51
|
He B, Chen Z. Molecular Targets for Small-Molecule Modulators of Circadian Clocks. Curr Drug Metab 2016; 17:503-12. [PMID: 26750111 DOI: 10.2174/1389200217666160111124439] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. METHODS Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. RESULTS Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. CONCLUSION Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases.
Collapse
Affiliation(s)
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.200, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Abstract
There is a dynamic interplay between metabolic processes and gene regulation via the remodeling of chromatin. Most chromatin-modifying enzymes use cofactors, which are products of metabolic processes. This article explores the biosynthetic pathways of the cofactors nicotinamide adenine dinucleotide (NAD), acetyl coenzyme A (acetyl-CoA), S-adenosyl methionine (SAM), α-ketoglutarate, and flavin adenine dinucleotide (FAD), and their role in metabolically regulating chromatin processes. A more detailed look at the interaction between chromatin and the metabolic processes of circadian rhythms and aging is described as a paradigm for this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Shelley L Berger
- Department of Cell & Developmental Biology, Department of Biology, and Department of Genetics, Epigenetics Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6508
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-4049
| |
Collapse
|
53
|
Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G. Histone Deacetylase SIRT1 Controls Proliferation, Circadian Rhythm, and Lipid Metabolism during Liver Regeneration in Mice. J Biol Chem 2016; 291:23318-23329. [PMID: 27634039 PMCID: PMC5087747 DOI: 10.1074/jbc.m116.737114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/12/2016] [Indexed: 12/21/2022] Open
Abstract
Liver regeneration offers a distinctive opportunity to study cell proliferation in vivo Mammalian silent information regulator 1 (SIRT1), a NAD+-dependent histone deacetylase, is an important regulator of various cellular processes, including proliferation, metabolism, and circadian rhythms. In the liver, SIRT1 coordinates the circadian oscillation of clock-controlled genes, including genes that encode enzymes involved in metabolic pathways. We performed partial hepatectomy in WT and liver-specific Sirt1-deficient mice and analyzed the expression of cell cycle regulators in liver samples taken at different times during the regenerative process, by real time PCR, Western blotting analysis, and immunohistochemistry. Lipidomic analysis was performed in the same samples by MS/HPLC. We showed that G1/S progression was significantly affected by absence of SIRT1 in the liver, as well as circadian gene expression. This was associated to lipid accumulation due to defective fatty acid beta-oxidation. Our study revealed for the first time the importance of SIRT1 in the regulation of hepatocellular proliferation, circadian rhythms, and lipid metabolism during liver regeneration in mice. These results represent an additional step toward the characterization of SIRT1 function in the liver.
Collapse
Affiliation(s)
- Marina Maria Bellet
- From the Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy,
| | - Selma Masri
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Giuseppe Astarita
- Health Sciences, Waters Corporation, Milford, Massachusetts 01757, and
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington DC 20057
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | | | - Giuseppe Servillo
- From the Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy,
| |
Collapse
|
54
|
Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proc Natl Acad Sci U S A 2016; 113:12715-12720. [PMID: 27791113 DOI: 10.1073/pnas.1609227113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD+ levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD+ levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD+ metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD+ metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism.
Collapse
|
55
|
Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition 2016; 34:82-96. [PMID: 28063518 DOI: 10.1016/j.nut.2016.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of different natural substances on SIRT1 expression and on AMPK and mTOR phosphorylation. Moreover, we investigated the presence of a synergistic effect between the substances. METHODS Human cervical carcinoma cells were seeded in 12-well plates, then incubated with the nine tested substances (resveratrol, quercetin, berberine, catechin, tyrosol, ferulic acid, niclosamide, curcumin, and malvidin) at different concentrations and left in incubation for 3, 6, and 24 h. The targeting proteins' expression and phosphorylation were evaluated by immunoblotting, and cytotoxicity tests were performed by CellTiter-Blue Cell Viability Assay. RESULTS No statistically significant decrease (P > 0.05) in the number of viable cells was found. The expression of SIRT1 was significantly increased in all experimental groups compared with the control group (P < 0.001). Instead, the simultaneous administration involved a significant and synergistic increase in the expression of SIRT1 for some but not all of the tested compounds. Finally, the individual administration of berberine, quercetin, ferulic acid, and tyrosol resulted in a statistically significant increase in AMPK activation and mTOR inhibition, whereas their associated administration did not reveal a synergistic effect. CONCLUSIONS Our results provide evidence that all compounds have the potential to stimulate SIRT1 and sustain the stimulating action of resveratrol on SIRT1, already widely reported in the literature. In this regard, we confirm the interaction of these substances also with the pathway of AMPK and mTOR, in support of the studies that highlight the importance of SIRT1/AMPK and mTOR pathway in many diseases.
Collapse
|
56
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
57
|
Nimmagadda VKC, Makar TK, Chandrasekaran K, Sagi AR, Ray J, Russell JW, Bever CT. SIRT1 and NAD+ precursors: Therapeutic targets in multiple sclerosis a review. J Neuroimmunol 2016; 304:29-34. [PMID: 27474445 DOI: 10.1016/j.jneuroim.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is an important determinant of disability in multiple sclerosis (MS) but while currently approved treatments reduce inflammation, they have not been shown to reduce neurodegeneration. SIRT1, a NAD dependent protein deacetylase, has been implicated in the pathogenesis of neurodegeneration in neurological diseases including MS. We have studied the role of SIRT1 in experimental autoimmune encephalomyelitis (EAE) and found evidence for a neuroprotective role. In this review we summarize the most recent findings from the use of SIRT1 activators and SIRT1 overexpression in transgenic mice. These data support provide a rational for the use of SIRT1 activators in MS.
Collapse
Affiliation(s)
- Vamshi K C Nimmagadda
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA
| | | | - Avinash Rao Sagi
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - Jayanta Ray
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Christopher T Bever
- Department of Neurology, University of Maryland, Baltimore, MD 21201, USA; Research Service, VA Maryland Health Care System, Baltimore, MD 21201, USA; VA Multiple Sclerosis Center of Excellence East, Baltimore, MD 21201, USA.
| |
Collapse
|
58
|
Wang RH, Zhao T, Cui K, Hu G, Chen Q, Chen W, Wang XW, Soto-Gutierrez A, Zhao K, Deng CX. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging. Sci Rep 2016; 6:28633. [PMID: 27346580 PMCID: PMC4922021 DOI: 10.1038/srep28633] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance.
Collapse
Affiliation(s)
- Rui-Hong Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingrui Zhao
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiping Chen
- Genomic Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Xin-Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China.,Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
59
|
Kumar A, Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur J Med Chem 2016; 119:45-69. [PMID: 27153347 DOI: 10.1016/j.ejmech.2016.04.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/14/2016] [Accepted: 04/25/2016] [Indexed: 12/27/2022]
Abstract
Silent information regulator two homologue one (SIRT1) is the most widely studied member of the sirtuin family related to histone deacetylases class III super-family using nicotinamide adenine dinucleotide (NAD(+)) as its cofactor. It is located in the nucleus but also modulates the targets in cytoplasm and mainly acts as transacetylase rather than deacetylase. SIRT1 specifically cleaves the nicotinamide ribosyl bond of NAD(+) and transfers the acetyl group from proteins to their co-substrate through an ADP- ribose-peptidyl imidate intermediate. It has been indicated that SIRT1 and its histone as well as non histone targets are involved in a wide range of biological courses including metabolic diseases, age related diseases, viral infection, inflammation, tumor-cell growth and metastasis. Modulation of SIRT1 expression may present a new insight in the discovery of a number of therapeutics. This review summarizes studies about SIRT1 and mainly focuses on the various modulators of SIRT1 evolved by natural as well as synthetic means.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India.
| | - Shilpi Chauhan
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
60
|
Gubin DG, Weinert D. Deterioration of temporal order and circadian disruption with age 2: Systemic mechanisms of aging-related circadian disruption and approaches to its correction. ADVANCES IN GERONTOLOGY 2016; 6:10-20. [DOI: 10.1134/s2079057016010057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
61
|
Sassone-Corsi P. The Epigenetic and Metabolic Language of the Circadian Clock. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
62
|
Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16:593-610. [PMID: 26373265 DOI: 10.1038/nrm4048] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.
Collapse
|
63
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
64
|
Masri S, Orozco-Solis R, Aguilar-Arnal L, Cervantes M, Sassone-Corsi P. Coupling circadian rhythms of metabolism and chromatin remodelling. Diabetes Obes Metab 2015; 17 Suppl 1:17-22. [PMID: 26332964 PMCID: PMC4732882 DOI: 10.1111/dom.12509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
The circadian clock controls a large variety of neuronal, endocrine, behavioural and physiological responses in mammals. This control is exerted in large part at the transcriptional level on genes expressed in a cyclic manner. A highly specialized transcriptional machinery based on clock regulatory factors organized in feedback autoregulatory loops governs a significant portion of the genome. These oscillations in gene expression are paralleled by critical events of chromatin remodelling that appear to provide plasticity to circadian regulation. Specifically, the nicotinamide adenine dinucleotide (NAD)(+) -dependent deacetylases SIRT1 and SIRT6 have been linked to circadian control of gene expression. This, and additional accumulating evidence, shows that the circadian epigenome appears to share intimate links with cellular metabolic processes and has remarkable plasticity showing reprogramming in response to nutritional challenges. In addition to SIRT1 and SIRT6, a number of chromatin remodellers have been implicated in clock control, including the histone H3K4 tri-methyltransferase MLL1. Deciphering the molecular mechanisms that link metabolism, epigenetic control and circadian responses will provide valuable insights towards innovative strategies of therapeutic intervention.
Collapse
|
65
|
Salavaty A. Carcinogenic effects of circadian disruption: an epigenetic viewpoint. CHINESE JOURNAL OF CANCER 2015; 34:375-83. [PMID: 26253128 PMCID: PMC4593354 DOI: 10.1186/s40880-015-0043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/27/2015] [Indexed: 12/22/2022]
Abstract
Circadian rhythms refer to the endogenous rhythms that are generated to synchronize physiology and behavior with 24-h environmental cues. These rhythms are regulated by both external cues and molecular clock mechanisms in almost all cells. Disruption of circadian rhythms, which is called circadian disruption, affects many biological processes within the body and results in different long-term diseases, including cancer. Circadian regulatory pathways result in rhythmic epigenetic modifications and the formation of circadian epigenomes. Aberrant epigenetic modifications, such as hypermethylation, due to circadian disruption may be involved in the transformation of normal cells into cancer cells. Several studies have indicated an epigenetic basis for the carcinogenic effects of circadian disruption. In this review, I first discuss some of the circadian genes and regulatory proteins. Then, I summarize the current evidence related to the epigenetic modifications that result in circadian disruption. In addition, I explain the carcinogenic effects of circadian disruption and highlight its potential role in different human cancers using an epigenetic viewpoint. Finally, the importance of chronotherapy in cancer treatment is highlighted.
Collapse
Affiliation(s)
- Adrian Salavaty
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, 61336-3337, Ahvaz, Iran.
| |
Collapse
|
66
|
Ranieri D, Avitabile D, Shiota M, Yokomizo A, Naito S, Bizzarri M, Torrisi MR. Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. Int J Biochem Cell Biol 2015; 65:113-24. [PMID: 26028291 DOI: 10.1016/j.biocel.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/30/2015] [Accepted: 05/15/2015] [Indexed: 12/29/2022]
Abstract
Circadian clock is regulated by a transcriptional/translational feedback loop (TTFL) lasting ∼24 h. Circadian oscillation of peroxiredoxins (PRDX1-6) redox status has been shown in mature erythrocytes. We have recently reported that nuclear levels of PRDX2 are circadian regulated in the HaCaT keratinocytes. In this study, we addressed whether PRDX2 translocation could influence the TTFL. A reporter HaCaT cell line stably expressing the luciferase gene under control of Bmal1 promoter was lentivirally transduced either with an empty vector (EV), a vector carrying a myc-tagged wild type PRDX2 (PRDX2-Myc) or the same gene with a nuclear localization sequence (PRDX2-MycNuc). PRDX2 overexpressing cells were protected from H2O2-induced oxidative stress. The amplitude of the Bmal1 promoter activity was significantly dampened in PRDX2-MycNuc versus EV cells when synchronized either by dexamethasone treatment or temperature cycles. Clock synchronization was not affected in PRDX2 silenced cells. N-acetyl cysteine or melatonin treatments, significantly dampened the Bmal1 promoter activity suggesting that sustained scavenging of ROS impairs clock synchronization. Noteworthy, H2O2 treatment rescued proper oscillation of the clock in synchronized PRDX2-MycNuc HaCaT cells. Since the histone deacetylase Sirtuin 1 (Sirt1) modulates clock gene expression amplitude, the effect of Sirt1 activator resveratrol or Sirt1 inhibitor nicotinamide were also investigated. Interestingly, NAM enhanced the molecular clock synchronization in PRDX2-MycNuc cells. Our findings demonstrate that PRDX2 regulates the TTFL oscillation by finely tuning the cellular redox status of the nucleus likely influencing the deacetilase activity of SIRT1 enzyme.
Collapse
Affiliation(s)
- Danilo Ranieri
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Daniele Avitabile
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy; Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Yokomizo
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariano Bizzarri
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Italy
| | - Maria Rosaria Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy; Azienda Ospedaliera S. Andrea, Rome, Italy
| |
Collapse
|
67
|
Tong X, Zhang D, Arthurs B, Li P, Durudogan L, Gupta N, Yin L. Palmitate Inhibits SIRT1-Dependent BMAL1/CLOCK Interaction and Disrupts Circadian Gene Oscillations in Hepatocytes. PLoS One 2015; 10:e0130047. [PMID: 26075729 PMCID: PMC4468094 DOI: 10.1371/journal.pone.0130047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Blake Arthurs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pei Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Leigh Durudogan
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Neil Gupta
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
68
|
Wu Y, Meng X, Huang C, Li J. Emerging role of silent information regulator 1 (SIRT1) in hepatocellular carcinoma: a potential therapeutic target. Tumour Biol 2015; 36:4063-74. [PMID: 25926383 DOI: 10.1007/s13277-015-3488-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
|
69
|
Tsimakouridze EV, Alibhai FJ, Martino TA. Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol 2015; 6:77. [PMID: 25941487 PMCID: PMC4400861 DOI: 10.3389/fphar.2015.00077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/26/2015] [Indexed: 01/13/2023] Open
Abstract
The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically.
Collapse
Affiliation(s)
- Elena V Tsimakouridze
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| | - Faisal J Alibhai
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| | - Tami A Martino
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| |
Collapse
|
70
|
Aguilar-Arnal L, Katada S, Orozco-Solis R, Sassone-Corsi P. NAD(+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat Struct Mol Biol 2015; 22:312-8. [PMID: 25751424 PMCID: PMC4732879 DOI: 10.1038/nsmb.2990] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The circadian clock controls the transcription of hundred genes through specific chromatin remodeling events. The histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) coordinates recruitment of CLOCK–BMAL1 activator complexes to chromatin, an event associated to cyclic H3K4 tri-methylation at circadian promoters. Remarkably, in mouse liver circadian H3K4me3 is modulated by SIRT1, a NAD+ dependent deacetylase involved in clock control. We show that mammalian MLL1 is acetylated at two conserved residues, K1130 and K1133. Notably, MLL1 acetylation is cyclic, controlled by the clock and by SIRT1, and impacts the methyltransferase activity of MLL1. Moreover, H3K4 methylation at clock-controlled gene promoters is influenced by pharmacological or genetic inactivation of SIRT1. Finally, MLL1 acetylation and H3K4me3 levels at circadian gene promoters depend on NAD+ circadian levels. These findings reveal a previously unappreciated regulatory pathway between energy metabolism and histone methylation.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Sayako Katada
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U904 INSERM, Department of Biological Chemistry, School of Medicine University of California, Irvine, Irvine, California, USA
| |
Collapse
|
71
|
Abstract
The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators, thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Lorena Aguilar-Arnal
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Unit 904 of INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
72
|
Didonna A, Opal P. The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2014; 2:79-101. [PMID: 25642438 PMCID: PMC4301678 DOI: 10.1002/acn3.147] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) represent emerging therapeutic targets in the context of neurodegeneration. Indeed, pharmacologic inhibition of HDACs activity in the nervous system has shown beneficial effects in several preclinical models of neurological disorders. However, the translation of such therapeutic approach to clinics has been only marginally successful, mainly due to our still limited knowledge about HDACs physiological role particularly in neurons. Here, we review the potential benefits along with the risks of targeting HDACs in light of what we currently know about HDAC activity in the brain.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology, University of California San Francisco San Francisco, California, 94158
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611 ; Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine Chicago, Illinois, 60611
| |
Collapse
|
73
|
Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription. Proc Natl Acad Sci U S A 2014; 112:6863-70. [PMID: 25378702 DOI: 10.1073/pnas.1411264111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms drive the temporal organization of a wide variety of physiological and behavioral functions in ∼24-h cycles. This control is achieved through a complex program of gene expression. In mammals, the molecular clock machinery consists of interconnected transcriptional-translational feedback loops that ultimately ensure the proper oscillation of thousands of genes in a tissue-specific manner. To achieve circadian transcriptional control, chromatin remodelers serve the clock machinery by providing appropriate oscillations to the epigenome. Recent findings have revealed the presence of circadian interactomes, nuclear "hubs" of genome topology where coordinately expressed circadian genes physically interact in a spatial and temporal-specific manner. Thus, a circadian nuclear landscape seems to exist, whose interplay with metabolic pathways and clock regulators translates into specific transcriptional programs. Deciphering the molecular mechanisms that connect the circadian clock machinery with the nuclear landscape will reveal yet unexplored pathways that link cellular metabolism to epigenetic control.
Collapse
|
74
|
Quiñones M, Al-Massadi O, Fernø J, Nogueiras R. Cross-talk between SIRT1 and endocrine factors: effects on energy homeostasis. Mol Cell Endocrinol 2014; 397:42-50. [PMID: 25109279 DOI: 10.1016/j.mce.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/01/2014] [Accepted: 08/01/2014] [Indexed: 12/14/2022]
Abstract
The mammalian sirtuins (SIRT1-7) are a family of highly conserved nicotine adenine dinucleotide (NAD(+))-dependent deacetylases that act as cellular sensors to detect energy availability. SIRT1 is a multifaceted protein that is involved in a wide variety of cellular processes. SIRT1 is activated in response to caloric restriction, acting on multiple targets in a wide range of tissues. SIRT1 regulates the role of multiple hormones implicated in energy balance, including glucose and lipid metabolism. Here, we review the relevant role of SIRT1 as a mediator of endocrine function of several hormones to modulate energy balance. In addition, we analyze the potential of targeting SIRT1 for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| | - Omar Al-Massadi
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain
| | - Johan Fernø
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CIMUS, Instituto de Investigacion Sanitaria (IDIS), CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), University of Santiago de Compostela, San Francisco s/n, Santiago de Compostela (A Coruña), 15782, and Avda. Barcelona 3, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
75
|
Vázquez-Martínez O, Ita-Pérez DD, Valdés-Fuentes M, Flores-Vidrio A, Vera-Rivera G, Miranda MI, Méndez I, Díaz-Muñoz M. Molecular and biochemical modifications of liver glutamine synthetase elicited by daytime restricted feeding. Liver Int 2014; 34:1391-1401. [PMID: 25368882 DOI: 10.1111/liv.12412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Restricted feeding schedules (RFS) become an entraining stimulus that promotes adaptations that form part of an alternative circadian clock known as the food entrained oscillator (FEO). The aim of this study was to evaluate the daily variations of glutamine synthetase (GS) in liver under a daytime RFS. METHODS Hepatic GS properties were analysed at 3-h intervals over a 24-h period in adult male Wistar rats maintained in a 12:12 h light–dark cycle. RFS group: food access for 2-h in light phase, during 3 weeks. AL group: feeding ad libitum. Fa group: acute fast (21 h). Fa–Re group: acute fast followed by refed 2 h.mRNA expression was measured by RT-qPCR, protein presence by Western-blot and immunohistochemistry, enzyme activity by a spectrophotometric assay, and glutamine by high pressure liquid chromatography. RESULTS AND CONCLUSIONS Restricted feeding schedule induced circadian rhythmicity inmRNA levels of GS and the loss of the rhythmic pattern in mitochondrial GS activity. GS activity in liver homogenates displayed a robust rhythmic pattern in AL that was not modified by RFS. The presence of GS and its zonal distribution did not show rhythmic pattern in both groups. However, acute Fa and Fa–Re diminished GS protein and activity in liver homogenates. Hepatic glutamine concentrations showed a 24-h rhythmic pattern in both groups, in an antiphasic pattern. In conclusion, daytime RFS influences the liver GS system at different levels, that could be part of rheostatic adaptations associated to the FEO, and highlight the plasticity of this system.
Collapse
|
76
|
Masri S, Sassone-Corsi P. Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci Signal 2014; 7:re6. [PMID: 25205852 DOI: 10.1126/scisignal.2005685] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The circadian clock is a finely tuned system of transcriptional and translational regulation that is required for daily synchrony of organismal physiological processes. Additional layers of complexity that contribute to efficient clock function involve posttranslational modifications and enzymatic feedback loops. SIRT1, the founding member of the sirtuin family of protein deacetylases, was the first sirtuin to be reported to modulate circadian function. SIRT1 affects the circadian clock by its actions in the nucleus. Moreover, recent data implicate SIRT3 and SIRT6 in controlling mitochondrial and nuclear circadian functions, revealing previously unappreciated roles that extend to various subcellular domains, including fatty acid metabolism in the mitochondria. This review focuses on the roles of sirtuins in directing circadian functions in diverse organelles and speculates on the endogenous signals that may mediate the segregated roles of this family of enzymes.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, U904 INSERM, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
77
|
Masri S, Rigor P, Cervantes M, Ceglia N, Sebastian C, Xiao C, Roqueta-Rivera M, Deng C, Osborne TF, Mostoslavsky R, Baldi P, Sassone-Corsi P. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 2014; 158:659-72. [PMID: 25083875 PMCID: PMC5472354 DOI: 10.1016/j.cell.2014.06.050] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are intimately linked to cellular metabolism. Specifically, the NAD(+)-dependent deacetylase SIRT1, the founding member of the sirtuin family, contributes to clock function. Whereas SIRT1 exhibits diversity in deacetylation targets and subcellular localization, SIRT6 is the only constitutively chromatin-associated sirtuin and is prominently present at transcriptionally active genomic loci. Comparison of the hepatic circadian transcriptomes reveals that SIRT6 and SIRT1 separately control transcriptional specificity and therefore define distinctly partitioned classes of circadian genes. SIRT6 interacts with CLOCK:BMAL1 and, differently from SIRT1, governs their chromatin recruitment to circadian gene promoters. Moreover, SIRT6 controls circadian chromatin recruitment of SREBP-1, resulting in the cyclic regulation of genes implicated in fatty acid and cholesterol metabolism. This mechanism parallels a phenotypic disruption in fatty acid metabolism in SIRT6 null mice as revealed by circadian metabolome analyses. Thus, genomic partitioning by two independent sirtuins contributes to differential control of circadian metabolism.
Collapse
Affiliation(s)
- Selma Masri
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Rigor
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nicholas Ceglia
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Carlos Sebastian
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Cuiying Xiao
- Genetics of Development and Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manuel Roqueta-Rivera
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Chuxia Deng
- Genetics of Development and Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy F Osborne
- Metabolic Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre Baldi
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA; INSERM U904, Sprague Hall, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
78
|
Orozco-Solis R, Sassone-Corsi P. Circadian clock: linking epigenetics to aging. Curr Opin Genet Dev 2014; 26:66-72. [PMID: 25033025 DOI: 10.1016/j.gde.2014.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 01/09/2023]
Abstract
Circadian rhythms are generated by an intrinsic cellular mechanism that controls a large array of physiological and metabolic processes. There is erosion in the robustness of circadian rhythms during aging, and disruption of the clock by genetic ablation of specific genes is associated with aging-related features. Importantly, environmental conditions are thought to modulate the aging process. For example, caloric restriction is a very strong environmental effector capable of delaying aging. Intracellular pathways implicating nutrient sensors, such as SIRTs and mTOR complexes, impinge on cellular and epigenetic mechanisms that control the aging process. Strikingly, accumulating evidences indicate that these pathways are involved in both the modulation of the aging process and the control of the clock. Hence, innovative therapeutic strategies focused at controlling the circadian clock and the nutrient sensing pathways might beneficially influence the negative effects of aging.
Collapse
Affiliation(s)
- Ricardo Orozco-Solis
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
79
|
Newgard CB, Pessin JE. Recent progress in metabolic signaling pathways regulating aging and life span. J Gerontol A Biol Sci Med Sci 2014; 69 Suppl 1:S21-7. [PMID: 24833582 PMCID: PMC4022126 DOI: 10.1093/gerona/glu058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The NIH Summit, Advances in Geroscience: Impact on Health Span and Chronic Disease, discusses several aspects of cellular degeneration that underlie susceptibility to chronic aging-associated diseases, morbidity, and mortality. In particular, the session on Metabolism focuses on the interrelationship between signal transduction, intermediary metabolism, and metabolic products and byproducts that contribute to pathophysiologic phenotypes and detrimental effects that occur during the aging process, thus leading to susceptibility to disease. Although it is well established that many metabolic pathways (ie, oxidative phosphorylation, insulin-stimulated glucose uptake) decline with age, it often remains uncertain if these are a cause or consequence of the aging process. Moreover, the mechanisms accounting for the decline in metabolic function remain enigmatic. Several novel and unexpected concepts are emerging that will help to define the roles of altered metabolic control in the degenerative mechanisms of aging. This brief review summarizes several of the topics to be discussed in the metabolism of aging session (http://www.geron.org/About%20Us/nih-geroscience-summit).
Collapse
Affiliation(s)
- Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina.
| | - Jeffrey E Pessin
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
80
|
Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci 2014; 71:2667-80. [PMID: 24515123 PMCID: PMC11113245 DOI: 10.1007/s00018-014-1574-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Circadian clocks orchestrate behavioral and physiological processes in a time-of-day dependent manner. The network of clock-controlled genes is intimately interconnected with metabolic regulatory circuits. Circadian clocks rhythmically regulate the expression and activity of key metabolic players, which in turn feed back on the circadian machinery on the transcriptional and post-transcriptional level. Mutations of clock genes are often associated with metabolic defects, especially in lipid and glucose metabolism. Accumulating data suggest that the reciprocal coordination of circadian and metabolic pathways is crucial for cellular homeostasis and the health of the organism.
Collapse
Affiliation(s)
- Gencer Sancar
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany,
| | | |
Collapse
|
81
|
Zhang Y, Mi SL, Hu N, Doser TA, Sun A, Ge J, Ren J. Mitochondrial aldehyde dehydrogenase 2 accentuates aging-induced cardiac remodeling and contractile dysfunction: role of AMPK, Sirt1, and mitochondrial function. Free Radic Biol Med 2014; 71:208-220. [PMID: 24675227 PMCID: PMC4068748 DOI: 10.1016/j.freeradbiomed.2014.03.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023]
Abstract
Cardiac aging is associated with compromised myocardial function and morphology although the underlying mechanism remains elusive. Aldehyde dehydrogenase 2 (ALDH2), an essential mitochondrial enzyme governing cardiac function, displays polymorphism in humans. This study was designed to examine the role of ALDH2 in aging-induced myocardial anomalies. Myocardial mechanical and intracellular Ca(2+) properties were examined in young (4-5 months) and old (26-28 months) wild-type and ALDH2 transgenic mice. Cardiac histology, mitochondrial integrity, O2(-) generation, apoptosis, and signaling cascades, including AMPK activation and Sirt1 level were evaluated. Myocardial function and intracellular Ca(2+) handling were compromised with advanced aging; the effects were accentuated by ALDH2. Hematoxylin and eosin and Masson trichrome staining revealed cardiac hypertrophy and interstitial fibrosis associated with greater left-ventricular mass and wall thickness in aged mice. ALDH2 accentuated aging-induced cardiac hypertrophy but not fibrosis. Aging promoted O2(-) release, apoptosis, and mitochondrial injury (mitochondrial membrane potential, levels of UCP-2 and PGC-1α), and the effects were also exacerbated by ALDH2. Aging dampened AMPK phosphorylation and Sirt1, the effects of which were exaggerated by ALDH2. Treatment with the ALDH2 activator Alda-1 accentuated aging-induced O2(-) generation and mechanical dysfunction in cardiomyocytes, the effects of which were mitigated by cotreatment with activators of AMPK and Sirt1, AICAR, resveratrol, and SRT1720. Examination of human longevity revealed a positive correlation between life span and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may accentuate myocardial remodeling and contractile dysfunction in aging, possibly through AMPK/Sirt1-mediated mitochondrial injury.
Collapse
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shou-Ling Mi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Thomas A Doser
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China.
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China 710032; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
82
|
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases that have traditionally been linked with calorie restriction and aging in mammals. These proteins also play an important role in maintaining neuronal health during aging. During neuronal development, the SIR2 ortholog SIRT1 is structurally important, promoting axonal elongation, neurite outgrowth, and dendritic branching. This sirtuin also plays a role in memory formation by modulating synaptic plasticity. Hypothalamic functions that affect feeding behavior, endocrine function, and circadian rhythmicity are all regulated by SIRT1. Finally, SIRT1 plays protective roles in several neurodegenerative diseases including Alzheimer's, Parkinson's, and motor neuron diseases, which may relate to its functions in metabolism, stress resistance, and genomic stability. Drugs that activate SIRT1 may offer a promising approach to treat these disorders.
Collapse
|
83
|
Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 2014; 6:836-43. [PMID: 24582957 DOI: 10.1016/j.celrep.2014.01.031] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gelareh Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Robin K Minor
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - George P Vlasuk
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - James L Ellis
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - David A Sinclair
- Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - John Dawson
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
84
|
Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia. PLoS One 2014; 9:e85255. [PMID: 24454829 PMCID: PMC3891749 DOI: 10.1371/journal.pone.0085255] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 12/27/2022] Open
Abstract
From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.
Collapse
|
85
|
Hwang JW, Sundar IK, Yao H, Sellix MT, Rahman I. Circadian clock function is disrupted by environmental tobacco/cigarette smoke, leading to lung inflammation and injury via a SIRT1-BMAL1 pathway. FASEB J 2014; 28:176-94. [PMID: 24025728 PMCID: PMC3868829 DOI: 10.1096/fj.13-232629] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/26/2013] [Indexed: 02/03/2023]
Abstract
Patients with obstructive lung diseases display abnormal circadian rhythms in lung function. We determined the mechanism whereby environmental tobacco/cigarette smoke (CS) modulates expression of the core clock gene BMAL1, through Sirtuin1 (SIRT1) deacetylase during lung inflammatory and injurious responses. Adult C57BL6/J and various mice mutant for SIRT1 and BMAL1 were exposed to both chronic (6 mo) and acute (3 and 10 d) CS, and we measured the rhythmic expression of clock genes, circadian rhythms of locomotor activity, lung function, and inflammatory and emphysematous responses in the lungs. CS exposure (100-300 mg/m(3) particulates) altered clock gene expression and reduced locomotor activity by disrupting the central and peripheral clocks and increased lung inflammation, causing emphysema in mice. BMAL1 was acetylated and degraded in the lungs of mice exposed to CS and in patients with chronic obstructive pulmonary disease (COPD), compared with lungs of the nonsmoking controls, linking it mechanistically to CS-induced reduction of SIRT1. Targeted deletion of Bmal1 in lung epithelium augmented inflammation in response to CS, which was not attenuated by the selective SIRT1 activator SRT1720 (EC50=0.16 μM) in these mice. Thus, the circadian clock, specifically the enhancer BMAL1 in epithelium, plays a pivotal role, mediated by SIRT1-dependent BMAL1, in the regulation of CS-induced lung inflammatory and injurious responses.
Collapse
Affiliation(s)
- Jae-Woong Hwang
- 2Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester 14642, NY, USA.
| | | | | | | | | |
Collapse
|
86
|
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34:605-19. [PMID: 24120229 PMCID: PMC3856231 DOI: 10.1016/j.tips.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, USA
| | | |
Collapse
|
87
|
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013; 153:1448-60. [PMID: 23791176 PMCID: PMC3748806 DOI: 10.1016/j.cell.2013.05.027] [Citation(s) in RCA: 450] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 12/24/2022]
Abstract
SIRT1 is a NAD(+)-dependent protein deacetylase that governs many physiological pathways, including circadian rhythm in peripheral tissues. Here, we show that SIRT1 in the brain governs central circadian control by activating the transcription of the two major circadian regulators, BMAL1 and CLOCK. This activation comprises an amplifying circadian loop involving SIRT1, PGC-1α, and Nampt. In aged wild-type mice, SIRT1 levels in the suprachiasmatic nucleus are decreased, as are those of BMAL1 and PER2, giving rise to a longer intrinsic period, a more disrupted activity pattern, and an inability to adapt to changes in the light entrainment schedule. Young mice lacking brain SIRT1 phenocopy these aging-dependent circadian changes, whereas mice that overexpress SIRT1 in the brain are protected from the effects of aging. Our findings indicate that SIRT1 activates the central pacemaker to maintain robust circadian control in young animals, and a decay in this activity may play an important role in aging.
Collapse
Affiliation(s)
- Hung-Chun Chang
- Paul F. Glenn Laboratory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leonard Guarente
- Paul F. Glenn Laboratory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
88
|
Trump RP, Bresciani S, Cooper AWJ, Tellam JP, Wojno J, Blaikley J, Orband-Miller LA, Kashatus JA, Boudjelal M, Dawson HC, Loudon A, Ray D, Grant D, Farrow SN, Willson TM, Tomkinson NCO. Optimized chemical probes for REV-ERBα. J Med Chem 2013; 56:4729-37. [PMID: 23656296 DOI: 10.1021/jm400458q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (1) for potency, selectivity, and bioavailability. (1) Potent REV-ERBα agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine 4 demonstrated in vivo bioavailability after either iv or oral dosing.
Collapse
Affiliation(s)
- Ryan P Trump
- Molecular Discovery Research, GlaxoSmithKline, Research Triangle Park, North Carolina 27709-3398, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Gamble KL, Young ME. Metabolism as an integral cog in the mammalian circadian clockwork. Crit Rev Biochem Mol Biol 2013; 48:317-31. [PMID: 23594144 DOI: 10.3109/10409238.2013.786672] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g. DNA synthesis) to the whole organism (e.g. behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell-autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell-autonomous circadian clocks and metabolism and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases.
Collapse
Affiliation(s)
- Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|