51
|
Golegaonkar S, Tabrez SS, Pandit A, Sethurathinam S, Jagadeeshaprasad MG, Bansode S, Sampathkumar S, Kulkarni MJ, Mukhopadhyay A. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans. Aging Cell 2015; 14:463-73. [PMID: 25720500 PMCID: PMC4406675 DOI: 10.1111/acel.12327] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions.
Collapse
Affiliation(s)
- Sandeep Golegaonkar
- Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune 411008 India
| | - Syed S. Tabrez
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Awadhesh Pandit
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | - Shalini Sethurathinam
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| | | | - Sneha Bansode
- Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune 411008 India
| | | | - Mahesh J. Kulkarni
- Division of Biochemical Sciences CSIR‐National Chemical Laboratory Pune 411008 India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory National Institute of Immunology Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
52
|
Birnie KA, Yip YY, Ng DCH, Kirschner MB, Reid G, Prêle CM, Musk AWB, Lee YCG, Thompson PJ, Mutsaers SE, Badrian B. Loss of miR-223 and JNK Signaling Contribute to Elevated Stathmin in Malignant Pleural Mesothelioma. Mol Cancer Res 2015; 13:1106-18. [PMID: 25824152 DOI: 10.1158/1541-7786.mcr-14-0442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/15/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Malignant pleural mesothelioma (MPM) is often fatal, and studies have revealed that aberrant miRNAs contribute to MPM development and aggressiveness. Here, a screen of miRNAs identified reduced levels of miR-223 in MPM patient specimens. Interestingly, miR-223 targets Stathmin (STMN1), a microtubule regulator that has been associated with MPM. However, whether miR-223 regulates STMN1 in MPM and the functions of miR-223 and STMN1 in this disease are yet to be determined. STMN1 is also regulated by c-Jun N-terminal kinase (JNK) signaling, but whether this occurs in MPM and whether miR-223 plays a role are unknown. The relationship between STMN1, miR-223, and JNK was assessed using MPM cell lines, cells from pleural effusions, and MPM tissue. Evidence indicates that miR-223 is decreased in all MPM tissue compared with normal/healthy tissue. Conversely, STMN1 expression was higher in MPM cell lines when compared with primary mesothelial cell controls. Following overexpression of miR-223 in MPM cell lines, STMN1 levels were reduced, cell motility was inhibited, and tubulin acetylation induced. Knockdown of STMN1 using siRNAs led to inhibition of MPM cell proliferation and motility. Finally, miR-223 levels increased while STMN1 was reduced following the re-expression of the JNK isoforms in JNK-null murine embryonic fibroblasts, and STMN1 was reduced in MPM cell lines following the activation of JNK signaling. IMPLICATIONS miR-223 regulates STMN1 in MPM, and both are in turn regulated by the JNK signaling pathway. As such, miR-223 and STMN1 play an important role in regulating MPM cell motility and may be therapeutic targets.
Collapse
Affiliation(s)
- Kimberly A Birnie
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| | - Yan Y Yip
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia. School of Biomedical Science, Faculty of Medicine and Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Michaela B Kirschner
- Asbestos Diseases Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Arthur W Bill Musk
- Occupational Respiratory Epidemiology, School of Population Health, University of Western Australia, Crawley, Western Australia, Australia. Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Y C Gary Lee
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Philip J Thompson
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Bahareh Badrian
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| |
Collapse
|
53
|
Mak P, Li J, Samanta S, Chang C, Jerry DJ, Davis RJ, Leav I, Mercurio AM. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor β repression. Cell Rep 2015; 10:1982-91. [PMID: 25818291 DOI: 10.1016/j.celrep.2015.02.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1.
Collapse
Affiliation(s)
- Paul Mak
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiarong Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sanjoy Samanta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cheng Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Irwin Leav
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
54
|
Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 2015; 14:48. [PMID: 25743109 PMCID: PMC4343053 DOI: 10.1186/s12943-015-0321-5] [Citation(s) in RCA: 720] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a crucial hallmark of cancer progression, which involves numerous factors including the degradation of the extracellular matrix (ECM), the epithelial-to-mesenchymal transition (EMT), tumor angiogenesis, the development of an inflammatory tumor microenvironment, and defects in programmed cell death. Programmed cell death, such as apoptosis, autophagy, and necroptosis, plays crucial roles in metastatic processes. Malignant tumor cells must overcome these various forms of cell death to metastasize. This review summarizes the recent advances in the understanding of the mechanisms by which key regulators of apoptosis, autophagy, and necroptosis participate in cancer metastasis and discusses the crosstalk between apoptosis, autophagy, and necroptosis involved in the regulation of cancer metastasis.
Collapse
Affiliation(s)
- Zhenyi Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, 210009, China. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, China. .,Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongqing Xu
- Department of Orthopaedics, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, 650118, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
55
|
Thomsen MK, Bakiri L, Hasenfuss SC, Wu H, Morente M, Wagner EF. Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death Differ 2014; 22:574-82. [PMID: 25526087 DOI: 10.1038/cdd.2014.213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified, likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression. JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery. The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to increased proliferation and decreased senescence, likely owing to decreased p16(Ink4a) and p21(CIP1) in epithelial cells. Furthermore, the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression.
Collapse
Affiliation(s)
- M K Thomsen
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - L Bakiri
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - S C Hasenfuss
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Wu
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - M Morente
- Biobank, National Cancer Research Centre (CNIO), Madrid, Spain
| | - E F Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
56
|
Liu JC, Voisin V, Wang S, Wang DY, Jones RA, Datti A, Uehling D, Al-awar R, Egan SE, Bader GD, Tsao M, Mak TW, Zacksenhaus E. Combined deletion of Pten and p53 in mammary epithelium accelerates triple-negative breast cancer with dependency on eEF2K. EMBO Mol Med 2014; 6:1542-60. [PMID: 25330770 PMCID: PMC4287974 DOI: 10.15252/emmm.201404402] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressors Pten and p53 are frequently lost in breast cancer, yet the consequences of their combined inactivation are poorly understood. Here, we show that mammary-specific deletion of Pten via WAP-Cre, which targets alveolar progenitors, induced tumors with shortened latency compared to those induced by MMTV-Cre, which targets basal/luminal progenitors. Combined Pten-p53 mutations accelerated formation of claudin-low, triple-negative-like breast cancer (TNBC) that exhibited hyper-activated AKT signaling and more mesenchymal features relative to Pten or p53 single-mutant tumors. Twenty-four genes that were significantly and differentially expressed between WAP-Cre:Pten/p53 and MMTV-Cre:Pten/p53 tumors predicted poor survival for claudin-low patients. Kinome screens identified eukaryotic elongation factor-2 kinase (eEF2K) inhibitors as more potent than PI3K/AKT/mTOR inhibitors on both mouse and human Pten/p53-deficient TNBC cells. Sensitivity to eEF2K inhibition correlated with AKT pathway activity. eEF2K monotherapy suppressed growth of Pten/p53-deficient TNBC xenografts in vivo and cooperated with doxorubicin to efficiently kill tumor cells in vitro. Our results identify a prognostic signature for claudin-low patients and provide a rationale for using eEF2K inhibitors for treatment of TNBC with elevated AKT signaling.
Collapse
Affiliation(s)
- Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, ON, Canada
| | | | - Sharon Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dong-Yu Wang
- Princess Margaret Cancer Center, Toronto, ON, Canada Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Robert A Jones
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - David Uehling
- Drug Discovery Program, Department of Pharmacology and Toxicology, Ontario Institute for Cancer Research, University of Toronto, Toronto, ON, Canada
| | - Rima Al-awar
- Drug Discovery Program, Department of Pharmacology and Toxicology, Ontario Institute for Cancer Research, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ming Tsao
- Princess Margaret Cancer Center, Toronto, ON, Canada Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, ON, Canada Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| |
Collapse
|
57
|
Gozdecka M, Lyons S, Kondo S, Taylor J, Li Y, Walczynski J, Thiel G, Breitwieser W, Jones N. JNK suppresses tumor formation via a gene-expression program mediated by ATF2. Cell Rep 2014; 9:1361-74. [PMID: 25456131 DOI: 10.1016/j.celrep.2014.10.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 07/16/2014] [Accepted: 10/14/2014] [Indexed: 02/09/2023] Open
Abstract
JNK and p38 phosphorylate a diverse set of substrates and, consequently, can act in a context-dependent manner to either promote or inhibit tumor growth. Elucidating the functions of specific substrates of JNK and p38 is therefore critical for our understanding of these kinases in cancer. ATF2 is a phosphorylation-dependent transcription factor and substrate of both JNK and p38. Here, we show ATF2 suppresses tumor formation in an orthotopic model of liver cancer and cellular transformation in vitro. Furthermore, we find that suppression of tumorigenesis by JNK requires ATF2. We identify a transcriptional program activated by JNK via ATF2 and provide examples of JNK- and ATF2-dependent genes that block cellular transformation. Significantly, we also show that ATF2-dependent gene expression is frequently downregulated in human cancers, indicating that amelioration of JNK-ATF2-mediated suppression may be a common event during tumor development.
Collapse
Affiliation(s)
- Malgorzata Gozdecka
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK; Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Lyons
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Saki Kondo
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK; Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Janet Taylor
- Central Manchester NHS Trust and University of Manchester, the Nowgen Centre, 29 Grafton Street, Manchester M13 9WU, UK; Applied Computational Biology and Bioinformatics Group, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Yaoyong Li
- Applied Computational Biology and Bioinformatics Group, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Jacek Walczynski
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Building 44, 66421 Homburg, Germany
| | - Wolfgang Breitwieser
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Nic Jones
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
58
|
Extracellular signal-regulated kinase signaling regulates the opposing roles of JUN family transcription factors at ETS/AP-1 sites and in cell migration. Mol Cell Biol 2014; 35:88-100. [PMID: 25332240 DOI: 10.1128/mcb.00982-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
JUN transcription factors bind DNA as part of the AP-1 complex, regulate many cellular processes, and play a key role in oncogenesis. The three JUN proteins (c-JUN, JUNB, and JUND) can have both redundant and unique functions depending on the biological phenotype and cell type assayed. Mechanisms that allow this dynamic switching between overlapping and distinct functions are unclear. Here we demonstrate that JUND has a role in prostate cell migration that is the opposite of c-JUN's and JUNB's. RNA sequencing reveals that opposing regulation by c-JUN and JUND defines a subset of AP-1 target genes with cell migration roles. cis-regulatory elements for only this subset of targets were enriched for ETS factor binding, indicating a specificity mechanism. Interestingly, the function of c-JUN and JUND in prostate cell migration switched when we compared cells with an inactive versus an active RAS/extracellular signal-regulated kinase (ERK) signaling pathway. We show that this switch is due to phosphorylation and activation of JUND by ERK. Thus, the ETS/AP-1 sequence defines a unique gene expression program regulated by the relative levels of JUN proteins and RAS/ERK signaling. This work provides a rationale for how transcription factors can have distinct roles depending on the signaling status and the biological function in question.
Collapse
|
59
|
Messoussi A, Feneyrolles C, Bros A, Deroide A, Daydé-Cazals B, Chevé G, Van Hijfte N, Fauvel B, Bougrin K, Yasri A. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents. ACTA ACUST UNITED AC 2014; 21:1433-43. [PMID: 25442375 DOI: 10.1016/j.chembiol.2014.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022]
Abstract
The c-Jun N-terminal kinase (JNK) family, with its three members JNK1, JNK2, and JNK3, is a subfamily of mitogen-activated protein kinases. Involved in many aspects of cellular processes, JNK has been also associated with pathological states such as neurodegenerative diseases, inflammation, and cancers. In oncology, each isoform plays a distinct role depending on the context of the targeted tissue/organ, the tumor stage, and, most likely, the signaling pathway activated upstream. Consequently, the current challenge in finding new successful anti-JNK therapies is to design isoform-selective inhibitors of the JNKs. In this review, a particular focus is given to the JNK inhibitors that have been developed thus far when examining 3D structures of various JNK-inhibitor complexes. Using current data regarding structure-activity relationships and medicinal chemistry approaches, our objective is to provide a better understanding of the design and development of selective JNK inhibitors in the present and future.
Collapse
Affiliation(s)
- Abdellah Messoussi
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France; Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014 Rabat, Morocco
| | | | - Aurélie Bros
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France
| | - Arthur Deroide
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France
| | | | - Gwénaël Chevé
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France
| | | | - Bénédicte Fauvel
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014 Rabat, Morocco
| | - Aziz Yasri
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 34090 Montpellier, France.
| |
Collapse
|
60
|
Trucco LD, Andreoli V, Núñez NG, Maccioni M, Bocco JL. Krüppel-like factor 6 interferes with cellular transformation induced by the H-ras oncogene. FASEB J 2014; 28:5262-76. [PMID: 25212220 DOI: 10.1096/fj.14-251884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
KLF6 is a member of the Krüppel-like factor family of transcription factors, with diverse roles in the regulation of cell physiology, including proliferation, signal transduction, and apoptosis. Mutations or down-regulation of KLF6 have been described in several human cancers. In this work, we found that KLF6-knockdown resulted in the formation of transformed foci and allowed the spontaneous conversion of NIH3T3 cells to a tumorigenic state. We further assessed the role of KLF6 in the context of oncogenic Ras. We showed that KLF6 was up-regulated by H-Ras(G12V) expression in a Jun N-terminal kinase (JNK)-dependent manner, correlated with enhanced klf6 promoter activity. We found that ectopic KLF6 expression induced a G1-phase cell cycle arrest, thereby decreasing the cell proliferation rate. In addition, constitutive KLF6 expression impaired H-Ras(G12V)-mediated loss of density-dependent growth inhibition and anchorage-independent growth. Moreover, growth of H-Ras(G12V)-driven tumors was reduced in mice challenged with cells stably expressing KLF6. KLF6 expression correlated with the up-regulation of p21, whereas neither p53 induction nor apoptotic cell death was detected. Further, p21 knockdown impaired KLF6-induced cell cycle arrest. These findings provide novel evidence highlighting KLF6 function in response to malignant transformation, suggesting the relevance of KLF6 in controlling cell proliferation and hindering tumorigenesis.
Collapse
Affiliation(s)
- Lucas Daniel Trucco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Andreoli
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Gonzalo Núñez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
61
|
Koryakina Y, Ta HQ, Gioeli D. Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer 2014; 21:T131-45. [PMID: 24424504 PMCID: PMC4437516 DOI: 10.1530/erc-13-0472] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The androgen receptor (AR) is a ligand-regulated transcription factor that belongs to the family of nuclear receptors. In addition to regulation by steroid, the AR is also regulated by post-translational modifications generated by signal transduction pathways. Thus, the AR functions not only as a transcription factor but also as a node that integrates multiple extracellular signals. The AR plays an important role in many diseases, including complete androgen insensitivity syndrome, spinal bulbar muscular atrophy, prostate and breast cancer, etc. In the case of prostate cancer, dependence on AR signaling has been exploited for therapeutic intervention for decades. However, the effectiveness of these therapies is limited in advanced disease due to restoration of AR signaling. Greater understanding of the molecular mechanisms involved in AR action will enable the development of improved therapeutics to treat the wide range of AR-dependent diseases. The AR is subject to regulation by a number of kinases through post-translational modifications on serine, threonine, and tyrosine residues. In this paper, we review the AR phosphorylation sites, the kinases responsible for these phosphorylations, as well as the biological context and the functional consequences of these phosphorylations. Finally, what is known about the state of AR phosphorylation in clinical samples is discussed.
Collapse
Affiliation(s)
- Yulia Koryakina
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| | - Huy Q Ta
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| | - Daniel Gioeli
- Department of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USADepartment of MicrobiologyImmunology, and Cancer BiologyUVA Cancer CenterUniversity of Virginia, PO Box 800734, Charlottesville, Virginia 22908, USA
| |
Collapse
|
62
|
Sorafenib resistance and JNK signaling in carcinoma during extracellular matrix stiffening. Biomaterials 2014; 35:5749-59. [DOI: 10.1016/j.biomaterials.2014.03.058] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022]
|
63
|
Abstract
c-Jun NH2-terminal kinase (JNK) was discovered almost 20 years ago as the protein kinase responsible for phosphorylating c-Jun at Ser-63 and Ser-73. These sites had previously been demonstrated to be essential for the stimulation of c-Jun activity and for cooperation with Ha-ras in oncogenic transformation. This led to the idea that JNK was a positive regulator of cellular transformation. However, the analysis of jnk gene deletion in various mouse models of cancer has produced conflicting findings, with some studies supporting the pro-oncogenic function of JNK and others providing evidence that JNK acts as a tumor suppressor. This review will discuss how these unexpected findings have increased our understanding of the role of JNK signaling in cancer and have provided a source of new working hypotheses.
Collapse
|
64
|
Yu X, Wang M, Dong Q, Jin F. Diversin is overexpressed in breast cancer and accelerates cell proliferation and invasion. PLoS One 2014; 9:e98591. [PMID: 24858714 PMCID: PMC4032268 DOI: 10.1371/journal.pone.0098591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/05/2014] [Indexed: 12/22/2022] Open
Abstract
Diversin was recently reported to play roles in Wnt and JNK pathways. However, the expression pattern and biological roles of diversin in human breast cancer have not been reported. In the present study, we found that diversin was overexpressed in breast cancer specimens by immunohistochemistry and western blot. Significant association was observed between diversin overexpression and TNM stage (p = 0.0036), nodal metastasis (p = 0.0033), negative estrogen receptor expression (p = 0.0012) and triple-negative status (p = 0.0017). Furthermore, colony formation assay and matrigel invasion assay showed that knockdown of diversin expression in MDA-MB-231 cell line with high endogenous expression decreased cell proliferation and cell invasion. Transfection of diversin plasmid in MCF-7 cell line increased cell proliferation and invasion. Further analysis showed that diversin depletion downregulated JNK phosphorylation while its overexpression upregulated JNK phosphorylation. In conclusion, our study demonstrated that diversin was overexpressed in human breast cancers. Diversin could contribute to breast cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Minghao Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qianze Dong
- Department of pathology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
65
|
Lescarbeau RM, Kaplan DL. Quantitative analysis of castration resistant prostate cancer progression through phosphoproteome signaling. BMC Cancer 2014; 14:325. [PMID: 24885093 PMCID: PMC4031492 DOI: 10.1186/1471-2407-14-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/21/2014] [Indexed: 01/03/2023] Open
Abstract
Background Although recent progress has been made in treating castration resistant prostate cancer, the interplay of signaling pathways which enable castration resistant growth is incompletely understood. A data driven, multivariate approach, was used in this study to predict prostate cancer cell survival based on the phosphorylation levels of key proteins in PC3, LNCaP, and MDA-PCa-2b cell lines in response to EGF, IGF1, IL6, TNFα, dihydrotestosterone, and docetaxel treatment. Methods The prostate cancer cell lines were treated with ligands or inhibitors, cell lyates were collected, and the amount of phosphoprotein quantified using 384 well ELISA assays. In separate experiments, relative cell viability was determined using an MTT assay. Normalized data was imported into Matlab where regression analysis was performed. Results Based on a linear model developed using partial least squares regression, p-Erk1/2 was found to correlate with castration resistant survival along with p-RPS6, and this model was determined to have a leave-one-out cross validated R2 value of 0.61. The effect of androgen on the phosphoproteome was examined, and increases in PI3K related phosphoproteins (p-Akt, p-RPS6, and p-GSK3) were observed which accounted for the majority of the significant increase in androgen-mediated cell survival. Simultaneous inhibition of the PI3K pathway and treatment with androgen resulted in a non-significant increase in survival. Given the strong effect of PI3K related signaling in enabling castration resistant survival, the specific effect of mTor versus complete inhibition was examined using targeted inhibitors. It was determine that mTor inhibition accounts for 52% of the effect of complete PI3K inhibition on cell survival. The differences in signaling between the cell lines were explored it was observed that MDA-PCa-2b exhibited far less activation of p-Erk in response to varying treatments, explaining one of the reasons for the lack of castration resistance. Conclusion In this work, regression analysis to the phosphoproteome was used to illustrate the sources of castration resistance between the cell lines including reduced p-Erk signaling in MDA-PCa-2b and variations in p-JNK across the cell lines, as well as studying the signaling pathways which androgen acts through, and determining the response to treatment with targeted inhibitors.
Collapse
Affiliation(s)
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
66
|
Davies CC, Harvey E, McMahon RFT, Finegan KG, Connor F, Davis RJ, Tuveson DA, Tournier C. Impaired JNK signaling cooperates with KrasG12D expression to accelerate pancreatic ductal adenocarcinoma. Cancer Res 2014; 74:3344-56. [PMID: 24713432 DOI: 10.1158/0008-5472.can-13-2941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The c-Jun N-terminal protein kinase (JNK) and its two direct activators, namely the mitogen-activated protein kinase (MAPK) kinase 4 (MKK4) and MKK7, constitute a signaling node frequently mutated in human pancreatic ductal adenocarcinoma (PDAC). Here we demonstrate the cooperative interaction of endogenous expression of Kras(G12D) with loss-of-function mutations in mkk4 or both, mkk4 and mkk7 genes in the pancreas. More specifically, impaired JNK signaling in a subpopulation of Pdx1-expressing cells dramatically accelerated the appearance of Kras(G12D)-induced acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasias, which rapidly progressed to invasive PDAC within 10 weeks of age. Furthermore, inactivation of mkk4/mkk7 compromised acinar regeneration following acute inflammatory stress by locking damaged exocrine cells in a permanently de-differentiated state. Therefore, we propose that JNK signaling exerts its tumor suppressive function in the pancreas by antagonizing the metaplastic conversion of acinar cells toward a ductal fate capable of responding to oncogenic stimulation.
Collapse
Affiliation(s)
- Clare C Davies
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Emma Harvey
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Raymond F T McMahon
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Katherine G Finegan
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Frances Connor
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Roger J Davis
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David A Tuveson
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cathy Tournier
- Authors' Affiliations: Faculty of Life Sciences and Department of Histopathology Medical School, University of Manchester, Manchester; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; and Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
67
|
Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, Smith JA, Matusik RJ. NF-κB gene signature predicts prostate cancer progression. Cancer Res 2014; 74:2763-72. [PMID: 24686169 DOI: 10.1158/0008-5472.can-13-2543] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many patients with prostate cancer, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage prostate cancer would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with prostate cancer progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse prostate cancer model when compared with Hi-Myc alone. Using the nonmalignant NF-κB-activated androgen-depleted mouse prostate, a NF-κB-activated recurrence predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with prostate cancer. This transgenic mouse model-derived gene signature provides a useful and unique molecular profile for human prostate cancer prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery.
Collapse
Affiliation(s)
- Renjie Jin
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yajun Yi
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fiona E Yull
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter E Clark
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph A Smith
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Matusik
- Authors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TennesseeAuthors' Affiliations: Department of Urologic Surgery and Vanderbilt Prostate Cancer Center; Division of Genetic Medicine, Department of Medicine; Departments of Cancer Biology and Medicine; and Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
68
|
Lescarbeau R, Kaplan DL. Correlating phosphoproteomic signaling with castration resistant prostate cancer survival through regression analysis. MOLECULAR BIOSYSTEMS 2014; 10:605-12. [PMID: 24413303 DOI: 10.1039/c3mb70403c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer most commonly presents as initially castration dependent, however in a minority of patients the disease will progress to a state of castration resistance. Here, approaches for correlating alterations in the phosphoproteome with androgen independent cell survival in the LNCaP, PC3, and MDa-PCa-2b cell lines are discussed. The performance of the regression techniques multiple linear, ridge, principal component, and partial least squares regression is compared. The predictive performance of these algorithms over randomized data sets and using the Akaike Information Criterion is explored, and principal component and partial least squares regression are found to outperform other regression approaches. The effect of altering the number of features versus observations on the R(2) value and predictive performance is also examined using the partial least squares regression model. Utilizing these approaches "drivers" of castration resistant disease can be identified whose modulation alters phenotypic outcomes. These data provide an empirical comparison of the various considerations when statistically analyzing phosphorylation data with the aim of correlating with phenotypic outcomes.
Collapse
|
69
|
Cao J, Zhu S, Zhou W, Li J, Liu C, Xuan H, Yan J, Zheng L, Zhou L, Yu J, Chen G, Huang Y, Yu Z, Feng L. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis. PLoS One 2013; 8:e77922. [PMID: 24339862 PMCID: PMC3858220 DOI: 10.1371/journal.pone.0077922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022] Open
Abstract
Promyelocytic leukemia zinc finger (PLZF) protein expression is closely related to the progression of human cancers, including prostate cancer (PCa). However, the according context of a signaling pathway for PLZF to suppress prostate tumorigenesis remains greatly unknown. Here we report that PLZF is a downstream mediator of the PTEN signaling pathway in PCa. We found that PLZF expression is closely correlated with PTEN expression in a cohort of prostate cancer specimens. Interestingly, both PTEN rescue and phosphoinositide 3-kinase (PI3K) inhibitor LY294002 treatment increase the PLZF expression in prostate cancer cell lines. Further, luciferase reporter assay and chromatin immunoprecipitation assay demonstrate that FOXO3a, a transcriptional factor phosphorylated by PI3K/AKT, could directly bind to the promoter of PLZF gene. These results indicate that PTEN regulates PLZF expression by AKT/FOXO3a. Moreover, our animal experiments also demonstrate that PLZF is capable of inhibiting prostate tumorigenesis in vivo. Taken together, our study defines a PTEN/PLZF pathway and would shed new lights for developing therapeutic strategy of prostate cancer.
Collapse
Affiliation(s)
- JingPing Cao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory for Germ Cell Research, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, China
| | - Shu Zhu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory for Germ Cell Research, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jie Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, China
| | - Chang Liu
- Laboratory for Germ Cell Research, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - HanQing Xuan
- Department of Urology, Renji Hospital, SJTU-SM, Shanghai, China
| | - Jie Yan
- Laboratory of Tumor Suppressor Genes and miRNAs, Department of Biochemistry and Molecular Cell Biology, SJTU-SM, Shanghai, China
| | - Lin Zheng
- Department of Pathology, SJTU-SM, Shanghai, China
| | - LiXin Zhou
- Department of Urology, Renji Hospital, SJTU-SM, Shanghai, China
| | - JianXiu Yu
- Laboratory of Tumor Suppressor Genes and miRNAs, Department of Biochemistry and Molecular Cell Biology, SJTU-SM, Shanghai, China
| | - GuoQiang Chen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, China
| | - YiRan Huang
- Department of Urology, Renji Hospital, SJTU-SM, Shanghai, China
| | - Zhuo Yu
- Laboratory for Germ Cell Research, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- * E-mail: (ZY); (LXF)
| | - LiXin Feng
- Laboratory for Germ Cell Research, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, United States of America
- * E-mail: (ZY); (LXF)
| |
Collapse
|
70
|
Goel HL, Sayeed A, Breen M, Zarif MJ, Garlick DS, Leav I, Davis RJ, Fitzgerald TJ, Morrione A, Hsieh CC, Liu Q, Dicker AP, Altieri DC, Languino LR. β1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino terminal kinase 1. J Cell Physiol 2013; 228:1601-9. [PMID: 23359252 DOI: 10.1002/jcp.24323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 01/25/2023]
Abstract
This study was carried out to dissect the mechanism by which β1 integrins promote resistance to radiation. For this purpose, we conditionally ablated β1 integrins in the prostatic epithelium of transgenic adenocarcinoma of mouse prostate (TRAMP) mice. The ability of β1 to promote resistance to radiation was also analyzed by using an inhibitory antibody to β1 , AIIB2, in a xenograft model. The role of β1 integrins and of a β1 downstream target, c-Jun amino-terminal kinase 1 (JNK1), in regulating radiation-induced apoptosis in vivo and in vitro was studied. We show that β1 integrins promote prostate cancer (PrCa) progression and resistance to radiation in vivo. Mechanistically, β1 integrins are shown here to suppress activation of JNK1 and, consequently apoptosis, in response to irradiation. Downregulation of JNK1 is necessary to preserve the effect of β1 on resistance to radiation in vitro and in vivo. Finally, given the established crosstalk between β1 integrins and type1 insulin-like growth factor receptor (IGF-IR), we analyzed the ability of IGF-IR to modulate β1 integrin levels. We report that IGF-IR regulates the expression of β1 integrins, which in turn confer resistance to radiation in PrCa cells. In conclusion, this study demonstrates that β1 integrins mediate resistance to ionizing radiation through inhibition of JNK1 activation.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, Adelmann CH, Restrepo M, Richards KN, Stewart LR, Du L, Ferguson SB, Chakravarti D, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Kim KB, Ciurea AM, Duvic M, Prieto VG, Ullrich SE, Dalby KN, Flores ER, Tsai KY. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. eLife 2013; 2:e00969. [PMID: 24192036 PMCID: PMC3814616 DOI: 10.7554/elife.00969] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001.
Collapse
Affiliation(s)
- Harina Vin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
JNK is involved in a broad range of physiological processes. Several inflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's and Parkinson's disease have been linked with the dysregulated JNK pathway. Research on disease models using the relevant knockout mice has highlighted the importance of specific JNK isoformsin-particular disorders and has stimulated further efforts in the drug-discovery area. However, most of the experimental evidence for the efficacy of JNK inhibition in animal models is from studies using JNK inhibitors, which are not isoform selective. Some of the more recent compounds exhibit good oral bioavailability, CNS penetration and selectivity against the rest of the kinome. Efforts to design isoform-selective inhibitors have produced a number of examples with various selectivity profiles. This article presents recent progress in this area and comment on the role of isoform selectivity for efficacy.
Collapse
|
73
|
Heat stress: A risk factor for skin carcinogenesis. Cancer Lett 2013; 337:35-40. [DOI: 10.1016/j.canlet.2013.05.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022]
|
74
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|
75
|
Abstract
INTRODUCTION PTEN (phosphatase and tensin homolog deleted on chromosome 10) plays a pivotal role in controlling intracellular signaling for cell survival and proliferation by inhibiting the PI3K/Akt pathway, and its dysfunction is associated with several neoplastic diseases. PTEN is frequently found mutated in many pathological conditions highlighting its importance in normal physiological function. Unlike several cellular proteins which are activated by phosphorylation, PTEN is inactivated upon phosphorylation by specific kinases which phosphorylate serine and threonine residues in its C-terminal region. Therefore, development of therapeutic agents that specifically target kinases and kinase-domain-containing proteins affecting PTEN would lead to the treatment of PTEN-related diseases. AREAS COVERED With increasing evidence on the role of PTEN in many human diseases, the present review focuses on the clinical relevance of PTEN with a comprehensive list of currently identified modulators of PTEN, and proposes potentially novel molecular targets which could aid in the development of drug candidates for the treatment of PTEN-related diseases such as cardiovascular diseases, diabetes, obesity, cancer, autism, Parkinson's and Alzheimer's diseases. EXPERT OPINION This review describes several target sites that could help in the development of novel drug candidates to regulate or restore the normal physiological functions of PTEN and are essential in the treatment of human diseases where PTEN plays a pivotal role.
Collapse
Affiliation(s)
- Chandra S Boosani
- Creighton University School of Medicine, Department of Biomedical Sciences, Omaha, NE 68178, USA
| | | |
Collapse
|
76
|
PTEN in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
77
|
Strand DW, DeGraff DJ, Jiang M, Sameni M, Franco OE, Love HD, Hayward WJ, Lin-Tsai O, Wang AY, Cates JMM, Sloane BF, Matusik RJ, Hayward SW. Deficiency in metabolic regulators PPARγ and PTEN cooperates to drive keratinizing squamous metaplasia in novel models of human tissue regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:449-59. [PMID: 23219716 DOI: 10.1016/j.ajpath.2012.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 01/14/2023]
Abstract
Hindgut-derived endoderm can differentiate into rectal, prostatic, and bladder phenotypes. Stromal-epithelial interactions are crucial for this development; however, the precise mechanisms by which epithelium responds to stromal cues remain unknown. We have previously reported ectopic expression of peroxisome proliferator-activated receptor-γ2 (PPARγ2) increased androgen receptor expression and promoted differentiation of mouse prostate epithelium. PPARγ is also implicated in urothelial differentiation. Herein we demonstrate that knockdown of PPARγ2 in benign human prostate epithelial cells (BHPrEs) promotes urothelial transdifferentiation. Furthermore, in vitro and in vivo heterotypic tissue regeneration models with embryonic bladder mesenchyme promoted urothelial differentiation of PPARγ2-deficient BHPrE cells, and deficiency of both PPARγ isoforms 1 and 2 arrested differentiation. Because PTEN deficiency is cooperative in urothelial pathogenesis, we engineered BHPrE cells with combined knockdown of PPARγ and PTEN and performed heterotypic recombination experiments using embryonic bladder mesenchyme. Whereas PTEN deficiency alone induced latent squamous differentiation in BHPrE cells, combined PPARγ and PTEN deficiency accelerated the development of keratinizing squamous metaplasia (KSM). We further confirmed via immunohistochemistry that gene expression changes in metaplastic recombinants reflected human urothelium undergoing KSM. In summary, these data suggest that PPARγ isoform expression provides a molecular basis for observations that adult human epithelium can be transdifferentiated on the basis of heterotypic mesenchymal induction. These data also implicate PPARγ and PTEN inactivation in the development of KSM.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urologic Surgery, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|