51
|
González AE, Lay MK, Jara EL, Espinoza JA, Gómez RS, Soto J, Rivera CA, Abarca K, Bueno SM, Riedel CA, Kalergis AM. Aberrant T cell immunity triggered by human Respiratory Syncytial Virus and human Metapneumovirus infection. Virulence 2016; 8:685-704. [PMID: 27911218 DOI: 10.1080/21505594.2016.1265725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human Respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are the two major etiological viral agents of lower respiratory tract diseases, affecting mainly infants, young children and the elderly. Although the infection of both viruses trigger an antiviral immune response that mediate viral clearance and disease resolution in immunocompetent individuals, the promotion of long-term immunity appears to be deficient and reinfection are common throughout life. A possible explanation for this phenomenon is that hRSV and hMPV, can induce aberrant T cell responses, which leads to exacerbated lung inflammation and poor T and B cell memory immunity. The modulation of immune response exerted by both viruses include different strategies such as, impairment of immunological synapse mediated by viral proteins or soluble factors, and the induction of pro-inflammatory cytokines by epithelial cells, among others. All these viral strategies contribute to the alteration of the adaptive immunity in order to increase the susceptibility to reinfections. In this review, we discuss current research related to the mechanisms underlying the impairment of T and B cell immune responses induced by hRSV and hMPV infection. In addition, we described the role each virulence factor involved in immune modulation caused by these viruses.
Collapse
Affiliation(s)
- Andrea E González
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Margarita K Lay
- b Departamento de Biotecnología , Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta , Antofagasta , Chile
| | - Evelyn L Jara
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Janyra A Espinoza
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Roberto S Gómez
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Jorge Soto
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Rivera
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Katia Abarca
- c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,d INSERM UMR1064 , Nantes , France
| | - Claudia A Riedel
- e Millennium Institute of Immunology and Immunotherapy , Departamento de Ciencias Biológicas , Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello , Santiago , Chile
| | - Alexis M Kalergis
- a Millennium Institute of Immunology and Immunotherapy , Departamento de Genética Molecular y Microbiología , Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Departamento de Pediatría , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile.,f Millennium Institute of Immunology and Immunotherapy , Departamento de Endocrinología , Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
52
|
HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation. J Virol 2016; 90:10513-10526. [PMID: 27630246 DOI: 10.1128/jvi.01532-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/07/2016] [Indexed: 01/21/2023] Open
Abstract
HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the immunological synapse together with the T cell receptor and enhances the T cell receptor-induced activation of CD4 T cells. Heightened cellular activation promotes the capacity of CD4 T cells to support productive HIV replication. This study provides evidence of the exploitation of the normal immunological synapse and T cell activation process by HIV to boost the activation state of targeted CD4 T cells and promote the infection of these cells.
Collapse
|
53
|
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, Riedel CA, Kalergis AM. Human Respiratory Syncytial Virus: Infection and Pathology. Semin Respir Crit Care Med 2016; 37:522-37. [PMID: 27486734 PMCID: PMC7171722 DOI: 10.1055/s-0036-1584799] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto S Gómez
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
54
|
Infectious Diseases in Transplantation--Report of the 20th Nantes Actualités Transplantation Meeting. Transplantation 2016; 99:2444-7. [PMID: 26627674 DOI: 10.1097/tp.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The 20th Nantes Actualités Transplantation (NAT) meeting was held on June 11, 2015, and June 12, 2015. This year, the local organizing committee selected an update on infectious diseases in solid organ and hematopoietic stem cell transplantation. With an attendance of close to 170 clinicians, researchers, students, engineers, technicians, invited speakers, and guests from North and South America, Germany, Switzerland, Netherlands, and France, the meeting was well attended. Invited speakers' expertise covered basic as well as translational microbiology, immunology, transplantation, and intensive care medicine. This report identifies a number of advances presented during the meeting in the care and management of infectious diseases in transplantation and immunocompromised patients. New antiviral immune responses and their modulation by pathogens in addition to novel antimicrobial therapeutic strategies, cell therapies, and genomic analysis were discussed.
Collapse
|
55
|
Ding B, Qin Y, Chen M. Nucleocapsid proteins: roles beyond viral RNA packaging. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:213-26. [PMID: 26749541 PMCID: PMC7169677 DOI: 10.1002/wrna.1326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
Viral nucleocapsid proteins (NCs) enwrap the RNA genomes of viruses to form NC–RNA complexes, which act as a template and are essential for viral replication and transcription. Beyond packaging viral RNA, NCs also play important roles in virus replication, transcription, assembly, and budding by interacting with viral and host cellular proteins. Additionally, NCs can inhibit interferon signaling response and function in cell stress response, such as inducing apoptosis. Finally, NCs can be the target of vaccines, benefiting from their conserved gene sequences. Here, we summarize important findings regarding the additional functions of NCs as much more than structural RNA‐binding proteins, with specific emphasis on (1) their association with the viral life cycle, (2) their association with host cells, and (3) as ideal candidates for vaccine development. WIREs RNA 2016, 7:213–226. doi: 10.1002/wrna.1326 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications Translation > Translation Regulation
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yali Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
56
|
Gómez RS, Ramirez BA, Céspedes PF, Cautivo KM, Riquelme SA, Prado CE, González PA, Kalergis AM. Contribution of Fcγ receptors to human respiratory syncytial virus pathogenesis and the impairment of T-cell activation by dendritic cells. Immunology 2016; 147:55-72. [PMID: 26451966 PMCID: PMC4693880 DOI: 10.1111/imm.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization related to respiratory disease. Infection with hRSV produces abundant infiltration of immune cells into the airways, which combined with an exacerbated pro-inflammatory immune response can lead to significant damage to the lungs. Human RSV re-infection is extremely frequent, suggesting that this virus may have evolved molecular mechanisms that interfere with host adaptive immunity. Infection with hRSV can be reduced by administering a humanized neutralizing antibody against the virus fusion protein in high-risk infants. Although neutralizing antibodies against hRSV effectively block the infection of airway epithelial cells, here we show that both, bone marrow-derived dendritic cells (DCs) and lung DCs undergo infection with IgG-coated virus (hRSV-IC), albeit abortive. Yet, this is enough to negatively modulate DC function. We observed that such a process is mediated by Fcγ receptors (FcγRs) expressed on the surface of DCs. Remarkably, we also observed that in the absence of hRSV-specific antibodies FcγRIII knockout mice displayed significantly less cellular infiltration in the lungs after hRSV infection, compared with wild-type mice, suggesting a potentially harmful, IgG-independent role for this receptor in hRSV disease. Our findings support the notion that FcγRs can contribute significantly to the modulation of DC function by hRSV and hRSV-IC. Further, we provide evidence for an involvement of FcγRIII in the development of hRSV pathogenesis.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antiviral Agents/pharmacology
- Cells, Cultured
- Coculture Techniques
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Disease Models, Animal
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Lymphocyte Activation/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Palivizumab/pharmacology
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Signal Transduction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Viral Load
- Virus Replication
Collapse
Affiliation(s)
- Roberto S. Gómez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Bruno A. Ramirez
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo F. Céspedes
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Kelly M. Cautivo
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Sebastián A. Riquelme
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
| | - Carolina E. Prado
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Pablo A. González
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and ImmunotherapyDepartamento de Genética Molecular y MicrobiologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiago de ChileChile
- INSERM U1064NantesFrance
- Departamento de ReumatologíaFacultad de Medicina. Pontificia Universidad Católica de ChileSantiago de ChileChile
| |
Collapse
|
57
|
Rivera CA, Gómez RS, Díaz RA, Céspedes PF, Espinoza JA, González PA, Riedel CA, Bueno SM, Kalergis AM. Novel therapies and vaccines against the human respiratory syncytial virus. Expert Opin Investig Drugs 2015; 24:1613-30. [DOI: 10.1517/13543784.2015.1099626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Lay MK, Bueno SM, Gálvez N, Riedel CA, Kalergis AM. New insights on the viral and host factors contributing to the airway pathogenesis caused by the respiratory syncytial virus. Crit Rev Microbiol 2015; 42:800-12. [PMID: 26119025 DOI: 10.3109/1040841x.2015.1055711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory syncytial virus (RSV) is the most prevalent etiological agent of lower respiratory tract infections and the first cause of hospitalization in infants due to respiratory disease worldwide. However, efforts to develop safe and effective vaccines and antivirals have been challenged by an incomplete understanding of the RSV pathogenesis and the host immune response to RSV infection in the airways. Here, we discuss recent advances in understanding the interaction between RSV and the epithelium to induce pathogenesis in the airways, such as the role of the RSV NS2 protein in the airway epithelium, as well as the events involved in the RSV entry process. In addition, we summarize the cellular factors produced by airway epithelial cells (AECs) in response to RSV infection that lead to the activation of innate and adaptive immune responses, inducing lung inflammation and disease. Further, we discuss the possible contribution of a recently identified cytokine, thymic stromal lymphopoitein (TSLP), in the lung immunopathology caused by RSV.
Collapse
Affiliation(s)
- Margarita K Lay
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile .,b INSERM U1064 , Nantes , France
| | - Nicolás Gálvez
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- c Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Laboratorio de Biología Celular y Farmacología, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello , Santiago , Chile , and
| | - Alexis M Kalergis
- a Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile , Santiago , Chile .,b INSERM U1064 , Nantes , France .,d Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
59
|
CD4+ T cells promote antibody production but not sustained affinity maturation during Borrelia burgdorferi infection. Infect Immun 2014; 83:48-56. [PMID: 25312948 DOI: 10.1128/iai.02471-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 T(FH) cells. We report that CD4 T cells were effectively primed and T(FH) cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy.
Collapse
|