51
|
Chen CYA, Strouz K, Huang KL, Shyu AB. Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. RNA (NEW YORK, N.Y.) 2020; 26:1143-1159. [PMID: 32404348 PMCID: PMC7430666 DOI: 10.1261/rna.073528.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
Tob2, an anti-proliferative protein, promotes deadenylation through recruiting Caf1 deadenylase to the mRNA poly(A) tail by simultaneously interacting with both Caf1 and poly(A)-binding protein (PABP). Previously, we found that changes in Tob2 phosphorylation can alter its PABP-binding ability and deadenylation-promoting function. However, it remained unknown regarding the relevant kinase(s). Moreover, it was unclear whether Tob2 phosphorylation modulates the transcriptome and whether the phosphorylation is linked to Tob2's anti-proliferative function. In this study, we found that c-Jun amino-terminal kinase (JNK) increases phosphorylation of Tob2 at many Ser/Thr sites in the intrinsically disordered region (IDR) that contains two separate PABP-interacting PAM2 motifs. JNK-induced phosphorylation or phosphomimetic mutations at these sites weaken the Tob2-PABP interaction. In contrast, JNK-independent phosphorylation of Tob2 at serine 254 (S254) greatly enhances Tob2 interaction with PABP and its ability to promote deadenylation. We discovered that both PAM2 motifs are required for Tob2 to display these features. Combining mass spectrometry analysis, poly(A) size-distribution profiling, transcriptome-wide mRNA turnover analyses, and cell proliferation assays, we found that the phosphomimetic mutation at S254 (S254D) enhances Tob2's association with PABP, leading to accelerated deadenylation and decay of mRNAs globally. Moreover, the Tob2-S254D mutant accelerates the decay of many transcripts coding for cell cycle related proteins and enhances anti-proliferation function. Our findings reveal a novel mechanism by which Ccr4-Not complex is recruited by Tob2 to the mRNA 3' poly(A)-PABP complex in a phosphorylation dependent manner to promote rapid deadenylation and decay across the transcriptome, eliciting transcriptome reprogramming and suppressed cell proliferation.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Krista Strouz
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
52
|
Oh S, Jo Y, Jung S, Yoon S, Yoo KH. From genome sequencing to the discovery of potential biomarkers in liver disease. BMB Rep 2020. [PMID: 32475383 PMCID: PMC7330805 DOI: 10.5483/bmbrep.2020.53.6.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chronic liver disease progresses through several stages, fatty liver, steatohepatitis, cirrhosis, and eventually, it leads to hepatocellular carcinoma (HCC) over a long period of time. Since a large proportion of patients with HCC are accompanied by cirrhosis, it is considered to be an important factor in the diagnosis of liver cancer. This is because cirrhosis leads to an irreversible harmful effect, but the early stages of chronic liver disease could be reversed to a healthy state. Therefore, the discovery of biomarkers that could identify the early stages of chronic liver disease is important to prevent serious liver damage. Biomarker discovery at liver cancer and cirrhosis has enhanced the development of sequencing technology. Next generation sequencing (NGS) is one of the representative technical innovations in the biological field in the recent decades and it is the most important thing to design for research on what type of sequencing methods are suitable and how to handle the analysis steps for data integration. In this review, we comprehensively summarized NGS techniques for identifying genome, transcriptome, DNA methylome and 3D/4D chromatin structure, and introduced framework of processing data set and integrating multi-omics data for uncovering biomarkers.
Collapse
Affiliation(s)
- Sumin Oh
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yeeun Jo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sungju Jung
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sumin Yoon
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Kyung Hyun Yoo
- Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
53
|
Lu T, Tang J, Shrestha B, Heath BR, Hong L, Lei YL, Ljungman M, Neamati N. Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics 2020; 10:6959-6976. [PMID: 32550915 PMCID: PMC7295058 DOI: 10.7150/thno.41792] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is estimated to kill ~14,000 women in the United States in 2019. Current chemotherapies to treat OC initially show therapeutic efficacy but frequently drug resistance develops, at which point therapies with alternative targets are needed. Herein, we are describing a novel approach to sensitize these tumors to standard chemotherapies by increasing the transcription of hypoxia-inducible factor antisense. Methods: Genome-wide Bru-seq analysis was performed to fully capture the nascent transcriptional signature of OC cells treated with the gp130 inhibitor, SC144. In vitro and in vivo analysis, including characterization of hypoxia and select protein expression, combination with standard of care chemotherapy and antitumor efficacy were performed to assess the biological activity of SC144 on induction of hypoxia in OC cells. Results: Bru-seq analysis of OVCAR8 cells treated with SC144 shows upregulation of hypoxia related genes. In addition, transcription of hypoxia-inducible factor antisense (HIF1A-AS2) was induced that in turn reduced expression of HIF-1α and simultaneously increased expression of NDRG1. Furthermore, we observed decreased protein levels of EGFR, Met, c-Myc, cyclin D1, MMP-2, MMP-9 and TF, and phosphorylation of Src and P130-cas. SC144-induced alterations of HIF-1α and NDRG1 were also confirmed in prostate cancer cells. Ciclopirox olamine (CPX) induces a cellular transcriptional profile comparable to SC144, suggesting a similar cellular mechanism of action between these two compounds. In addition, SC144 sensitized OC cells to olaparib, carboplatin and cisplatin, and shows better in vivo efficacy than CPX. Conclusion: Induction of hypoxic stress responses through inhibition of gp130 represents a novel approach to design effective anticancer treatments in combination with standard-of-care chemotherapy in OC and the efficacy reported here strongly supports their clinical development.
Collapse
|
54
|
Bedi K, Paulsen MT, Wilson TE, Ljungman M. Characterization of novel primary miRNA transcription units in human cells using Bru-seq nascent RNA sequencing. NAR Genom Bioinform 2020; 2:lqz014. [PMID: 31709421 PMCID: PMC6824518 DOI: 10.1093/nargab/lqz014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key contributors to gene regulatory networks. Because miRNAs are processed from RNA polymerase II transcripts, insight into miRNA regulation requires a comprehensive understanding of the regulation of primary miRNA transcripts. We used Bru-seq nascent RNA sequencing and hidden Markov model segmentation to map primary miRNA transcription units (TUs) across 32 human cell lines, allowing us to describe TUs encompassing 1443 miRNAs from miRBase and 438 from MirGeneDB. We identified TUs for 61 miRNAs with an unknown CAGE TSS signal for MirGeneDB miRNAs. Many primary transcripts containing miRNA sequences failed to generate mature miRNAs, suggesting that miRNA biosynthesis is under both transcriptional and post-transcriptional control. In addition to constitutive and cell-type specific TU expression regulated by differential promoter usage, miRNA synthesis can be regulated by transcription past polyadenylation sites (transcriptional read through) and promoter divergent transcription (PROMPTs). We identified 197 miRNA TUs with novel promoters, 97 with transcriptional read-throughs and 3 miRNA TUs that resemble PROMPTs in at least one cell line. The miRNA TU annotation data resource described here reveals a greater complexity in miRNA regulation than previously known and provides a framework for identifying cell-type specific differences in miRNA transcription in cancer and cell transition states.
Collapse
Affiliation(s)
- Karan Bedi
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Department of Pathology and Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Wissink EM, Vihervaara A, Tippens ND, Lis JT. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 2019; 20:705-723. [PMID: 31399713 PMCID: PMC6858503 DOI: 10.1038/s41576-019-0159-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
The programmes that direct an organism's development and maintenance are encoded in its genome. Decoding of this information begins with regulated transcription of genomic DNA into RNA. Although transcription and its control can be tracked indirectly by measuring stable RNAs, it is only by directly measuring nascent RNAs that the immediate regulatory changes in response to developmental, environmental, disease and metabolic signals are revealed. Multiple complementary methods have been developed to quantitatively track nascent transcription genome-wide at nucleotide resolution, all of which have contributed novel insights into the mechanisms of gene regulation and transcription-coupled RNA processing. Here we critically evaluate the array of strategies used for investigating nascent transcription and discuss the recent conceptual advances they have provided.
Collapse
Affiliation(s)
- Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Nathaniel D Tippens
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
56
|
Repression of eEF2K transcription by NF-κB tunes translation elongation to inflammation and dsDNA-sensing. Proc Natl Acad Sci U S A 2019; 116:22583-22590. [PMID: 31636182 DOI: 10.1073/pnas.1909143116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene expression is rapidly remodeled by infection and inflammation in part via transcription factor NF-κB activation and regulated protein synthesis. While protein synthesis is largely controlled by mRNA translation initiation, whether cellular translation elongation factors are responsive to inflammation and infection remains poorly understood. Here, we reveal a surprising mechanism whereby NF-κB restricts phosphorylation of the critical translation elongation factor eEF2, which catalyzes the protein synthesis translocation step. Upon exposure to NF-κB-activating stimuli, including TNFα, human cytomegalovirus infection, or double-stranded DNA, eEF2 phosphorylation on Thr56, which slows elongation to limit protein synthesis, and the overall abundance of eEF2 kinase (eEF2K) are reduced. Significantly, this reflected a p65 NF-κB subunit-dependent reduction in eEF2K pre-mRNA, indicating that NF-κB activation represses eEF2K transcription to decrease eEF2K protein levels. Finally, we demonstrate that reducing eEF2K abundance regulates protein synthesis in response to a bacterial toxin that inactivates eEF2. This establishes that NF-κB activation by diverse physiological effectors controls eEF2 activity via a transcriptional repression mechanism that reduces eEF2K polypeptide abundance to preclude eEF2 phosphorylation, thereby stimulating translation elongation and protein synthesis. Moreover, it illustrates how nuclear transcription regulation shapes translation elongation factor activity and exposes how eEF2 is integrated into innate immune response networks orchestrated by NF-κB.
Collapse
|
57
|
Lu T, Bankhead A, Ljungman M, Neamati N. Multi-omics profiling reveals key signaling pathways in ovarian cancer controlled by STAT3. Am J Cancer Res 2019; 9:5478-5496. [PMID: 31534498 PMCID: PMC6735387 DOI: 10.7150/thno.33444] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibiting STAT3 signaling reduces tumor progression, metastasis and chemoresistance, however the precise molecular mechanism has not been fully delineated in ovarian cancer. Methods: In this study, we generated STAT3 knockout (KO) ovarian cancer cell lines. Effects of STAT3 KO on cell proliferation, migration and spheroid formation were assessed in vitro and effects on in vivo tumor growth were tested using several tumor xenograft models. We used multi-omic genome-wide profiling to identify multi-level (Bru-Seq, RNA-Seq, and MS Proteomic) expression signatures of STAT3 KO ovarian cancer cells. Results: We observed that deletion of STAT3 blocked cell proliferation and migration in vitro and suppressed tumor growth in mice. Deletion of STAT3 transcriptionally suppressed key genes involved in EMT, cell cycle progression, E2F signaling, and altered stemness markers. Notably, KO of STAT3 resulted in modulation of the expression of other STAT family members. Conclusion: Our study presents a rich, multi-faceted summary of the molecular mechanisms impacted by STAT3 deletion and provides new insight for STAT3's potential as a therapeutic target in ovarian cancer.
Collapse
|
58
|
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet 2019; 20:631-656. [DOI: 10.1038/s41576-019-0150-2] [Citation(s) in RCA: 1083] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
|
59
|
Pentzold C, Shah SA, Hansen NR, Le Tallec B, Seguin-Orlando A, Debatisse M, Lisby M, Oestergaard VH. FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells. Nucleic Acids Res 2019; 46:1280-1294. [PMID: 29253234 PMCID: PMC5815096 DOI: 10.1093/nar/gkx1260] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022] Open
Abstract
Common Chromosomal Fragile Sites (CFSs) are specific genomic regions prone to form breaks on metaphase chromosomes in response to replication stress. Moreover, CFSs are mutational hotspots in cancer genomes, showing that the mutational mechanisms that operate at CFSs are highly active in cancer cells. Orthologs of human CFSs are found in a number of other mammals, but the extent of CFS conservation beyond the mammalian lineage is unclear. Characterization of CFSs from distantly related organisms can provide new insight into the biology underlying CFSs. Here, we have mapped CFSs in an avian cell line. We find that, overall the most significant CFSs coincide with extremely large conserved genes, from which very long transcripts are produced. However, no significant correlation between any sequence characteristics and CFSs is found. Moreover, we identified putative early replicating fragile sites (ERFSs), which is a distinct class of fragile sites and we developed a fluctuation analysis revealing high mutation rates at the CFS gene PARK2, with deletions as the most prevalent mutation. Finally, we show that avian homologs of the human CFS genes despite their fragility have resisted the general intron size reduction observed in birds suggesting that CFSs have a conserved biological function.
Collapse
Affiliation(s)
- Constanze Pentzold
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| | - Shiraz Ali Shah
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| | - Niels Richard Hansen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Benoît Le Tallec
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS-UMR8197 - Inserm U1024, Paris F-75005, France
| | - Andaine Seguin-Orlando
- Center for GeoGenetics, Natural History Museum of Denmark; University of Copenhagen; Copenhagen 1350, Denmark.,Danish National High-throughput DNA Sequencing Centre, University of Copenhagen, Øster Farimagsgade 2D, Copenhagen K 1353, Denmark
| | | | - Michael Lisby
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark.,Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen N, Denmark
| | - Vibe H Oestergaard
- Department of Biology; University of Copenhagen; Copenhagen N 2200, Denmark
| |
Collapse
|
60
|
Xu S, Liu Y, Yang K, Wang H, Shergalis A, Kyani A, Bankhead A, Tamura S, Yang S, Wang X, Wang CC, Rehemtulla A, Ljungman M, Neamati N. Inhibition of protein disulfide isomerase in glioblastoma causes marked downregulation of DNA repair and DNA damage response genes. Theranostics 2019; 9:2282-2298. [PMID: 31149044 PMCID: PMC6531306 DOI: 10.7150/thno.30621] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant overexpression of endoplasmic reticulum (ER)-resident oxidoreductase protein disulfide isomerase (PDI) plays an important role in cancer progression. In this study, we demonstrate that PDI promotes glioblastoma (GBM) cell growth and describe a class of allosteric PDI inhibitors that are selective for PDI over other PDI family members. Methods: We performed a phenotypic screening triage campaign of over 20,000 diverse compounds to identify PDI inhibitors cytotoxic to cancer cells. From this screen, BAP2 emerged as a lead compound, and we assessed BAP2-PDI interactions with gel filtration, thiol-competition assays, and site-directed mutagenesis studies. To assess selectivity, we compared BAP2 activity across several PDI family members in the PDI reductase assay. Finally, we performed in vivo studies with a mouse xenograft model of GBM combining BAP2 and the standard of care (temozolomide and radiation), and identified affected gene pathways with nascent RNA sequencing (Bru-seq). Results: BAP2 and related analogs are novel PDI inhibitors that selectively inhibit PDIA1 and PDIp. Though BAP2 contains a weak Michael acceptor, interaction with PDI relies on Histidine 256 in the b' domain of PDI, suggesting allosteric binding. Furthermore, both in vitro and in vivo, BAP2 reduces cell and tumor growth. BAP2 alters the transcription of genes involved in the unfolded protein response, ER stress, apoptosis and DNA repair response. Conclusion: These results indicate that BAP2 has anti-tumor activity and the suppressive effect on DNA repair gene expression warrants combination with DNA damaging agents to treat GBM.
Collapse
Affiliation(s)
- Shili Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yajing Liu
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Hanxiao Wang
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chih-chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Alnawaz Rehemtulla
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Radiation Oncology, Rogel Cancer Center, Center for RNA, University of Michigan, Ann Arbor, MI 48109, USA
- Environmental Health Sciences, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
61
|
Yang S, Shergalis A, Lu D, Kyani A, Liu Z, Ljungman M, Neamati N. Design, Synthesis, and Biological Evaluation of Novel Allosteric Protein Disulfide Isomerase Inhibitors. J Med Chem 2019; 62:3447-3474. [PMID: 30759340 DOI: 10.1021/acs.jmedchem.8b01951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase (PDI) is responsible for nascent protein folding in the endoplasmic reticulum (ER) and is critical for glioblastoma survival. To improve the potency of lead PDI inhibitor BAP2 (( E)-3-(3-(4-hydroxyphenyl)-3-oxoprop-1-en-1-yl)benzonitrile), we designed and synthesized 67 analogues. We determined that PDI inhibition relied on the A ring hydroxyl group of the chalcone scaffold and cLogP increase in the sulfonamide chain improved potency. Docking studies revealed that BAP2 and analogues bind to His256 in the b' domain of PDI, and mutation of His256 to Ala abolishes BAP2 analogue activity. BAP2 and optimized analogue 59 have modest thiol reactivity; however, we propose that PDI inhibition by BAP2 analogues depends on the b' domain. Importantly, analogues inhibit glioblastoma cell growth, induce ER stress, increase expression of G2M checkpoint proteins, and reduce expression of DNA repair proteins. Cumulatively, our results support inhibition of PDI as a novel strategy to treat glioblastoma.
Collapse
Affiliation(s)
- Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Dan Lu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Ziwei Liu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| | - Mats Ljungman
- Department of Radiation Oncology Rogel Cancer Center , University of Michigan Medical School and Rogel Cancer Center, School of Public Health , Ann Arbor , Michigan 48109 , United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center , University of Michigan , North Campus Research Complex, 1600 Huron Parkway , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
62
|
Nozawa RS, Gilbert N. RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 2019; 29:201-211. [DOI: 10.1016/j.tcb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|
63
|
Wang HLV, Chekanova JA. An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol Biol 2019; 1933:1-30. [PMID: 30945176 PMCID: PMC6684206 DOI: 10.1007/978-1-4939-9045-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
- Present address: Department of Biology, Emory University, Atlanta, GA, USA
| | - Julia A Chekanova
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
64
|
Fanucchi S, Fok ET, Dalla E, Shibayama Y, Börner K, Chang EY, Stoychev S, Imakaev M, Grimm D, Wang KC, Li G, Sung WK, Mhlanga MM. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet 2018; 51:138-150. [PMID: 30531872 DOI: 10.1038/s41588-018-0298-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
Accumulation of trimethylation of histone H3 at lysine 4 (H3K4me3) on immune-related gene promoters underlies robust transcription during trained immunity. However, the molecular basis for this remains unknown. Here we show three-dimensional chromatin topology enables immune genes to engage in chromosomal contacts with a subset of long noncoding RNAs (lncRNAs) we have defined as immune gene-priming lncRNAs (IPLs). We show that the prototypical IPL, UMLILO, acts in cis to direct the WD repeat-containing protein 5 (WDR5)-mixed lineage leukemia protein 1 (MLL1) complex across the chemokine promoters, facilitating their H3K4me3 epigenetic priming. This mechanism is shared amongst several trained immune genes. Training mediated by β-glucan epigenetically reprograms immune genes by upregulating IPLs in manner dependent on nuclear factor of activated T cells. The murine chemokine topologically associating domain lacks an IPL, and the Cxcl genes are not trained. Strikingly, the insertion of UMLILO into the chemokine topologically associating domain in mouse macrophages resulted in training of Cxcl genes. This provides strong evidence that lncRNA-mediated regulation is central to the establishment of trained immunity.
Collapse
Affiliation(s)
- Stephanie Fanucchi
- Gene Expression and Biophysics Group, Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,BTRI, CSIR Biosciences, Pretoria, South Africa
| | - Ezio T Fok
- Gene Expression and Biophysics Group, Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,BTRI, CSIR Biosciences, Pretoria, South Africa
| | - Emiliano Dalla
- Gene Expression and Biophysics Group, Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Università degli Studi di Udine, Udine, Italy
| | - Youtaro Shibayama
- Gene Expression and Biophysics Group, Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Partner Site, German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Erin Y Chang
- Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Stoyan Stoychev
- Biomedical Technologies Group, CSIR Biosciences, Pretoria, South Africa
| | - Maxim Imakaev
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Boston, MA, USA
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, BioQuant Center, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Partner Site, German Center for Infection Research (DZIF), Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Kevin C Wang
- Department of Dermatology, Stanford University, Stanford, CA, USA
| | - Guoliang Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Wing-Kin Sung
- School of Computing, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Singapore, Singapore
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
65
|
Global analysis of RNA metabolism using bio-orthogonal labeling coupled with next-generation RNA sequencing. Methods 2018; 155:88-103. [PMID: 30529548 DOI: 10.1016/j.ymeth.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Many open questions in RNA biology relate to the kinetics of gene expression and the impact of RNA binding regulatory factors on processing or decay rates of particular transcripts. Steady state measurements of RNA abundance obtained from RNA-seq approaches are not able to separate the effects of transcription from those of RNA decay in the overall abundance of any given transcript, instead only giving information on the (presumed steady-state) abundances of transcripts. Through the combination of metabolic labeling and high-throughput sequencing, several groups have been able to measure both transcription rates and decay rates of the entire transcriptome of an organism in a single experiment. This review focuses on the methodology used to specifically measure RNA decay at a global level. By comparing and contrasting approaches and describing the experimental protocols in a modular manner, we intend to provide both experienced and new researchers to the field the ability to combine aspects of various protocols to fit the unique needs of biological questions not addressed by current methods.
Collapse
|
66
|
Abel EV, Goto M, Magnuson B, Abraham S, Ramanathan N, Hotaling E, Alaniz AA, Kumar-Sinha C, Dziubinski ML, Urs S, Wang L, Shi J, Waghray M, Ljungman M, Crawford HC, Simeone DM. HNF1A is a novel oncogene that regulates human pancreatic cancer stem cell properties. eLife 2018; 7:e33947. [PMID: 30074477 PMCID: PMC6122955 DOI: 10.7554/elife.33947] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
The biological properties of pancreatic cancer stem cells (PCSCs) remain incompletely defined and the central regulators are unknown. By bioinformatic analysis of a human PCSC-enriched gene signature, we identified the transcription factor HNF1A as a putative central regulator of PCSC function. Levels of HNF1A and its target genes were found to be elevated in PCSCs and tumorspheres, and depletion of HNF1A resulted in growth inhibition, apoptosis, impaired tumorsphere formation, decreased PCSC marker expression, and downregulation of POU5F1/OCT4 expression. Conversely, HNF1A overexpression increased PCSC marker expression and tumorsphere formation in pancreatic cancer cells and drove pancreatic ductal adenocarcinoma (PDA) cell growth. Importantly, depletion of HNF1A in xenografts impaired tumor growth and depleted PCSC marker-positive cells in vivo. Finally, we established an HNF1A-dependent gene signature in PDA cells that significantly correlated with reduced survivability in patients. These findings identify HNF1A as a central transcriptional regulator of PCSC properties and novel oncogene in PDA.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Masashi Goto
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Brian Magnuson
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Biostatistics, School of Public HealthUniversity of Michigan Health SystemAnn ArborUnited States
| | - Saji Abraham
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Nikita Ramanathan
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Emily Hotaling
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Anthony A Alaniz
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Chandan Kumar-Sinha
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Michele L Dziubinski
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Sumithra Urs
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Lidong Wang
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
| | - Jiaqi Shi
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of PathologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Meghna Waghray
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Mats Ljungman
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
- Department of Radiation OncologyUniversity of Michigan Health SystemAnn ArborUnited States
| | - Howard C Crawford
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Health SystemAnn ArborUnited States
- Translational Oncology ProgramUniversity of Michigan Health SystemAnn ArborUnited States
| | - Diane M Simeone
- Department of SurgeryNew York University Langone HealthNew YorkUnited States
- Perlmutter Cancer CenterNew York University Langone HealthNew YorkUnited states
- Department of PathologyNew York University Langone HealthNew YorkUnited States
| |
Collapse
|
67
|
Tank EM, Figueroa-Romero C, Hinder LM, Bedi K, Archbold HC, Li X, Weskamp K, Safren N, Paez-Colasante X, Pacut C, Thumma S, Paulsen MT, Guo K, Hur J, Ljungman M, Feldman EL, Barmada SJ. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun 2018; 9:2845. [PMID: 30030424 PMCID: PMC6054632 DOI: 10.1038/s41467-018-05049-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) share key features, including accumulation of the RNA-binding protein TDP-43. TDP-43 regulates RNA homeostasis, but it remains unclear whether RNA stability is affected in these disorders. We use Bru-seq and BruChase-seq to assess genome-wide RNA stability in ALS patient-derived cells, demonstrating profound destabilization of ribosomal and mitochondrial transcripts. This pattern is recapitulated by TDP-43 overexpression, suggesting a primary role for TDP-43 in RNA destabilization, and in postmortem samples from ALS and FTD patients. Proteomics and functional studies illustrate corresponding reductions in mitochondrial components and compensatory increases in protein synthesis. Collectively, these observations suggest that TDP-43 deposition leads to targeted RNA instability in ALS and FTD, and may ultimately cause cell death by disrupting energy production and protein synthesis pathways.
Collapse
Affiliation(s)
- E M Tank
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - C Figueroa-Romero
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - L M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Bedi
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - H C Archbold
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - X Li
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Weskamp
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - N Safren
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - X Paez-Colasante
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - C Pacut
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - S Thumma
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - M T Paulsen
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - K Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - J Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - M Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - E L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - S J Barmada
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Cellular & Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
68
|
Louloupi A, Ntini E, Conrad T, Ørom UAV. Transient N-6-Methyladenosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. Cell Rep 2018; 23:3429-3437. [DOI: 10.1016/j.celrep.2018.05.077] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 10/28/2022] Open
|
69
|
Zhang Y, Pitchiaya S, Cieślik M, Niknafs YS, Tien JCY, Hosono Y, Iyer MK, Yazdani S, Subramaniam S, Shukla SK, Jiang X, Wang L, Liu TY, Uhl M, Gawronski AR, Qiao Y, Xiao L, Dhanasekaran SM, Juckette KM, Kunju LP, Cao X, Patel U, Batish M, Shukla GC, Paulsen MT, Ljungman M, Jiang H, Mehra R, Backofen R, Sahinalp CS, Freier SM, Watt AT, Guo S, Wei JT, Feng FY, Malik R, Chinnaiyan AM. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet 2018; 50:814-824. [PMID: 29808028 PMCID: PMC5980762 DOI: 10.1038/s41588-018-0120-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long non-coding RNA 1) as an important long non-coding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by AR protein, ARLNC1 stabilized the AR transcript via RNA-RNA interaction. ARLNC1 knockdown suppressed AR expression, global AR signaling, and prostate cancer growth in vitro and in vivo. Taken together, these data support a role for ARLNC1 in maintaining a positive feedback loop that potentiates AR signaling during prostate cancer progression, and identifies ARLNC1 as a novel therapeutic target.
Collapse
Affiliation(s)
- Yajia Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jean C-Y Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yasuyuki Hosono
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew K Iyer
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA
| | - Sahr Yazdani
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shruthi Subramaniam
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sudhanshu K Shukla
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Xia Jiang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tzu-Ying Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Uhl
- Department of Computer Science and Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Alexander R Gawronski
- School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Saravana M Dhanasekaran
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristin M Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lakshmi P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Utsav Patel
- New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Mona Batish
- New Jersey Medical School, Rutgers University, Newark, NJ, USA.,Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Girish C Shukla
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State Univesity, Cleveland, OH, USA
| | - Michelle T Paulsen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Rolf Backofen
- Department of Computer Science and Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Cenk S Sahinalp
- School of Informatics and Computing, Indiana University, Bloomington, IN, USA.,Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | | | | | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.,Breast Oncology Program, University of Michigan, Ann Arbor, MI, USA.,Departments of Radiation Oncology, Urology, and Medicine, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Rohit Malik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Bristol-Myers Squibb, Princeton, NJ, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Computational Medicine and Bioinformatics, Ann Arbor, MI, USA. .,Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
70
|
Lugowski A, Nicholson B, Rissland OS. DRUID: a pipeline for transcriptome-wide measurements of mRNA stability. RNA (NEW YORK, N.Y.) 2018; 24:623-632. [PMID: 29438994 PMCID: PMC5900561 DOI: 10.1261/rna.062877.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/01/2018] [Indexed: 05/21/2023]
Abstract
Control of messenger RNA (mRNA) stability is an important aspect of gene regulation. The gold standard for measuring mRNA stability transcriptome-wide uses metabolic labeling, biochemical isolation of labeled RNA populations, and high-throughput sequencing. However, difficult normalization procedures have inhibited widespread adoption of this approach. Here, we present DRUID (for determination of rates using intron dynamics), a new computational pipeline that is robust, easy to use, and freely available. Our pipeline uses endogenous introns to normalize time course data and yields reproducible half-lives, even with data sets that were otherwise unusable. DRUID can handle data sets from a variety of organisms, spanning yeast to humans, and we even applied it retroactively on published data sets. We anticipate that DRUID will allow broad application of metabolic labeling for studies of transcript stability.
Collapse
Affiliation(s)
- Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Beth Nicholson
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
| | - Olivia S Rissland
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
71
|
Kuang Y, Sechi M, Nurra S, Ljungman M, Neamati N. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. J Med Chem 2018; 61:1576-1594. [PMID: 29328656 DOI: 10.1021/acs.jmedchem.7b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Altering redox homeostasis provides distinctive therapeutic opportunities for the treatment of pancreatic cancer. Quinazolinediones (QDs) are novel redox modulators that we previously showed to induce potent growth inhibition in pancreatic ductal adenocarcinoma (PDAC) cell lines. Our lead optimization campaign yielded QD325 as the most potent redox modulator candidate inducing substantial reactive oxygen species (ROS) in PDAC cells. Nascent RNA sequencing following treatments with the QD compounds revealed induction of stress responses in nucleus, endoplasmic reticulum, and mitochondria of pancreatic cancer cells. Furthermore, the QD compounds induced Nrf2-mediated oxidative stress and unfolded protein responses as demonstrated by dose-dependent increases in RNA synthesis of representative genes such as NQO1, HMOX1, DDIT3, and HSPA5. At higher concentrations, the QDs blocked mitochondrial function by inhibiting mtDNA transcription and downregulating the mtDNA-encoded OXPHOS enzymes. Importantly, treatments with QD325 were well tolerated in vivo and significantly delayed tumor growth in mice. Our study supports the development of QD325 as a new therapeutic in the treatment of PDAC.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90033, United States
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari , Via Vienna 2, 07100 Sassari, Italy
| | - Salvatore Nurra
- Department of Chemistry and Pharmacy, University of Sassari , Via Vienna 2, 07100 Sassari, Italy
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
72
|
Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res 2018; 1693:67-74. [PMID: 29395044 DOI: 10.1016/j.brainres.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in RNA processing. In accord with this central function, TDP43 levels are tightly regulated through a negative feedback loop, in which TDP43 recognizes its own RNA transcript, destabilizes it, and reduces new TDP43 protein production. In the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), cytoplasmic mislocalization and accumulation of TDP43 disrupt autoregulation; conversely, inefficient TDP43 autoregulation can lead to cytoplasmic TDP43 deposition and subsequent neurodegeneration. Because TDP43 plays a multifaceted role in maintaining RNA metabolism, its mislocalization and accumulation interrupt several RNA processing pathways that in turn affect RNA stability and gene expression. TDP43-mediated disruption of these pathways-including alternative mRNA splicing, non-coding RNA processing, and RNA granule dynamics-may directly or indirectly contribute to ALS pathogenesis. Therefore, strategies that restore effective TDP43 autoregulation may ultimately prevent neurodegeneration in ALS and related disorders.
Collapse
Affiliation(s)
- Kaitlin Weskamp
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Sami J Barmada
- Neuroscience Graduate Program and Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States.
| |
Collapse
|
73
|
Kyani A, Tamura S, Yang S, Shergalis A, Samanta S, Kuang Y, Ljungman M, Neamati N. Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma. ChemMedChem 2018; 13:164-177. [PMID: 29235250 DOI: 10.1002/cmdc.201700629] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/10/2017] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium-throughput 20 000-compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru-seq) of nascent RNA revealed that 35G8 induces nuclear factor-like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin-interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8-induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Collapse
Affiliation(s)
- Anahita Kyani
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Suhui Yang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Yuting Kuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| |
Collapse
|
74
|
Abstract
miRNA biogenesis is a multistep process starting with the cleavage of the primary miRNA transcript in the nucleus by the microprocessor complex. The pri-miRNA processing kinetics has a high impact on the final regulative role of the mature miRNAs on the expression of their target transcripts. Thus studying the in vivo kinetics of the miRNA biogenesis could give more insights into the contribution of each individual miRNA on regulation of gene expression. Here, we describe step by step a method to determine the processing kinetics of pri-miRNAs in vivo, using a pulse-chase approach that can be used in downstream applications such as qPCR or deep sequencing. We explain in detail the various aspects of this approach that can be applied to different mammalian cell types. The nature of this protocol allows the in vivo study of pri-miRNA processing kinetics in cells treated with different conditions, mutants, and/or cancer cell lines under physiological conditions.
Collapse
Affiliation(s)
- Annita Louloupi
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Free University of Berlin, 14195, Berlin, Germany
| | | |
Collapse
|
75
|
Ljungman M, Parks L, Hulbatte R, Bedi K. The role of H3K79 methylation in transcription and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:48-54. [PMID: 31395348 DOI: 10.1016/j.mrrev.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Chromatin plays a critical role in organizing and protecting DNA. However, chromatin acts as an impediment for transcription and DNA repair. Histone modifications, such as H3K79 methylation, promote transcription and genomic stability by enhancing transcription elongation and by serving as landing sites for proteins involved in the DNA damage response. This review summarizes the current understanding of the role of H3K79 methylation in transcription, how it affects genome stability and opportunities to develop impactful therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.
| | - Luke Parks
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Cell and Molecular Biology, Uppsala University, Box 256, 75105 Uppsala, Sweden
| | - Radhika Hulbatte
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
76
|
RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells. Mol Cell 2017; 65:272-284. [PMID: 28107649 DOI: 10.1016/j.molcel.2016.11.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/26/2016] [Accepted: 11/17/2016] [Indexed: 11/20/2022]
Abstract
The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.
Collapse
|
77
|
Galbán S, Apfelbaum AA, Espinoza C, Heist K, Haley H, Bedi K, Ljungman M, Galbán CJ, Luker GD, Dort MV, Ross BD. A Bifunctional MAPK/PI3K Antagonist for Inhibition of Tumor Growth and Metastasis. Mol Cancer Ther 2017; 16:2340-2350. [PMID: 28775144 DOI: 10.1158/1535-7163.mct-17-0207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/08/2017] [Accepted: 07/20/2017] [Indexed: 12/30/2022]
Abstract
Responses to targeted therapies frequently are brief, with patients relapsing with drug-resistant tumors. For oncogenic MEK and BRAF inhibition, drug resistance commonly occurs through activation of PI3K/AKT/mTOR signaling and immune checkpoint modulation, providing a robust molecular target for concomitant therapy. Here, we evaluated the efficacy of a bifunctional kinase inhibitor (ST-162) that concurrently targets MAPK and PI3K signaling pathways. Treatment with ST-162 produced regression of mutant KRAS- or BRAF-addicted xenograft models of colorectal cancer and melanoma and stasis of BRAF/PTEN-mutant melanomas. Combining ST-162 with immune checkpoint blockers further increased efficacy in a syngeneic KRAS-mutant colorectal cancer model. Nascent transcriptome analysis revealed a unique gene set regulated by ST-162 related to melanoma metastasis. Subsequent mouse studies revealed ST-162 was a potent inhibitor of melanoma metastasis to the liver. These findings highlight the significant potential of a single molecule with multikinase activity to achieve tumor control, overcome resistance, and prevent metastases through modulation of interconnected cell signaling pathways. Mol Cancer Ther; 16(11); 2340-50. ©2017 AACR.
Collapse
Affiliation(s)
- Stefanie Galbán
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - April A Apfelbaum
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Carlos Espinoza
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin Heist
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Henry Haley
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Karan Bedi
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Mats Ljungman
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig J Galbán
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Biomedical Engineering, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Gary D Luker
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcian Van Dort
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian D Ross
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan.,Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
78
|
Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res 2017; 45:2262-2282. [PMID: 28426096 PMCID: PMC5389529 DOI: 10.1093/nar/gkx056] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/21/2017] [Indexed: 01/06/2023] Open
Abstract
All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bo R Hansen
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Troels Koch
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Morten Lindow
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
79
|
Loupasakis K, Kuo D, Sokhi UK, Sohn C, Syracuse B, Giannopoulou EG, Park SH, Kang H, Rätsch G, Ivashkiv LB, Kalliolias GD. Tumor Necrosis Factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 2017; 12:e0179762. [PMID: 28708839 PMCID: PMC5510804 DOI: 10.1371/journal.pone.0179762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022] Open
Abstract
During rheumatoid arthritis (RA), Tumor Necrosis Factor (TNF) activates fibroblast-like synoviocytes (FLS) inducing in a temporal order a constellation of genes, which perpetuate synovial inflammation. Although the molecular mechanisms regulating TNF-induced transcription are well characterized, little is known about the impact of mRNA stability on gene expression and the impact of TNF on decay rates of mRNA transcripts in FLS. To address these issues we performed RNA sequencing and genome-wide analysis of the mRNA stabilome in RA FLS. We found that TNF induces a biphasic gene expression program: initially, the inducible transcriptome consists primarily of unstable transcripts but progressively switches and becomes dominated by very stable transcripts. This temporal switch is due to: a) TNF-induced prolonged stabilization of previously unstable transcripts that enables progressive transcript accumulation over days and b) sustained expression and late induction of very stable transcripts. TNF-induced mRNA stabilization in RA FLS occurs during the late phase of TNF response, is MAPK-dependent, and involves several genes with pathogenic potential such as IL6, CXCL1, CXCL3, CXCL8/IL8, CCL2, and PTGS2. These results provide the first insights into genome-wide regulation of mRNA stability in RA FLS and highlight the potential contribution of dynamic regulation of the mRNA stabilome by TNF to chronic synovitis.
Collapse
Affiliation(s)
- Konstantinos Loupasakis
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - David Kuo
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, United States of America
- Computational Biology Program, Sloan Kettering Institute, New York, United States of America
| | - Upneet K. Sokhi
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - Christopher Sohn
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - Bethany Syracuse
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - Eugenia G. Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, United States of America
| | - Sung Ho Park
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - Hyelim Kang
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, United States of America
| | - Gunnar Rätsch
- Computational Biology Program, Sloan Kettering Institute, New York, United States of America
- Department of Computer Science, ETH Zürich, Zürich, Switzerland
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
| | - George D. Kalliolias
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, United States of America
- * E-mail:
| |
Collapse
|
80
|
Louloupi A, Ntini E, Liz J, Ørom UA. Microprocessor dynamics shows co- and post-transcriptional processing of pri-miRNAs. RNA (NEW YORK, N.Y.) 2017; 23:892-898. [PMID: 28250203 PMCID: PMC5435862 DOI: 10.1261/rna.060715.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/21/2017] [Indexed: 05/05/2023]
Abstract
miRNAs are small regulatory RNAs involved in the regulation of translation of target transcripts. miRNA biogenesis is a multistep process starting with the cleavage of the primary miRNA transcript in the nucleus by the Microprocessor complex. Endogenous processing of pri-miRNAs is challenging to study and the in vivo kinetics of this process is not known. Here, we present a method for determining the processing kinetics of pri-miRNAs within intact cells over time, using a pulse-chase approach to label transcribed RNA during 15 min, and follow the processing within a 1-hour window after labeling with bromouridine. We show that pri-miRNAs exhibit different processing kinetics ranging from fast over intermediate to slow processing, and we provide evidence that pri-miRNA processing can occur both cotranscriptionally and post-transcriptionally.
Collapse
Affiliation(s)
- Annita Louloupi
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Julia Liz
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | |
Collapse
|
81
|
Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods 2017; 120:28-38. [DOI: 10.1016/j.ymeth.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
|
82
|
Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep 2017; 7:43598. [PMID: 28256581 PMCID: PMC5335570 DOI: 10.1038/srep43598] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells.
Collapse
|
83
|
Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle 2017; 16:259-270. [PMID: 28055303 DOI: 10.1080/15384101.2016.1234550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,b Department of Human Genetics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Brian Magnuson
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Michelle T Paulsen
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Brian Lu
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Karan Bedi
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Mats Ljungman
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
84
|
Yue J, Song D, Lu W, Lu Y, Zhou W, Tan X, Zhang L, Huang D. Expression Profiles of Inflammation-associated microRNAs in Periapical Lesions and Human Periodontal Ligament Fibroblasts Inflammation. J Endod 2016; 42:1773-1778. [DOI: 10.1016/j.joen.2016.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
|
85
|
Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Mol Cell 2016; 64:520-533. [PMID: 27871484 DOI: 10.1016/j.molcel.2016.09.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/18/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022]
Abstract
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1. Individual depletion of ZFC3H1 and PABPN1 results in the accumulation of common transcripts that are generally both longer and more extensively polyadenylated than NEXT substrates. Importantly, ZFC3H1/PABPN1 and ZCCHC8/RBM7 contact hMTR4 in a mutually exclusive manner, revealing that the exosome targets nuclear transcripts of different maturation status by substituting its hMTR4-associating adaptors.
Collapse
Affiliation(s)
- Nicola Meola
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Michal Domanski
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark; The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Coline Gentil
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Dennis Pultz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloesvej 5, DK-2200 Copenhagen, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, Building 1130, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
86
|
Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat Commun 2016; 7:13084. [PMID: 27703239 PMCID: PMC5059489 DOI: 10.1038/ncomms13084] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we show that silencing of GSTO1 with siRNA significantly impairs cancer cell viability, validating GSTO1 as a potential new target in oncology. We report on the development and characterization of a series of chloroacetamide-containing potent GSTO1 inhibitors. Co-crystal structures of GSTO1 with our inhibitors demonstrate covalent binding to the active site cysteine. These potent GSTO1 inhibitors suppress cancer cell growth, enhance the cytotoxic effects of cisplatin and inhibit tumour growth in colon cancer models as single agent. Bru-seq-based transcription profiling unravelled novel roles for GSTO1 in cholesterol metabolism, oxidative and endoplasmic stress responses, cytoskeleton and cell migration. Our findings demonstrate the therapeutic utility of GSTO1 inhibitors as anticancer agents and identify the novel cellular pathways under GSTO1 regulation in colorectal cancer. Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform overexpressed in several cancers that has been implicated in drug resistance. Here the authors identify a small molecule inhibitor of GSTO1 that effectively inhibits tumor growth in colon cancer models, and establish its mechanism of action.
Collapse
|
87
|
Ni T, Yang W, Han M, Zhang Y, Shen T, Nie H, Zhou Z, Dai Y, Yang Y, Liu P, Cui K, Zeng Z, Tian Y, Zhou B, Wei G, Zhao K, Peng W, Zhu J. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res 2016; 44:6817-29. [PMID: 27369383 PMCID: PMC5001615 DOI: 10.1093/nar/gkw591] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023] Open
Abstract
T cell activation is a well-established model for studying cellular responses to exogenous stimulation. Using strand-specific RNA-seq, we observed that intron retention is prevalent in polyadenylated transcripts in resting CD4+ T cells and is significantly reduced upon T cell activation. Several lines of evidence suggest that intron-retained transcripts are less stable than fully spliced transcripts. Strikingly, the decrease in intron retention (IR) levels correlate with the increase in steady-state mRNA levels. Further, the majority of the genes upregulated in activated T cells are accompanied by a significant reduction in IR. Of these 1583 genes, 185 genes are predominantly regulated at the IR level, and highly enriched in the proteasome pathway, which is essential for proper T cell proliferation and cytokine release. These observations were corroborated in both human and mouse CD4+ T cells. Our study revealed a novel post-transcriptional regulatory mechanism that may potentially contribute to coordinated and/or quick cellular responses to extracellular stimuli such as an acute infection.
Collapse
Affiliation(s)
- Ting Ni
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Wenjing Yang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Han
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yubo Zhang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ting Shen
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Hongbo Nie
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Zhihui Zhou
- Department of Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yalei Dai
- Department of Immunology, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yanqin Yang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poching Liu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhouhao Zeng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Yi Tian
- Department of Physics, George Washington University, Washington, DC 20052, USA Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bin Zhou
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
88
|
Kirkconnell KS, Paulsen MT, Magnuson B, Bedi K, Ljungman M. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response. Biol Open 2016; 5:837-47. [PMID: 27230646 PMCID: PMC4920201 DOI: 10.1242/bio.019323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
89
|
Identifying transcription start sites and active enhancer elements using BruUV-seq. Sci Rep 2015; 5:17978. [PMID: 26656874 PMCID: PMC4675984 DOI: 10.1038/srep17978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/10/2015] [Indexed: 01/12/2023] Open
Abstract
BruUV-seq utilizes UV light to introduce transcription-blocking DNA lesions randomly in the genome prior to bromouridine-labeling and deep sequencing of nascent RNA. By inhibiting transcription elongation, but not initiation, pre-treatment with UV light leads to a redistribution of transcription reads resulting in the enhancement of nascent RNA signal towards the 5′-end of genes promoting the identification of transcription start sites (TSSs). Furthermore, transcripts associated with arrested RNA polymerases are protected from 3′–5′ degradation and thus, unstable transcripts such as putative enhancer RNA (eRNA) are dramatically increased. Validation of BruUV-seq against GRO-cap that identifies capped run-on transcripts showed that most BruUV-seq peaks overlapped with GRO-cap signal over both TSSs and enhancer elements. Finally, BruUV-seq identified putative enhancer elements induced by tumor necrosis factor (TNF) treatment concomitant with expression of nearby TNF-induced genes. Taken together, BruUV-seq is a powerful new approach for identifying TSSs and active enhancer elements genome-wide in intact cells.
Collapse
|
90
|
Zhou X, Luan X, Chen Z, Francis M, Gopinathan G, Li W, Lu X, Li S, Wu C, Diekwisch TGH. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions. J Dent Res 2015; 95:230-7. [PMID: 26518300 DOI: 10.1177/0022034515613043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory conditions as they occur during periodontal disease often result in decreased alveolar bone levels and a loss of connective tissue homeostasis. Here we have focused on the effect of microRNA-138 (miR-138) as a potential regulator of periodontal stem cells as they affect homeostasis during inflammatory conditions. Our data indicate that miR-138 was significantly upregulated in our periodontal disease animal model. Interaction of miR-138 with a predicted targeting site on the osteocalcin (OC) promoter resulted in a 3.7-fold reduction of luciferase activity in promoter assays compared with controls; and miR-138 overexpression in periodontal progenitors significantly inhibited OC (3.4-fold), Runx2 (2.8-fold), and collagen I (2.6-fold). Moreover, treatment with inflammatory modulators such as interleukin (IL)-6 and lipopolysaccharide (LPS) resulted in a significant 2.2-fold (IL-6) or 1.9-fold (LPS) increase in miR-138 expression, while OC and Runx2 expression was significantly decreased as a result of treatment with each inflammatory mediator. Further defining the role of miR-138 in the OC-mediated control of mineralization, we demonstrated that the LPS-induced downregulation of OC expression was partially reversed after miR-138 knockdown. LPS, miR-138 mimic, and OC small interfering RNA inhibited osteoblast differentiation marker alkaline phosphatase activity, while miR-138 inhibitor and OC protein addition enhanced alkaline phosphatase activity. Supporting the role of OC as an essential modulator of osteoblast differentiation, knockdown of miR-138 or addition of OC protein partially rescued alkaline phosphatase activity in periodontal ligament (PDL) cells subjected to LPS treatment. Our data establish miR-138 inhibitor as a potential therapeutic agent for the prevention of the bone loss associated with advanced periodontal disease.
Collapse
Affiliation(s)
- X Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Z Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - M Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G Gopinathan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - W Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - S Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - T G H Diekwisch
- Department of Periodontics, Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
91
|
Blackinton JG, Keene JD. Functional coordination and HuR-mediated regulation of mRNA stability during T cell activation. Nucleic Acids Res 2015; 44:426-36. [PMID: 26490963 PMCID: PMC4705648 DOI: 10.1093/nar/gkv1066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Global mRNA abundance depends on the balance of synthesis and decay of a population of mRNAs. To account for this balance during activation of T cells, we used metabolic labeling to quantify the contributions of RNA transcription and decay over a 4 h time course during activation of leukemia-derived Jurkat T cells. While prior studies suggested more than half of the changes in mRNA abundance were due to RNA stability, we found a smaller but more interesting population of mRNAs changed stability. These mRNAs clustered into functionally related subpopulations that included replicative histones, ribosomal biogenesis and cell motility functions. We then applied a novel analysis based on integrating global protein-RNA binding with concurrent changes in RNA stability at specific time points following activation. This analysis demonstrated robust stabilization of mRNAs by the HuR RNA-binding protein 4 h after activation. Our unexpected findings demonstrate that the temporal regulation of mRNA stability coordinates vital cellular pathways and is in part controlled by the HuR RNA binding protein in Jurkat T cells following activation.
Collapse
Affiliation(s)
- Jeff G Blackinton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
92
|
Roberts TC, Hart JR, Kaikkonen MU, Weinberg MS, Vogt PK, Morris KV. Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR. Nat Protoc 2015; 10:1198-211. [PMID: 26182239 PMCID: PMC4790731 DOI: 10.1038/nprot.2015.076] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear run-on (NRO) is a method that measures transcriptional activity via the quantification of biochemically labeled nascent RNA molecules derived from nuclear isolates. Widespread use of this technique has been limited because of its technical difficulty relative to steady-state total mRNA analyses. Here we describe a detailed protocol for the quantification of transcriptional activity in human cell cultures. Nuclei are first isolated and NRO transcription is performed in the presence of bromouridine. Labeled nascent transcripts are purified by immunoprecipitation, and transcript levels are determined by reverse-transcription quantitative PCR (RT-qPCR). Data are then analyzed using standard techniques described elsewhere. This method is rapid (the protocol can be completed in 2 d) and cost-effective, exhibits negligible detection of background noise from unlabeled transcripts, requires no radioactive materials and can be performed from as few as 500,000 nuclei. It also takes advantage of the high sensitivity, specificity and dynamic range of RT-qPCR.
Collapse
Affiliation(s)
- Thomas C. Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, United Kingdom
- Sanford-Burnham Medical Research Institute, Development, Aging and Regeneration Program, 10901 N. Torrey pines Road, La Jolla, CA, 92037, USA
| | - Jonathan R. Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Minna U. Kaikkonen
- University of Eastern Finland, A.I. Virtanen institute, Department of Biotechnology and Molecular Medicine, P.O.B. 1627, 70211 Kuopio, Finland
| | - Marc S. Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, WITS 2050, South Africa
| | - Peter K. Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kevin V. Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Biotechnology and Biomedical Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
93
|
Abstract
Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes.
Collapse
|
94
|
Kuang Y, El-Khoueiry A, Taverna P, Ljungman M, Neamati N. Guadecitabine (SGI-110) priming sensitizes hepatocellular carcinoma cells to oxaliplatin. Mol Oncol 2015; 9:1799-814. [PMID: 26160429 DOI: 10.1016/j.molonc.2015.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/10/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
Promoter DNA hypermethylation is an important biomarker of hepatocellular carcinoma (HCC), supporting the potential utility of demethylating agents in this disease. Guadecitabine (SGI-110) is a second-generation hypomethylating agent formulated as a dinucleotide of decitabine and deoxyguanosine that yields longer half-life and more extended decitabine exposure than decitabine IV infusion. Here we performed preclinical evaluation of SGI-110 in HCC models to guide the design of a phase I/II clinical trial. HCC cell lines and xenograft models were used to determine the antitumor activity of SGI-110 as a single agent and in combination with oxaliplatin. Pretreatment with low doses of SGI-110 significantly synergized with oxaliplatin yielding enhanced cytotoxicity. The combination of SGI-110 and oxaliplatin was well tolerated and significantly delayed tumor growth in mice compared to oxaliplatin alone. Bromouridine-labeled RNA sequencing (Bru-seq) was employed to elucidate the effects of SGI-110 and/or oxaliplatin on genome-wide transcription. SGI-110 and the combination treatment inhibited the expression of genes involved in WNT/EGF/IGF signaling. DNMT1 and survivin were identified as novel PD markers to monitor the efficacy of the combination treatment. In conclusion, SGI-110 priming sensitizes HCC cells to oxaliplatin by inhibiting distinct signaling pathways. We expect that this combination treatment will show low toxicity and high efficacy in patients. Our study supports the use of the combination of low doses of SGI-110 and oxaliplatin in HCC patients.
Collapse
Affiliation(s)
- Yuting Kuang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA; Department of Medicinal Chemistry, College of Pharmacy, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony El-Khoueiry
- Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Mats Ljungman
- Department of Radiation Oncology, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
95
|
Abstract
The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We introduce a quantitative index that measures underlying topological stability of a genomic region. Our results show that structural features of genomic regions correlate with function with surprising persistence over time. Furthermore, constructing genome-wide gene-level contact maps aided in identifying gene pairs with high potential for coregulation and colocalization in a manner consistent with expression via transcription factories. We additionally use 2D phase planes to visualize patterns in 4DN data. Finally, we evaluated gene pairs within a circadian gene module using 3D imaging, and found periodicity in the movement of clock circadian regulator and period circadian clock 2 relative to each other that followed a circadian rhythm and entrained with their expression.
Collapse
|
96
|
Andrade-Lima LC, Veloso A, Paulsen MT, Menck CFM, Ljungman M. DNA repair and recovery of RNA synthesis following exposure to ultraviolet light are delayed in long genes. Nucleic Acids Res 2015; 43:2744-56. [PMID: 25722371 PMCID: PMC4357734 DOI: 10.1093/nar/gkv148] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5′-3′ direction with slow recovery and TC-NER at the 3′ end of long genes. RNA synthesis resumed fully at the 3′-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER). Different transcription recovery profiles were found for individual genes but these differences did not fully correlate to differences in DNA repair of these genes. Our study gives the first genome-wide view of how UV-induced lesions affect transcription and how the recovery of RNA synthesis of large genes are particularly delayed by the apparent lack of resumption of transcription by arrested polymerases.
Collapse
Affiliation(s)
- Leonardo C Andrade-Lima
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Artur Veloso
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Carlos F M Menck
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mats Ljungman
- Department of Radiation Oncology and Translational Oncology Program, University of Michigan, Ann Arbor, MI, USA Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
97
|
Effects of physiological and synthetic IAP antagonism on c-IAP-dependent signaling. Oncogene 2015; 34:5472-81. [PMID: 25659587 PMCID: PMC4530109 DOI: 10.1038/onc.2015.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 12/18/2022]
Abstract
Cellular inhibitor of apoptosis proteins 1 and 2 (c-IAP1/2) play central roles in signal transduction mediated by numerous receptors that participate in inflammatory and immune responses. In certain pathways, such as activation of NF-κB, their degradation is a major regulatory event and is physiologically induced by activation of receptors. Additionally, a number of synthetic compounds have been developed that also target the c-IAPs and induce their degradation. However, the extent of a synthetic IAP antagonist's ability to mirror the transcriptional program by a physiological signal remains unclear. Here we take a systems approach to compare the transcriptional programs triggered by activation of CD30, a well-characterized receptor previously shown to induce the degradation of the c-IAPs, to SM-164, a synthetic IAP antagonist that specifically triggers c-IAP degradation. Employing a technique that allows the specific analysis of newly transcribed RNA, we have generated comparative transcriptome profiles for CD30 activation and SM-164 treatment. Analysis of these profiles revealed that the genes regulated by each stimulus were not completely shared, indicating novel functions of IAP antagonists and consequences of c-IAP1/2 degradation. The data identified a role for c-IAP1/2 in the regulation of the ribosome and protein synthesis, which was subsequently confirmed by biological assays. These findings expand our knowledge of the roles of c-IAP1/2 in signaling and provide insight into the mechanism of synthetic IAP antagonists, furthering our understanding of their therapeutic potential.
Collapse
|
98
|
Buchner DA, Charrier A, Srinivasan E, Wang L, Paulsen MT, Ljungman M, Bridges D, Saltiel AR. Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem 2015; 290:6376-86. [PMID: 25596527 DOI: 10.1074/jbc.m114.623736] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.
Collapse
Affiliation(s)
- David A Buchner
- From the Departments of Genetics and Genome Sciences and Biological Chemistry, Case Western Reserve University, Cleveland, Ohio 44106,
| | | | - Ethan Srinivasan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Li Wang
- From the Departments of Genetics and Genome Sciences and
| | - Michelle T Paulsen
- the Department of Oncology, Division of Radiation and Cancer Biology, University of Michigan Cancer Center, Ann Arbor, Michigan 48109
| | - Mats Ljungman
- the Department of Oncology, Division of Radiation and Cancer Biology, University of Michigan Cancer Center, Ann Arbor, Michigan 48109
| | - Dave Bridges
- the Department of Physiology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163, and the Children's Foundation Research Institute, Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee 38103
| | - Alan R Saltiel
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109,
| |
Collapse
|
99
|
Lubas M, Andersen PR, Schein A, Dziembowski A, Kudla G, Jensen TH. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep 2015; 10:178-92. [PMID: 25578728 DOI: 10.1016/j.celrep.2014.12.026] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/29/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
The RNA exosome complex constitutes the major nuclear eukaryotic 3'-5' exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT) complex. How NEXT targets RNA has remained elusive. Using an in vivo crosslinking approach, we report global RNA binding sites of RBM7, a key component of NEXT. RBM7 associates broadly with RNA polymerase II-derived RNA, including pre-mRNA and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and 3'-extended products from snRNA and replication-dependent histone genes. Within pre-mRNA, RBM7 accumulates at the 3' ends of introns, and pulse-labeling experiments demonstrate that RBM7/NEXT defines an early exosome-targeting pathway for 3'-extended snoRNAs derived from such introns. We propose that RBM7 is generally loaded onto newly synthesized RNA to accommodate exosome action in case of available unprotected RNA 3' ends.
Collapse
Affiliation(s)
- Michal Lubas
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Peter Refsing Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Aleks Schein
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
100
|
Madsen JGS, Schmidt SF, Larsen BD, Loft A, Nielsen R, Mandrup S. iRNA-seq: computational method for genome-wide assessment of acute transcriptional regulation from total RNA-seq data. Nucleic Acids Res 2015; 43:e40. [PMID: 25564527 PMCID: PMC4381047 DOI: 10.1093/nar/gku1365] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
RNA-seq is a sensitive and accurate technique to compare steady-state levels of RNA between different cellular states. However, as it does not provide an account of transcriptional activity per se, other technologies are needed to more precisely determine acute transcriptional responses. Here, we have developed an easy, sensitive and accurate novel computational method, iRNA-seq, for genome-wide assessment of transcriptional activity based on analysis of intron coverage from total RNA-seq data. Comparison of the results derived from iRNA-seq analyses with parallel results derived using current methods for genome-wide determination of transcriptional activity, i.e. global run-on (GRO)-seq and RNA polymerase II (RNAPII) ChIP-seq, demonstrate that iRNA-seq provides similar results in terms of number of regulated genes and their fold change. However, unlike the current methods that are all very labor-intensive and demanding in terms of sample material and technologies, iRNA-seq is cheap and easy and requires very little sample material. In conclusion, iRNA-seq offers an attractive novel alternative to current methods for determination of changes in transcriptional activity at a genome-wide level.
Collapse
Affiliation(s)
- Jesper Grud Skat Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark NNF Center of Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Bjørk Ditlev Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Anne Loft
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| |
Collapse
|