51
|
Regulation of gene expression by miR-144/451 during mouse erythropoiesis. Blood 2019; 133:2518-2528. [PMID: 30971389 DOI: 10.1182/blood.2018854604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
The microRNA (miRNA) locus miR-144/451 is abundantly expressed in erythrocyte precursors, facilitating their terminal maturation and protecting against oxidant stress. However, the full repertoire of erythroid miR-144/451 target messenger RNAs (mRNAs) and associated cellular pathways is unknown. In general, the numbers of mRNAs predicted to be targeted by an miRNA vary greatly from hundreds to thousands, and are dependent on experimental approaches. To comprehensively and accurately identify erythroid miR-144/451 target mRNAs, we compared gene knockout and wild-type fetal liver erythroblasts by RNA sequencing, quantitative proteomics, and RNA immunoprecipitation of Argonaute (Ago), a component of the RNA-induced silencing complex that binds miRNAs complexed to their target mRNAs. Argonaute bound ∼1400 erythroblast mRNAs in a miR-144/451-dependent manner, accounting for one-third of all Ago-bound mRNAs. However, only ∼100 mRNAs were stabilized after miR-144/451 loss. Thus, miR-144 and miR-451 deregulate <10% of mRNAs that they bind, a characteristic that likely applies generally to other miRNAs. Using stringent selection criteria, we identified 53 novel miR-144/451 target mRNAs. One of these, Cox10, facilitates the assembly of mitochondrial electron transport complex IV. Loss of miR-144/451 caused increased Cox10 mRNA and protein, accumulation of complex IV, and increased mitochondrial membrane potential with no change in mitochondrial mass. Thus, miR-144/451 represses mitochondrial respiration during erythropoiesis by inhibiting the production of Cox10.
Collapse
|
52
|
Hydroxylation of protein constituents of the human translation system: structural aspects and functional assignments. Future Med Chem 2019; 11:357-369. [PMID: 30802140 DOI: 10.4155/fmc-2018-0317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the current decade, data on the post-translational hydroxylation of specific amino acid residues of some ribosomal proteins and translation factors in both eukaryotes and eubacteria have accumulated. The reaction is catalyzed by dedicated oxygenases (so-called ribosomal oxygenases), whose action is impaired under hypoxia conditions. The modification occurs at amino acid residues directly involved in the formation of the main functional sites of ribosomes and factors. This review summarizes currently available data on the specific hydroxylation of protein constituents of eukaryotic and eubacterial translation systems with a special emphasis on the human system, as well as on the links between hypoxia impacts on the operation of ribosomal oxygenases, the functioning of the translational apparatus and human health problems.
Collapse
|
53
|
Thinnes CC, Lohans CT, Abboud MI, Yeh T, Tumber A, Nowak RP, Attwood M, Cockman ME, Oppermann U, Loenarz C, Schofield CJ. Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Chemistry 2019; 25:2019-2024. [PMID: 30427558 PMCID: PMC6471485 DOI: 10.1002/chem.201804790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.
Collapse
Affiliation(s)
| | | | | | - Tzu‐Lan Yeh
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Radosław P. Nowak
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
- Department of Cancer BiologyDana-Farber Cancer InstituteBoston, MA02215USA
| | - Martin Attwood
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Matthew E. Cockman
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Udo Oppermann
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Christoph Loenarz
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität Freiburg79104FreiburgGermany
| | | |
Collapse
|
54
|
Xiang S, Zhang X, Chen H, Li Y, Fan W, Huang D. Copper(ii) facilitated decarboxylation for the construction of pyridyl–pyrazole skeletons. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00599d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyridyl–pyrazole carboxylic compounds were synthesized in one step by Cu(ii) facilitated decarboxylation of H3pdc and activation of pyridine in water.
Collapse
Affiliation(s)
- Shiqun Xiang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hui Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
55
|
Walport LJ, Schofield CJ. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. CHEM REC 2018; 18:1760-1781. [PMID: 30151867 DOI: 10.1002/tcr.201800056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.
Collapse
Affiliation(s)
- Louise J Walport
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
56
|
Hellen CUT. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032656. [PMID: 29735640 DOI: 10.1101/cshperspect.a032656] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/eRF3-guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density-regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read-through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203
| |
Collapse
|
57
|
Lafita-Navarro MC, Kim M, Borenstein-Auerbach N, Venkateswaran N, Hao YH, Ray R, Brabletz T, Scaglioni PP, Shay JW, Conacci-Sorrell M. The aryl hydrocarbon receptor regulates nucleolar activity and protein synthesis in MYC-expressing cells. Genes Dev 2018; 32:1303-1308. [PMID: 30254109 PMCID: PMC6169836 DOI: 10.1101/gad.313007.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
MYC enhances protein synthesis by regulating genes involved in ribosome biogenesis and protein translation. Here, we show that MYC-induced protein translation is mediated by the transcription factor aryl hydrocarbon receptor (AHR), which is induced by MYC in colonic cells. AHR promotes protein synthesis by activating the transcription of genes required for ribosome biogenesis and protein translation, including OGFOD1 and NOLC1. Using surface sensing of translation (SUnSET) to measure global protein translation, we found that silencing AHR or its targets diminishes protein synthesis. Therefore, targeting AHR or its downstream pathways could provide a novel approach to limit biomass production in MYC-driven tumors.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Min Kim
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Nofit Borenstein-Auerbach
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Roshni Ray
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nurnberg, 91054 Erlangen, Germany
| | - Pier Paolo Scaglioni
- Department of Medicine, Division of Hematology Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
58
|
Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics 2018; 9:1483-1500. [PMID: 28879348 DOI: 10.1039/c7mt00116a] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.
Collapse
Affiliation(s)
- Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Ave. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
59
|
Bräuer KE, Brockers K, Moneer J, Feuchtinger A, Wollscheid-Lengeling E, Lengeling A, Wolf A. Phylogenetic and genomic analyses of the ribosomal oxygenases Riox1 (No66) and Riox2 (Mina53) provide new insights into their evolution. BMC Evol Biol 2018; 18:96. [PMID: 29914368 PMCID: PMC6006756 DOI: 10.1186/s12862-018-1215-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Translation of specific mRNAs can be highly regulated in different cells, tissues or under pathological conditions. Ribosome heterogeneity can originate from variable expression or post-translational modifications of ribosomal proteins. The ribosomal oxygenases RIOX1 (NO66) and RIOX2 (MINA53) modify ribosomal proteins by histidine hydroxylation. A similar mechanism is present in prokaryotes. Thus, ribosome hydroxylation may be a well-conserved regulatory mechanism with implications in disease and development. However, little is known about the evolutionary history of Riox1 and Riox2 genes and their encoded proteins across eukaryotic taxa. RESULTS In this study, we have analysed Riox1 and Riox2 orthologous genes from 49 metazoen species and have constructed phylogenomic trees for both genes. Our genomic and phylogenetic analyses revealed that Arthropoda, Annelida, Nematoda and Mollusca lack the Riox2 gene, although in the early phylum Cnidaria both genes, Riox1 and Riox2, are present and expressed. Riox1 is an intronless single-exon-gene in several species, including humans. In contrast to Riox2, Riox1 is ubiquitously present throughout the animal kingdom suggesting that Riox1 is the phylogenetically older gene from which Riox2 has evolved. Both proteins have maintained a unique protein architecture with conservation of active sites within the JmjC domains, a dimerization domain, and a winged-helix domain. In addition, Riox1 proteins possess a unique N-terminal extension domain. Immunofluorescence analyses in Hela cells and in Hydra vulgaris identified a nucleolar localisation signal within the extended N-terminal domain of human RIOX1 and an altered subnuclear localisation for the Hydra Riox2. CONCLUSIONS Conserved active site residues and uniform protein domain architecture suggest a consistent enzymatic activity within the Riox orthologs throughout evolution. However, differences in genomic architecture, like single exon genes and alterations in subnuclear localisation, as described for Hydra, point towards adaption mechanisms that may correlate with taxa- or species-specific requirements. The diversification of Riox1/Riox2 gene structures throughout evolution suggest that functional requirements in expression of protein isoforms and/or subcellular localisation of proteins may have evolved by adaptation to lifestyle.
Collapse
Affiliation(s)
- Katharina E Bräuer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Kevin Brockers
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Jasmin Moneer
- Department of Biology II, Ludwig Maximillians University, Munich, Großhaderner Strasse 2, 82152 Planegg-, Martinsried, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Evi Wollscheid-Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Andreas Lengeling
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.,Present address: Max-Planck-Society, Administrative Headquarters, Hofgartenstr. 8, 80539, Munich, Germany
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
60
|
Herr CQ, Hausinger RP. Amazing Diversity in Biochemical Roles of Fe(II)/2-Oxoglutarate Oxygenases. Trends Biochem Sci 2018; 43:517-532. [PMID: 29709390 DOI: 10.1016/j.tibs.2018.04.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Since their discovery in the 1960s, the family of Fe(II)/2-oxoglutarate-dependent oxygenases has undergone a tremendous expansion to include enzymes catalyzing a vast diversity of biologically important reactions. Recent examples highlight roles in controlling chromatin modification, transcription, mRNA demethylation, and mRNA splicing. Others generate modifications in tRNA, translation factors, ribosomes, and other proteins. Thus, oxygenases affect all components of molecular biology's central dogma, in which information flows from DNA to RNA to proteins. These enzymes also function in biosynthesis and catabolism of cellular metabolites, including antibiotics and signaling molecules. Due to their critical importance, ongoing efforts have targeted family members for the development of specific therapeutics. This review provides a general overview of recently characterized oxygenase reactions and their key biological roles.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
61
|
Abstract
YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960–962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.
Collapse
|
62
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
63
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
64
|
Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci 2017; 8:7651-7668. [PMID: 29435217 PMCID: PMC5802278 DOI: 10.1039/c7sc02103h] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
Collapse
Affiliation(s)
- Tzu-Lan Yeh
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Thomas M Leissing
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Martine I Abboud
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Cyrille C Thinnes
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Onur Atasoylu
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - James P Holt-Martyn
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Dong Zhang
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Anthony Tumber
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Kerstin Lippl
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher T Lohans
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Helen Morcrette
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Ian J Clifton
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Timothy D W Claridge
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Akane Kawamura
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Emily Flashman
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Xin Lu
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Peter J Ratcliffe
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
- The Francis Crick Institute , 1 Midland Road , London NW1 1AT , UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher W Pugh
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Christopher J Schofield
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| |
Collapse
|
65
|
Clasen SJ, Shao W, Gu H, Espenshade PJ. Prolyl dihydroxylation of unassembled uS12/Rps23 regulates fungal hypoxic adaptation. eLife 2017; 6:28563. [PMID: 29083304 PMCID: PMC5690285 DOI: 10.7554/elife.28563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
The prolyl-3,4-dihydroxylase Ofd1 and nuclear import adaptor Nro1 regulate the hypoxic response in fission yeast by controlling activity of the sterol regulatory element-binding protein transcription factor Sre1. Here, we identify an extra-ribosomal function for uS12/Rps23 central to this regulatory system. Nro1 binds Rps23, and Ofd1 dihydroxylates Rps23 P62 in complex with Nro1. Concurrently, Nro1 imports Rps23 into the nucleus for assembly into 40S ribosomes. Low oxygen inhibits Ofd1 hydroxylase activity and stabilizes the Ofd1-Rps23-Nro1 complex, thereby sequestering Ofd1 from binding Sre1, which is then free to activate hypoxic gene expression. In vitro studies demonstrate that Ofd1 directly binds Rps23, Nro1, and Sre1 through a consensus binding sequence. Interestingly, Rps23 expression modulates Sre1 activity by changing the Rps23 substrate pool available to Ofd1. To date, oxygen is the only known signal to Sre1, but additional nutrient signals may tune the hypoxic response through control of unassembled Rps23 or Ofd1 activity. Animals, plants, and fungi need oxygen to release energy within their cells and for other chemical reactions. Enzymes that use oxygen typically become less active when less oxygen is available, and this makes them well suited to help cells sense oxygen. These enzymes include oxygenases, some of which modify proteins by adding oxygen to specific sites in a reaction called hydroxylation. Oxygenases control how mammals adapt to low levels of oxygen – a condition referred to as hypoxia. These enzymes achieve this by hydroxylating a protein – specifically a transcription factor – that turns on genes for survival in low oxygen. Cells quickly destroy the hydroxylated transcription factor but when oxygen is limiting, it remains unmodified. This means that, rather than being destroyed, the transcription factor binds DNA, and activates genes that keep the cells alive and growing in low oxygen. In fission yeast, an oxygenase called Ofd1 controls the activity of a transcription factor called Sre1. Yeast requires Sre1 to grow when oxygen is limiting. Exactly how Ofd1 regulates Sre1 is unknown, but the mechanism is different from that in mammals because regulation of gene expression does not need Sre1 to be hydroxylated. Now, Clasen et al. report that Ofd1 actually hydroxylates another protein called Rps23. This protein is one of about 80 that form the cell’s protein-building machinery, the ribosome. It turns out that, before Rps23 becomes part of the ribosome, it binds Ofd1 in a complex with other proteins. The multi-protein complex then acts to hydroxylate and transport Rps23 into the nucleus, where ribosomes are built and where the cell stores its DNA. When little oxygen is around, Ofd1 cannot hydroxylate Rps23. This stops the complex from falling apart and traps Ofd1 away from the transcription factor Sre1. When not bound by Ofd1, Sre1 is free to turn on genes that allow growth at low levels of oxygen. Finally, Clasen et al. show that more unassembled Rps23 means less Ofd1 is available to inhibit Sre1, which controls the yeast cell’s response to hypoxia. Humans have proteins similar to Ofd1 and Rps23. As such, this pathway for sensing oxygen in yeast may occur in humans too. Further work is now needed to explore if other enzymes that hydroxylate ribosomal proteins work in a similar way.
Collapse
Affiliation(s)
- Sara J Clasen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Wei Shao
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - He Gu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
66
|
Wesche J, Kühn S, Kessler BM, Salton M, Wolf A. Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci 2017; 74:3305-3315. [PMID: 28364192 PMCID: PMC11107486 DOI: 10.1007/s00018-017-2515-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
Arginine methylation of histones is one mechanism of epigenetic regulation in eukaryotic cells. Methylarginines can also be found in non-histone proteins involved in various different processes in a cell. An enzyme family of nine protein arginine methyltransferases catalyses the addition of methyl groups on arginines of histone and non-histone proteins, resulting in either mono- or dimethylated-arginine residues. The reversibility of histone modifications is an essential feature of epigenetic regulation to respond to changes in environmental factors, signalling events, or metabolic alterations. Prominent histone modifications like lysine acetylation and lysine methylation are reversible. Enzyme family pairs have been identified, with each pair of lysine acetyltransferases/deacetylases and lysine methyltransferases/demethylases operating complementarily to generate or erase lysine modifications. Several analyses also indicate a reversible nature of arginine methylation, but the enzymes facilitating direct removal of methyl moieties from arginine residues in proteins have been discussed controversially. Differing reports have been seen for initially characterized putative candidates, like peptidyl arginine deiminase 4 or Jumonji-domain containing protein 6. Here, we review the most recent cellular, biochemical, and mass spectrometry work on arginine methylation and its reversible nature with a special focus on putative arginine demethylases, including the enzyme superfamily of Fe(II) and 2-oxoglutarate-dependent oxygenases.
Collapse
Affiliation(s)
- Juste Wesche
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sarah Kühn
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Alexander Wolf
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
67
|
Burr R, Espenshade PJ. Oxygen-responsive transcriptional regulation of lipid homeostasis in fungi: Implications for anti-fungal drug development. Semin Cell Dev Biol 2017; 81:110-120. [PMID: 28851600 DOI: 10.1016/j.semcdb.2017.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
Abstract
Low oxygen adaptation is essential for aerobic fungi that must survive in varied oxygen environments. Pathogenic fungi in particular must adapt to the low oxygen host tissue environment in order to cause infection. Maintenance of lipid homeostasis is especially important for cell growth and proliferation, and is a highly oxygen-dependent process. In this review, we focus on recent advances in our understanding of the transcriptional regulation and coordination of the low oxygen response across fungal species, paying particular attention to pathogenic fungi. Comparison of lipid homeostasis pathways in these organisms suggests common mechanisms of transcriptional regulation and points toward untapped potential to target low oxygen adaptation in antifungal development.
Collapse
Affiliation(s)
- Risa Burr
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter J Espenshade
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
68
|
Abstract
Investigation into the regulation of the erythropoietin gene by oxygen led to the discovery of a process of direct oxygen sensing that transduces many cellular and systemic responses to hypoxia. The oxygen-sensitive signal is generated through the catalytic action of a series of 2-oxoglutarate-dependent oxygenases that regulate the transcription factor hypoxia-inducible factor (HIF) by the post-translational hydroxylation of specific amino acid residues. Here we review the implications of the unforeseen complexity of the HIF transcriptional cascade for the physiology and pathophysiology of hypoxia, and consider the origins of post-translational hydroxylation as a signaling process.
Collapse
|
69
|
Paolini NA, Attwood M, Sondalle SB, Vieira CMDS, van Adrichem AM, di Summa FM, O’Donohue MF, Gleizes PE, Rachuri S, Briggs JW, Fischer R, Ratcliffe PJ, Wlodarski MW, Houtkooper RH, von Lindern M, Kuijpers TW, Dinman JD, Baserga SJ, Cockman ME, MacInnes AW. A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism. Am J Hum Genet 2017; 100:506-522. [PMID: 28257692 DOI: 10.1016/j.ajhg.2017.01.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/27/2017] [Indexed: 12/25/2022] Open
Abstract
Ribosomal protein (RP) gene mutations, mostly associated with inherited or acquired bone marrow failure, are believed to drive disease by slowing the rate of protein synthesis. Here de novo missense mutations in the RPS23 gene, which codes for uS12, are reported in two unrelated individuals with microcephaly, hearing loss, and overlapping dysmorphic features. One individual additionally presents with intellectual disability and autism spectrum disorder. The amino acid substitutions lie in two highly conserved loop regions of uS12 with known roles in maintaining the accuracy of mRNA codon translation. Primary cells revealed one substitution severely impaired OGFOD1-dependent hydroxylation of a neighboring proline residue resulting in 40S ribosomal subunits that were blocked from polysome formation. The other disrupted a predicted pi-pi stacking interaction between two phenylalanine residues leading to a destabilized uS12 that was poorly tolerated in 40S subunit biogenesis. Despite no evidence of a reduction in the rate of mRNA translation, these uS12 variants impaired the accuracy of mRNA translation and rendered cells highly sensitive to oxidative stress. These discoveries describe a ribosomopathy linked to uS12 and reveal mechanistic distinctions between RP gene mutations driving hematopoietic disease and those resulting in developmental disorders.
Collapse
|
70
|
Li Y, Su X, Wu P, Wang J, Guo Y, Zhu J, Wang Q, Chen J, Yang F, Wei W. Proteomics analysis of IBS-D with spleen and kidney yang deficiency. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
71
|
Keeling KM. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases 2016; 4:32. [PMID: 28367323 PMCID: PMC5370586 DOI: 10.3390/diseases4040032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Gregory Fleming Cystic Fibrosis Research Center, Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-975-6585
| |
Collapse
|
72
|
Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 2016; 212:845-60. [PMID: 27022092 PMCID: PMC4810302 DOI: 10.1083/jcb.201508028] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/17/2016] [Indexed: 12/11/2022] Open
Abstract
Stress granule condensation (SGC) of translationally arrested mRNAs requires G3BP, and G3BP-mediated SGC is inhibited by serine 149 phosphorylation, regulated by mutually exclusive binding of Caprin1 and USP10, and requires its RGG region for SGC and for interactions with 40S ribosomal subunits. Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation. Caprin1/USP10 binding to G3BP is mutually exclusive: Caprin binding promotes, but USP10 binding inhibits, SG formation. G3BP interacts with 40S ribosomal subunits through its RGG motif, which is also required for G3BP-mediated SG formation. We propose that G3BP mediates the condensation of SGs by shifting between two different states that are controlled by the phosphorylation of S149 and by binding to Caprin1 or USP10.
Collapse
Affiliation(s)
- Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Marc D Panas
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Christopher A Achorn
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Shawn Lyons
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Sarah Tisdale
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Tyler Hickman
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Marshall Thomas
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115 The Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| |
Collapse
|
73
|
Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. RNA Biol 2016; 12:950-8. [PMID: 26176195 PMCID: PMC4615788 DOI: 10.1080/15476286.2015.1068497] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Termination of protein synthesis is not 100% efficient. A number of natural mechanisms that suppress translation termination exist. One of them is STOP codon readthrough, the process that enables the ribosome to pass through the termination codon in mRNA and continue translation to the next STOP codon in the same reading frame. The efficiency of translational readthrough depends on a variety of factors, including the identity of the termination codon, the surrounding mRNA sequence context, and the presence of stimulating compounds. Understanding the interplay between these factors provides the necessary background for the efficient application of the STOP codon suppression approach in the therapy of diseases caused by the presence of premature termination codons.
Collapse
Affiliation(s)
- Maciej Dabrowski
- a Institute of Human Genetics; Polish Academy of Sciences ; Poznan , Poland
| | | | - Ewa Zietkiewicz
- a Institute of Human Genetics; Polish Academy of Sciences ; Poznan , Poland
| |
Collapse
|
74
|
Katz MJ, Gándara L, De Lella Ezcurra AL, Wappner P. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cell Mol Life Sci 2016; 73:1881-93. [PMID: 26874685 PMCID: PMC11108485 DOI: 10.1007/s00018-016-2160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.
Collapse
Affiliation(s)
- M J Katz
- Instituto Leloir, Buenos Aires, Argentina
| | - L Gándara
- Instituto Leloir, Buenos Aires, Argentina
| | | | - P Wappner
- Instituto Leloir, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
75
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
76
|
Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nat Rev Nephrol 2015; 12:157-68. [DOI: 10.1038/nrneph.2015.193] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
77
|
Salminen A, Kauppinen A, Kaarniranta K. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell Mol Life Sci 2015; 72:3897-914. [PMID: 26118662 PMCID: PMC11114064 DOI: 10.1007/s00018-015-1978-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that the members of an ancient family of nonheme Fe(2+)/2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O2 are the obligatory substrates and Fe(2+) a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, 70029, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, 70029, Kuopio, Finland.
| |
Collapse
|
78
|
Abstract
The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
79
|
Simpson PD, Eipper BA, Katz MJ, Gandara L, Wappner P, Fischer R, Hodson EJ, Ratcliffe PJ, Masson N. Striking Oxygen Sensitivity of the Peptidylglycine α-Amidating Monooxygenase (PAM) in Neuroendocrine Cells. J Biol Chem 2015; 290:24891-901. [PMID: 26296884 PMCID: PMC4598998 DOI: 10.1074/jbc.m115.667246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 01/23/2023] Open
Abstract
Interactions between biological pathways and molecular oxygen require robust mechanisms for detecting and responding to changes in cellular oxygen availability, to support oxygen homeostasis. Peptidylglycine α-amidating monooxygenase (PAM) catalyzes a two-step reaction resulting in the C-terminal amidation of peptides, a process important for their stability and biological activity. Here we show that in human, mouse, and insect cells, peptide amidation is exquisitely sensitive to hypoxia. Different amidation events on chromogranin A, and on peptides processed from proopiomelanocortin, manifest similar striking sensitivity to hypoxia in a range of neuroendocrine cells, being progressively inhibited from mild (7% O2) to severe (1% O2) hypoxia. In developing Drosophila melanogaster larvae, FMRF amidation in thoracic ventral (Tv) neurons is strikingly suppressed by hypoxia. Our findings have thus defined a novel monooxygenase-based oxygen sensing mechanism that has the capacity to signal changes in oxygen availability to peptidergic pathways.
Collapse
Affiliation(s)
- Peter D Simpson
- From the Centre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | | | - Lautaro Gandara
- Fundacion Instituto Leloir, C1405BWE Buenos Aires, Argentina, and
| | - Pablo Wappner
- Fundacion Instituto Leloir, C1405BWE Buenos Aires, Argentina, and
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Emma J Hodson
- From the Centre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Peter J Ratcliffe
- From the Centre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom,
| | - Norma Masson
- From the Centre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom,
| |
Collapse
|
80
|
Abstract
Hydroxylation is an emerging modification generally catalyzed by a family of ∼70 enzymes that are dependent on oxygen, Fe(II), ascorbate, and the Kreb's cycle intermediate 2-oxoglutarate (2OG). These "2OG oxygenases" sit at the intersection of nutrient availability and metabolism where they have the potential to regulate gene expression and growth in response to changes in co-factor abundance. Characterized 2OG oxygenases regulate fundamental cellular processes by catalyzing the hydroxylation or demethylation (via hydroxylation) of DNA, RNA, or protein. As such they have been implicated in various syndromes and diseases, but particularly cancer. In this review we discuss the emerging role of 2OG oxygenases in gene expression control, examine the regulation of these unique enzymes by nutrient availability and metabolic intermediates, and describe these properties in relation to the expanding role of these enzymes in cancer.
Collapse
|
81
|
Kim JH, Lee SM, Lee JH, Chun S, Kang BH, Kwak S, Roe JS, Kim TW, Kim H, Kim WH, Cho EJ, Youn HD. OGFOD1 is required for breast cancer cell proliferation and is associated with poor prognosis in breast cancer. Oncotarget 2015; 6:19528-41. [PMID: 25909288 PMCID: PMC4637303 DOI: 10.18632/oncotarget.3683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
2-oxogluatrate and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) was recently revealed to be a proline hydroxylase of RPS23 for translational termination. However, OGFOD1 is nuclear, whereas translational termination occurs in the cytoplasm, raising the possibility of another function of OGFOD1 in the nucleus. In this study, we demonstrate that OGFOD1 is involved in cell cycle regulation. OGFOD1 knockdown in MDA-MB-231 breast cancer cells significantly impeded cell proliferation and resulted in the accumulation of G1 and G2/M cells by decreasing the mRNA levels of G1/S transition- and G2/M-related transcription factors and their target genes. We also confirmed that OGFOD1 is highly expressed in breast cancer tissues by bioinformatic analysis and immunohistochemistry. Thus, we propose that OGFOD1 is required for breast cancer cell proliferation and is associated with poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Min Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hyuk Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sohyun Chun
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
| | - Byung-Hee Kang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Seok Roe
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Wan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunsoo Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
82
|
Andreev DE, O'Connor PBF, Zhdanov AV, Dmitriev RI, Shatsky IN, Papkovsky DB, Baranov PV. Oxygen and glucose deprivation induces widespread alterations in mRNA translation within 20 minutes. Genome Biol 2015; 16:90. [PMID: 25943107 PMCID: PMC4419486 DOI: 10.1186/s13059-015-0651-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Background Oxygen and glucose metabolism play pivotal roles in many (patho)physiological conditions. In particular, oxygen and glucose deprivation (OGD) during ischemia and stroke results in extensive tissue injury and cell death. Results Using time-resolved ribosome profiling, we assess gene expression levels in a neural cell line, PC12, during the first hour of OGD. The most substantial alterations are seen to occur within the first 20 minutes of OGD. While transcription of only 100 genes is significantly altered during one hour of OGD, the translation response affects approximately 3,000 genes. This response involves reprogramming of initiation and elongation rates, as well as the stringency of start codon recognition. Genes involved in oxidative phosphorylation are most affected. Detailed analysis of ribosome profiles reveals salient alterations of ribosome densities on individual mRNAs. The mRNA-specific alterations include increased translation of upstream open reading frames, site-specific ribosome pauses, and production of alternative protein isoforms with amino-terminal extensions. Detailed analysis of ribosomal profiles also reveals six mRNAs with translated ORFs occurring downstream of annotated coding regions and two examples of dual coding mRNAs, where two protein products are translated from the same long segment of mRNA, but in two different frames. Conclusions These findings uncover novel regulatory mechanisms of translational response to OGD in mammalian cells that are different from the classical pathways such as hypoxia inducible factor (HIF) signaling, while also revealing sophisticated organization of protein coding information in certain genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitry E Andreev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Patrick B F O'Connor
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland. .,Institute of Biomedical Chemistry, Pogodinskaya street, Moscow, 119121, Russia.
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
83
|
McMurray F, Demetriades M, Aik W, Merkestein M, Kramer H, Andrew DS, Scudamore CL, Hough TA, Wells S, Ashcroft FM, McDonough MA, Schofield CJ, Cox RD. Pharmacological inhibition of FTO. PLoS One 2015; 10:e0121829. [PMID: 25830347 PMCID: PMC4382163 DOI: 10.1371/journal.pone.0121829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO’s demethylase activity could be therapeutically useful for the treatment of obesity.
Collapse
Affiliation(s)
- Fiona McMurray
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
- * E-mail:
| | - Marina Demetriades
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - WeiShen Aik
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Myrte Merkestein
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Holger Kramer
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Daniel S. Andrew
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Cheryl L. Scudamore
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Tertius A. Hough
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Sara Wells
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| | - Frances M. Ashcroft
- Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Michael A. McDonough
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Roger D. Cox
- MRC Harwell, Harwell Oxford Campus, Oxfordshire, Oxford, OX11 0RD, United Kingdom
| |
Collapse
|
84
|
Diversity of Viruses Infecting the Green Microalga Ostreococcus lucimarinus. J Virol 2015; 89:5812-21. [PMID: 25787287 DOI: 10.1128/jvi.00246-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The functional diversity of eukaryotic viruses infecting a single host strain from seawater samples originating from distant marine locations is unknown. To estimate this diversity, we used lysis plaque assays to detect viruses that infect the widespread species Ostreococcus lucimarinus, which is found in coastal and mesotrophic systems, and O. tauri, which was isolated from coastal and lagoon sites from the northwest Mediterranean Sea. Detection of viral lytic activities against O. tauri was not observed using seawater from most sites, except those close to the area where the host strain was isolated. In contrast, the more cosmopolitan O. lucimarinus species recovered viruses from locations in the Atlantic and Pacific Oceans and the Mediterranean Sea. Six new O. lucimarinus viruses (OlVs) then were characterized and their genomes sequenced. Two subgroups of OlVs were distinguished based on their genetic distances and on the inversion of a central 32-kb-long DNA fragment, but overall their genomes displayed a high level of synteny. The two groups did not correspond to proximity of isolation sites, and the phylogenetic distance between these subgroups was higher than the distances observed among viruses infecting O. tauri. Our study demonstrates that viruses originating from very distant sites are able to infect the same algal host strain and can be more diverse than those infecting different species of the same genus. Finally, distinctive features and evolutionary distances between these different viral subgroups does not appear to be linked to biogeography of the viral isolates. IMPORTANCE Marine eukaryotic phytoplankton virus diversity has yet to be addressed, and more specifically, it is unclear whether diversity is connected to geographical distance and whether differential infection and lysis patterns exist among such viruses that infect the same host strain. Here, we assessed the genetic distance of geographically segregated viruses that infect the ubiquitous green microalga Ostreococcus. This study provides the first glimpse into the diversity of predicted gene functions in Ostreococcus viruses originating from distant sites and provides new insights into potential host distributions and restrictions in the world oceans.
Collapse
|
85
|
High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 2015; 22:336-41. [PMID: 25775265 PMCID: PMC4429131 DOI: 10.1038/nsmb.2994] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/19/2015] [Indexed: 01/21/2023]
Abstract
Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.
Collapse
|
86
|
Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia. Mol Cell Biol 2015; 35:1788-804. [PMID: 25755286 DOI: 10.1128/mcb.01457-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/01/2015] [Indexed: 12/19/2022] Open
Abstract
Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.
Collapse
|
87
|
Horita S, Scotti JS, Thinnes C, Mottaghi-Taromsari YS, Thalhammer A, Ge W, Aik W, Loenarz C, Schofield CJ, McDonough MA. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases. Structure 2015; 23:639-52. [PMID: 25728928 PMCID: PMC4396695 DOI: 10.1016/j.str.2015.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 01/24/2023]
Abstract
Post-translational ribosomal protein hydroxylation is catalyzed by 2-oxoglutarate (2OG) and ferrous iron dependent oxygenases, and occurs in prokaryotes and eukaryotes. OGFOD1 catalyzes trans-3 prolyl hydroxylation at Pro62 of the small ribosomal subunit protein uS12 (RPS23) and is conserved from yeasts to humans. We describe crystal structures of the human uS12 prolyl 3-hydroxylase (OGFOD1) and its homolog from Saccharomyces cerevisiae (Tpa1p): OGFOD1 in complex with the broad-spectrum 2OG oxygenase inhibitors; N-oxalylglycine (NOG) and pyridine-2,4-dicarboxylate (2,4-PDCA) to 2.1 and 2.6 Å resolution, respectively; and Tpa1p in complex with NOG, 2,4-PDCA, and 1-chloro-4-hydroxyisoquinoline-3-carbonylglycine (a more selective prolyl hydroxylase inhibitor) to 2.8, 1.9, and 1.9 Å resolution, respectively. Comparison of uS12 hydroxylase structures with those of other prolyl hydroxylases, including the human hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs), reveals differences between the prolyl 3- and prolyl 4-hydroxylase active sites, which can be exploited for developing selective inhibitors of the different subfamilies.
Collapse
Affiliation(s)
- Shoichiro Horita
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Cyrille Thinnes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Yousef S Mottaghi-Taromsari
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Armin Thalhammer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - WeiShen Aik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christoph Loenarz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
88
|
Zhuang Q, Feng T, Coleman ML. Modifying the maker: Oxygenases target ribosome biology. ACTA ACUST UNITED AC 2015; 3:e1009331. [PMID: 26779412 PMCID: PMC4682802 DOI: 10.1080/21690731.2015.1009331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes.
Collapse
Affiliation(s)
- Qinqin Zhuang
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| | - Tianshu Feng
- Centre for Cellular and Molecular Physiology; University of Oxford ; Oxford, UK
| | - Mathew L Coleman
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| |
Collapse
|
89
|
Kuiper C, Vissers MCM. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol 2014; 4:359. [PMID: 25540771 PMCID: PMC4261134 DOI: 10.3389/fonc.2014.00359] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/27/2014] [Indexed: 01/07/2023] Open
Abstract
Ascorbate is a specific co-factor for a large family of enzymes known as the Fe- and 2-oxoglutarate-dependent dioxygenases. These enzymes are found throughout biology and catalyze the addition of a hydroxyl group to various substrates. The proline hydroxylase that is involved in collagen maturation is well known, but in recent times many new enzymes and functions have been uncovered, including those involved in epigenetic control and hypoxia-inducible factor (HIF) regulation. These discoveries have provided crucial mechanistic insights into how ascorbate may affect tumor biology. In particular, there is growing evidence that HIF-1-dependent tumor progression may be inhibited by increasing tumor ascorbate levels. However, rigorous clinical intervention studies are lacking. This review will explore the physiological role of ascorbate as an enzyme co-factor and how this mechanism relates to cancer biology and treatment. The use of ascorbate in cancer should be informed by clinical studies based on such mechanistic hypotheses.
Collapse
Affiliation(s)
- Caroline Kuiper
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| |
Collapse
|
90
|
Katz MJ, Acevedo JM, Wappner P. Growing with the wind. Ribosomal protein hydroxylation and cell growth. Fly (Austin) 2014; 8:153-6. [PMID: 25482726 DOI: 10.4161/fly.29943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this Extra View we comment on our recent work on Sudestada1 (Sud1), a Drosophila 2-oxoglutarate (2OG)-dependent dioxygenase that belongs to the Ribosomal Oxygenase (ROX) subfamily. Sud1 is required for normal growth in Drosophila, and is conserved in yeast and mammals. We reported that Sud1 hydroxylates the ribosomal protein S23 (RPS23), and that its loss of function restricts growth and provokes activation of the unfolded protein response, apoptosis and autophagy. In this Extra View we speculate on the role that RPS23 hydroxylation might play in stop codon recognition and on the possible link between Sud1 loss-of-function and activation of the Unfolded Protein Response, Stress Granules formation and growth impairment.
Collapse
|
91
|
Bishop T, Ratcliffe PJ. Signaling hypoxia by hypoxia-inducible factor protein hydroxylases: a historical overview and future perspectives. HYPOXIA 2014; 2:197-213. [PMID: 27774477 PMCID: PMC5045067 DOI: 10.2147/hp.s47598] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By the early 1900s, the close matching of oxygen supply with demand was recognized to be a fundamental requirement for physiological function, and multiple adaptive responses to environment hypoxia had been described. Nevertheless, the widespread operation of mechanisms that directly sense and respond to levels of oxygen in animal cells was not appreciated for most of the twentieth century with investigators generally stressing the regulatory importance of metabolic products. Work over the last 25 years has overturned that paradigm. It has revealed the existence of a set of “oxygen-sensing” 2-oxoglutarate dependent dioxygenases that catalyze the hydroxylation of specific amino acid residues and thereby control the stability and activity of hypoxia-inducible factor. The hypoxia-inducible factor hydroxylase pathway regulates a massive transcriptional cascade that is operative in essentially all animal cells. It transduces a wide range of responses to hypoxia, extending well beyond the classical boundaries of hypoxia physiology. Here we review the discovery and elucidation of these pathways, and consider the opportunities and challenges that have been brought into focus by the findings, including new implications for the integrated physiology of hypoxia and therapeutic approaches to ischemic/hypoxic disease.
Collapse
Affiliation(s)
- Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
92
|
Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J, Bölker M. Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in Fungi and animals. PLoS Genet 2014; 10:e1004685. [PMID: 25340584 PMCID: PMC4207609 DOI: 10.1371/journal.pgen.1004685] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022] Open
Abstract
Translation of mRNA into a polypeptide chain is a highly accurate process. Many prokaryotic and eukaryotic viruses, however, use leaky termination of translation to optimize their coding capacity. Although growing evidence indicates the occurrence of ribosomal readthrough also in higher organisms, a biological function for the resulting extended proteins has been elucidated only in very few cases. Here, we report that in human cells programmed stop codon readthrough is used to generate peroxisomal isoforms of cytosolic enzymes. We could show for NAD-dependent lactate dehydrogenase B (LDHB) and NAD-dependent malate dehydrogenase 1 (MDH1) that translational readthrough results in C-terminally extended protein variants containing a peroxisomal targeting signal 1 (PTS1). Efficient readthrough occurs at a short sequence motif consisting of a UGA termination codon followed by the dinucleotide CU. Leaky termination at this stop codon context was observed in fungi and mammals. Comparative genome analysis allowed us to identify further readthrough-derived peroxisomal isoforms of metabolic enzymes in diverse model organisms. Overall, our study highlights that a defined stop codon context can trigger efficient ribosomal readthrough to generate dually targeted protein isoforms. We speculate that beyond peroxisomal targeting stop codon readthrough may have also other important biological functions, which remain to be elucidated.
Collapse
Affiliation(s)
- Alina C. Stiebler
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Excellence Cluster for Integrative Fungal Research (IPF), Senckenberg Society, Frankfurt am Main, Germany
| | - Kay O. Schink
- Faculty of Medicine, Centre for Cancer Biomedicine, University of Oslo, Montebello, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
93
|
Scotti JS, Leung IKH, Ge W, Bentley MA, Paps J, Kramer HB, Lee J, Aik W, Choi H, Paulsen SM, Bowman LAH, Loik ND, Horita S, Ho CH, Kershaw NJ, Tang CM, Claridge TDW, Preston GM, McDonough MA, Schofield CJ. Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proc Natl Acad Sci U S A 2014; 111:13331-6. [PMID: 25197067 PMCID: PMC4169948 DOI: 10.1073/pnas.1409916111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The roles of 2-oxoglutarate (2OG)-dependent prolyl-hydroxylases in eukaryotes include collagen stabilization, hypoxia sensing, and translational regulation. The hypoxia-inducible factor (HIF) sensing system is conserved in animals, but not in other organisms. However, bioinformatics imply that 2OG-dependent prolyl-hydroxylases (PHDs) homologous to those acting as sensing components for the HIF system in animals occur in prokaryotes. We report cellular, biochemical, and crystallographic analyses revealing that Pseudomonas prolyl-hydroxylase domain containing protein (PPHD) contain a 2OG oxygenase related in structure and function to the animal PHDs. A Pseudomonas aeruginosa PPHD knockout mutant displays impaired growth in the presence of iron chelators and increased production of the virulence factor pyocyanin. We identify elongation factor Tu (EF-Tu) as a PPHD substrate, which undergoes prolyl-4-hydroxylation on its switch I loop. A crystal structure of PPHD reveals striking similarity to human PHD2 and a Chlamydomonas reinhardtii prolyl-4-hydroxylase. A crystal structure of PPHD complexed with intact EF-Tu reveals that major conformational changes occur in both PPHD and EF-Tu, including a >20-Å movement of the EF-Tu switch I loop. Comparison of the PPHD structures with those of HIF and collagen PHDs reveals conservation in substrate recognition despite diverse biological roles and origins. The observed changes will be useful in designing new types of 2OG oxygenase inhibitors based on various conformational states, rather than active site iron chelators, which make up most reported 2OG oxygenase inhibitors. Structurally informed phylogenetic analyses suggest that the role of prolyl-hydroxylation in human hypoxia sensing has ancient origins.
Collapse
Affiliation(s)
- John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Michael A Bentley
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Holger B Kramer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom; and
| | - Joongoo Lee
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - WeiShen Aik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Steinar M Paulsen
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lesley A H Bowman
- Department of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Nikita D Loik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Shoichiro Horita
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom; and
| | - Chia-hua Ho
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Nadia J Kershaw
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christoph M Tang
- Department of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
94
|
Yang M, Su H, Soga T, Kranc KR, Pollard PJ. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism. HYPOXIA 2014; 2:127-142. [PMID: 27774472 PMCID: PMC5045062 DOI: 10.2147/hp.s47968] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes (PHDs) regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2) availability enables its association with the von Hippel-Lindau (VHL) tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites) that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism.
Collapse
Affiliation(s)
- Ming Yang
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Huizhong Su
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Patrick J Pollard
- Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
95
|
The Succinated Proteome of FH-Mutant Tumours. Metabolites 2014; 4:640-54. [PMID: 25105836 PMCID: PMC4192685 DOI: 10.3390/metabo4030640] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inherited mutations in the Krebs cycle enzyme fumarate hydratase (FH) predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). Loss of FH activity in HLRCC tumours causes accumulation of the Krebs cycle intermediate fumarate to high levels, which may act as an oncometabolite through various, but not necessarily mutually exclusive, mechanisms. One such mechanism, succination, is an irreversible non-enzymatic modification of cysteine residues by fumarate, to form S-(2-succino)cysteine (2SC). Previous studies have demonstrated that succination of proteins including glyceraldehyde 3-phosphate dehydrogenase (GAPDH), kelch-like ECH-associated protein 1 (KEAP1) and mitochondrial aconitase (ACO2) can have profound effects on cellular metabolism. Furthermore, immunostaining for 2SC is a sensitive and specific biomarker for HLRCC tumours. Here, we performed a proteomic screen on an FH-mutant tumour and two HLRCC-derived cancer cell lines and identified 60 proteins where one or more cysteine residues were succinated; 10 of which were succinated at cysteine residues either predicted, or experimentally proven, to be functionally significant. Bioinformatic enrichment analyses identified most succinated targets to be involved in redox signaling. To our knowledge, this is the first proteomic-based succination screen performed in human tumours and cancer-derived cells and has identified novel 2SC targets that may be relevant to the pathogenesis of HLRCC.
Collapse
|
96
|
Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc Natl Acad Sci U S A 2014; 111:4025-30. [PMID: 24550463 DOI: 10.1073/pnas.1314485111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.
Collapse
|
97
|
Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc Natl Acad Sci U S A 2014; 111:4019-24. [PMID: 24550462 DOI: 10.1073/pnas.1311750111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.
Collapse
|