457046 DOI: 10.14336/ad.2019.0119] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system is an essential part of innate immunity, typically conferring protection via eliminating pathogens and accumulating debris. However, the defensive function of the complement system can exacerbate immune, inflammatory, and degenerative responses in various pathological conditions. Cumulative evidence indicates that the complement system plays a critical role in the pathogenesis of ischemic brain injury, as the depletion of certain complement components or the inhibition of complement activation could reduce ischemic brain injury. Although multiple candidates modulating or inhibiting complement activation show massive potential for the treatment of ischemic stroke, the clinical availability of complement inhibitors remains limited. The complement system is also involved in neural plasticity and neurogenesis during cerebral ischemia. Thus, unexpected side effects could be induced if the systemic complement system is inhibited. In this review, we highlighted the recent concepts and discoveries of the roles of different kinds of complement components, such as C3a, C5a, and their receptors, in both normal brain physiology and the pathophysiology of brain ischemia. In addition, we comprehensively reviewed the current development of complement-targeted therapy for ischemic stroke and discussed the challenges of bringing these therapies into the clinic. The design of future experiments was also discussed to better characterize the role of complement in both tissue injury and recovery after cerebral ischemia. More studies are needed to elucidate the molecular and cellular mechanisms of how complement components exert their functions in different stages of ischemic stroke to optimize the intervention of targeting the complement system.
Collapse
Affiliation(s)
- Yuanyuan Ma
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqun Liu
- 3Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhijun Zhang
- 2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- 1Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,2Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Neher JJ, Cunningham C. Priming Microglia for Innate Immune Memory in the Brain. Trends Immunol 2019; 40:358-374. [DOI: 10.1016/j.it.2019.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/16/2023]
|
55
|
van der Poel M, Ulas T, Mizee MR, Hsiao CC, Miedema SSM, Adelia, Schuurman KG, Helder B, Tas SW, Schultze JL, Hamann J, Huitinga I. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 2019; 10:1139. [PMID: 30867424 PMCID: PMC6416318 DOI: 10.1038/s41467-019-08976-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/07/2019] [Indexed: 12/22/2022] Open
Abstract
Here we report the transcriptional profile of human microglia, isolated from normal-appearing grey matter (GM) and white matter (WM) of multiple sclerosis (MS) and non-neurological control donors, to find possible early changes related to MS pathology. Microglia show a clear region-specific profile, indicated by higher expression of type-I interferon genes in GM and higher expression of NF-κB pathway genes in WM. Transcriptional changes in MS microglia also differ between GM and WM. MS WM microglia show increased lipid metabolism gene expression, which relates to MS pathology since active MS lesion-derived microglial nuclei show similar altered gene expression. Microglia from MS GM show increased expression of genes associated with glycolysis and iron homeostasis, possibly reflecting microglia reacting to iron depositions. Except for ADGRG1/GPR56, expression of homeostatic genes, such as P2RY12 and TMEM119, is unaltered in normal-appearing MS tissue, demonstrating overall preservation of microglia homeostatic functions in the initiation phase of MS.
Collapse
Affiliation(s)
- Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Suzanne S M Miedema
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Adelia
- Netherlands Brain Bank, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Boy Helder
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Sigmund-Freud-Street 27, 53127, Bonn, Germany
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol Med 2018; 25:112-123. [PMID: 30578090 DOI: 10.1016/j.molmed.2018.11.005] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). They have important physiological functions in maintaining tissue homeostasis but also contribute to CNS pathology. Microglia respond to changes in the microenvironment, and the resulting reactive phenotype can be very diverse, with both neuroinflammatory and neuroprotective properties, illustrating the plasticity of these cells. Recent progress in understanding the autoimmune neuroinflammatory disease multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis suggests major roles for microglia in the disease, which have drastically changed our view on the function of microglia in MS.
Collapse
|
57
|
Zhao Y, Luo C, Chen J, Sun Y, Pu D, Lv A, Zhu S, Wu J, Wang M, Zhou J, Liao Z, Zhao K, Xiao Q. High glucose-induced complement component 3 up-regulation via RAGE-p38MAPK-NF-κB signalling in astrocytes: In vivo and in vitro studies. J Cell Mol Med 2018; 22:6087-6098. [PMID: 30246940 PMCID: PMC6237571 DOI: 10.1111/jcmm.13884] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetes is considered as a risk for cognitive decline, which is characterized by neurodegenerative alteration and innate immunity activation. Recently, complement 3 (C3), the critical central component of complement system, has been reported to play a key role in neurodegenerative alterations under pathological condition. Receptor for advanced glycation end products (RAGE) activation is confirmed to mediate several inflammatory cytokines production. However, whether C3 activation participates in the diabetic neuropathology and whether this process is regulated by RAGE activation remains unknown. The present study aimed to investigate the role of C3 in streptozotocin‐induced diabetic mice and high glucose‐induced primary astrocytes and the underlying modulatory mechanisms. The decreased synaptophysin density and increased C3 deposition at synapses were observed in the diabetic brain compared to the control brain. Furthermore, the elevated C3 was co‐localized with GFAP‐positive astrocytes in the diabetic brain slice in vivo and high glucose‐induced astrocytes culture in vitro. Diabetes/high glucose‐induced up‐regulation of C3 expression at gene, protein and secretion levels, which were attenuated by pre‐treatment with RAGE, p38MAPK and NF‐κB inhibitors separately. These results demonstrate that high glucose induces C3 up‐regulation via RAGE‐ p38MAPK‐NF‐κB signalling in vivo and in vitro, which might be associated with synaptic protein loss.
Collapse
Affiliation(s)
- Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Die Pu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ankang Lv
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Wu
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Meili Wang
- The First People's Hospital of Zunyi, Zunyi, China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kexiang Zhao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
58
|
Swanson A, Wolf T, Sitzmann A, Willette AA. Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins. Behav Brain Res 2018; 347:49-56. [PMID: 29462653 PMCID: PMC5988985 DOI: 10.1016/j.bbr.2018.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is a potential factor speculated to underlie Alzheimer's disease (AD) etiopathogenesis and progression. The overwhelming focus in this area of research to date has been on the chronic upregulation of pro-inflammatory cytokines to understand how neuroinflammatory mechanisms contribute to neurodegeneration. Yet, it is important to understand the pleiotropic roles of these cytokines in modulating neuroinflammation in which they cannot be labeled as a strictly "good" or "bad" biomarker phenotype. As such, biomarkers with more precise functions are needed to better understand how neuroinflammation impacts the brain in AD. Neuronal pentraxins are a concentration- dependent group of pro- or anti- inflammatory cytokines. There is contradictory evidence of these pentraxins as being both neuroprotective and potentially detrimental in AD. Potential neuroprotective examples include their ability to predict AD-related outcomes such as cognition, memory function and synaptic refinement. This review will briefly outline the basis of AD and subsequently summarize findings for neuropathological mechanisms of neuroinflammation, roles for traditional pro-and anti-inflammatory cytokines, and data found thus far on the neuronal pentraxins.
Collapse
Affiliation(s)
- Ashley Swanson
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Tovah Wolf
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States.
| | - Alli Sitzmann
- Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States.
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, Iowa State University, 2312 Food Sciences Building, 536 Farm House Lane, Ames, IA 50011, United States; Department of Psychology, Iowa State University, W112 Lagomarcino Hall, 901 Stange Road, Ames, IA 50011, United States; Department of Biomedical Sciences, Iowa State University, 2008 Veterinary Medicine, Ames, IA 50011, United States; Department of Neurology, University of Iowa, 2007 Roy Carver Pavilion, 200 Hawkins Drive, Iowa City, IA 52242, United States.
| |
Collapse
|
59
|
Maino B, Spampinato AG, Severini C, Petrella C, Ciotti MT, D'Agata V, Calissano P, Cavallaro S. The trophic effect of nerve growth factor in primary cultures of rat hippocampal neurons is associated to an anti-inflammatory and immunosuppressive transcriptional program. J Cell Physiol 2018; 233:7178-7187. [PMID: 29741791 DOI: 10.1002/jcp.26744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Nerve growth factor, the prototype of a family of neurotrophins, elicits differentiation and survival of peripheral and central neuronal cells. Although its neural mechanisms have been studied extensively, relatively little is known about the transcriptional regulation governing its effects. We have previously observed that in primary cultures of rat hippocampal neurons treatment with nerve growth factor for 72 hr increases neurite outgrowth and cell survival. To obtain a comprehensive view of the underlying transcriptional program, we performed whole-genome expression analysis by microarray technology. We identified 541 differentially expressed genes and characterized dysregulated pathways related to innate immunity: the complement system and neuro-inflammatory signaling. The exploitation of such genes and pathways may help interfering with the intracellular mechanisms involved in neuronal survival and guide novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Barbara Maino
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Antonio G Spampinato
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| | - Cinzia Severini
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, Italy.,European Brain Research Institute, Roma, Italy
| | - Carla Petrella
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, Italy
| | | | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | | | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Catania, Italy
| |
Collapse
|
60
|
Kuehn S, Reinehr S, Stute G, Rodust C, Grotegut P, Hensel AT, Dick HB, Joachim SC. Interaction of complement system and microglia activation in retina and optic nerve in a NMDA damage model. Mol Cell Neurosci 2018; 89:95-106. [PMID: 29738834 DOI: 10.1016/j.mcn.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/14/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023] Open
Abstract
It is known that intravitreally injected N-methyl-d-aspartate (NMDA) leads to fast retina and optic nerve degeneration and can directly activate microglia. Here, we analyzed the relevance for microglia related degenerating factors, the proteins of the complement system, at a late stage in the NMDA damage model. Therefore, different doses of NMDA (0 (PBS), 20, 40, 80 nmol) were intravitreally injected in rat eyes. Proliferative and activated microglia/macrophages (MG/Mϕ) were found in retina and optic nerve 2 weeks after NMDA injection. All three complement pathway proteins were activated in retinas after 40 and 80 nmol NMDA treatment. 80 nmol NMDA injection also lead to more numerous depositions of complement factors C3 and membrane attack complex (MAC) in retina and MAC in optic nerve. Additionally, more MAC+ depositions were detected in optic nerves of the 40 nmol NMDA group. In this NMDA model, the retina is first affected followed by optic nerve damage. However, we found initiating complement processes in the retina, while more deposits of the terminal complex were present 2 weeks after NMDA injection in the optic nerve. The complement system can be activated in waves and possibly a second wave is still on-going in the retina, while the first activation wave is in the final phase in the optic nerve. Only the damaged tissues showed microglia activation as well as proliferation and an increase of complement proteins. Interestingly, the microglia/macrophages (MG/Mϕ) in this model were closely connected with the inductors of the classical and lectin pathway, but not with the alternative pathway. However, all three initiating complement pathways were upregulated in the retina. The alternative pathway seems to be triggered by other mechanisms in this NMDA model. Our study showed an ongoing interaction of microglia and complement proteins in a late stage of a degenerative process.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Gesa Stute
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Cara Rodust
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Alexander-Tobias Hensel
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
61
|
Li JW, Zong Y, Cao XP, Tan L, Tan L. Microglial priming in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:176. [PMID: 29951498 DOI: 10.21037/atm.2018.04.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease of central nervous system (CNS). Nowadays, increasing evidence suggests that immune system plays a significant role in the mechanisms of AD's onset and progression. Microglia, the main participator in the immune system of CNS, is always regarded as a protector of our brain in a healthy state and also has a beneficial role in maintaining the homeostasis of CNS microenvironment. However, chronic and sustained stimulation can push microglia into the state termed priming. Primed microglia can induce the production of amyloid β (Aβ), tau pathology, neuroinflammation and reduce the release of neurotrophic factors, resulting in loss of normal neurons in quantity and function that has immense relationship with AD. The therapeutic strategies mainly aimed at modulating the microenvironment and microglial activity in CNS to delay progression and alleviate pathogenesis of AD. Overall, in this review, we highlight the mechanism of microglial priming, and discuss the profound relationship between microglial priming and AD. Besides, we also pay attention to the therapeutic strategies targeting at microglial priming.
Collapse
Affiliation(s)
- Jun-Wei Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China
| | - Yu Zong
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lin Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao 266000, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
62
|
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 2018; 9:9/392/eaaf6295. [PMID: 28566429 DOI: 10.1126/scitranslmed.aaf6295] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/01/2016] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aβ by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aβ-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;C3 KO). We examined the effects of C3 deficiency on cognition, Aβ plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;C3 KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aβ plaques. Aged APP/PS1;C3 KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aβ plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;C3 KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aβ plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.
Collapse
Affiliation(s)
- Qiaoqiao Shi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Saba Chowdhury
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Rong Ma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Kevin X Le
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA
| | - Soyon Hong
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Barbara J Caldarone
- Harvard Medical School, Boston, MA 02115, USA.,Harvard NeuroDiscovery Center NeuroBehavior Laboratory, Department of Neurology, Brigham and Women's Hospital, Harvard Institute of Medicine, Room 945, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA 02115, USA.,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Center for Life Sciences, 12th Floor, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Building for Transformative Medicine, 9th Floor, 60 Fenwood Road, Boston, MA 02115, USA. .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
63
|
Roostaei T, Sadaghiani S, Mashhadi R, Falahatian M, Mohamadi E, Javadian N, Nazeri A, Doosti R, Naser Moghadasi A, Owji M, Hashemi Taheri AP, Shakouri Rad A, Azimi A, Voineskos AN, Nazeri A, Sahraian MA. Convergent effects of a functional C3 variant on brain atrophy, demyelination, and cognitive impairment in multiple sclerosis. Mult Scler 2018; 25:532-540. [PMID: 29485352 DOI: 10.1177/1352458518760715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Complement system activation products are present in areas of neuroinflammation, demyelination, and neurodegeneration in brains of patients with multiple sclerosis (MS). C3 is a central element in the activation of complement cascades. A common coding variant in the C3 gene (rs2230199, C3R102G) affects C3 activity. OBJECTIVES To assess the effects of rs2230199 on MS severity using clinical, cognitive, and imaging measures. METHODS In total, 161 relapse-onset MS patients (Expanded Disability Status Scale (EDSS) ≤ 6) underwent physical assessments, cognitive tests (Paced Auditory Serial Addition Test (PASAT), Symbol Digit Modalities Test (SDMT), and California Verbal Learning Test (CVLT)), and magnetic resonance imaging (MRI). Lesion volumes were quantified semi-automatically. Voxel-wise analyses were performed to assess the effects of rs2230199 genotype on gray matter (GM) atrophy ( n = 155), white matter (WM) fractional anisotropy (FA; n = 105), and WM magnetization transfer ratio (MTR; n = 90). RESULTS While rs2230199 minor-allele dosage (C3-102G) showed no significant effect on EDSS and Multiple Sclerosis Functional Composite (MSFC), it was associated with worse cognitive performance ( p = 0.02), lower brain parenchymal fraction ( p = 0.003), and higher lesion burden ( p = 0.02). Moreover, voxel-wise analyses showed lower GM volume in subcortical structures and insula, and lower FA and MTR in several WM areas with higher copies of rs2230199 minor allele. CONCLUSION C3-rs2230199 affects white and GM damage as well as cognitive impairment in MS patients. Our findings support a causal role for complement system activity in the pathophysiology of MS.
Collapse
Affiliation(s)
- Tina Roostaei
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran/Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada/Department of Psychiatry, University of Toronto, Toronto, ON, Canada/Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Shokufeh Sadaghiani
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masih Falahatian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Esmaeil Mohamadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran
| | - Nina Javadian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran
| | - Aria Nazeri
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rozita Doosti
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Owji
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran
| | | | - Ali Shakouri Rad
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Azimi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada/Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arash Nazeri
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran, Iran/Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences and Sina Hospital, Tehran, Iran/Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Induced neural stem cell-derived astrocytes modulate complement activation and mediate neuroprotection following closed head injury. Cell Death Dis 2018; 9:101. [PMID: 29367701 PMCID: PMC5833559 DOI: 10.1038/s41419-017-0172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/25/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022]
Abstract
The complement system is a crucial component of immunity, and its activation has critical roles in neuroinflammatory response and cellular damage following closed head injury (CHI). We previously demonstrated that systemically injected induced neural stem cells (iNSCs) could modulate complement activation to ameliorate neuronal apoptosis in mouse CHI models. However, it remains unknown whether iNSC derivatives can regulate complement activation. In the present study, after CHI mouse serum treatment, we found dramatic decreases in the cellular viabilities of differentiated iNSCs. Interestingly, following CHI mouse serum treatment, the death of astrocytes derived from iNSCs which were pre-treated with CHI mouse serum was significantly decreased. Meanwhile, the deposition of C3 (C3d) and C5b-9 in these astrocytes was substantially reduced. Remarkably, we detected increased expression of complement receptor type 1-related protein y (Crry) in these astrocytes. Moreover, these astrocytes could reduce the numbers of apoptotic neurons via Crry expression post-CHI mouse serum treatment. Additionally, intracerebral-transplanted iNSCs, pre-treated with CHI mouse serum, significantly increased the levels of Crry expression in astrocytes to reduce the accumulation of C3d and C9 and the death of neurons in the brains of CHI mice. In summary, iNSCs receiving CHI mouse serum pre-treatment could enhance the expression of Crry in iNSC-derived astrocytes to modulate complement activation and mediate neuroprotection following CHI.
Collapse
|
65
|
Hematopoietic Gene Therapies for Metabolic and Neurologic Diseases. Hematol Oncol Clin North Am 2017; 31:869-881. [DOI: 10.1016/j.hoc.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Loveless S, Neal JW, Howell OW, Harding KE, Sarkies P, Evans R, Bevan RJ, Hakobyan S, Harris CL, Robertson NP, Morgan BP. Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis. Brain Pathol 2017; 28:507-520. [PMID: 28707765 DOI: 10.1111/bpa.12546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
The complement pathway has potential contributions to both white (WM) and grey matter (GM) pathology in Multiple Sclerosis (MS). A quantitative assessment of complement involvement is lacking. Here we describe the use of Tissue MicroArray (TMA) methodology in conjunction with immunohistochemistry to investigate the localization of complement pathway proteins in progressive MS cortical GM and subcortical WM. Antibodies targeting complement proteins C1q, C3b, regulatory proteins C1 inhibitor (C1INH, complement receptor 1 (CR1), clusterin, factor H (FH) and the C5a anaphylatoxin receptor (C5aR) were utilised alongside standard markers of tissue pathology. All stained slides were digitised for quantitative analysis. We found that numbers of cells immunolabelled for HLA-DR, GFAP, C5aR, C1q and C3b were increased in WM lesions (WML) and GM lesions (GML) compared to normal appearing WM (NAWM) and GM (NAGM), respectively. The complement regulators C1INH, CR1, FH and clusterin were more abundant in WM lesions, while the number of C1q+ neurons were increased and the number of C1INH+, clusterin+, FH+ and CR1+ neurons decreased in GM lesions. The number of complement component positive cells (C1q, C3b) correlated with complement regulator expression in WM, but there was no statistical association between complement activation and regulator expression in the GM. We conclude that TMA methodology and quantitative analysis provides evidence of complement dysregulation in MS GML, including an association of the numerical density of C1q+ cells with tissue lesions. Our work confirms that complement activation and dysregulation occur in all cases of progressive MS and suggest that complement may provide potential biomarkers of the disease.
Collapse
Affiliation(s)
- Sam Loveless
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - James W Neal
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| | - Owain W Howell
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Katharine E Harding
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Patrick Sarkies
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Rhian Evans
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Ryan J Bevan
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Svetlana Hakobyan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| | - Claire L Harris
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Bryan Paul Morgan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| |
Collapse
|
67
|
Loveless S, Neal JW, Howell OW, Harding KE, Sarkies P, Evans R, Bevan RJ, Hakobyan S, Harris CL, Robertson NP, Morgan BP. Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis. BRAIN PATHOLOGY (ZURICH, SWITZERLAND) 2017. [PMID: 28707765 DOI: 10.1111/bpa.12546.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement pathway has potential contributions to both white (WM) and grey matter (GM) pathology in Multiple Sclerosis (MS). A quantitative assessment of complement involvement is lacking. Here we describe the use of Tissue MicroArray (TMA) methodology in conjunction with immunohistochemistry to investigate the localization of complement pathway proteins in progressive MS cortical GM and subcortical WM. Antibodies targeting complement proteins C1q, C3b, regulatory proteins C1 inhibitor (C1INH, complement receptor 1 (CR1), clusterin, factor H (FH) and the C5a anaphylatoxin receptor (C5aR) were utilised alongside standard markers of tissue pathology. All stained slides were digitised for quantitative analysis. We found that numbers of cells immunolabelled for HLA-DR, GFAP, C5aR, C1q and C3b were increased in WM lesions (WML) and GM lesions (GML) compared to normal appearing WM (NAWM) and GM (NAGM), respectively. The complement regulators C1INH, CR1, FH and clusterin were more abundant in WM lesions, while the number of C1q+ neurons were increased and the number of C1INH+, clusterin+, FH+ and CR1+ neurons decreased in GM lesions. The number of complement component positive cells (C1q, C3b) correlated with complement regulator expression in WM, but there was no statistical association between complement activation and regulator expression in the GM. We conclude that TMA methodology and quantitative analysis provides evidence of complement dysregulation in MS GML, including an association of the numerical density of C1q+ cells with tissue lesions. Our work confirms that complement activation and dysregulation occur in all cases of progressive MS and suggest that complement may provide potential biomarkers of the disease.
Collapse
Affiliation(s)
- Sam Loveless
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - James W Neal
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| | - Owain W Howell
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Katharine E Harding
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Patrick Sarkies
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Rhian Evans
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Ryan J Bevan
- Institute of Life Sciences, Swansea University School of Medicine, Swansea, SA2 8PP, United Kingdom
| | - Svetlana Hakobyan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| | - Claire L Harris
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom.,Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Neil P Robertson
- Division of Psychological Medicine and Clinical Neurology, Cardiff University, Cardiff, CF14 4XN, United Kingdom
| | - Bryan Paul Morgan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XW, United Kingdom
| |
Collapse
|
68
|
Xue X, Wu J, Ricklin D, Forneris F, Di Crescenzio P, Schmidt CQ, Granneman J, Sharp TH, Lambris JD, Gros P. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses. Nat Struct Mol Biol 2017; 24:643-651. [PMID: 28671664 DOI: 10.1038/nsmb.3427] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.
Collapse
Affiliation(s)
- Xiaoguang Xue
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jin Wu
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniel Ricklin
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Patrizia Di Crescenzio
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christoph Q Schmidt
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Joke Granneman
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - John D Lambris
- Department of Pathology &Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
69
|
Li S, Cao W, Han J, Tang B, Sun X. The diagnostic value of white blood cell, neutrophil, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio in patients with primary angle closure glaucoma. Oncotarget 2017; 8:68984-68995. [PMID: 28978173 PMCID: PMC5620313 DOI: 10.18632/oncotarget.16571] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/16/2017] [Indexed: 01/04/2023] Open
Abstract
Objective Inflammatory mechanisms may have a role in the pathogenesis of primary angle closure glaucoma (PACG). The objective of this study was to investigate the diagnostic value of white blood cell (WBC), neutrophil, neutrophil to lymphocyte ratio (NLR), and lymphocyte to monocyte ratio (LMR) in patients with PACG and its association with glaucoma severity. Method The study was retrospectively assessed in 771 consecutive PACG patients and 770 control subjects, laboratory parameters and clinical parameters were obtained from a medical data platform. Patients were divided into three groups with different severity based on perimetry, i.e. mild (mean deviation (MD) ≤6.00 dB), moderate (12 dB≥ MD>6 dB) and severe (MD>12 dB). We developed a nomogram to specifically identify individual patient’s risk. Results The mean levels of neutrophil, NLR and WBC was higher in PACG than control group, and lowest in the mild PACG group, followed by moderate PACG and severe PACG (p<0.05). The AUROC value of NLR and LMR was found to be 0.719, 0.699, respectively. Multiple linear regressions showed that there was a significant correlation between WBC and MD (B=0.151, p<0.001), neutrophil and MD (B=0.143, p=0.003), NLR and MD (B=0.144, p=0.001), LMR and MD (B=-0.100, p=0.034). Logistic regression analyses revealed that WBC (OR=1.208, 95%CI=1.179-1.238), neutrophil (OR=1.598, 95%CI=1.541-1.656), NLR (OR=2.313, 95%CI=2.200-2.431), and LMR (OR=0.682, 95%CI=0.666-0.699) were associated with PACG. Conclusion Our study suggested that WBC, neutrophil, NLR, and LMR was related with PACG, and NLR and LMR may be useful as biomarkers.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianping Han
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Binghua Tang
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
70
|
Zhu K, Sun J, Kang Z, Zou Z, Wu G, Wang J. Electroacupuncture Promotes Remyelination after Cuprizone Treatment by Enhancing Myelin Debris Clearance. Front Neurosci 2017; 10:613. [PMID: 28119561 PMCID: PMC5222794 DOI: 10.3389/fnins.2016.00613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination.
Collapse
Affiliation(s)
- Keying Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jingxian Sun
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zheng Kang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Zaofeng Zou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan UniversityShanghai, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghai, China; Academy of Integrative Medicine, Fudan UniversityShanghai, China
| |
Collapse
|
71
|
Romanelli E, Merkler D, Mezydlo A, Weil MT, Weber MS, Nikić I, Potz S, Meinl E, Matznick FEH, Kreutzfeldt M, Ghanem A, Conzelmann KK, Metz I, Brück W, Routh M, Simons M, Bishop D, Misgeld T, Kerschensteiner M. Myelinosome formation represents an early stage of oligodendrocyte damage in multiple sclerosis and its animal model. Nat Commun 2016; 7:13275. [PMID: 27848954 PMCID: PMC5116090 DOI: 10.1038/ncomms13275] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte damage is a central event in the pathogenesis of the common neuroinflammatory condition, multiple sclerosis (MS). Where and how oligodendrocyte damage is initiated in MS is not completely understood. Here, we use a combination of light and electron microscopy techniques to provide a dynamic and highly resolved view of oligodendrocyte damage in neuroinflammatory lesions. We show that both in MS and in its animal model structural damage is initiated at the myelin sheaths and only later spreads to the oligodendrocyte cell body. Early myelin damage itself is characterized by the formation of local myelin out-foldings-'myelinosomes'-, which are surrounded by phagocyte processes and promoted in their formation by anti-myelin antibodies and complement. The presence of myelinosomes in actively demyelinating MS lesions suggests that oligodendrocyte damage follows a similar pattern in the human disease, where targeting demyelination by therapeutic interventions remains a major open challenge.
Collapse
Affiliation(s)
- Elisa Romanelli
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Aleksandra Mezydlo
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Marie-Theres Weil
- Max-Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Martin S. Weber
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Ivana Nikić
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Stephanie Potz
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Florian E. H. Matznick
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexander Ghanem
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Imke Metz
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Matthew Routh
- Department of Physiology and Health Science, Ball State University, Muncie, Indiana 47306, USA
| | - Mikael Simons
- Max-Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Derron Bishop
- Department of Cellular and Integrative Physiology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Thomas Misgeld
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
- Center of Integrated Protein Sciences (CIPS), 81377 Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
72
|
Michailidou I, Naessens DMP, Hametner S, Guldenaar W, Kooi EJ, Geurts JJG, Baas F, Lassmann H, Ramaglia V. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis. Glia 2016; 65:264-277. [PMID: 27778395 PMCID: PMC5215693 DOI: 10.1002/glia.23090] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
Microglial clusters with C3d deposits are observed in the periplaque of multiple sclerosis (MS) brains and were proposed as early stage of lesion formation. As such they should appear in the brain of MS donors with acute disease but thus far this has not been shown. Using postmortem brain tissue from acute (n = 10) and chronic (n = 15) MS cases we investigated whether C3d+ microglial clusters are part of an acute attack against myelinated axons, which could have implications for disease pathogenesis. The specificity of our findings to MS was tested in ischemic stroke cases (n = 8) with initial or advanced lesions and further analyzed in experimental traumatic brain injury (TBI, n = 26), as both conditions are primarily nondemyelinating but share essential features of neurodegeneration with MS lesions. C3d+ microglial clusters were found in chronic but not acute MS. They were not associated with antibody deposits or terminal complement activation. They were linked to slowly expanding lesions, localized on axons with impaired transport and associated with neuronal C3 production. C3d+ microglial clusters were not specific to MS as they were also found in stroke and experimental TBI. We conclude that C3d+ microglial clusters in MS are not part of an acute attack against myelinated axons. As such it is unlikely that they drive formation of new lesions but could represent a physiological mechanism to remove irreversibly damaged axons in chronic disease. GLIA 2017;65:264–277
Collapse
Affiliation(s)
- Iliana Michailidou
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Daphne M P Naessens
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, 1090, Austria
| | - Willemijn Guldenaar
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Evert-Jan Kooi
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, 1090, Austria
| | - Valeria Ramaglia
- Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105, The Netherlands
| |
Collapse
|
73
|
Hernandez-Encinas E, Aguilar-Morante D, Morales-Garcia JA, Gine E, Sanz-SanCristobal M, Santos A, Perez-Castillo A. Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ. J Neuroinflammation 2016; 13:276. [PMID: 27769255 PMCID: PMC5073972 DOI: 10.1186/s12974-016-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells. Methods Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3. Results In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo. Conclusions Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Present Address: Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, 28040, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
74
|
Colasanti A, Guo Q, Giannetti P, Wall MB, Newbould RD, Bishop C, Onega M, Nicholas R, Ciccarelli O, Muraro PA, Malik O, Owen DR, Young AH, Gunn RN, Piccini P, Matthews PM, Rabiner EA. Hippocampal Neuroinflammation, Functional Connectivity, and Depressive Symptoms in Multiple Sclerosis. Biol Psychiatry 2016; 80:62-72. [PMID: 26809249 PMCID: PMC4918731 DOI: 10.1016/j.biopsych.2015.11.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression, a condition commonly comorbid with multiple sclerosis (MS), is associated more generally with elevated inflammatory markers and hippocampal pathology. We hypothesized that neuroinflammation in the hippocampus is responsible for depression associated with MS. We characterized the relationship between depressive symptoms and hippocampal microglial activation in patients with MS using the 18-kDa translocator protein radioligand [(18)F]PBR111. To evaluate pathophysiologic mechanisms, we explored the relationships between hippocampal neuroinflammation, depressive symptoms, and hippocampal functional connectivities defined by resting-state functional magnetic resonance imaging. METHODS The Beck Depression Inventory (BDI) was administered to 11 patients with MS and 22 healthy control subjects before scanning with positron emission tomography and functional magnetic resonance imaging. We tested for higher [(18)F]PBR111 uptake in the hippocampus of patients with MS relative to healthy control subjects and examined the correlations between [(18)F]PBR111 uptake, BDI scores, and hippocampal functional connectivities in the patients with MS. RESULTS Patients with MS had an increased hippocampal [(18)F]PBR111 distribution volume ratio relative to healthy control subjects (p = .024), and the hippocampal distribution volume ratio was strongly correlated with the BDI score in patients with MS (r = .86, p = .006). Hippocampal functional connectivities to the subgenual cingulate and prefrontal and parietal regions correlated with BDI scores and [(18)F]PBR111 distribution volume ratio. CONCLUSIONS Our results provide evidence that hippocampal microglial activation in MS impairs the brain functional connectivities in regions contributing to maintenance of a normal affective state. Our results suggest a rationale for the responsiveness of depression in some patients with MS to effective control of brain neuroinflammation. Our findings also lend support to further investigation of the role of inflammatory processes in the pathogenesis of depression more generally.
Collapse
Affiliation(s)
- Alessandro Colasanti
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Imanova Centre for Imaging Sciences, London, United Kingdom.
| | - Qi Guo
- Imanova Centre for Imaging Sciences, London, United Kingdom
| | - Paolo Giannetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences, London, United Kingdom
| | | | | | - Mayca Onega
- Imanova Centre for Imaging Sciences, London, United Kingdom
| | - Richard Nicholas
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Olga Ciccarelli
- Department of Neuroinflammation, University College London Institute of Neurology, London, United Kingdom; National Institute of Health Research Biomedical Research Centre at University College London Hospitals, London, United Kingdom
| | - Paolo A Muraro
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Omar Malik
- Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - David R Owen
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Roger N Gunn
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; Imanova Centre for Imaging Sciences, London, United Kingdom
| | - Paola Piccini
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Eugenii A Rabiner
- Psychological Medicine, and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Imanova Centre for Imaging Sciences, London, United Kingdom
| |
Collapse
|
75
|
Abstract
The complement system is a major component of innate immunity and a potent driver of inflammation. It has key roles in host defense against pathogens but can also contribute to pathology by driving inflammation and cell damage in diverse diseases. Complement has emerged as an important factor in the pathogenesis of numerous diseases of the CNS and PNS, including infectious, autoimmune and degenerative disorders, and is increasingly implicated in neuropsychiatric disease. Establishing the roles and relevance of complement in disease pathogenesis has become ever more important in recent years as new drugs targeting the complement system have reached the clinic, and the potential for using complement analytes as disease biomarkers has been recognized. In this brief review, the author summarizes the evidence implicating complement in these diseases and outlines ways in which this new understanding can be used to aid diagnosis and improve outcome.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- a Institute of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff CF144XN, UK
| |
Collapse
|
76
|
Marshall SA, Geil CR, Nixon K. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration. Brain Sci 2016; 6:E16. [PMID: 27240410 PMCID: PMC4931493 DOI: 10.3390/brainsci6020016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity.
Collapse
Affiliation(s)
- Simon Alex Marshall
- Department of Psychology & Neuroscience; University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Chelsea Rhea Geil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
77
|
Wu F, Zou Q, Ding X, Shi D, Zhu X, Hu W, Liu L, Zhou H. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J Neuroinflammation 2016; 13:23. [PMID: 26822321 PMCID: PMC4731990 DOI: 10.1186/s12974-016-0485-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complement system is becoming increasingly recognized as a key participant in many neurodegenerative diseases of the brain. Complement-deficient animals exhibit reduced neuroinflammation. METHODS In the present study, we administered intracerebroventricularly lipopolysaccharide (LPS) to mimic local infection of the brain and investigated the role of key complement component C3 in brain vasculature endothelial activation and leukocyte recruitment. The degree of neutrophil infiltration was determined by esterase staining. Leukocyte-endothelial interactions were measured using intravital microscopy. Cerebral endothelial activation was evaluated using real-time PCR and Western blotting. RESULTS Neutrophil infiltration into the brain cortex and hippocampus was significantly reduced in C3(-/-) mice and C3aR(-/-) mice but not in C6(-/-) mice. We detected markedly attenuated leukocyte-endothelial interactions in the brain microvasculature of C3(-/-) mice. Accordingly, in response to LPS administration, the brain microvasculature in these mice had decreased expression of P-selectin, E-selectin, intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1). Depletion of C3 from the circulation also caused reduction in VCAM-1 and E-selectin expression and leukocyte recruitment, suggesting that C3 in the circulation contributed to brain endothelial activation. Furthermore, C3(-/-) mice exhibited decreased leukocyte recruitment into the brain upon tumor necrosis factor-α (TNF-α) stimulation. C3a activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) and induced the upregulation of VCAM-1 and ICAM-1 expression in murine primary cerebral endothelial cells in vitro. CONCLUSIONS Our study provides the first evidence that C3a plays a critical role in cerebral endothelial activation and leukocyte recruitment during inflammation in the brain.
Collapse
Affiliation(s)
- Fengjiao Wu
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Qiang Zou
- Department of Immunology, Chengdu Medical College, Chengdu, 610083, Sichuan, China.
| | - Xiaodan Ding
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| | - Weiguo Hu
- Shanghai Cancer Center and Institute of Biomedical Science, Shanghai Medical College, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, JS, 210029, China.
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Recent studies indicate a role for immune dysregulation in the pathogenesis of multiple sclerosis, an inflammatory demyelinating and degenerative disease of the central nervous system. This review addresses the current mechanisms of immune dysregulation in the development of multiple sclerosis, including the impact of environmental risk factors on immunity in both multiple sclerosis and its animal models. RECENT FINDINGS CD4 T-helper (Th) cells have long been implicated as the main drivers of pathogenesis of multiple sclerosis. However, current studies indicate that multiple sclerosis is largely a heterogeneous disease process, which involves both innate and adaptive immune-mediated inflammatory mechanisms that ultimately contribute to demyelination and neurodegeneration. Therefore, B cells, CD8 T cells, and microglia/macrophages can also play an important role in the immunopathogenesis of multiple sclerosis apart from proinflammatory CD4 Th1/Th17 cell subsets. Furthermore, increasing evidence indicates that environmental risk factors, such as Vitamin D deficiency, Epstein-Barr virus, smoking, Western diet, and the commensal microbiota, influence the development of multiple sclerosis through interactions with genetic variants of multiple sclerosis, thus leading to the dysregulation of immune responses. SUMMARY A better understanding of immune-mediated mechanisms in the pathogenesis of multiple sclerosis and the contribution of environmental risk factors toward the development of multiple sclerosis will help further improve therapeutic approaches to prevent disease progression.
Collapse
|
79
|
Kim I, Mlsna LM, Yoon S, Le B, Yu S, Xu D, Koh S. A postnatal peak in microglial development in the mouse hippocampus is correlated with heightened sensitivity to seizure triggers. Brain Behav 2015; 5:e00403. [PMID: 26807334 PMCID: PMC4714636 DOI: 10.1002/brb3.403] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Explosive synaptogenesis and synaptic pruning occur in the hippocampus during the first two weeks of postnatal life, coincident with a heightened susceptibility to seizures in rodents. To determine the temporal correlation between microglial development and age-dependent susceptibility and response to seizures, we quantified developmental changes in basal microglia levels and seizure-induced microglial activation in the hippocampus of Cx3Cr1(GFP /+) transgenic mice. METHODS Basal levels of microglia were quantified in the hippocampi of Cx3Cr1(GFP /+) mice at P0, P5, P10, P15, P20, P25, P30, P40, and P60. Seizure susceptibility and seizure-induced microglial activation were assessed in response to febrile seizures (lipopolysaccharide followed by hyperthermia) and kainic acid-induced status epilepticus. RESULTS The density of microglia within the hippocampus increased rapidly after birth, reaching a peak during the second week of life - the age at which the animals became most vulnerable to seizure triggers. In addition, this peak of microglial development and seizure vulnerability during the second postnatal week represented the time of maximal seizure-induced microglia activation. CONCLUSIONS Overreactive innate immunity mediated by activated microglia may exacerbate acute injury to neuronal synapses and contribute to the long-term epileptogenic effects of early-life seizures. Anti-inflammatory therapy targeting excessive production of inflammatory mediators by activated microglia, therefore, may be an effective age-specific therapeutic strategy to minimize neuronal dysfunction and prevent increases in susceptibility to subsequent seizures in developing animals.
Collapse
Affiliation(s)
- Iris Kim
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Lauren M Mlsna
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Stella Yoon
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Brandy Le
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Songtao Yu
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Dan Xu
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| | - Sookyong Koh
- Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute Department of Pediatrics Feinberg School of Medicine Northwestern University Chicago Illinois
| |
Collapse
|
80
|
Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology 2015; 40:2774-87. [PMID: 25948102 PMCID: PMC4864653 DOI: 10.1038/npp.2015.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/07/2015] [Accepted: 04/24/2015] [Indexed: 11/08/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment.
Collapse
|
81
|
Lindblom RPF, Berg A, Ström M, Aeinehband S, Dominguez CA, Al Nimer F, Abdelmagid N, Heinig M, Zelano J, Harnesk K, Hübner N, Nilsson B, Ekdahl KN, Diez M, Cullheim S, Piehl F. Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response. J Neuroinflammation 2015; 12:192. [PMID: 26502875 PMCID: PMC4624364 DOI: 10.1186/s12974-015-0413-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking. METHODS Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA). Expression of Cr2 in the spinal cord was studied in a separate cohort of DA and PVG rats at different time-points after VRA, and also following sciatic nerve transection (SNT) in the same strains. Consequently, Cr2 (-/-) mice and Wt controls were used to further explore the role of Cr2 in the spinal cord following SNT. The in vivo experiments were complemented by astrocyte and microglia cell cultures. RESULTS Expression of Cr2 in naïve spinal cord was low but strongly up regulated at 5-7 days after both VRA and SNT. Levels of Cr2 expression, as well as astrocyte activation, was higher in PVG rats than DA rats following both VRA and SNT. Subsequent in vitro studies proposed astrocytes as the main source of Cr2 expression. A functional role for Cr2 is suggested by the finding that transgenic mice lacking Cr2 displayed increased loss of synaptic nerve terminals following nerve injury. We also detected increased levels of soluble CR2 (sCR2) in the cerebrospinal fluid of rats following VRA. CONCLUSIONS These results demonstrate that local expression of Cr2 in the central nervous system is part of the axotomy reaction and is suggested to modulate subsequent complement mediated effects.
Collapse
Affiliation(s)
- Rickard P F Lindblom
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden. .,Department of Cardiothoracic Surgery and Anaesthesia, Uppsala University Hospital, Uppsala, Sweden. .,Neuroimmunology Unit L8:04 CMM, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Alexander Berg
- Department of Neuroscience, Division of Neuronal Regeneration, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Ström
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia A Dominguez
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Nada Abdelmagid
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Heinig
- Experimental Genetics of Cardiovascular Diseases, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Johan Zelano
- Department of Neuroscience, Division of Neuronal Regeneration, Karolinska Institutet, Stockholm, Sweden
| | - Karin Harnesk
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Hübner
- Experimental Genetics of Cardiovascular Diseases, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Margarita Diez
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Cullheim
- Department of Neuroscience, Division of Neuronal Regeneration, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
82
|
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 2015; 6:8164. [PMID: 26353940 PMCID: PMC4579523 DOI: 10.1038/ncomms9164] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity. Autoimmune brain inflammation is associated with activation of macrophages and microglia. Here the authors show that fibrinogen induces encephalitogenic T-cell activation and macrophage recruitment to the central nervous system, and promotes demyelination in a mouse model of multiple sclerosis.
Collapse
|
83
|
Grassmann F, Fleckenstein M, Chew EY, Strunz T, Schmitz-Valckenberg S, Göbel AP, Klein ML, Ratnapriya R, Swaroop A, Holz FG, Weber BHF. Clinical and genetic factors associated with progression of geographic atrophy lesions in age-related macular degeneration. PLoS One 2015; 10:e0126636. [PMID: 25962167 PMCID: PMC4427438 DOI: 10.1371/journal.pone.0126636] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/05/2015] [Indexed: 12/29/2022] Open
Abstract
Worldwide, age-related macular degeneration (AMD) is a serious threat to vision loss in individuals over 50 years of age with a pooled prevalence of approximately 9%. For 2020, the number of people afflicted with this condition is estimated to reach 200 million. While AMD lesions presenting as geographic atrophy (GA) show high inter-individual variability, only little is known about prognostic factors. Here, we aimed to elucidate the contribution of clinical, demographic and genetic factors on GA progression. Analyzing the currently largest dataset on GA lesion growth (N = 388), our findings suggest a significant and independent contribution of three factors on GA lesion growth including at least two genetic factors (ARMS2_rs10490924 [P < 0.00088] and C3_rs2230199 [P < 0.00015]) as well as one clinical component (presence of GA in the fellow eye [P < 0.00023]). These correlations jointly explain up to 7.2% of the observed inter-individual variance in GA lesion progression and should be considered in strategy planning of interventional clinical trials aimed at evaluating novel treatment options in advanced GA due to AMD.
Collapse
Affiliation(s)
- Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
| | | | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
| | | | - Arno P. Göbel
- Department of Ophthalmology, University of Bonn, Bonn, D-53127, Germany
| | - Michael L. Klein
- Macular Degeneration Center, Casey Eye Institute, Oregon Health & Science University, and Devers Eye Institute, Portland, Oregon 97239, United States of America
| | - Rinki Ratnapriya
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, D-53127, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
- * E-mail:
| |
Collapse
|
84
|
Aeinehband S, Lindblom RPF, Al Nimer F, Vijayaraghavan S, Sandholm K, Khademi M, Olsson T, Nilsson B, Ekdahl KN, Darreh-Shori T, Piehl F. Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis. PLoS One 2015; 10:e0122048. [PMID: 25835709 PMCID: PMC4383591 DOI: 10.1371/journal.pone.0122048] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.
Collapse
Affiliation(s)
- Shahin Aeinehband
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Rickard P. F. Lindblom
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Faiez Al Nimer
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Swetha Vijayaraghavan
- Division of Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | | | - Mohsen Khademi
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Bo Nilsson
- Division of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Division of Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- School of Natural Sciences, Linnæus University, Kalmar, Sweden
| | - Taher Darreh-Shori
- Division of Alzheimer Neurobiology Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
85
|
Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J Neuropathol Exp Neurol 2015; 74:48-63. [PMID: 25470347 DOI: 10.1097/nen.0000000000000149] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis-affected CNS tissues and underscore the plasticity of human adult microglia in vitro.
Collapse
|
86
|
Mastellos DC. Complement emerges as a masterful regulator of CNS homeostasis, neural synaptic plasticity and cognitive function. Exp Neurol 2014; 261:469-74. [DOI: 10.1016/j.expneurol.2014.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 01/09/2023]
|
87
|
Lewis ND, Hill JD, Juchem KW, Stefanopoulos DE, Modis LK. RNA sequencing of microglia and monocyte-derived macrophages from mice with experimental autoimmune encephalomyelitis illustrates a changing phenotype with disease course. J Neuroimmunol 2014; 277:26-38. [PMID: 25270668 DOI: 10.1016/j.jneuroim.2014.09.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/07/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
The role of microglia and monocyte-derived macrophages in experimental autoimmune encephalomyelitis pathogenesis has been controversial. To gain insight into their respective roles, we developed a method for differentiating between microglia and monocyte-derived macrophages in the CNS by flow cytometry utilizing anti-CD44 antibodies. We used this system to monitor changes in cell number, activation status, and gene expression by RNA sequencing over the course of disease. This in vivo characterization and RNA-Seq dataset improves our understanding of macrophage biology in the brain under inflammatory conditions and may lead to strategies to identify therapies for neuroinflammatory diseases.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence/genetics
- Base Sequence/physiology
- Cell Proliferation
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Flow Cytometry
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Microglia/metabolism
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Peptide Fragments/toxicity
- Signal Transduction/immunology
- Time Factors
Collapse
Affiliation(s)
- Nuruddeen D Lewis
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877-0368, USA
| | - Jonathan D Hill
- Department of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, 06877-0368, USA
| | - Kathryn W Juchem
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877-0368, USA
| | - Dimitria E Stefanopoulos
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877-0368, USA
| | - Louise K Modis
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877-0368, USA.
| |
Collapse
|
88
|
Cartier N, Lewis CA, Zhang R, Rossi FMV. The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 2014; 128:363-80. [PMID: 25107477 PMCID: PMC4131134 DOI: 10.1007/s00401-014-1330-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/06/2023]
Abstract
Microglia have long been the focus of much attention due to their strong proliferative response (microgliosis) to essentially any kind of damage to the CNS. More recently, we reached the realization that these cells play specific roles in determining progression and outcomes of essentially all CNS disease. Thus, microglia has ceased to be viewed as an accessory to underlying pathologies and has now taken center stage as a therapeutic target. Here, we review how our understanding of microglia's involvement in promoting or limiting the pathogenesis of diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, multiple sclerosis, X-linked adrenoleukodystrophy (X-ALD) and lysosomal storage diseases (LSD) has changed over time. While strategies to suppress the deleterious and promote the virtuous functions of microglia will undoubtedly be forthcoming, replacement of these cells has already proven its usefulness in a clinical setting. Over the past few years, we have reached the realization that microglia have a developmental origin that is distinct from that of bone marrow-derived myelomonocytic cells. Nevertheless, microglia can be replaced, in specific situations, by the progeny of hematopoietic stem cells (HSCs), pointing to a strategy to engineer the CNS environment through the transplantation of modified HSCs. Thus, microglia replacement has been successfully exploited to deliver therapeutics to the CNS in human diseases such as X-ALD and LSD. With this outlook in mind, we will discuss the evidence existing so far for microglial involvement in the pathogenesis and the therapy of specific CNS disease.
Collapse
Affiliation(s)
- Nathalie Cartier
- INSERM U986, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France
- MIRCen CEA Fontenay aux Roses, 92265 Fontenay-aux-Roses, France
- University Paris-Sud, 91400 Orsay, France
| | - Coral-Ann Lewis
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Regan Zhang
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1C7 Canada
| |
Collapse
|
89
|
Abstract
Systemic inflammatory reactions have been postulated to exacerbate neurodegenerative diseases via microglial activation. We now demonstrate in vivo that repeated systemic challenge of mice over four consecutive days with bacterial LPS maintained an elevated microglial inflammatory phenotype and induced loss of dopaminergic neurons in the substantia nigra. The same total cumulative LPS dose given within a single application did not induce neurodegeneration. Whole-genome transcriptome analysis of the brain demonstrated that repeated systemic LPS application induced an activation pattern involving the classical complement system and its associated phagosome pathway. Loss of dopaminergic neurons induced by repeated systemic LPS application was rescued in complement C3-deficient mice, confirming the involvement of the complement system in neurodegeneration. Our data demonstrate that a phagosomal inflammatory response of microglia is leading to complement-mediated loss of dopaminergic neurons.
Collapse
|
90
|
Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 2014; 128:191-213. [PMID: 24952885 DOI: 10.1007/s00401-014-1310-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | |
Collapse
|
91
|
Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, Robertson NP, Neal JW, Morgan BP. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun 2014; 2:53. [PMID: 24887075 PMCID: PMC4048455 DOI: 10.1186/2051-5960-2-53] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Inflammation and complement activation are firmly implicated in the pathology of multiple sclerosis; however, the extent and nature of their involvement in specific pathological processes such as axonal damage, myelin loss and disease progression remains uncertain. This study aims to bring clarity to these questions. RESULTS We describe a detailed immunohistochemical study to localise a strategically selected set of complement proteins, activation products and regulators in brain and spinal cord tissue of 17 patients with progressive multiple sclerosis and 16 control donors, including 9 with central nervous system disease. Active, chronic active and chronic inactive multiple sclerosis plaques (35 in total) and non-plaque areas were examined.Multiple sclerosis plaques were consistently positive for complement proteins (C3, factor B, C1q), activation products (C3b, iC3b, C4d, terminal complement complex) and regulators (factor H, C1-inhibitor, clusterin), suggesting continuing local complement synthesis, activation and regulation despite the absence of other evidence of ongoing inflammation. Complement staining was most apparent in plaque and peri-plaque but also present in normal appearing white matter and cortical areas to a greater extent than in control tissue. C1q staining was present in all plaques suggesting a dominant role for the classical pathway. Cellular staining for complement components was largely restricted to reactive astrocytes, often adjacent to clusters of microglia in close apposition to complement opsonised myelin and damaged axons. CONCLUSIONS The findings demonstrate the ubiquity of complement involvement in multiple sclerosis, suggest a pathogenic role for complement contributing to cell, axon and myelin damage and make the case for targeting complement for multiple sclerosis monitoring and therapy.
Collapse
Affiliation(s)
- Gillian Ingram
- />Institute of Psychological Medicine and Clinical Neuroscience, Cardiff, UK
| | - Sam Loveless
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Owain W Howell
- />Department of Neurology and Molecular Neuroscience, Institute of Life Sciences, Swansea University, Swansea, UK
| | - Svetlana Hakobyan
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Bethan Dancey
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Claire L Harris
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- />Institute of Psychological Medicine and Clinical Neuroscience, Cardiff, UK
| | - James W Neal
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- />Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
92
|
Hendrickx DAE, Schuurman KG, van Draanen M, Hamann J, Huitinga I. Enhanced uptake of multiple sclerosis-derived myelin by THP-1 macrophages and primary human microglia. J Neuroinflammation 2014; 11:64. [PMID: 24684721 PMCID: PMC4108133 DOI: 10.1186/1742-2094-11-64] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/09/2014] [Indexed: 01/23/2023] Open
Abstract
Background The pathological hallmark of multiple sclerosis (MS) is myelin phagocytosis. It remains unclear why microglia and macrophages demyelinate axons in MS, but previously found or yet-unknown changes in the myelin of MS patients could contribute to this process. We therefore studied whether myelin from normal-appearing white matter (NAWM) of MS donors is phagocytosed more efficiently than myelin from control donors. Methods Myelin was isolated from 11 MS and 12 control brain donors and labeled with the pH-sensitive fluorescent dye pHrodo to quantify uptake in lysosomes. Phagocytosis by differentiated THP-1 macrophages and by primary human microglia was quantified with flow cytometry. Whereas myelin uptake by THP-1 macrophages reached a plateau after approximately 24 hours, uptake by primary human microglia showed an almost linear increase over a 72–hour period. Data were statistically analyzed with the Mann–Whitney U test. Results MS-derived myelin was phagocytosed more efficiently by THP-1 macrophages after 6-hour incubation (P = 0.001 for the percentage of myelin-phagocytosing cells and P = 0.0005 for total myelin uptake) and after 24-hour incubation (P = 0.0006 and P = 0.0001, respectively), and by microglia after 24-hour incubation (P = 0.0106 for total myelin uptake). This enhanced uptake was not due to differences in the oxidation status of the myelin. Interestingly, myelin phagocytosis correlated negatively with the age of myelin donors, whereas the age of microglia donors showed a positive trend with myelin phagocytosis. Conclusions Myelin isolated from normal-appearing white matter of MS donors was phagocytosed more efficiently than was myelin isolated from control brain donors by both THP-1 macrophages and primary human microglia. These data indicate that changes in MS myelin might precede phagocyte activation and subsequent demyelination in MS. Identifying these myelin changes responsible for enhancing phagocytic ability could be an interesting therapeutic target to prevent or inhibit formation or expansion of MS lesions. Moreover, during aging, microglia enhance their phagocytic capacity for myelin phagocytosis, but myelin reduces its susceptibility for uptake.
Collapse
Affiliation(s)
| | | | | | | | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
93
|
Raj DDA, Jaarsma D, Holtman IR, Olah M, Ferreira FM, Schaafsma W, Brouwer N, Meijer MM, de Waard MC, van der Pluijm I, Brandt R, Kreft KL, Laman JD, de Haan G, Biber KPH, Hoeijmakers JHJ, Eggen BJL, Boddeke HWGM. Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 2014; 35:2147-60. [PMID: 24799273 DOI: 10.1016/j.neurobiolaging.2014.03.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state.
Collapse
Affiliation(s)
- Divya D A Raj
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Filipa M Ferreira
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wandert Schaafsma
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michel M Meijer
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique C de Waard
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Renata Brandt
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karim L Kreft
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jon D Laman
- Department of Immunology, Erasmus University Medical Center and MS Center ErasMS, Rotterdam, the Netherlands
| | - Gerald de Haan
- Department of Cell Biology, European Research Institute on the Biology of Aging, University of Groningen, University Medical Center, Groningen, the Netherlands
| | - Knut P H Biber
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry and Psychotherapy, University Medical Center, Freiburg, Germany
| | - Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Section Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
94
|
Jensen SK, Yong VW. Microglial modulation as a mechanism behind the promotion of central nervous system well-being by physical exercise. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel K. Jensen
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| |
Collapse
|
95
|
Sardi C, Zambusi L, Finardi A, Ruffini F, Tolun AA, Dickerson IM, Righi M, Zacchetti D, Grohovaz F, Provini L, Furlan R, Morara S. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 271:18-29. [PMID: 24746422 DOI: 10.1016/j.jneuroim.2014.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/15/2023]
Abstract
Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null>heterozygote>wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing-remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocation of RCP.
Collapse
Affiliation(s)
- Claudia Sardi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy
| | - Laura Zambusi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Annamaria Finardi
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Francesca Ruffini
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Adviye A Tolun
- Dept. of Biochem. Mol. Biol., University of Miami, Miami, FL 33101, USA
| | - Ian M Dickerson
- Dept. of Neurobiol. Anatomy, University of Rochester, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Marco Righi
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy
| | - Daniele Zacchetti
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Fabio Grohovaz
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano, Italy
| | - Luciano Provini
- Dept. of Pharmacol. Biomol. Sci., University of Milano, Via Trentacoste 2, 20133 Milano, Italy
| | - Roberto Furlan
- Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy
| | - Stefano Morara
- Neuroscience Institute, C.N.R., Via Vanvitelli 32, 20129 Milano, Italy; Dept. of Medical Biotechnol. Translational Medicine, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy.
| |
Collapse
|
96
|
Eitas TK, Chou WC, Wen H, Gris D, Robbins GR, Brickey J, Oyama Y, Ting JPY. The nucleotide-binding leucine-rich repeat (NLR) family member NLRX1 mediates protection against experimental autoimmune encephalomyelitis and represses macrophage/microglia-induced inflammation. J Biol Chem 2014; 289:4173-9. [PMID: 24366868 PMCID: PMC3924282 DOI: 10.1074/jbc.m113.533034] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/13/2013] [Indexed: 11/06/2022] Open
Abstract
The nucleotide binding domain and leucine-rich repeat-containing (NLR) family of proteins is known to activate innate immunity, and the inflammasome-associated NLRs are prime examples. In contrast, the concept that NLRs can inhibit innate immunity is still debated, and the impact of such inhibitory NLRs in diseases shaped by adaptive immune responses is entirely unexplored. This study demonstrates that, in contrast to other NLRs that activate immunity, NLRX1 plays a protective role in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. When compared with wild-type controls, Nlrx1(-/-) mice have significantly worsened clinical scores and heightened CNS tissue damage during EAE. NLRX1 does not alter the production of encephalitogenic T cells in the peripheral lymphatic tissue, but Nlrx1(-/-) mice are more susceptible to adoptively transferred myelin-reactive T cells. Analysis of the macrophage and microglial populations indicates that NLRX1 reduces activation during both active and passive EAE models. This work represents the first case of an NLR that attenuates microglia inflammatory activities and protects against a neurodegenerative disease model caused by autoreactive T cells.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Inflammation
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Microglia/immunology
- Microglia/metabolism
- Microglia/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/immunology
- Mitochondrial Proteins/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
| | - Wei-Chun Chou
- From the Department of Microbiology and Immunology and
| | - Haitao Wen
- From the Department of Microbiology and Immunology and
| | - Denis Gris
- the University of Sherbrooke, Centre de Recherche Clinique Étienne-Le Bel, Sherbrooke, Quebec JIH 5N4, Canada
| | | | - June Brickey
- From the Department of Microbiology and Immunology and
| | | | - Jenny P.-Y. Ting
- From the Department of Microbiology and Immunology and
- Curriculum in Genetics and Molecular Biology, Lineberger Cancer Research Center, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
97
|
Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats. PLoS One 2014; 9:e88540. [PMID: 24551115 PMCID: PMC3923802 DOI: 10.1371/journal.pone.0088540] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 01/23/2023] Open
Abstract
The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER) agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands), local estradiol synthesis (P450 aromatase) and estrogen reception (ER). Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b) and complement (C3, factor B, properdin) genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a) expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu. In ovariectomized female rats, estradiol replacement exerts potent immunomodulatory effects including attenuation of microglia sensitization, initiation of M2-like activation and modulation of complement expression by targeting hippocampal neurons and glial cells through ERα and ERβ.
Collapse
|
98
|
Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia 2014; 62:1816-30. [DOI: 10.1002/glia.22597] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Hans Lassmann
- Center for Brain Research; Medical University of Vienna; Austria
| |
Collapse
|
99
|
Stokowska A, Olsson S, Holmegaard L, Jood K, Blomstrand C, Jern C, Pekna M. Cardioembolic and small vessel disease stroke show differences in associations between systemic C3 levels and outcome. PLoS One 2013; 8:e72133. [PMID: 23977229 PMCID: PMC3748011 DOI: 10.1371/journal.pone.0072133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/05/2013] [Indexed: 01/24/2023] Open
Abstract
Background Activation of the complement system has been proposed to play a role in the pathophysiology of stroke. As the specific involvement of the complement proteins may be influenced by stroke etiology, we compared plasma C3 and C3a levels in patients with cardioembolic (CE) and small vessel disease (SVD) subtypes of ischemic stroke and control subjects and evaluated their association to outcome at three months and two years. Methodology/Principal Findings Plasma C3 and C3a levels in 79 CE and 79 SVD stroke patients, sampled within 10 days and at three months after stroke, and age- and sex-matched control subjects from The Sahlgrenska Academy Study on Ischemic Stroke were measured by ELISA. Functional outcome was assesed with modified Rankin Scale. In the CE group, plasma C3 levels were elevated only in the acute phase, whereas C3a was elevated at both time points. The follow-up phase plasma C3 levels in the upper third were associated with an increased risk of unfavorable outcome at three months (OR 7.12, CI 1.72–29.46, P = 0.007) as well as after two years (OR 8.25, CI 1.61–42.28, P = 0.011) after stroke. These associations withstand adjustment for age and sex. Conversely, three-month follow-up plasma C3a/C3 level ratios in the middle third were associated with favorable outcome after two years both in the univariate analysis (OR 0.19, CI 0.05–0.82, P = 0.026) and after adjustment for age and sex (OR 0.19, CI 0.04–0.88, P = 0.033). In the SVD group, plasma C3 and C3a levels were elevated at both time points but showed no significant associations with outcome. Conclusions Plasma C3 and C3a levels are elevated after CE and SVD stroke but show associations with outcome only in CE stroke.
Collapse
Affiliation(s)
- Anna Stokowska
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Sandra Olsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lukas Holmegaard
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
100
|
Microglial phenotype and adaptation. J Neuroimmune Pharmacol 2013; 8:807-23. [PMID: 23881706 DOI: 10.1007/s11481-013-9490-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 07/08/2013] [Indexed: 12/14/2022]
Abstract
Microglia are the prime innate immune cells of the central nervous system. They can transit from a (so-called) resting state under homeostatic conditions towards a pro-inflammatory activation state upon homeostatic disturbances. Under neurodegenerative conditions, microglia have been largely perceived as neurotoxic cells. It is now becoming clear that resting microglia are not inactive but that they serve house-keeping functions. Moreover, microglia activity is not limited to proinflammatory responses, but covers a spectrum of reactive profiles. Depending on the actual situation, activated microglia display specific effector functions supporting inflammation, tissue remodeling, synaptic plasticity and neurogenesis. Many of these functions not only relate to the current state of the local neural environment but also depend on previous experience. In this review, we address microglia functions with respect to determining factors, phenotypic presentations, adaptation to environmental signals and aging. Finally, we point out primary mechanisms of microglia activation, which may comprise therapeutic targets to control neuro-inflammatory and neurodegenerative activity.
Collapse
|