51
|
A Novel Role of Interleukin 13 Receptor alpha2 in Perineural Invasion and its Association with Poor Prognosis of Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12051294. [PMID: 32443847 PMCID: PMC7281570 DOI: 10.3390/cancers12051294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/06/2023] Open
Abstract
Perineural invasion (PNI) is one of the major pathological characteristics of pancreatic ductal adeno-carcinoma (PDAC), which is mediated by invading cancer cells into nerve cells. Herein, we identify the overexpression of Interleukin-13 Receptor alpha2 (IL-13Rα2) in the PNI from 236 PDAC samples by studying its expression at the protein levels by immunohistochemistry (IHC) and the RNA level by in situ hybridization (ISH). We observe that ≥75% samples overexpressed IL-13Rα2 by IHC and ISH in grade 2 and 3 tumors, while ≥64% stage II and III tumors overexpressed IL-13Rα2 (≥2+). Interestingly, ≥36 % peripancreatic neural plexus (PL) and ≥70% nerve endings (Ne) among PNI in PDAC samples showed higher levels of IL-13Rα2 (≥2+). IL-13Rα2 +ve PL and Ne subjects survived significantly less than IL-13Rα2 –ve subjects, suggesting that IL-13Rα2 may have a unique role as a biomarker of PNI-aggressiveness. Importantly, IL-13Rα2 may be a therapeutic target for intervention, which might not only prolong patient survival but also help alleviate pain attributed to perineural invasion. Our study uncovers a novel role of IL-13Rα2 in PNI as a key factor of the disease severity, thus revealing a therapeutically targetable option for PDAC and to facilitate PNI-associated pain management.
Collapse
|
52
|
Choi YD, Jung JY, Baek M, Khan S, Song PI, Ryu S, Koo JY, Chauhan SC, Tsin A, Choi C, Kim WJ, Kim M. APE1 Promotes Pancreatic Cancer Proliferation through GFRα1/Src/ERK Axis-Cascade Signaling in Response to GDNF. Int J Mol Sci 2020; 21:E3586. [PMID: 32438692 PMCID: PMC7279477 DOI: 10.3390/ijms21103586] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer is the worst exocrine gastrointestinal cancer leading to the highest mortality. Recent studies reported that aberrant expression of apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is involved in uncontrolled cell growth. However, the molecular mechanism of APE1 biological role remains unrevealed in pancreatic cancer progression. Here, we demonstrate that APE1 accelerates pancreatic cancer cell proliferation through glial cell line-derived neurotrophic factor (GDNF)/glial factor receptor α1 (GFRα1)/Src/ERK axis-cascade signaling. The proliferation of endogenous APE1 expressed-MIA PaCa-2, a human pancreatic carcinoma cell line, was increased by treatment with GDNF, a ligand of GFRα1. Either of downregulated APE1 or GFRα1 expression using small interference RNA (siRNA) inhibited GDNF-induced cancer cell proliferation. The MEK-1 inhibitor PD98059 decreased GDNF-induced MIA PaCa-2 cell proliferation. Src inactivation by either its siRNA or Src inhibitor decreased ERK-phosphorylation in response to GDNF in MIA PaCa-2 cells. Overexpression of GFRα1 in APE1-deficient MIA PaCa-2 cells activated the phosphorylation of Src and ERK. The expression of both APE1 and GFRα1 was gradually increased as progressing pancreatic cancer grades. Our results highlight a critical role for APE1 in GDNF-induced pancreatic cancer cell proliferation through APE1/GFRα1/Src/ERK axis-cascade signaling and provide evidence for future potential therapeutic drug targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju 61186, Korea; (Y.-D.C.); (J.-Y.K.)
| | - Ji-Yeon Jung
- Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Minwoo Baek
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, USA;
| | - Sheema Khan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.K.); (S.C.C.)
| | - Peter I. Song
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (P.I.S.); (A.T.)
| | - Sunhyo Ryu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA 02118, USA;
| | - Joo-Yeon Koo
- Department of Pathology, Chonnam National University Medical School, Gwangju 61186, Korea; (Y.-D.C.); (J.-Y.K.)
| | - Subhash C. Chauhan
- Department of Immunology & Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.K.); (S.C.C.)
| | - Andrew Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (P.I.S.); (A.T.)
| | - Chan Choi
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Won Jae Kim
- Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
| | - Mihwa Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju 61186, Korea; (Y.-D.C.); (J.-Y.K.)
- Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea;
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (P.I.S.); (A.T.)
| |
Collapse
|
53
|
Bautista M, Krishnan A. The Autonomic Regulation of Tumor Growth and the Missing Links. Front Oncol 2020; 10:744. [PMID: 32477953 PMCID: PMC7237572 DOI: 10.3389/fonc.2020.00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence now indicates that peripheral nerves and solid tumors mutually support the growth of each other. Tumor-derived molecular cues guide nerve infiltration to the tumor milieu, while the tumor-infiltrating nerves provide molecular support to promote tumor growth and dissemination. In this mini-review, we discuss the unique roles of sympathetic and parasympathetic nerves in promoting tumor growth and metastasis. The contribution of adrenergic and cholinergic signals, the specific receptors involved, and the downstream molecular links in both cancer cells and stromal cells are discussed for their intrinsic capacity to modulate tumor growth. We identified unappreciated niche areas in the field, an investigation of which are critical to filling the knowledge gap in understanding the biology of neuromodulation of cancers.
Collapse
Affiliation(s)
- Maricris Bautista
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Cameco MS Neuroscience Research Centre (CMSNRC), University of Saskatchewan, Saskatoon, SK, Canada
| | - Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Cameco MS Neuroscience Research Centre (CMSNRC), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
54
|
Moccia M, Frett B, Zhang L, Lakkaniga NR, Briggs DC, Chauhan R, Brescia A, Federico G, Yan W, Santoro M, McDonald NQ, Li HY, Carlomagno F. Bioisosteric Discovery of NPA101.3, a Second-Generation RET/VEGFR2 Inhibitor Optimized for Single-Agent Polypharmacology. J Med Chem 2020; 63:4506-4516. [PMID: 32298114 PMCID: PMC7901654 DOI: 10.1021/acs.jmedchem.9b01336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RET receptor tyrosine kinase is a driver oncogene in human cancer. We recently identified the clinical drug candidate Pz-1, which targets RET and VEGFR2. A key in vivo metabolite of Pz-1 is its less active demethylated pyrazole analogue. Using bioisosteric substitution methods, here, we report the identification of NPA101.3, lacking the structural liability for demethylation. NPA101.3 showed a selective inhibitory profile and an inhibitory concentration 50 (IC50) of <0.003 μM for both RET and VEGFR2. NPA101.3 inhibited phosphorylation of all tested RET oncoproteins as well as VEGFR2 and proliferation of cells transformed by RET. Oral administration of NPA101.3 (10 mg/kg/day) completely prevented formation of tumors induced by RET/C634Y-transformed cells, while it weakened, but did not abrogate, formation of tumors induced by a control oncogene (HRAS/G12V). The balanced synchronous inhibition of both RET and VEGFR2, as well the resistance to demethylation, renders NPA101.3 a potential clinical candidate for RET-driven cancers.
Collapse
Affiliation(s)
- Marialuisa Moccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States.,Synactix Pharmaceuticals, Inc., Tucson, Arizona 85718, United States
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Rakhee Chauhan
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Annalisa Brescia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Giorgia Federico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London WC1E 7HX, U.K
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States.,Synactix Pharmaceuticals, Inc., Tucson, Arizona 85718, United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, 80131 Napoli, Italy
| |
Collapse
|
55
|
Chernichenko N, Omelchenko T, Deborde S, Bakst RL, He S, Chen CH, Gusain L, Vakiani E, Katabi N, Hall A, Wong RJ. Cdc42 Mediates Cancer Cell Chemotaxis in Perineural Invasion. Mol Cancer Res 2020; 18:913-925. [PMID: 32086369 DOI: 10.1158/1541-7786.mcr-19-0726] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
Perineural invasion (PNI) is an ominous form of cancer progression along nerves associated with poor clinical outcome. Glial derived neurotrophic factor (GDNF) interacts with cancer cell RET receptors to enable PNI, but downstream events remain undefined. We demonstrate that GDNF leads to early activation of the GTPase Cdc42 in pancreatic cancer cells, but only delayed activation of RhoA and does not affect Rac1. Depletion of Cdc42 impairs pancreatic cancer cell chemotaxis toward GDNF and nerves. An siRNA library of guanine nucleotide exchange factors was screened to identify activators of Cdc42. ARHGEF7 (β-Pix) was required for Cdc42 activation and chemotaxis toward nerves, and also colocalizes with RET under GDNF stimulation. Cdc42 enables PNI in an in vitro dorsal root ganglia coculture model, and controls the directionality of migration but does not affect cell speed or cell viability. In contrast, Rac1 was necessary for cell speed but not directionality, while the RhoA was not necessary for either cell speed or directionality. Cdc42 was required for PNI in an in vivo murine sciatic nerve model. Depletion of Cdc42 significantly diminished the length of PNI, volume of PNI, and motor nerve paralysis resulting from PNI. Activated Cdc42 is expressed in human salivary ductal cancer cells invading nerves. These findings establish the GDNF-RET-β-Pix-Cdc42 pathway as a directional regulator of pancreatic cancer cell migration toward nerves, highlight the importance of directional migration in PNI, and offer novel targets for therapy. IMPLICATIONS: Cdc42 regulates cancer cell directional migration toward and along nerves in PNI.
Collapse
Affiliation(s)
- Natalya Chernichenko
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sylvie Deborde
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard L Bakst
- Department of Radiation Oncology, Mount Sinai Hospital, New York, New York
| | - Shizhi He
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Laxmi Gusain
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Alan Hall
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard J Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
56
|
Cao H, He Q, von Eyben R, Bloomstein J, Nambiar DK, Viswanathan V, Aggarwal S, Kwok S, Liang R, Koong AJ, Lewis JS, Kong C, Xiao N, Le QT. The role of Glial cell derived neurotrophic factor in head and neck cancer. PLoS One 2020; 15:e0229311. [PMID: 32084217 PMCID: PMC7034888 DOI: 10.1371/journal.pone.0229311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) is reported to promote the survival of neurons and salivary gland regeneration after radiation damage. This study investigated the effect of GDNF on cell migration, growth, and response to radiation in preclinical models of head and neck squamous cell carcinoma (HNSCC) and correlated GDNF expression to treatment outcomes in HNSCC patients. Our ultimate goal is to determine whether systemic administration of GDNF at high dose is safe for the management of hyposalivation or xerostomia in HNSCC patients. Three HPV-positive and three HPV-negative cell lines were examined for cell migration, growth, and clonogenic survival in vitro and tumor growth assay in vivo. Immunohistochemical staining of GDNF, its receptors GFRα1 and its co-receptor RET was performed on two independent HNSCC tissue microarrays (TMA) and correlated to treatment outcomes. Results showed that GDNF only enhanced cell migration in two HPV-positive cells at supra-physiologic doses, but not in HPV-negative cells. GDNF did not increase cell survival in the tested cell lines post-irradiation. Likewise, GDNF treatment affected neither tumor growth in vitro nor response to radiation in xenografts in two HPV-positive and two HPV-negative HNSCC models. High stromal expression of GDNF protein was associated with worse overall survival in HPV-negative HNSCC on multivariate analysis in a combined cohort of patients from Stanford University (n = 82) and Washington University (n = 189); however, the association between GDNF gene expression and worse survival was not confirmed in a separate group of HPV-negative HNSCC patients identified from the Cancer Genome Atlas (TCGA) database. Based on these data, we do not believe that GNDF is a safe systemic treatment to prevent or treat xerostomia in HNSCC and a local delivery approach such as intraglandular injection needs to be explored.
Collapse
Affiliation(s)
- Hongbin Cao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Qian He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joshua Bloomstein
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dhanya K. Nambiar
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sonya Aggarwal
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shirley Kwok
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rachel Liang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Amanda Jeanette Koong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - James S. Lewis
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nan Xiao
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
57
|
Ma WR, Xu P, Liu ZJ, Zhou J, Gu LK, Zhang J, Deng DJ. Impact of GFRA1 gene reactivation by DNA demethylation on prognosis of patients with metastatic colon cancer. World J Gastroenterol 2020; 26:184-198. [PMID: 31988584 PMCID: PMC6962434 DOI: 10.3748/wjg.v26.i2.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers, which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways. Several therapeutic anti-GFRA1 antibody-drug conjugates are under development. Demethylation (or hypomethylation) of GFRA1 CpG islands (dmGFRA1) is associated with increased gene expression and metastasis risk of gastric cancer. However, it is unknown whether dmGFRA1 affects the metastasis of other cancers, including colon cancer (CC).
AIM To study whether dmGFRA1 is a driver for CC metastasis and GFRA1 is a potential therapeutic target.
METHODS CC and paired surgical margin tissue samples from 144 inpatients and normal colon mucosal biopsies from 21 noncancer patients were included in this study. The methylation status of GFRA1 islands was determined by MethyLight and denaturing high-performance liquid chromatography and bisulfite-sequencing. Kaplan-Meier analysis was used to explore the effect of dmGFRA1 on the survival of CC patients. Impacts of GFRA1 on CC cell proliferation and migration were evaluated by a battery of biological assays in vitro and in vivo. The phosphorylation of AKT and ERK proteins was examined by Western blot analysis.
RESULTS The proportion of dmGFRA1 in CC, surgical margin, and normal colon tissues by MethyLight was 68.4%, 73.4%, and 35.9% (median; nonparametric test, P = 0.001 and < 0.001), respectively. Using the median value of dmGFRA1 peak area proportion as the cutoff, the proportion of dmGFRA1-high samples was much higher in poorly differentiated CC samples than in moderately or well-differentiated samples (92.3%% vs 55.8%, Chi-square test, P = 0.002) and significantly higher in CC samples with distant metastasis than in samples without (77.8% vs 46.0%, P = 0.021). The overall survival of patients with dmGFRA1-low CC was significantly longer than that of patients with dmGFRA1-high CC (adjusted hazard ratio = 0.49, 95% confidence interval: 0.24-0.98), especially for 89 CC patients with metastatic CC (adjusted hazard ratio = 0.41, 95% confidence interval: 0.18-0.91). These data were confirmed by the mining results from TCGA datasets. Furthermore, GFRA1 overexpression significantly promoted the proliferation/invasion of RKO and HCT116 cells and the growth of RKO cells in nude mice but did not affect their migration. GFRA1 overexpression markedly increased the phosphorylation levels of AKT and ERK proteins, two key molecules in two classic GFRA1 downstream pathways.
CONCLUSION GFRA1 expression is frequently reactivated by DNA demethylation in CC tissues and is significantly associated with a poor prognosis in patients with CC, especially those with metastatic CC. GFRA1 can promote the proliferation/growth of CC cells, probably by the activation of AKT and ERK pathways. GFRA1 might be a therapeutic target for CC patients, especially those with metastatic potential.
Collapse
Affiliation(s)
- Wan-Ru Ma
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Peng Xu
- Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
- Morphological Center of Basic Medical School of Xinjiang Medical University, Urumqi 830011, Xinjiang Uygur Autonomous Region, China
| | - Zhao-Jun Liu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Lian-Kun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| | - Jun Zhang
- Shihezi University School of Medicine, Shihezi 832000, Xinjiang Uygur Autonomous Region, China
| | - Da-Jun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100143, China
| |
Collapse
|
58
|
Tao L, Ma W, Wu L, Xu M, Yang Y, Zhang W, Sha W, Li H, Xu J, Feng R, Xue D, Zhang J, Dooley S, Seki E, Liu P, Liu C. Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling. Gut 2019; 68:2214-2227. [PMID: 31171625 PMCID: PMC6842044 DOI: 10.1136/gutjnl-2018-317872] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-β superfamily, its function in liver fibrosis has rarely been studied. Here, we investigated the role of GDNF in hepatic stellate cell (HSC) activation and liver fibrosis in humans and mice. DESIGN GDNF expression was examined in liver biopsies and sera from patients with liver fibrosis. The functional role of GDNF in liver fibrosis was examined in mice with adenoviral delivery of the GDNF gene, GDNF sgRNA CRISPR/Cas9 and the administration of GDNF-blocking antibodies. GDNF was examined on HSC activation using human and mouse primary HSCs. The binding of activin receptor-like kinase 5 (ALK5) to GDNF was determined using surface plasmon resonance (SPR), molecular docking, mutagenesis and co-immunoprecipitation. RESULTS GDNF mRNA and protein levels are significantly upregulated in patients with stage F4 fibrosis. Serum GDNF content correlates positively with α-smooth muscle actin (α-SMA) and Col1A1 mRNA in human fibrotic livers. Mice with overexpressed GDNF display aggravated liver fibrosis, while mice with silenced GDNF expression or signalling inhibition by GDNF-blocking antibodies have reduced fibrosis and HSC activation. GDNF is confined mainly to HSCs and contributes to HSC activation through ALK5 at His39 and Asp76 and through downstream signalling via Smad2/3, but not through GDNF family receptor alpha-1 (GFRα1). GDNF, ALK5 and α-SMA colocalise in human and mouse HSCs, as demonstrated by confocal microscopy. CONCLUSIONS GDNF promotes HSC activation and liver fibrosis through ALK5/Smad signalling. Inhibition of GDNF could be a novel therapeutic strategy to combat liver fibrosis.
Collapse
Affiliation(s)
- Le Tao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenting Ma
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Wu
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingyi Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqin Yang
- Department of Pathology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Sha
- Departmentof Endocrinology and Metabolism, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongshan Li
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rilu Feng
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dongying Xue
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhang
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ping Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Liu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Liver Disease, Department of Infectious Disease, PutuoHospital , Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, China
| |
Collapse
|
59
|
Lee TL, Chiu PH, Li WY, Yang MH, Wei PY, Chu PY, Wang YF, Tai SK. Nerve-tumour interaction enhances the aggressiveness of oral squamous cell carcinoma. Clin Otolaryngol 2019; 44:1087-1095. [PMID: 31574203 DOI: 10.1111/coa.13452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/25/2019] [Accepted: 09/29/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Perineural invasion (PNI) is a poor prognostic pathologic feature of oral squamous cell carcinoma (OSCC). The mechanisms of PNI remain poorly understood, and nerve-tumour interactions have been implicated for its pathogenesis. DESIGN AND SETTING Systematic investigation of nerve-tumour interactions was performed using fresh human peripheral nerve. In vitro and in vivo models were used to determine the ability of human peripheral nerves to enhance OSCC migration/invasion. Retrospective cohort study was also carried out in one medical centre from 2001 to 2009. PARTICIPANTS 314 T1-2 OSCC patients. MAIN OUTCOME MEASURES In the transwell migration/invasion assay, the cells in five representative fields were counted. In the nerve implantation model, tumour size was estimated. PNI quantification by PNI focus number was carried out in the OSCC patients to correlate with cervical lymph node metastasis and oncologic outcomes. RESULTS The transwell migration/invasion assay demonstrated that human peripheral nerves, compared with subcutaneous soft tissue, significantly enhanced the migration/invasion abilities of OSCC. Moreover, the enhanced migration was dose-dependent with increased length or number of peripheral nerve segments. The nerve implantation model showed that human peripheral nerve also enhanced OSCC growth in vivo. Finally, increased PNI focus number was found dose-dependently associated with increased cervical lymph node metastasis and decreased 5-year disease-specific survival rates. CONCLUSIONS These results clearly indicated the presence of nerve-tumour interaction that involved paracrine influences leading to aggressiveness of OSCC. Further investigations are required to explore key cell types and molecules involved in nerve-tumour interactions for future therapeutic targeting of PNI in OSCC.
Collapse
Affiliation(s)
- Tsung-Lun Lee
- Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Hsien Chiu
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wing-Yin Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yin Wei
- Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pen-Yuan Chu
- Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fen Wang
- Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shyh-Kuan Tai
- Department of Otolaryngology, National Yang-Ming University, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
60
|
Gu J, Xu W, Peng C, Zhu Y, Wang D, Wang X, Li Y, Wei G, Zhang Z, Zhong Y, Zhao S, Shi M, Cheng D, Ying X, Jin J, Chen H. Perineural invasion is related to p38 mitogen-activated protein kinase pathway activation and promotes tumor growth and chemoresistance in pancreatic cancer. J Cell Biochem 2019; 120:11775-11783. [PMID: 30756419 DOI: 10.1002/jcb.28457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a key component of cancer progression and is strongly associated with poor prognosis. Perineural invasion is thought to be related to pain, tumor recurrence, and other conditions. However, the exact molecular mechanism is unclear. This study was conducted to identify the key components and signaling pathways involved in the perineural invasion of pancreatic cancer and alterations in the phenotype after the interaction between the dorsal root ganglion (DRG) and pancreatic cancer cells. The results indicated that the p38 mitogen-activated protein kinase signaling pathway was activated after coculture of the DRG and pancreatic cancer cells and lead to the promotion of cell growth and chemoresistance.
Collapse
Affiliation(s)
- Jiangning Gu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Di Wang
- Department of Scientific Research, Eyes & ENT Hospital of Fudan University, Shanghai, China
| | - Xuelong Wang
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Zhang
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiming Zhong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shulin Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minmin Shi
- Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfeng Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiayang Ying
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China.,Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
Gasparini G, Pellegatta M, Crippa S, Lena MS, Belfiori G, Doglioni C, Taveggia C, Falconi M. Nerves and Pancreatic Cancer: New Insights into a Dangerous Relationship. Cancers (Basel) 2019; 11:E893. [PMID: 31248001 PMCID: PMC6678884 DOI: 10.3390/cancers11070893] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Perineural invasion (PNI) is defined as the presence of neoplastic cells along nerves and/or within the different layers of nervous fibers: epineural, perineural and endoneural spaces. In pancreatic cancer-particularly in pancreatic ductal adenocarcinoma (PDAC)-PNI has a prevalence between 70 and 100%, surpassing any other solid tumor. PNI has been detected in the early stages of pancreatic cancer and has been associated with pain, increased tumor recurrence and diminished overall survival. Such an early, invasive and recurrent phenomenon is probably crucial for tumor growth and metastasis. PNI is a still not a uniformly characterized event; usually it is described only dichotomously ("present" or "absent"). Recently, a more detailed scoring system for PNI has been proposed, though not specific for pancreatic cancer. Previous studies have implicated several molecules and pathways in PNI, among which are secreted neurotrophins, chemokines and inflammatory cells. However, the mechanisms underlying PNI are poorly understood and several aspects are actively being investigated. In this review, we will discuss the main molecules and signaling pathways implicated in PNI and their roles in the PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Marta Pellegatta
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Stefano Crippa
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Marco Schiavo Lena
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Giulio Belfiori
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy.
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Carla Taveggia
- Axo-Glial Interaction Unit, INSPE, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Massimo Falconi
- Pancreas Translational & Clinical Research Center, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
- Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
62
|
Jonscher R, Belkind-Gerson J. Concise Review: Cellular and Molecular Mechanisms of Postnatal Injury-Induced Enteric Neurogenesis. Stem Cells 2019; 37:1136-1143. [PMID: 31145813 DOI: 10.1002/stem.3045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Although still controversial, there is increasing agreement that postnatal neurogenesis occurs in the enteric nervous system (ENS) in response to injury. Following acute colitis, there is significant cell death of enteric neurons and evidence suggests that subsequent neural regeneration follows. An enteric neural stem/progenitor cell population with neurogenic potential has been identified in culture; in vivo, compensatory neurogenesis is driven by enteric glia and may also include de-differentiated Schwann cells. Recent evidence suggests that changes in the enteric microenvironment due to injury-associated increases in glial cell-derived neurotrophic factor (GDNF), serotonin (5-hydroxytryptamine [HT]), products from the gut microbiome, and possibly endocannabinoids may lead to the transdifferentiation of mature enteric glia and may reprogram recruited Schwann cells. Targeting neurogenic pathways presents a promising avenue toward the development of new and innovative treatments for acquired damage to the ENS. In this review, we discuss potential sources of newly generated adult enteric neurons, the involvement of GDNF, 5-HT, endocannabinoids, and lipopolysaccharide, as well as therapeutic applications of this evolving work. Stem Cells 2019;37:1136-1143.
Collapse
Affiliation(s)
- Raleigh Jonscher
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
63
|
Wang S, Fan Y, Xu Y, Zhang L, Cai L, Lv B. GDNFOS1 knockdown decreases the invasion and viability of glioblastoma cells. Exp Ther Med 2019; 18:1315-1322. [PMID: 31316623 DOI: 10.3892/etm.2019.7670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/10/2019] [Indexed: 01/12/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive primary brain cancer in adults. Therefore, it is important to investigate the mechanisms associated with cell viability and invasion ability of the cells in glioblastoma multiforme. The opposite strand of the glial cell line-derived neurotrophic factor (GDNF) gene is used to transcribe the cis-antisense GDNF opposite strand (GDNFOS) gene, which belongs to the long noncoding RNAs. The current study assessed the effects of GDNFOS1 overexpression and interference on GDNF expression, cell viability and invasion ability in U87 and U251 MG glioblastoma cells. Overexpression and interference were performed using constructed lentiviral vectors, including long non-coding RNA GDNFOS1 overexpression vector, pL-short hairpin RNA (shRNA)-GDNFOS1-9, pL-shRNA-GDNFOS1-49, pL-shRNA-GDNFOS1-248, pL-shRNA-GDNFOS1-9+49, pL-shRNA-GDNFOS1-9+248 and pL-shRNA-GDNFOS1-49+248. Reverse transcription-quantitative PCR was used to determine the efficiency of interference and overexpression of GDNFOS1 in U87 and U251 MG cells. GDNF protein expression in U87 and U251 MG cells was detected using western blot analysis. In addition, cell viability was detected using a cell counting kit-8 assay at 24, 48 and 72 h after GDNFOS1 overexpression or interference. A transwell invasion assay was used to detect invasion ability. Different shRNA sequences were tested and the results revealed that a combination (pL-shRNA-GDNFOS1-49+248) was most effective in the knock-down GDNFOS1. Compared with the control group, GDNF expression in U87 MG cells was significantly increased in the GDNFOS1 overexpression group and decreased in the shRNA-GDNFOS1-248 group. U87 MG cell viability was significantly increased in the GDNFOS1 overexpression group at 24, 48 and 72 h compared with the negative control group. The viability of U87 MG cells was decreased in the GDNFOS1 interference group at 72 h when compared with the control group. The relative invasive ability was significantly increased in the GDNFOS1 overexpression group when compared with the negative control group. The invasive ability was significantly decreased in the GDNFOS1 interference group when compared with the negative control group. Similar results were exhibited by the U251 MG cells. Overall, GDNF expression, cell viability and invasion ability of glioblastoma cells significantly increased with GDNFOS1 overexpression and decreased with GDNFOS1 interference.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Gastroenterology, Ningbo Hospital of TCM Affiliated to Zhejiang Chinese Medical University, Ningbo, Zhejiang 315000, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yihong Fan
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yi Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Lijun Cai
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
64
|
Amit M, Na'ara S, Fridman E, Vladovski E, Wasserman T, Milman N, Gil Z. RET, a targetable driver of pancreatic adenocarcinoma. Int J Cancer 2019; 144:3014-3022. [DOI: 10.1002/ijc.32040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Moran Amit
- Head and Neck SurgeryHouston Methodist Hospital Houston TX USA
- The Laboratory for Applied Cancer Research, The TechnionIsrael Institute of Technology Haifa Israel
- Department of Otolaryngology Head and Neck Surgery, the Head and Neck Center, Rambam Healthcare CampusClinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology Haifa Israel
| | - Shorook Na'ara
- The Laboratory for Applied Cancer Research, The TechnionIsrael Institute of Technology Haifa Israel
- Department of Otolaryngology Head and Neck Surgery, the Head and Neck Center, Rambam Healthcare CampusClinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology Haifa Israel
| | - Eran Fridman
- The Laboratory for Applied Cancer Research, The TechnionIsrael Institute of Technology Haifa Israel
- Department of Otolaryngology Head and Neck Surgery, the Head and Neck Center, Rambam Healthcare CampusClinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology Haifa Israel
| | - Euvgeni Vladovski
- Department of Pathology, Rambam Healthcare Campus, The TechnionIsrael Institute of Technology Haifa Israel
| | - Tanya Wasserman
- Department of Physiology, Biophysics and Systems Biology, Faculty of MedicineTechnion Haifa Israel
| | - Neta Milman
- The Laboratory for Applied Cancer Research, The TechnionIsrael Institute of Technology Haifa Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, The TechnionIsrael Institute of Technology Haifa Israel
- Department of Otolaryngology Head and Neck Surgery, the Head and Neck Center, Rambam Healthcare CampusClinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion, Israel Institute of Technology Haifa Israel
| |
Collapse
|
65
|
Mulligan LM. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front Physiol 2019; 9:1873. [PMID: 30666215 PMCID: PMC6330338 DOI: 10.3389/fphys.2018.01873] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
The Glial cell line-derived neurotrophic Family Ligands (GFL) are soluble neurotrophic factors that are required for development of multiple human tissues, but which are also important contributors to human cancers. GFL signaling occurs through the transmembrane RET receptor tyrosine kinase, a well-characterized oncogene. GFL-independent RET activation, through rearrangement or point mutations occurs in thyroid and lung cancers. However, GFL-mediated activation of wildtype RET is an increasingly recognized mechanism promoting tumor growth and dissemination of a much broader group of cancers. RET and GFL expression have been implicated in metastasis or invasion in diverse human cancers including breast, pancreatic, and prostate tumors, where they are linked to poorer patient prognosis. In addition to directly inducing tumor growth in these diseases, GFL-RET signaling promotes changes in the tumor microenvironment that alter the surrounding stroma and cellular composition to enhance tumor invasion and metastasis. As such, GFL RET signaling is an important target for novel therapeutic approaches to limit tumor growth and spread and improve disease outcomes.
Collapse
Affiliation(s)
- Lois M. Mulligan
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
66
|
Chen SH, Zhang BY, Zhou B, Zhu CZ, Sun LQ, Feng YJ. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am J Cancer Res 2019; 9:1-21. [PMID: 30755808 PMCID: PMC6356921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023] Open
Abstract
Perineural invasion (PNI) can be found in a variety of malignant tumors. It is a sign of tumor metastasis and invasion and portends the poor prognosis of patients. The pathological description and clinical significance of PNI are clearly understood, but exploration of the underlying molecular mechanism is ongoing. It was previously thought that the low-resistance channel in the anatomic region led to the occurrence of PNI. However, with rapid development of precision medicine and molecular biology, we have gradually realized that the occurrence of PNI is not the result of a single factor. The latest study suggests that PNI of cancer is a continuous and multistep process. A specific peripheral microenvironment, also called the perineural niche, is formed by neural cells, supporting cells, recruited inflammatory cells, altered extracellular matrix, blood vessels, and immune components in the background of carcinoma. Various soluble signaling molecules and their receptors comprise a complex signal network, which achieves the interaction between nerve and tumor. Nerve cells and tumor cells can interact directly or through the opening and closing of the signal transduction pathways and/or the recognition and response of the ligands and receptors. The information is transferred to the targets accurately and effectively, leading to the specific interactions between the nerve cells and the malignant tumor cells. PNI occurs through changes in nerve cells and supporting cells in the background of cancer; change and migration of the perineural matrix; enhancement of the viability, mobility, and invasiveness of the tumor cells; injury and regeneration of nerve cells; interaction, chemotactic movement, contact, and adherence of the nerve cells and the tumor cells; escape from autophagy, apoptosis, and immunological surveillance of tumor cells; and so on. Certainly, exploring the mechanism of PNI clearly has great significance for blocking tumor progression and improving patient survival. The current review aims to elucidate the cellular and molecular mechanisms of PNI, which may help us find a strategy for improving the prognosis of malignant tumors.
Collapse
Affiliation(s)
- Shu-Hai Chen
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Bing-Yuan Zhang
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Bin Zhou
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Cheng-Zhan Zhu
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Le-Qi Sun
- Department of Neurosurgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| | - Yu-Jie Feng
- Department of Hepatobiliary Pancreatic Surgery, Affiliated Hospital of Qingdao UniversityQingdao 266003, China
| |
Collapse
|
67
|
Hu XB, Fu SH, Luo QI, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018; 43:985-1000. [PMID: 30541958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Retinal injury plays a leading role in the onset of visual impairment. Current forms of treatment are not able to ameliorate scarring, cell death and tissue and axon regeneration. Recently, microRNA-216a (miR-216a) has been reported to regulate snx5, a novel notch signalling pathway component during retinal development. This study aims to elucidate the role of miR-216a in yttrium aluminium garnet (YAG) laser-induced retinal injury by targeting glial cell line-derived neurotrophic factor (GDNF) via GDNF/GDNF family neurotrophic factor receptor α1 (GFRα1)/rearranged during transfection (RET) signalling pathway. Wistar male rats were first randomly assigned into control and model groups. Immunohistochemistry was performed to detect the GDNF positive expression rate and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining for apoptotic index (AI) of retinal tissue. Retinal neurons were divided into normal, blank, negative control (NC), miR-216a mimic, miR-216a inhibitor, siRNA-GDNF and miR-216a inhibitor?siRNA-GDNF groups. Dual luciferase reporter assay was conducted in order to identify the targeting relationship between GDNF and miR-216a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used for the analysis of mRNA and protein levels of miR-216a and related genes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell proliferation and flow cytometry was used to observe cell cycle and apoptosis. Results show that the model group had an increased GDNF positive rate, AI of retinal tissue and mRNA and protein levels of cellular oncogene fos (c-fos), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), GDNF, GFRα1 and bcl-2-associated X protein (bax), declined miR-216a level and mRNA and protein levels of RET and bcl-2 compared with the control group. GDNF was verified as the target gene for miR-216a. Compared with the blank and NC groups, the miR-216a mimic and siRNA-GDNF groups had higher mRNA and protein levels of c-fos, VEGF and bax, cell number in the G1 phase and increased cell apoptosis but reduced BDNF, GDNF, GFRα1, RET and bcl-2 expression, cell proliferation and cell numbers in the S phase, while the opposite trend was observed in the miR-216a inhibitor group. Taken together, our findings demonstrate that elevated GDNF levels can reduce the retinal injury, whereby down-regulated miR-216a aggravates the YAG laser-induced retinal injury by targeting the GDNF level through the GDNF/ GFRα1/RET signalling pathway.
Collapse
Affiliation(s)
- Xi-Bin Hu
- Department of Ophthalmology, Jiangxi Pingxiang People's Hospital, Pingxiang 337055, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
68
|
Duan W, Zhang R, Zhao Y, Shen S, Wei Y, Chen F, Christiani DC. Bayesian variable selection for parametric survival model with applications to cancer omics data. Hum Genomics 2018; 12:49. [PMID: 30400837 PMCID: PMC6218990 DOI: 10.1186/s40246-018-0179-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Background Modeling thousands of markers simultaneously has been of great interest in testing association between genetic biomarkers and disease or disease-related quantitative traits. Recently, an expectation-maximization (EM) approach to Bayesian variable selection (EMVS) facilitating the Bayesian computation was developed for continuous or binary outcome using a fast EM algorithm. However, it is not suitable to the analyses of time-to-event outcome in many public databases such as The Cancer Genome Atlas (TCGA). Results We extended the EMVS to high-dimensional parametric survival regression framework (SurvEMVS). A variant of cyclic coordinate descent (CCD) algorithm was used for efficient iteration in M-step, and the extended Bayesian information criteria (EBIC) was employed to make choice on hyperparameter tuning. We evaluated the performance of SurvEMVS using numeric simulations and illustrated the effectiveness on two real datasets. The results of numerical simulations and two real data analyses show the well performance of SurvEMVS in aspects of accuracy and computation. Some potential markers associated with survival of lung or stomach cancer were identified. Conclusions These results suggest that our model is effective and can cope with high-dimensional omics data. Electronic supplementary material The online version of this article (10.1186/s40246-018-0179-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weiwei Duan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Key Laboratory of Biomedical Big Data of Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - David C Christiani
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Joint Laboratory of Health and Environmental Risk Assessment (HERA), Nanjing Medical University School of Public Health / Harvard School of Public Health, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.,Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.,Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
69
|
L1CAM induces perineural invasion of pancreas cancer cells by upregulation of metalloproteinase expression. Oncogene 2018; 38:596-608. [PMID: 30171263 DOI: 10.1038/s41388-018-0458-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 11/08/2022]
Abstract
Pancreas cancer cells have a tendency to invade along nerves. Such cancerous nerve invasion (CNI) is associated with poor outcome; however, the exact mechanism that drives cancer cells to disseminate along nerves is unknown. Immunohistochemical analysis of human pancreatic ductal adenocarcinoma (PDAC) specimens showed overexpression of the L1 cell adhesion molecule (L1CAM) in cancer cells and in adjacent Schwann cells (SC) in invaded nerves. By modeling the neural microenvironment, we found that L1CAM secreted from SCs acts as a strong chemoattractant to cancer cells, through activation of MAP kinase signaling. L1CAM also upregulated expression of metalloproteinase-2 (MMP-2) and MMP-9 by PDAC cells, through STAT3 activation. Using a transgenic Pdx-1-Cre/KrasG12D /p53R172H (KPC) mouse model, we show that treatment with anti-L1CAM Ab significantly reduces CNI in vivo. We provide evidence of a paracrine response between SCs and cancer cells in the neural niche, which promotes cancer invasion via L1CAM secretion.
Collapse
|
70
|
Hu XB, Fu SH, Luo Q, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Huang C, Li Y, Guo Y, Zhang Z, Lian G, Chen Y, Li J, Su Y, Li J, Yang K, Chen S, Su H, Huang K, Zeng L. MMP1/PAR1/SP/NK1R paracrine loop modulates early perineural invasion of pancreatic cancer cells. Theranostics 2018; 8:3074-3086. [PMID: 29896303 PMCID: PMC5996366 DOI: 10.7150/thno.24281] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of perineural invasion (PNI) is unclear, and insufficient detection during early-stage PNI in vivo hampers its investigation. We aimed to identify a cytokine paracrine loop between pancreatic ductal adenocarcinoma (PDAC) cells and nerves and established a noninvasive method to monitor PNI in vivo. Methods: A Matrigel/ dorsal root ganglia (DRG) system was used to observe PNI in vitro, and a murine sciatic nerve invasion model was established to examine PNI in vivo. PNI was assessed by MRI with iron oxide nanoparticle labeling. We searched publicly available datasets as well as obtained PDAC tissues from 30 patients to examine MMP1 expression in human tumor and non-tumor tissues. Results: Our results showed that matrix metalloproteinase-1 (MMP1) activated AKT and induced protease-activated receptor-1 (PAR1)-expressing DRG to release substance P (SP), which, in turn, activated neurokinin 1 receptor (NK1R)-expressing PDAC cells and enhanced cellular migration, invasion, and PNI via SP/NK1R/ERK. In animals, hind limb paralysis and a decreased hind paw width were observed approximately 20 days after inoculation of cancer cells in the perineurium. MMP1 silencing with shRNA or treatment with either a PAR1 or an NK1R antagonist inhibited PNI. MRI detected PNI as early as 10 days after implantation of PDAC cells. PNI also induced PDAC liver metastasis. Bioinformatic analyses and pathological studies on patient tissues corroborated the clinical relevance of these findings. Conclusion: In this study, we provided evidence that the MMP1/PAR1/SP/NK1R paracrine loop contributes to PNI during the early stage of primary tumor formation. Furthermore, we established a sensitive and non-invasive method to detect nerve invasion using iron oxide nanoparticles and MRI.
Collapse
|
72
|
Deborde S, Yu Y, Marcadis A, Chen CH, Fan N, Bakst RL, Wong RJ. An In Vivo Murine Sciatic Nerve Model of Perineural Invasion. J Vis Exp 2018. [PMID: 29733315 DOI: 10.3791/56857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cancer cells invade nerves through a process termed perineural invasion (PNI), in which cancer cells proliferate and migrate in the nerve microenvironment. This type of invasion is exhibited by a variety of cancer types, and very frequently is found in pancreatic cancer. The microscopic size of nerve fibers within mouse pancreas renders the study of PNI difficult in orthotopic murine models. Here, we describe a heterotopic in vivo model of PNI, where we inject syngeneic pancreatic cancer cell line Panc02-H7 into the murine sciatic nerve. In this model, sciatic nerves of anesthetized mice are exposed and injected with cancer cells. The cancer cells invade in the nerves proximally toward the spinal cord from the point of injection. The invaded sciatic nerves are then extracted and processed with OCT for frozen sectioning. H&E and immunofluorescence staining of these sections allow quantification of both the degree of invasion and changes in protein expression. This model can be applied to a variety of studies on PNI given its versatility. Using mice with different genetic modifications and/or different types of cancer cells allows for investigation of the cellular and molecular mechanisms of PNI and for different cancer types. Furthermore, the effects of therapeutic agents on nerve invasion can be studied by applying treatment to these mice.
Collapse
Affiliation(s)
- Sylvie Deborde
- Department of Surgery, Memorial Sloan Kettering Cancer Center;
| | - Yasong Yu
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Andrea Marcadis
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Richard J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
73
|
Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell 2018; 173:634-648.e12. [DOI: 10.1016/j.cell.2018.02.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
|
74
|
Wei J, Li G, Zhang J, Zhou Y, Dang S, Chen H, Wu Q, Liu M. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer. Oncotarget 2018; 7:62547-62558. [PMID: 27566576 PMCID: PMC5308745 DOI: 10.18632/oncotarget.11534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022] Open
Abstract
DNA methylation was regarded as the promising biomarker for rectal cancer diagnosis. However, the optimal methylation biomarkers with ideal diagnostic performance for rectal cancer are still limited. To identify new molecular markers for rectal cancer, we mapped DNA methylation and transcriptomic profiles in the six rectal cancer and paired normal samples. Further analysis revealed the hypermethylated probes in cancer prone to be located in gene promoter. Meanwhile, transcriptome analysis presented 773 low-expressed and 1,161 over-expressed genes in rectal cancer. Correction analysis identified a panel of 36 genes with an inverse correlation between methylation and gene expression levels, including 10 known colorectal cancer related genes. From the other 26 novel marker genes, GFRA1 and GSTM2 were selected for further analysis on the basis of their biological functions. Further experiment analysis confirmed their methylation and expression status in a larger number (44) of rectal cancer samples, and ROC curves showed higher AUC than SEPT9, which has been used as a biomarker in rectal cancer. Our data suggests that aberrant DNA methylation of contiguous CpG sites in methylation array may be potential diagnostic markers of rectal cancer.
Collapse
Affiliation(s)
- Jiufeng Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Jinning Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Yuhui Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Shuwei Dang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Hongsheng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, P.R. China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China.,Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| |
Collapse
|
75
|
Gao T, Shen Z, Ma C, Li Y, Kang X, Sun M. The CCL5/CCR5 Chemotactic Pathway Promotes Perineural Invasion in Salivary Adenoid Cystic Carcinoma. J Oral Maxillofac Surg 2018; 76:1708-1718. [PMID: 29549020 DOI: 10.1016/j.joms.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Perineural invasion (PNI) is a hallmark of salivary adenoid cystic carcinoma (SACC) and represents an important risk factor for local recurrence and poor survival. However, the mechanism of PNI has yet to be explored. We sought to examine the CCL5-CCR5 ligand-receptor interaction between nerves and SACC cells. MATERIALS AND METHODS CCL5/CCR5 expression was determined by immunohistochemistry in SACC tissue specimens. The correlations between CCL5/CCR5 expression and clinicopathologic features were investigated. Dorsal root ganglia (DRG) and SACC cells cocultured in vitro were used to evaluate the effects of CCL5/CCR5 on PNI progression and pathogenesis. RESULTS CCR5 expression was significantly elevated in SACC tissues and associated with distant metastasis, PNI, and TNM grade (P < .05). DRG and SACC cells cocultured in vitro showed that the activation of the CCL5/CCR5 axis significantly increased SACC cell invasion and promoted the outgrowth of the DRG. SACC cell lines expressing CCR5 migrated in response to CCL5 derived from DRG, eventually leading to PNI. More importantly, further study showed that blocking of CCL5 or CCR5 effectively inhibited the invasive capacity and PNI activity of SACC cells (P < .05). CONCLUSIONS Our results suggest a pivotal role of CCL5/CCR5 axis in tumor-nerve interactions during PNI of SACC. The CCL5/CCR5 pathway might prove to be an attractive new target for the treatment of SACC with PNI.
Collapse
Affiliation(s)
- Tao Gao
- Attending Physician, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhiyuan Shen
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Oral and Maxillofacial surgery, Stomatological Hospital of Shandong University, Jinan, China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiangfeng Kang
- Resident, Department of Pediatrics, The First Hospital of Yulin, Shaanxi, China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; and Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
76
|
Abstract
Perineural invasion (PNI) is a mechanism of tumor dissemination that can provide a challenge to tumor eradication and that is correlated with poor survival. Squamous cell carcinoma, the most common type of head and neck cancer, has a high prevalence of PNI. This review provides an overview of clinical studies on the outcomes and factors associated with PNI in head and neck cancer and on findings on cancer-nerve crosstalk.
Collapse
Affiliation(s)
- L B Schmitd
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - C S Scanlon
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N J D'Silva
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,2 Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
77
|
Cui R, Yue W, Lattime EC, Stein MN, Xu Q, Tan XL. Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget 2018; 7:50735-50754. [PMID: 27191744 PMCID: PMC5226617 DOI: 10.18632/oncotarget.9383] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment is replete with cells that evolve with and provide support to tumor cells during the transition to malignancy. The hijacking of the immune system in the pancreatic tumor microenvironment is suggested to contribute to the failure to date to produce significant improvements in pancreatic cancer survival by various chemotherapeutics. Regulatory T cells, myeloid derived suppressor cells, and fibroblasts, all of which constitute a complex ecology microenvironment, can suppress CD8+ T cells and NK cells, thus inhibiting effector immune responses. Tumor-associated macrophages (TAM) are versatile immune cells that can express different functional programs in response to stimuli in tumor microenvironment at different stages of pancreatic cancer development. TAM have been implicated in suppression of anti-tumorigenic immune responses, promotion of cancer cell proliferation, stimulation of tumor angiogenesis and extracellular matrix breakdown, and subsequent enhancement of tumor invasion and metastasis. Many emerging agents that have demonstrated efficacy in combating other types of tumors via modulation of macrophages in tumor microenvironments are, however, only marginally studied for pancreatic cancer prevention and treatment. A better understanding of the paradoxical roles of TAM in pancreatic cancer may pave the way to novel preventive and therapeutic approaches. Here we give an overview of the recruitment and differentiation of macrophages, TAM and pancreatic cancer progression and prognosis, as well as the potential preventive and therapeutic targets that interact with TAM for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Edmund C Lattime
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mark N Stein
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
78
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the nervous system in cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:5. [PMID: 29334991 PMCID: PMC5769535 DOI: 10.1186/s13046-018-0674-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/30/2017] [Indexed: 12/20/2022]
Abstract
Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Although most studies have focused on the genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent years the role of the nervous system has been recognized as a major contributor to cancer development and metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine, Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, AIMSS, Melbourne, Australia.
| |
Collapse
|
79
|
Sergaki MC, Ibáñez CF. GFRα1 Regulates Purkinje Cell Migration by Counteracting NCAM Function. Cell Rep 2017; 18:367-379. [PMID: 28076782 PMCID: PMC5263233 DOI: 10.1016/j.celrep.2016.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023] Open
Abstract
During embryonic development of the cerebellum, Purkinje cells (PCs) migrate away from the ventricular zone to form the PC plate. The mechanisms that regulate PC migration are incompletely understood. Here, we report that the neurotrophic receptor GFRα1 is transiently expressed in developing PCs and loss of GFRα1 delays PC migration. Neither GDNF nor RET, the canonical GFRα1 ligand and co-receptor, respectively, contribute to this process. Instead, we found that the neural cell adhesion molecule NCAM is co-expressed and directly interacts with GFRα1 in embryonic PCs. Genetic reduction of NCAM expression enhances wild-type PC migration and restores migration in Gfra1 mutants, indicating that NCAM restricts PC migration in the embryonic cerebellum. In vitro experiments indicated that GFRα1 can function both in cis and trans to counteract NCAM and promote PC migration. Collectively, our studies show that GFRα1 contributes to PC migration by limiting NCAM function.
Collapse
Affiliation(s)
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden; Department of Physiology, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
80
|
Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, He S, McNamara W, Lee SY, Olson OC, Leiner IM, Marcadis AR, Keith JW, Al-Ahmadie HA, Katabi N, Gil Z, Vakiani E, Joyce JA, Pamer E, Wong RJ. Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Res 2017; 77:6400-6414. [PMID: 28951461 PMCID: PMC5831809 DOI: 10.1158/0008-5472.can-17-1612] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
Perineural invasion (PNI) is an ominous event strongly linked to poor clinical outcome. Cells residing within peripheral nerves collaborate with cancer cells to enable PNI, but the contributing conditions within the tumor microenvironment are not well understood. Here, we show that CCR2-expressing inflammatory monocytes (IM) are preferentially recruited to sites of PNI, where they differentiate into macrophages and potentiate nerve invasion through a cathepsin B-mediated process. A series of adoptive transfer experiments with genetically engineered donors and recipients demonstrated that IM recruitment to nerves was driven by CCL2 released from Schwann cells at the site of PNI, but not CCL7, an alternate ligand for CCR2. Interruption of either CCL2-CCR2 signaling or cathepsin B function significantly impaired PNI in vivo Correlative studies in human specimens demonstrated that cathepsin B-producing macrophages were enriched in invaded nerves, which was associated with increased local tumor recurrence. These findings deepen our understanding of PNI pathogenesis and illuminate how PNI is driven in part by corruption of a nerve repair program. Further, they support the exploration of inhibiting IM recruitment and function as a targeted therapy for PNI. Cancer Res; 77(22); 6400-14. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Cathepsin B/metabolism
- Cell Line
- Cell Line, Tumor
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Humans
- Macrophages/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Monocytes/metabolism
- Monocytes/pathology
- Neoplasm Invasiveness
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Peripheral Nerves/metabolism
- Peripheral Nerves/pathology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Schwann Cells/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Richard L Bakst
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, New York
| | - Huizhong Xiong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Chun-Hao Chen
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sylvie Deborde
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Anna Lyubchik
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Yi Zhou
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Shizhi He
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - William McNamara
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Sei-Young Lee
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Oakley C Olson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ingrid M Leiner
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Andrea R Marcadis
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - James W Keith
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ziv Gil
- Department of Otolaryngology, Rambam Healthcare Campus, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Johanna A Joyce
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Eric Pamer
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard J Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
81
|
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M, Van Landeghem L. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. Cell Mol Gastroenterol Hepatol 2017; 5:31-49. [PMID: 29188232 PMCID: PMC5696385 DOI: 10.1016/j.jcmgh.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.
Collapse
Key Words
- AFM, atomic force microscope
- Adhesion
- Colorectal Cancer
- DMEM, Dulbecco's modified Eagle medium
- ENS, enteric nervous system
- Enteric Neurons
- GFP, green fluorescent protein
- MCS, multiple cloning site
- Migration
- PBS, phosphate-buffered saline
- TEC, tumor epithelial cell
- Tuj, tubulin III
- pcENS, primary culture enteric nervous system
- α-SMA, α–smooth muscle actin
Collapse
Affiliation(s)
- Emilie Duchalais
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Clinique de Chirurgie Digestive et Endocrinienne, Centre Hospitalier Universitaire de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Correspondence Address correspondence to: Emilie Duchalais, MD, Inserm U1235, 1 Rue Gaston Veil, 44000 Nantes, France. fax: +33 2 40 41 11 10.Inserm U12351 Rue Gaston VeilNantes44000France
| | | | - Steven Nedellec
- Université de Nantes, Nantes, France
- Micropicell, Nantes, France
| | - Melissa Touvron
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Céline Bossard
- Université de Nantes, Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Nantes, France
| | - Hélène Boudin
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Guy Louarn
- Université de Nantes, Nantes, France
- Institut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Nantes, France
| | - Michel Neunlist
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Laurianne Van Landeghem
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
82
|
Austin M, Elliott L, Nicolaou N, Grabowska A, Hulse RP. Breast cancer induced nociceptor aberrant growth and collateral sensory axonal branching. Oncotarget 2017; 8:76606-76621. [PMID: 29100335 PMCID: PMC5652729 DOI: 10.18632/oncotarget.20609] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
The tumour and neuron interaction has a significant impact upon disease progression and the patients quality of life. In breast cancer patients, it is known that there is an interaction between the tumour microenvironment and the sensory neurons to influence the progression of cancer as well as pain, though these mechanisms still need to be clearly defined. Here it is demonstrated that in a rodent orthotopic model of breast cancer (MDA MB 231) there was an increase in nerve fibre innervation into the tumour microenvironment (protein gene product 9.5), which were calcitonin gene related peptide positive C fibre nociceptors. In contrast, there was a reduction in myelinated nerve fibres (NF200). A sensory neuronal cell line was cultured in response to conditioned media from MDA MB231 and MCF7 as well as vascular endothelial growth factor-A (VEGF-A). All these experimental conditions induced sensory neuronal growth, with increased formation of collateral axonal branches. Furthermore, it was demonstrated that MDA MB231 and VEGF-A induced sensory neuronal sensitisation in response to capsaicin a TRPV1 agonist. MDA MB231 induced neuronal growth was suppressed by VEGFR2 inhibition (ZM323881 and neutralising antibody DC101), in addition both MDA MB231 and VEGF-A induced neurite growth was attenuated by the inhibition of ARP2/3 complex through co-treatment with CK666. This demonstrates that breast cancer can interact with the sensory nervous system to drive neuritogenesis through a VEGF-A/VEGFR2/ARP2/3 mediated pathway.
Collapse
Affiliation(s)
- Matt Austin
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Laura Elliott
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Niovi Nicolaou
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Anna Grabowska
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard P Hulse
- Cancer Biology, School of Cancer and Stem Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
83
|
Lin C, Cao W, Ren Z, Tang Y, Zhang C, Yang R, Chen Y, Liu Z, Peng C, Wang L, Wang X, Ji T. GDNF secreted by nerves enhances PD-L1 expression via JAK2-STAT1 signaling activation in HNSCC. Oncoimmunology 2017; 6:e1353860. [PMID: 29147602 PMCID: PMC5674951 DOI: 10.1080/2162402x.2017.1353860] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) functions as a key immune inhibitory factor by binding with its receptor, programmed death 1 (PD-1), to induce immune cell dysfunction and escape of the immune system. However, the mechanisms of PD-L1 expression under growth factor stimulation are not well characterized. Here, we demonstrate a novel role for glial cell line-derived neurotrophic factor (GDNF) in upregulating PD-L1 expression in head and neck squamous cell carcinoma (HNSCC). The expression and correlation of PD-L1, GDNF and perineural invasion (PNI) status were evaluated by bioinformatics analysis of TCGA database and IHC assays from 145 HNSCC patients. PD-L1 expression was investigated by flow cytometry, Western blot and real-time PCR analyses in HNSCC cells after GNDF incubation. The cell signaling pathways activated by GDNF were analyzed with an antibody array and blocked by specific signaling inhibitors in cancer cell lines. PD-L1 expression was significantly higher in cancer cells that exhibited PNI in the HNSCC specimens, and elevated PD-L1 expression was significantly correlated with GDNF levels. GDNF not only enhanced cancer cell PNI in a co-culture of dorsal root ganglions and cancer cells but also had a potent role in inducing PD-L1 expression through the JAK2-STAT1 signaling pathway. Moreover, a JAK2 inhibitor attenuated GDNF-induced PD-L1 and enhanced tumor cell susceptibility to NK cell killing. Our findings provide clinically novel evidence that nerve-derived GDNF can increase PD-L1 levels in cancer cells around the perineural niche and that regulatory signaling is critical for cancer cell escape from immune surveillance in the nerve-cancer microenvironment.
Collapse
Affiliation(s)
- Chengzhong Lin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Yu Tang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Chunye Zhang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Yiming Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Zheqi Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Canbang Peng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Lizhen Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Tong Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, PR China
| |
Collapse
|
84
|
Abstract
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.
Collapse
|
85
|
雷 亮, 杨 延, 刘 江, 刘 德. 神经营养因子和趋化因子与胰腺癌神经浸润的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1265-1271. [DOI: 10.11569/wcjd.v25.i14.1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
胰腺癌癌细胞浸润神经组织, 沿神经或进入神经束膜内沿束膜间隙浸润生长, 即发生神经浸润(perineural invasion, PNI). PNI是特殊的肿瘤转移通路, 在胰腺癌中的发生率极高, 为胰腺癌的重要生物学特性之一, 被认为是导致胰腺癌手术后高复发率和胰腺癌相关疼痛的最主要原因之一, 与患者不良预后和低存活率密切相关. PNI发生的机制十分复杂, 涉及多种生物分子和信号途径. 神经营养因子和趋化因子参与相关信号通路, 促进癌细胞神经交互作用, 导致胰腺癌PNI发生, 在胰腺癌PNI中扮演重要角色. 本文将神经营养因子家族和趋化因子与胰腺癌PNI的研究进展作一综述.
Collapse
|
86
|
Ban K, Feng S, Shao L, Ittmann M. RET Signaling in Prostate Cancer. Clin Cancer Res 2017; 23:4885-4896. [PMID: 28490466 DOI: 10.1158/1078-0432.ccr-17-0528] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022]
Abstract
Purpose: Large diameter perineural prostate cancer is associated with poor outcomes. GDNF, with its coreceptor GFRα1, binds RET and activates downstream pro-oncogenic signaling. Because both GDNF and GFRα1 are secreted by nerves, we examined the role of RET signaling in prostate cancer.Experimental Design: Expression of RET, GDNF, and/or GFRα1 was assessed. The impact of RET signaling on proliferation, invasion and soft agar colony formation, perineural invasion, and growth in vivo was determined. Cellular signaling downstream of RET was examined by Western blotting.Results: RET is expressed in all prostate cancer cell lines. GFRα1 is only expressed in 22Rv1 cells, which is the only line that responds to exogenous GDNF. In contrast, all cell lines respond to GDNF plus GFRα1. Conditioned medium from dorsal root ganglia contains secreted GFRα1 and promotes transformation-related phenotypes, which can be blocked by anti-GFRα1 antibody. Perineural invasion in the dorsal root ganglion assay is inhibited by anti-GFRα antibody and RET knockdown. In vivo, knockdown of RET inhibits tumor growth. RET signaling activates ERK or AKT signaling depending on context, but phosphorylation of p70S6 kinase is markedly increased in all cases. Knockdown of p70S6 kinase markedly decreases RET induced transformed phenotypes. Finally, RET is expressed in 18% of adenocarcinomas and all three small-cell carcinomas examined.Conclusions: RET promotes transformation associated phenotypes, including perineural invasion in prostate cancer via activation of p70S6 kinase. GFRα1, which is secreted by nerves, is a limiting factor for RET signaling, creating a perineural niche where RET signaling can occur. Clin Cancer Res; 23(16); 4885-96. ©2017 AACR.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas
| | - Shu Feng
- Department of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas
| | - Longjiang Shao
- Department of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine and Michael E. DeBakey Dept. of Veterans Affairs Medical Center, Houston, Texas.
| |
Collapse
|
87
|
Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, Gu Y, Yang B, Guo S, Ding G, Jin G, Wu CL, Zhu M. CD13 hi Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology 2017; 6:e1258504. [PMID: 28344866 DOI: 10.1080/2162402x.2016.1258504] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022] Open
Abstract
Perineural invasion and immunosuppressive tumor microenvironment are the distinct features of pancreatic ductal adenocarcinoma (PDAC). Heterogeneous myeloid-derived suppressor cells (MDSCs) are potent suppressors of antitumor immunity, posing obstacles for cancer immunotherapy. Increasing evidences have demonstrated the accumulation of MDSCs in PDAC patients. However, the role of MDSCs in perineural invasion of PDAC and the existence of novel MDSC subsets during PDAC remain unclear. This study found that lymphocytic perineural cuffs were frequently present in chronic pancreatitis (CP) tissues and adjacent non-neoplastic pancreatic tissues (ANPTs), but not in PDAC with perineural invasion. Meanwhile, we found that neutrophil-like MDSCs (nMDSCs), but not monocyte-like MDSCs (mMDSCs), were significantly increased in PBMCs and tumor tissues of PDAC patients. Further observation identified two distinct subsets of nMDSCs, CD13hi and CD13low nMDSCs in PDAC patients, which have not been reported previously. Despite a similar morphology, CD13hi nMDSCs expressed higher levels of CD11b, CD33, CD16 and arginase 1 but lower levels of CD66b than CD13low nMDSCs. Importantly, CD13hi MDSCs, compared with CD13low nMDSCs, more effectively suppressed alloreactive T cell responses via an arginase-1-related mechanism. After tumor resection, the circulating CD13hi nMDSCs were decreased markedly. PDAC patients with more CD13hi nMDSCs had a shorter overall survival than those with less CD13hi nMDSCs. To conclude, we identified two novel MDSC subsets with different characteristics and functions in PDAC, demonstrated the association of the two MDSC subsets with cancer progression, and explored their roles in perineural invasion and immune escape of PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Xiongfei Xu
- Department of Pathophysiology, Second Military Medical University , Shanghai, China
| | - Min Shi
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Ying Chen
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Danghui Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Chenyan Zhao
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University , Shanghai, China
| | - Biao Yang
- Department of General Surgery, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Guiling Ding
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University , Shanghai, China
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical University , Boston, MA, USA
| | - Minghua Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University , Shanghai, China
| |
Collapse
|
88
|
Huyett P, Gilbert M, Liu L, Ferris RL, Kim S. A Model for Perineural Invasion in Head and Neck Squamous Cell Carcinoma. J Vis Exp 2017. [PMID: 28117782 DOI: 10.3791/55043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Perineural invasion (PNI) is found in approximately 40% of head and neck squamous cell carcinomas (HNSCC). Despite multimodal treatment with surgery, radiation, and chemotherapy, locoregional recurrences and distant metastases occur at higher rates, and overall survival is decreased by 40% compared to HNSCC without PNI. In vitro studies of the pathways involved in HNSCC PNI have historically been challenging given the lack of a consistent, reproducible assay. Described here is the adaptation of the dorsal root ganglion (DRG) assay for the examination of PNI in HNSCC. In this model, DRG are harvested from the spinal column of a sacrificed nude mouse and placed within a semisolid matrix. Over the subsequent days, neurites are generated and grow in a radial pattern from the cell bodies of the DRG. HNSCC cell lines are then placed peripherally around the matrix and invade preferentially along the neurites toward the DRG. This method allows for rapid evaluation of multiple treatment conditions, with very high assay success rates and reproducibility.
Collapse
Affiliation(s)
- Phillip Huyett
- Department of Otolaryngology, University of Pittsburgh Medical Center;
| | - Mark Gilbert
- Department of Otolaryngology, University of Pittsburgh Medical Center
| | - Lijun Liu
- University of Pittsburgh Cancer Institute, Hillman Cancer Center
| | - Robert L Ferris
- University of Pittsburgh Cancer Institute, Hillman Cancer Center
| | - Seungwon Kim
- Department of Otolaryngology, University of Pittsburgh Medical Center
| |
Collapse
|
89
|
Frydenlund NF, Mahalingam M. Neurotrophin Receptors and Perineural Invasion: Analyses in Select Lineage-Unrelated Cutaneous Malignancies With a Propensity for Perineural Invasion. VITAMINS AND HORMONES 2016; 104:497-531. [PMID: 28215306 DOI: 10.1016/bs.vh.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this chapter, we parse the literature on neurotrophins that have been implicated in the pathogenesis of perineural invasion (PNI) in select lineage-unrelated malignancies. We also detail evidence linking neurotrophins and their receptors (TrkA, RET, p75NGFR, and NCAM) to the pathogenesis of PNI in desmoplastic melanoma and cutaneous squamous cell carcinoma-both malignancies with an established propensity for PNI. Lastly, the clinical potential of neurotrophins as receptors for targeted therapies is explored.
Collapse
Affiliation(s)
- N F Frydenlund
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - M Mahalingam
- VA Consolidated Laboratories, West Roxbury, MA, United States.
| |
Collapse
|
90
|
Schwann cells: a new player in the tumor microenvironment. Cancer Immunol Immunother 2016; 66:959-968. [PMID: 27885383 DOI: 10.1007/s00262-016-1929-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Cancerous cells must cooperate with the surrounding stroma and non-malignant cells within the microenvironment to support the growth and invasion of the tumor. The nervous system is a component of every organ system of the body, and therefore, is invariably at the front line of the tumor invasion. Due to the complexity of the nervous system physiology, this review separately discusses the contributions of the central and peripheral nervous systems to the tumorigenesis and tumor progression. We further focus the discussion on the evidence that Schwann cells aid in tumor growth and invasion. Schwann cells, a largely unexplored element of the tumor microenvironment, may participate in the creation of tumor-favorable conditions through both bi-directional interaction with cancer cells and the facilitation of the immune-suppressive microenvironment through the mechanism of neural repair and immunomodulation.
Collapse
|
91
|
Sroka IC, Chopra H, Das L, Gard JMC, Nagle RB, Cress AE. Schwann Cells Increase Prostate and Pancreatic Tumor Cell Invasion Using Laminin Binding A6 Integrin. J Cell Biochem 2016; 117:491-9. [PMID: 26239765 DOI: 10.1002/jcb.25300] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/31/2015] [Indexed: 01/13/2023]
Abstract
Human pancreatic and prostate cancers metastasize along nerve axons during perineural invasion. The extracellular matrix laminin class of proteins is an abundant component of both myelinated and non-myelinated nerves. Analysis of human pancreatic and prostate tissue revealed both perineural and endoneural invasion with Schwann cells surrounded or disrupted by tumor, respectively. Tumor and nerve cell co-culture conditions were used to determine if myelinating or non-myelinating Schwann cell (S16 and S16Y, respectively) phenotype was equally likely to promote integrin-dependent cancer cell invasion and migration on laminin. Conditioned medium from S16 cells increased tumor cell (DU145, PC3, and CFPAC1) invasion into laminin approximately 1.3-2.0 fold compared to fetal bovine serum (FBS) treated cells. Integrin function (e.g., ITGA6p formation) increased up to 1.5 fold in prostate (DU145, PC3, RWPE-1) and pancreatic (CFPAC1) cells, and invasion was dependent on ITGA6p formation and ITGB1 as determined by function-blocking antibodies. In contrast, conditioned medium isolated from S16Y cells (non-myelinating phenotype) decreased constitutive levels of ITGA6p in the tumor cells by 50% compared to untreated cells and decreased ITGA6p formation 3.0 fold compared to S16 treated cells. Flow cytometry and western blot analysis revealed loss of ITGA6p formation as reversible and independent of overall loss of ITGA6 expression. These results suggest that the myelinating phenotype of Schwann cells within the tumor microenvironment increased integrin-dependent tumor invasion on laminin.
Collapse
Affiliation(s)
- Isis C Sroka
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, Arizona, 85724
| | - Harsharon Chopra
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona, 85724
| | - Lipsa Das
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona, 85724
| | - Jaime M C Gard
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona, 85724
| | - Raymond B Nagle
- Department of Pathology, University of Arizona College of Medicine, Tucson, Arizona, 85724
| | - Anne E Cress
- University of Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona, 85724.,Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona, 85724
| |
Collapse
|
92
|
Lin C, Lu W, Ren Z, Tang Y, Zhang C, Yang R, Chen Y, Cao W, Wang L, Wang X, Ji T. Elevated RET expression enhances EGFR activation and mediates EGFR inhibitor resistance in head and neck squamous cell carcinoma. Cancer Lett 2016; 377:1-10. [PMID: 27090738 DOI: 10.1016/j.canlet.2016.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Co-activation of EGFR by alternative receptor tyrosine kinases (RTKs) might mediate resistance to EGFR inhibition in head and neck squamous cell carcinoma (HNSCC). Here we found a novel mechanism to improve the efficacy of EGFR inhibitor erlotinib on HNSCC. METHOD Immunohistochemistry, western blot, cell migration and invasion assays, cell proliferation, cell cycle analysis and in vivo serial transplantation assays were used to evaluate the role of RET on HNSCC cells. RESULTS The elevated levels of a rearranged during transfection (RET) are observed in HNSCC and that high levels of RET correlate with increased tumor size, advanced tumor stage and decreased overall survival rate. The HNSCC cell proliferation and invasion were inhibited by RET knockdown in vitro and in vivo. The inhibition of RET expression markedly reduced EGFR phosphorylation and downstream EGFR signaling. The inhibition of RET signaling significantly increased the sensitivity of HNSCC cells to the EGFR inhibitor erlotinib in both in vitro and in vivo models. CONCLUSION Our results offer a preclinical proof-of-concept supporting a role for RET signaling inhibition in a targeted therapeutic approach to improve the efficacy of EGFR inhibition in HNSCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Phenylurea Compounds/pharmacology
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Pyridines/pharmacology
- RNA Interference
- Signal Transduction/drug effects
- Squamous Cell Carcinoma of Head and Neck
- Time Factors
- Transfection
- Tumor Burden/drug effects
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengzhong Lin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yu Tang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chunye Zhang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yiming Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Lizhen Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Tong Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
93
|
Ruan H, Luo H, Wang J, Ji X, Zhang Z, Wu J, Zhang X, Wu X. Smoothened-independent activation of hedgehog signaling by rearranged during transfection promotes neuroblastoma cell proliferation and tumor growth. Biochim Biophys Acta Gen Subj 2016; 1860:1961-72. [PMID: 27316313 DOI: 10.1016/j.bbagen.2016.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) proto-oncogene encodes a receptor tyrosine kinase for glial cell line-derived neurotrophic factor (GDNF) signaling, and high RET expression is closely related to the tumorigenesis and malignancy of neuroblastoma(NB). METHODS We have investigated whether RET signals through hedgehog (HH) pathway in NB cell proliferation and tumor growth by in vitro cell culture and in vivo xenograft approaches. RESULTS The key members of both GDNF/RET and HH/GLI pathways are expressed in NB cell lines to different extents. Knockdown of RET in NB cells significantly attenuates the activity of HH signaling, whereas overexpression of RET robustly enhances the output of transcriptional activation by HH. Likewise, activation of RET by GDNF induces HH signaling, whereas knockdown of RET attenuates both basal and GDNF-induced activities of HH signaling. Moreover, protein kinase B lies on the downstream of GDNF/RET signaling module to inhibit the GSK3β, resulting in activation of HH signaling. Furthermore, either knockdown of RET by shRNA or inhibition of HH pathway by cyclopamine attenuates not only basal but also GDNF-induced proliferation of SH-SY5Y cells, and knockdown of either RET or smoothened in SH-SY5Y cell xenografts significantly attenuated the tumor growth. Finally, inhibition of HH signaling by GLI1 and GLI2 inhibitor, Gant61, reduces not only basal but also RET-induced proliferation of SH-SY5Y cells and outgrowth of xenografts. CONCLUSION GDNF/RET/AKT/GSK3β signaling module activates HH pathway to stimulate NB cells proliferation and tumor outgrowth. GENERAL SIGNIFICANCE Targeting HH pathway is a rational approach for therapeutic intervention of NB with high RET expression.
Collapse
Affiliation(s)
- Hongfeng Ruan
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China; Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huan Luo
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jirong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xing Ji
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhongmiao Zhang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Junsong Wu
- Department of Emergence, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xianning Zhang
- Department of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
94
|
Abstract
The local extension of cancer cells along nerves is a frequent clinical finding for various tumours. Traditionally, nerve invasion was assumed to occur via the path of least resistance; however, recent animal models and human studies have revealed that cancer cells have an innate ability to actively migrate along axons in a mechanism called neural tracking. The tendency of cancer cells to track along nerves is supported by various cell types in the perineural niche that secrete multiple growth factors and chemokines. We propose that the perineural niche should be considered part of the tumour microenvironment, describe the molecular cues that facilitate neural tracking and suggest methods for its inhibition.
Collapse
Affiliation(s)
- Moran Amit
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Shorook Na'ara
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| | - Ziv Gil
- Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Head and Neck Center, Rambam Healthcare Campus, Clinical Research Institute at Rambam, Rappaport Institute of Medicine and Research, The Technion-Israel Institute of Technology, Haalia Street No. 8, Haifa, Israel
| |
Collapse
|
95
|
Ayala-Sarmiento AE, Estudillo E, Pérez-Sánchez G, Sierra-Sánchez A, González-Mariscal L, Martínez-Fong D, Segovia J. GAS1 is present in the cerebrospinal fluid and is expressed in the choroid plexus of the adult rat. Histochem Cell Biol 2016; 146:325-36. [PMID: 27225491 DOI: 10.1007/s00418-016-1449-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
Growth arrest specific 1 (GAS1) is a GPI-anchored protein that inhibits proliferation when overexpressed in tumors but during development it promotes proliferation and survival of different organs and tissues. This dual ability is caused by its capacity to interact both by inhibiting the signaling induced by the glial cell line-derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. GAS1 is expressed as membrane bound in different organs and as a secreted form by glomerular mesangial cells. In the developing central nervous system, GAS1 is found in neural progenitors; however, it continues to be expressed in the adult brain. Here, we demonstrate that soluble GAS1 is present in the cerebrospinal fluid (CSF) and it is expressed in the choroid plexus (CP) of the adult rat, the main producer of CSF. Additionally, we confirm the presence of GAS1 in blood plasma and liver of the adult rat, the principal source of blood plasma proteins. The pattern of expression of GAS1 is perivascular in both the CP and the liver. In vitro studies show that the fibroblast cell line NIH/3T3 expresses one form of GAS1 and releases two soluble forms into the supernatant. Briefly, in the present work, we show the presence of GAS1 in adult rat body fluids focusing in the CSF and the CP, and suggest that secreted GAS1 exists as two different isoforms.
Collapse
Affiliation(s)
- Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Enrique Estudillo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Gilberto Pérez-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Arturo Sierra-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Lorenza González-Mariscal
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN #2508, 07360, Mexico, D.F., Mexico.
| |
Collapse
|
96
|
Marriott AS, Vasieva O, Fang Y, Copeland NA, McLennan AG, Jones NJ. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes. PLoS One 2016; 11:e0154674. [PMID: 27144453 PMCID: PMC4856261 DOI: 10.1371/journal.pone.0154674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 01/04/2023] Open
Abstract
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.
Collapse
MESH Headings
- Cell Line, Tumor
- Dinucleoside Phosphates/metabolism
- Down-Regulation
- Gene Expression Profiling
- Gene Knockout Techniques
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
Collapse
Affiliation(s)
- Andrew S. Marriott
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Olga Vasieva
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Yongxiang Fang
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Nikki A. Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Alexander G. McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| | - Nigel J. Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| |
Collapse
|
97
|
Abstract
Perineural invasion (PNI) is the neoplastic invasion of nerves. PNI is widely recognized as an important adverse pathological feature of many malignancies, including pancreatic, prostate, and head and neck cancers and is associated with a poor prognosis. Despite widespread acknowledgment of the clinical significance of PNI, the mechanisms underlying its pathogenesis remain largely unknown. Recent theories of PNI pathogenesis have placed a significant emphasis on the active role of the nerve microenvironment, with PNI resulting from well-orchestrated reciprocal interactions between cancer and host. Elucidating the mechanisms involved in PNI may translate into targeted therapies for this ominous process.
Collapse
Affiliation(s)
- Richard L. Bakst
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, United States
| | - Richard J. Wong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
98
|
Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, Chernichenko N, Lee SY, Barajas F, Chen CH, Bakst RL, Vakiani E, He S, Hall A, Wong RJ. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest 2016; 126:1538-54. [PMID: 26999607 DOI: 10.1172/jci82658] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/26/2016] [Indexed: 12/23/2022] Open
Abstract
Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.
Collapse
|
99
|
Saloman JL, Albers KM, Li D, Hartman DJ, Crawford HC, Muha EA, Rhim AD, Davis BM. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc Natl Acad Sci U S A 2016; 113:3078-83. [PMID: 26929329 PMCID: PMC4801275 DOI: 10.1073/pnas.1512603113] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an exuberant inflammatory desmoplastic response. The PDAC microenvironment is complex, containing both pro- and antitumorigenic elements, and remains to be fully characterized. Here, we show that sensory neurons, an under-studied cohort of the pancreas tumor stroma, play a significant role in the initiation and progression of the early stages of PDAC. Using a well-established autochthonous model of PDAC (PKC), we show that inflammation and neuronal damage in the peripheral and central nervous system (CNS) occurs as early as the pancreatic intraepithelial neoplasia (PanIN) 2 stage. Also at the PanIN2 stage, pancreas acinar-derived cells frequently invade along sensory neurons into the spinal cord and migrate caudally to the lower thoracic and upper lumbar regions. Sensory neuron ablation by neonatal capsaicin injection prevented perineural invasion (PNI), astrocyte activation, and neuronal damage, suggesting that sensory neurons convey inflammatory signals from Kras-induced pancreatic neoplasia to the CNS. Neuron ablation in PKC mice also significantly delayed PanIN formation and ultimately prolonged survival compared with vehicle-treated controls (median survival, 7.8 vs. 4.5 mo; P = 0.001). These data establish a reciprocal signaling loop between the pancreas and nervous system, including the CNS, that supports inflammation associated with oncogenic Kras-induced neoplasia. Thus, pancreatic sensory neurons comprise an important stromal cell population that supports the initiation and progression of PDAC and may represent a potential target for prevention in high-risk populations.
Collapse
MESH Headings
- Adenocarcinoma in Situ/pathology
- Adenocarcinoma in Situ/physiopathology
- Afferent Pathways
- Animals
- Animals, Newborn
- Capsaicin/administration & dosage
- Capsaicin/pharmacology
- Capsaicin/therapeutic use
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/physiopathology
- Carcinoma, Pancreatic Ductal/prevention & control
- Carcinoma, Pancreatic Ductal/therapy
- Ceruletide/toxicity
- Denervation
- Disease Progression
- Female
- Ganglia, Sympathetic/physiopathology
- Genes, ras
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelitis/complications
- Myelitis/genetics
- Myelitis/physiopathology
- Neoplasm Invasiveness
- Pancreas/innervation
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/physiopathology
- Pancreatic Neoplasms/prevention & control
- Pancreatic Neoplasms/therapy
- Pancreatitis/chemically induced
- Pancreatitis/complications
- Pancreatitis/physiopathology
- Precancerous Conditions/chemically induced
- Precancerous Conditions/complications
- Precancerous Conditions/physiopathology
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/physiology
- Spinal Cord/physiopathology
- Spinothalamic Tracts/physiopathology
- Thoracic Vertebrae
Collapse
Affiliation(s)
- Jami L Saloman
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kathryn M Albers
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dongjun Li
- Comprehensive Cancer Center and Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Howard C Crawford
- Department of Internal Medicine, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Emily A Muha
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Andrew D Rhim
- Comprehensive Cancer Center and Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109;
| | - Brian M Davis
- Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
100
|
Takaori K, Bassi C, Biankin A, Brunner TB, Cataldo I, Campbell F, Cunningham D, Falconi M, Frampton AE, Furuse J, Giovannini M, Jackson R, Nakamura A, Nealon W, Neoptolemos JP, Real FX, Scarpa A, Sclafani F, Windsor JA, Yamaguchi K, Wolfgang C, Johnson CD. International Association of Pancreatology (IAP)/European Pancreatic Club (EPC) consensus review of guidelines for the treatment of pancreatic cancer. Pancreatology 2016; 16:14-27. [PMID: 26699808 DOI: 10.1016/j.pan.2015.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most devastating diseases with an extremely high mortality. Medical organizations and scientific societies have published a number of guidelines to address active treatment of pancreatic cancer. The aim of this consensus review was to identify where there is agreement or disagreement among the existing guidelines and to help define the gaps for future studies. METHODS A panel of expert pancreatologists gathered at the 46th European Pancreatic Club Meeting combined with the 18th International Association of Pancreatology Meeting and collaborated on critical reviews of eight English language guidelines for the clinical management of pancreatic cancer. Clinical questions (CQs) of interest were proposed by specialists in each of nine areas. The recommendations for the CQs in existing guidelines, as well as the evidence on which these were based, were reviewed and compared. The evidence was graded as sufficient, mediocre or poor/absent. RESULTS Only 4 of the 36 CQs, had sufficient evidence for agreement. There was also agreement in five additional CQs despite the lack of sufficient evidence. In 22 CQs, there was disagreement regardless of the presence or absence of evidence. There were five CQs that were not addressed adequately by existing guidelines. CONCLUSION The existing guidelines provide both evidence- and consensus-based recommendations. There is also considerable disagreement about the recommendations in part due to the lack of high level evidence. Improving the clinical management of patients with pancreatic cancer, will require continuing efforts to undertake research that will provide sufficient evidence to allow agreement.
Collapse
Affiliation(s)
- Kyoichi Takaori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Claudio Bassi
- Department of Surgery and Oncology, Pancreas Institute, University of Verona, Verona, Italy
| | - Andrew Biankin
- Academic Unit of Surgery, University of Glasgow, Glasgow, United Kingdom
| | - Thomas B Brunner
- Department of Radiation Oncology, University Hospitals Freiburg, Germany
| | - Ivana Cataldo
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Fiona Campbell
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - David Cunningham
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - Massimo Falconi
- Pancreatic Surgery Unit, Università Vita e Salute, Milano, Italy
| | - Adam E Frampton
- HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University School of Medicine, Tokyo, Japan
| | - Marc Giovannini
- Endoscopic Unit, Paoli-Calmettes Institute, Marseille, France
| | - Richard Jackson
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Akira Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto, Japan
| | - William Nealon
- Division of General Surgery, Yale University, New Haven, CT, United States of America
| | - John P Neoptolemos
- NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Francisco X Real
- Epithelial Carcinogenesis Group, CNIO-Spanish National Cancer Research Centre, Madrid, Spain
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Francesco Sclafani
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London and Surrey, United Kingdom
| | - John A Windsor
- Department of Surgery, University of Auckland, HBP/Upper GI Unit, Auckland City Hospital, Auckland, New Zealand
| | - Koji Yamaguchi
- Department of Advanced Treatment of Pancreatic Disease, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Christopher Wolfgang
- Department of Surgery, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Colin D Johnson
- University Surgical Unit, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|