51
|
Barminko J, Reinholt B, Baron MH. Development and differentiation of the erythroid lineage in mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:18-29. [PMID: 26709231 PMCID: PMC4775370 DOI: 10.1016/j.dci.2015.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 05/02/2023]
Abstract
The red blood cell (RBC) is responsible for performing the highly specialized function of oxygen transport, making it essential for survival during gestation and postnatal life. Establishment of sufficient RBC numbers, therefore, has evolved to be a major priority of the postimplantation embryo. The "primitive" erythroid lineage is the first to be specified in the developing embryo proper. Significant resources are dedicated to producing RBCs throughout gestation. Two transient and morphologically distinct waves of hematopoietic progenitor-derived erythropoiesis are observed in development before hematopoietic stem cells (HSCs) take over to produce "definitive" RBCs in the fetal liver. Toward the end of gestation, HSCs migrate to the bone marrow, which becomes the primary site of RBC production in the adult. Erythropoiesis is regulated at various stages of erythroid cell maturation to ensure sufficient production of RBCs in response to physiological demands. Here, we highlight key aspects of mammalian erythroid development and maturation as well as differences among the primitive and definitive erythroid cell lineages.
Collapse
Affiliation(s)
- Jeffrey Barminko
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brad Reinholt
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Margaret H Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
52
|
Ferguson DJP, Green CA, Ahmed M, King MJ. Peripheral marginalisation of endoplasmic reticulum membranes in cultured erythroblasts of congenital dyserythropoietic anaemia type II. J Clin Pathol 2016; 69:649-51. [PMID: 27010435 DOI: 10.1136/jclinpath-2016-203611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 11/03/2022]
Affiliation(s)
- D J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford, UK
| | - C A Green
- Bristol Institution of Transfusion Science, NHS Blood and Transplant, Bristol, UK
| | - M Ahmed
- Department of Haematology, University College London Cancer Institute, London, UK
| | - M-J King
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
53
|
Society for Pediatric Research 2015 Young Investigator Award: genetics of human hematopoiesis-what patients can teach us about blood cell production. Pediatr Res 2016; 79:366-70. [PMID: 26575596 DOI: 10.1038/pr.2015.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/09/2022]
Abstract
Blood cell production or hematopoiesis is one of the most well-understood paradigms of cell differentiation in the body. The majority of work on hematopoiesis comes from studies that have primarily been conducted in mice, zebrafish, or other valuable model systems. However, it is clear that such model organisms may not consistently and faithfully mimic what is observed in humans with blood disorders. Moreover, there is significant divergence between species that is increasingly being appreciated at the genomic level. As a result, there is an opportunity to use observations in humans to provide a refined view of hematopoiesis. Here, we discuss vignettes from our work that illustrate how insight from human genetics can improve our understanding of blood cell production and identify promising therapeutic approaches for blood disorders.
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Research into the fundamental mechanisms of erythropoiesis has provided critical insights into inherited and acquired disorders of the erythrocyte. Studies of human erythropoiesis have primarily utilized in-vitro systems, whereas murine models have provided insights from in-vivo studies. This report reviews recent insights into human and murine erythropoiesis gained from transcriptome-based analyses. RECENT FINDINGS The availability of high-throughput genomic methodologies has allowed attainment of detailed gene expression data from cells at varying developmental and differentiation stages of erythropoiesis. Transcriptome analyses of human and murine reveal both stage and species-specific similarities and differences across terminal erythroid differentiation. Erythroid-specific long noncoding RNAs exhibit poor sequence conservation between human and mouse. Genome-wide analyses of alternative splicing reveal that complex, dynamic, stage-specific programs of alternative splicing program are utilized during terminal erythroid differentiation. Transcriptome data provide a significant resource for understanding mechanisms of normal and perturbed erythropoiesis. Understanding these processes will provide innovative strategies to detect, diagnose, prevent, and treat hematologic disease. SUMMARY Understanding the shared and different mechanisms controlling human and murine erythropoiesis will allow investigators to leverage the best model system to provide insights in normal and perturbed erythropoiesis.
Collapse
|
55
|
Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi JT. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics 2015; 16:952. [PMID: 26573221 PMCID: PMC4647483 DOI: 10.1186/s12864-015-2156-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background Human erythrocytes are terminally differentiated, anucleate cells long thought to lack RNAs. However, previous studies have shown the persistence of many small-sized RNAs in erythrocytes. To comprehensively define the erythrocyte transcriptome, we used high-throughput sequencing to identify both short (18–24 nt) and long (>200 nt) RNAs in mature erythrocytes. Results Analysis of the short RNA transcriptome with miRDeep identified 287 known and 72 putative novel microRNAs. Unexpectedly, we also uncover an extensive repertoire of long erythrocyte RNAs that encode many proteins critical for erythrocyte differentiation and function. Additionally, the erythrocyte long RNA transcriptome is significantly enriched in the erythroid progenitor transcriptome. Joint analysis of both short and long RNAs identified several loci with co-expression of both microRNAs and long RNAs spanning microRNA precursor regions. Within the miR-144/451 locus previously implicated in erythroid development, we observed unique co-expression of several primate-specific noncoding RNAs, including a lncRNA, and miR-4732-5p/-3p. We show that miR-4732-3p targets both SMAD2 and SMAD4, two critical components of the TGF-β pathway implicated in erythropoiesis. Furthermore, miR-4732-3p represses SMAD2/4-dependent TGF-β signaling, thereby promoting cell proliferation during erythroid differentiation. Conclusions Our study presents the most extensive profiling of erythrocyte RNAs to date, and describes primate-specific interactions between the key modulator miR-4732-3p and TGF-β signaling during human erythropoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2156-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer F Doss
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - Dereje D Jima
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, 27710, USA.
| | - Sandeep S Dave
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
56
|
Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice. Sci Rep 2015; 5:15471. [PMID: 26494538 PMCID: PMC4616029 DOI: 10.1038/srep15471] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo.
Collapse
|
57
|
Mu W, Wang X, Zhang X, Zhu S, Sun D, Ka W, Sung LA, Yao W. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis. PLoS One 2015; 10:e0136607. [PMID: 26308647 PMCID: PMC4550387 DOI: 10.1371/journal.pone.0136607] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022] Open
Abstract
The membrane skeleton of mature erythrocyte is formed during erythroid differentiation. Fluid shear stress is one of the main factors that promote embryonic hematopoiesis, however, its effects on erythroid differentiation and cytoskeleton remodeling are unclear. Erythrocyte tropomodulin of 41 kDa (E-Tmod41) caps the pointed end of actin filament (F-actin) and is critical for the formation of hexagonal topology of erythrocyte membrane skeleton. Our study focused on the regulation of E-Tmod41 and its role in F-actin cytoskeleton remodeling during erythroid differentiation induced by fluid shear stress. Mouse erythroleukemia (MEL) cells and embryonic erythroblasts were subjected to fluid shear stress (5 dyn/cm2) and erythroid differentiation was induced in both cells. F-actin content and E-Tmod41 expression were significantly increased in MEL cells after shearing. E-Tmod41 overexpression resulted in a significant increase in F-actin content, while the knockdown of E-Tmod41 generated the opposite result. An E-Tmod 3’UTR targeting miRNA, miR-23b-3p, was found suppressed by shear stress. When miR-23b-3p level was overexpressed / inhibited, both E-Tmod41 protein level and F-actin content were reduced / augmented. Furthermore, among the two alternative promoters of E-Tmod, PE0 (upstream of exon 0), which mainly drives the expression of E-Tmod41, was found activated by shear stress. In conclusion, our results suggest that fluid shear stress could induce erythroid differentiation and F-actin cytoskeleton remodeling. It upregulates E-Tmod41 expression through miR-23b-3p suppression and PE0 promoter activation, which, in turn, contributes to F-actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Weiyun Mu
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen hospital, Capital Medical University, Beijing, 100029, China
| | - Xiaolan Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sida Zhu
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Dagong Sun
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weibo Ka
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States of America
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- * E-mail:
| |
Collapse
|
58
|
Sankaran VG, Weiss MJ. Anemia: progress in molecular mechanisms and therapies. Nat Med 2015; 21:221-30. [PMID: 25742458 DOI: 10.1038/nm.3814] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
Anemia is a major source of morbidity and mortality worldwide. Here we review recent insights into how red blood cells (RBCs) are produced, the pathogenic mechanisms underlying various forms of anemia, and novel therapies derived from these findings. It is likely that these new insights, mainly arising from basic scientific studies, will contribute immensely to both the understanding of frequently debilitating forms of anemia and the ability to treat affected patients. Major worldwide diseases that are likely to benefit from new advances include the hemoglobinopathies (β-thalassemia and sickle cell disease); rare genetic disorders of RBC production; and anemias associated with chronic kidney disease, inflammation, and cancer. Promising new approaches to treatment include drugs that target recently defined pathways in RBC production, iron metabolism, and fetal globin-family gene expression, as well as gene therapies that use improved viral vectors and newly developed genome editing technologies.
Collapse
Affiliation(s)
- Vijay G Sankaran
- 1] Division of Hematology and Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA. [2] Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [3] Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
59
|
Satchwell TJ, Bell AJ, Toye AM. The sorting of blood group active proteins during enucleation. ISBT SCIENCE SERIES 2015; 10:163-168. [PMID: 26640516 PMCID: PMC4668593 DOI: 10.1111/voxs.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enucleation represents the critical stage during red blood cell development when the nucleus is extruded from an orthochromatic erythroblast in order to generate a nascent immature reticulocyte. Extrusion of the nucleus results in loss of a proportion of the erythroblast plasma membrane, which surrounds the nucleus, the bulk of the endoplasmic reticulum and a small region of cytoplasm. For this reason enucleation provides an important point in erythroblast differentiation at which proteins not required for the function of the erythrocyte can be lost, whilst those that are important for the structure-function properties of the mature erythrocyte must be efficiently retained in the reticulocyte plasma membrane. Disturbances in protein distribution during enucleation are envisaged to occur during human diseases such as Hereditary Spherocytosis. This article will discuss the current knowledge of erythroblast enucleation in the context of retention and loss of proteins that display antigenic blood group sites and that exist within multiprotein complexes within the erythrocyte membrane.
Collapse
Affiliation(s)
- Timothy J. Satchwell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| | - Amanda J. Bell
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
| | - Ashley M. Toye
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol
| |
Collapse
|
60
|
The Human GATA1 Gene Retains a 5' Insulator That Maintains Chromosomal Architecture and GATA1 Expression Levels in Splenic Erythroblasts. Mol Cell Biol 2015; 35:1825-37. [PMID: 25755285 DOI: 10.1128/mcb.00011-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/04/2015] [Indexed: 01/21/2023] Open
Abstract
GATA1 is a key transcription factor for erythropoiesis. GATA1 gene expression is strictly regulated at the transcriptional level. While the regulatory mechanisms governing mouse Gata1 (mGata1) gene expression have been studied extensively, how expression of the human GATA1 (hGATA1) gene is regulated remains to be elucidated. To address this issue, we generated hGATA1 bacterial artificial chromosome (BAC) transgenic mouse lines harboring a 183-kb hGATA1 locus covering the hGATA1 exons and distal flanking sequences. Transgenic hGATA1 expression coincides with endogenous mGata1 expression and fully rescues hematopoietic deficiency in mGata1 knockdown mice. The transgene exhibited copy number-dependent and integration position-independent expression of hGATA1, indicating the presence of chromatin insulator activity within the transgene. We found a novel insulator element at 29 kb 5' to the hGATA1 gene and refer to this element as the 5' CCCTC-binding factor (CTCF) site. Substitution mutation of the 5' CTCF site in the hGATA1 BAC disrupted the chromatin architecture and led to a reduction of hGATA1 expression in splenic erythroblasts under conditions of stress erythropoiesis. Our results demonstrate that expression of the hGATA1 gene is regulated through the chromatin architecture organized by 5' CTCF site-mediated intrachromosomal interactions in the hGATA1 locus.
Collapse
|
61
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
62
|
Ulirsch JC, Lacy JN, An X, Mohandas N, Mikkelsen TS, Sankaran VG. Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation. PLoS Genet 2014; 10:e1004890. [PMID: 25521328 PMCID: PMC4270484 DOI: 10.1371/journal.pgen.1004890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is one of the best understood examples of cellular differentiation. Morphologically, erythroid differentiation proceeds in a nearly identical fashion between humans and mice, but recent evidence has shown that networks of gene expression governing this process are divergent between species. We undertook a systematic comparative analysis of six histone modifications and four transcriptional master regulators in primary proerythroblasts and erythroid cell lines to better understand the underlying basis of these transcriptional differences. Our analyses suggest that while chromatin structure across orthologous promoters is strongly conserved, subtle differences are associated with transcriptional divergence between species. Many transcription factor (TF) occupancy sites were poorly conserved across species (∼25% for GATA1, TAL1, and NFE2) but were more conserved between proerythroblasts and cell lines derived from the same species. We found that certain cis-regulatory modules co-occupied by GATA1, TAL1, and KLF1 are under strict evolutionary constraint and localize to genes necessary for erythroid cell identity. More generally, we show that conserved TF occupancy sites are indicative of active regulatory regions and strong gene expression that is sustained during maturation. Our results suggest that evolutionary turnover of TF binding sites associates with changes in the underlying chromatin structure, driving transcriptional divergence. We provide examples of how this framework can be applied to understand epigenomic variation in specific regulatory regions, such as the β-globin gene locus. Our findings have important implications for understanding epigenomic changes that mediate variation in cellular differentiation across species, while also providing a valuable resource for studies of hematopoiesis. The process whereby blood progenitor cells differentiate into red blood cells, known as erythropoiesis, is very similar between mice and humans. Yet, while studies of this process in mouse have substantially improved our knowledge of human erythropoiesis, recent work has shown a significant divergence in global gene expression across species, suggesting that extrapolation from mouse models to human is not always straightforward. In order to better understand these differences, we have performed a comparative epigenomic analysis of six histone modifications and four master transcription factors. By globally comparing chromatin structure across primary cells and model cell lines in both species, we discovered that while chromatin structure is well conserved at orthologous promoters, subtle changes are predictive of species-specific gene expression. Furthermore, we discovered that the genomic localizations of master transcription factors are poorly conserved, and species-specific losses or gains are associated with changes to the underlying chromatin structure and concomitant gene expression. By using our comparative epigenomics framework, we identified a putative human-specific cis-regulatory module that drives expression of human, but not mouse, GDF15, a gene implicated in iron homeostasis. Our results provide a resource to aid researchers in interpreting genetic and epigenetic differences between species.
Collapse
Affiliation(s)
- Jacob C. Ulirsch
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica N. Lacy
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Xiuli An
- New York Blood Center, New York, New York, United States of America
| | - Narla Mohandas
- New York Blood Center, New York, New York, United States of America
| | - Tarjei S. Mikkelsen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
63
|
|
64
|
Renella R, Schlehe JS, Selkoe DJ, Williams DA, LaVoie MJ. Genetic deletion of the GATA1-regulated protein α-synuclein reduces oxidative stress and nitric oxide synthase levels in mature erythrocytes. Am J Hematol 2014; 89:974-7. [PMID: 25043722 DOI: 10.1002/ajh.23796] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/10/2023]
Abstract
α-Synuclein is highly expressed in neural tissue and during erythropoiesis, where the key erythroid regulator GATA1 has been found to modulate its expression. While specific α-synuclein (SNCA) mutations are known to cause autosomal dominant familial Parkinson's disease, its wild-type function remains under debate. To investigate the role of α-synuclein in murine hematopoiesis and erythropoiesis, we utilized Snca knock-out mice and analyzed erythroid compartments for maturation defects, in vivo erythrocyte survival, and erythrocyte-based reactive oxygen species (ROS) and nitric oxide synthase (NOS) levels. Our findings show that while bone marrow and spleen erythropoiesis and peripheral blood erythrocyte survival in Snca(-/-) mice was comparable to controls, the levels of ROS and of NOS-2 were significantly decreased in mature erythrocytes in these animals. These results indicate a role for α-synuclein in regulating oxidative stress in erythrocytes in vivo and could open new avenues for the investigation of its function in non-neural tissue.
Collapse
Affiliation(s)
- Raffaele Renella
- Division of Hematology-Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Julia S. Schlehe
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - Dennis J. Selkoe
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - David A. Williams
- Division of Hematology-Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| | - Matthew J. LaVoie
- Center for Neurologic Diseases; Department of Neurology; Brigham & Women's Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
65
|
|
66
|
Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B. Mol Cell Biol 2014; 34:3721-34. [PMID: 25071156 DOI: 10.1128/mcb.00287-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Congenital dyserythropoietic anemia type II (CDAII) is an autosomal recessive disease of ineffective erythropoiesis characterized by increased bi/multinucleated erythroid precursors in the bone marrow. CDAII results from mutations in SEC23B. The SEC23 protein is a core component of coat protein complex II-coated vesicles, which transport secretory proteins from the endoplasmic reticulum to the Golgi apparatus. Though the genetic defect underlying CDAII has been identified, the pathophysiology of this disease remains unknown. We previously reported that SEC23B-deficient mice die perinatally, exhibiting massive pancreatic degeneration, with this early mortality limiting evaluation of the adult hematopoietic compartment. We now report that mice with SEC23B deficiency restricted to the hematopoietic compartment survive normally and do not exhibit anemia or other CDAII characteristics. We also demonstrate that SEC23B-deficient hematopoietic stem cells (HSC) do not exhibit a disadvantage at reconstituting hematopoiesis when compared directly to wild-type HSC in a competitive repopulation assay. Secondary bone marrow transplants demonstrated continued equivalence of SEC23B-deficient and WT HSC in their hematopoietic reconstitution potential. The surprising discordance in phenotypes between SEC23B-deficient mice and humans may reflect an evolutionary shift in SEC23 paralog function and/or expression, or a change in a specific COPII cargo critical for erythropoiesis.
Collapse
|