51
|
Quistad SD, Lim YW, Silva GGZ, Nelson CE, Haas AF, Kelly LW, Edwards RA, Rohwer FL. Using viromes to predict novel immune proteins in non-model organisms. Proc Biol Sci 2016; 283:20161200. [PMID: 27581878 PMCID: PMC5013795 DOI: 10.1098/rspb.2016.1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins.
Collapse
Affiliation(s)
- Steven D Quistad
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Genivaldo Gueiros Z Silva
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, HI 96822, USA
| | - Andreas F Haas
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Linda Wegley Kelly
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| |
Collapse
|
52
|
Abstract
The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis.
Collapse
|
53
|
Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ 2016; 23:1717-26. [PMID: 27367566 DOI: 10.1038/cdd.2016.62] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Caspases are a family of proteases found in all metazoans, including a dozen in humans, that drive the terminal stages of apoptosis as well as other cellular remodeling and inflammatory events. Caspases are named because they are cysteine class enzymes shown to cleave after aspartate residues. In the past decade, we and others have developed unbiased proteomic methods that collectively identified ~2000 native proteins cleaved during apoptosis after the signature aspartate residues. Here, we explore non-aspartate cleavage events and identify 100s of substrates cleaved after glutamate in both human and murine apoptotic samples. The extended consensus sequence patterns are virtually identical for the aspartate and glutamate cleavage sites suggesting they are cleaved by the same caspases. Detailed kinetic analyses of the dominant apoptotic executioner caspases-3 and -7 show that synthetic substrates containing DEVD↓ are cleaved only twofold faster than DEVE↓, which is well within the 500-fold range of rates that natural proteins are cut. X-ray crystallography studies confirm that the two acidic substrates bind in virtually the same way to either caspases-3 or -7 with minimal adjustments to accommodate the larger glutamate. Lastly, during apoptosis we found 121 proteins cleaved after serine residues that have been previously annotated to be phosphorylation sites. We found that caspase-3, but not caspase-7, can cleave peptides containing DEVpS↓ at only threefold slower rate than DEVD↓, but does not cleave the unphosphorylated serine peptide. There are only a handful of previously reported examples of proteins cleaved after glutamate and none after phosphorserine. Our studies reveal a much greater promiscuity for cleaving after acidic residues and the name 'cacidase' could aptly reflect this broader specificity.
Collapse
|
54
|
Dondelinger Y, Hulpiau P, Saeys Y, Bertrand MJM, Vandenabeele P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol 2016; 26:721-732. [PMID: 27368376 DOI: 10.1016/j.tcb.2016.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
Throughout the animal kingdom, innate immune receptors protect the organism from microbial intruders by activating pathways that mediate inflammation and pathogen clearance. Necroptosis contributes to the innate immune response by killing pathogen-infected cells and by alerting the immune system through the release of danger signals. Components of the necroptotic signaling axis - TIR-domain-containing adapter-inducing interferon-β (TRIF), Z-DNA sensor DAI, receptor-interacting kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL) - are therefore expected to be found in all animals. However, a phylogenetic analysis reveals that the necroptotic axis, except for RIPK1, is poorly conserved in the animal kingdom, suggesting that alternative mechanisms regulate necroptosis in these species or that necroptosis would apparently be absent. These findings question the universal role of necroptosis during innate immunity in the animal kingdom.
Collapse
Affiliation(s)
- Yves Dondelinger
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Paco Hulpiau
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Yvan Saeys
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mathieu J M Bertrand
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium
| | - Peter Vandenabeele
- VIB Inflammation Research Center, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent, 9052, Belgium.
| |
Collapse
|
55
|
Rosani U, Domeneghetti S, Gerdol M, Franzoi M, Pallavicini A, Venier P. Serum amyloid A in marine bivalves: An acute phase and innate immunity protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:136-144. [PMID: 26828389 DOI: 10.1016/j.dci.2016.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
Serum amyloid A (SAA) is among the most potent acute phase proteins (APP) in vertebrates. After injury, its early expression can dramatically increase to promote the recruitment of immuno-competent cells, expression of pro-inflammatory proteins and the activation of the innate immune defences. Although APP have been studied in many vertebrates, only recently their search was extended to invertebrates and the finding of SAA-like molecules has opened new questions on the immune-regulatory functions of these soluble proteins in the animal kingdom. Taking advantage of the considerable amount of genomic and transcriptomic data currently available, we retrieved 51 SAA-like proteins in several protostome taxa comprising 21 marine bivalve species and basal metazoans. In addition to vertebrate-like SAAs, we identified a second protein type with peculiar features. In the bivalves Crassostrea gigas and Mytilus galloprovincialis, both digital expression analysis and qPCR data indicated an induction of the classical SAA after bacterial challenge.
Collapse
Affiliation(s)
- U Rosani
- Dept. of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - S Domeneghetti
- Dept. of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - M Gerdol
- Dept. of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - M Franzoi
- Dept. of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy
| | - A Pallavicini
- Dept. of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127 Trieste, Italy
| | - P Venier
- Dept. of Biology, University of Padua, via U. Bassi 58/b, 35121 Padua, Italy.
| |
Collapse
|
56
|
Bhattacharya D, Agrawal S, Aranda M, Baumgarten S, Belcaid M, Drake JL, Erwin D, Foret S, Gates RD, Gruber DF, Kamel B, Lesser MP, Levy O, Liew YJ, MacManes M, Mass T, Medina M, Mehr S, Meyer E, Price DC, Putnam HM, Qiu H, Shinzato C, Shoguchi E, Stokes AJ, Tambutté S, Tchernov D, Voolstra CR, Wagner N, Walker CW, Weber AP, Weis V, Zelzion E, Zoccola D, Falkowski PG. Comparative genomics explains the evolutionary success of reef-forming corals. eLife 2016; 5. [PMID: 27218454 PMCID: PMC4878875 DOI: 10.7554/elife.13288] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
Abstract
Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years. DOI:http://dx.doi.org/10.7554/eLife.13288.001 For millions of years, reef-building stony corals have created extensive habitats for numerous marine plants and animals in shallow tropical seas. Stony corals consist of many small, tentacled animals called polyps. These polyps secrete a mineral called aragonite to create the reef – an external ‘skeleton’ that supports and protects the corals. Photosynthesizing algae live inside the cells of stony corals, and each species depends on the other to survive. The algae produce the coral’s main source of food, although they also produce some waste products that can harm the coral if they build up inside cells. If the oceans become warmer and more acidic, the coral are more likely to become stressed and expel the algae from their cells in a process known as coral bleaching. This makes the coral more likely to die or become diseased. Corals have survived previous periods of ocean warming, although it is not known how they evolved to do so. The evolutionary history of an organism can be traced by studying its genome – its complete set of DNA – and the RNA molecules encoded by these genes. Bhattacharya et al. performed this analysis for twenty stony coral species, and compared the resulting genome and RNA sequences with the genomes of other related marine organisms, such as sea anemones and sponges. In particular, Bhattacharya et al. examined “ortholog” groups of genes, which are present in different species and evolved from a common ancestral gene. This analysis identified the genes in the corals that encode the proteins responsible for constructing the aragonite skeleton. The coral genome also encodes a network of environmental sensors that coordinate how the polyps respond to temperature, light and acidity. Bhattacharya et al. also uncovered a variety of stress-related pathways, including those that detoxify the polyps of the damaging molecules generated by algae, and the pathways that enable the polyps to adapt to environmental stress. Many of these genes were recruited from other species in a process known as horizontal gene transfer. The oceans are expected to become warmer and more acidic in the coming centuries. Provided that humans do not physically destroy the corals’ habitats, the evidence found by Bhattacharya et al. suggests that the genome of the corals contains the diversity that will allow them to adapt to these new conditions. DOI:http://dx.doi.org/10.7554/eLife.13288.002
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States.,Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Shobhit Agrawal
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manuel Aranda
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sebastian Baumgarten
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mahdi Belcaid
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - Jeana L Drake
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States
| | - Douglas Erwin
- Smithsonian Institution, National Museum of Natural History, Washington, United States
| | - Sylvian Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| | - Ruth D Gates
- Hawaii Institute of Marine Biology, Kaneohe, United States
| | - David F Gruber
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Department of Natural Sciences, City University of New York, Baruch College and The Graduate Center, New York, United States
| | - Bishoy Kamel
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Michael P Lesser
- School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, United States
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gam, Israel
| | - Yi Jin Liew
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Tali Mass
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Monica Medina
- Department of Biology, Mueller Lab, Penn State University, University Park, United States
| | - Shaadi Mehr
- American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, United States.,Biological Science Department, State University of New York, College at Old Westbury, New York, United States
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Dana C Price
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, United States
| | | | - Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Alexander J Stokes
- Laboratory of Experimental Medicine and Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, United States.,Chaminade University, Honolulu, United States
| | | | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Israel
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nicole Wagner
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | - Charles W Walker
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Andreas Pm Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Virginia Weis
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, United States
| | | | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, United States.,Department of Earth and Planetary Sciences, Rutgers University, New Jersey, United States
| |
Collapse
|
57
|
Green DR. The cell's dilemma, or the story of cell death: an entertainment in three acts. FEBS J 2016; 283:2568-76. [PMID: 26787595 DOI: 10.1111/febs.13658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
Cells. They assemble, thrive, and cooperate to compose an organism, simple or complex. And like any living thing, they die. They die by catastrophe, they become sabotaged by condition, or they remove themselves on command from within or without. Each small life is followed by a death, to the benefit or the harm of the whole. Our story, here, is not of how each quietus occurs, but instead, of our ongoing effort to understand these tiny demises, to manipulate them, and to some day control them.
Collapse
|
58
|
Moya A, Sakamaki K, Mason BM, Huisman L, Forêt S, Weiss Y, Bull TE, Tomii K, Imai K, Hayward DC, Ball EE, Miller DJ. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 2016; 17:62. [PMID: 26772977 PMCID: PMC4715348 DOI: 10.1186/s12864-015-2355-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Apoptotic cell death is a defining and ubiquitous characteristic of metazoans, but its evolutionary origins are unclear. Although Caenorhabditis and Drosophila played key roles in establishing the molecular bases of apoptosis, it is now clear that cell death pathways of these animals do not reflect ancestral characteristics. Conversely, recent work suggests that the apoptotic networks of cnidarians may be complex and vertebrate-like, hence characterization of the apoptotic complement of representatives of the basal cnidarian class Anthozoa will help us to understand the evolution of the vertebrate apoptotic network. Results We describe the Bcl-2 and caspase protein repertoires of the coral Acropora millepora, making use of the comprehensive transcriptomic data available for this species. Molecular phylogenetics indicates that some Acropora proteins are orthologs of specific mammalian pro-apoptotic Bcl-2 family members, but the relationships of other Bcl-2 and caspases are unclear. The pro- or anti-apoptotic activities of coral Bcl-2 proteins were investigated by expression in mammalian cells, and the results imply functional conservation of the effector/anti-apoptotic machinery despite limited sequence conservation in the anti-apoptotic Bcl-2 proteins. A novel caspase type (“Caspase-X”), containing both inactive and active caspase domains, was identified in Acropora and appears to be restricted to corals. When expressed in mammalian cells, full-length caspase-X caused loss of viability, and a truncated version containing only the active domain was more effective in inducing cell death, suggesting that the inactive domain might modulate activity in the full-length protein. Structure prediction suggests that the active and inactive caspase domains in caspase-X are likely to interact, resulting in a structure resembling that of the active domain in procaspase-8 and the inactive caspase domain in the mammalian c-FLIP anti-apoptotic factor. Conclusions The data presented here confirm that many of the basic mechanisms involved in both the intrinsic and extrinsic apoptotic pathways were in place in the common ancestor of cnidarians and bilaterians. With the identification of most or all of the repertoires of coral Bcl-2 and caspases, our results not only provide new perspectives on the evolution of apoptotic pathways, but also a framework for future experimental studies towards a complete understanding of coral bleaching mechanisms, in which apoptotic cell death might be involved. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2355-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Benjamin M Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Lotte Huisman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Section of Computational Science, Universiteit van Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands.
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - Yvonne Weiss
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Tara E Bull
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - David C Hayward
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - Eldon E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
59
|
Lu W, Chen Q, Ying S, Xia X, Yu Z, Lui Y, Tranter G, Jin B, Song C, Seymour LW, Jiang S. Evolutionarily conserved primary TNF sequences relate to its primitive functions in cell death induction. J Cell Sci 2016; 129:108-20. [PMID: 26729029 DOI: 10.1242/jcs.175463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
TNF is a primitive protein that has emerged from more than 550 million years of evolution. Our bioinformatics study of TNF from nine different taxa in vertebrates revealed several conserved regions in the TNF sequence. By screening overlapping peptides derived from human TNF to determine their role in three different TNF-induced processes--apoptosis, necrosis and NF-κB stimulation--we found that TNF conserved regions are mostly related to cell death rather than NF-κB stimulation. Among the most conserved regions, peptides (P)12, P13 and P1213 (comprising P12 and P13) induced apoptosis, whereas P14, P15, P16 and P1516 (comprising P15 and P16) induced necrosis. Cell death induced by these peptides was not through binding to the TNF receptor. P16-induced necrosis was mainly through disruption of the cell membrane, whereas P1213-induced apoptosis involved activation of TRADD followed by formation of complex II. Finally, using a monoclonal antibody and a mutant TNF protein, we show that TNF-induced apoptosis is determined by a conserved linear sequence that corresponds to that within P1213. Our results reveal the determinant sequence that is key to the TNF primitive function of inducing apoptosis.
Collapse
Affiliation(s)
- Wenshu Lu
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Qiongyu Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Songmin Ying
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Xiaobing Xia
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Zhanru Yu
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington OX3 9DS, UK
| | - Yuan Lui
- MRC Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington OX3 9DS, UK
| | - George Tranter
- Chiralabs Limited, Begbroke Science Park, Woodstock Road, Begbroke, Oxfordshire OX5 1PF, UK
| | - Boquan Jin
- Department of Immunology, Fourth Military Medical University, Xi'an City 710032, Shaanxi Province, China
| | - Chaojun Song
- Department of Immunology, Fourth Military Medical University, Xi'an City 710032, Shaanxi Province, China
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
60
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
61
|
SINKOVICS JOSEPHG. The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review). Int J Oncol 2015; 47:1211-29. [PMID: 26239915 PMCID: PMC4583530 DOI: 10.3892/ijo.2015.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
The cell survival pathways of the diploblastic early multicellular eukaryotic hosts contain and operate the molecular machinery resembling those of malignantly transformed individual cells of highly advanced multicellular hosts (including Homo). In the present review, the STAT/NF-κB pathway of the cnidarian Nematostella vectensis is compared with that of human tumors (malignant lymphomas, including Reed-Sternberg cells) pointing out similarities, including possible viral initiation in both cases. In the ctenophore genome and proteome, β-catenin gains intranuclear advantages due to a physiologically weak destructive complex in the cytoplasm, and lack of natural inhibitors (the dickkopfs). Thus, a scenario similar to what tumor cells initiate and achieve is presented through several constitutive loss-of-function type mutations in the destructive complex and in the elimination of inhibitors. Vice versa, malignantly transformed individual cells of advanced multicellular hosts assume pheno-genotypic resemblance to cells of unicellular or early multicellular hosts, and presumably to their ancient predecessors, by returning to the semblance of immortality and to the resumption of the state of high degree of resistance to physicochemical insults. Human leukemogenic and oncogenic pathways are presented for comparisons. The supreme bioengineers RNA/DNA complex encoded both the malignantly transformed immortal cell and the human cerebral cortex. The former generates molecules for the immortality of cellular life in the Universe. The latter invents the inhibitors of the process in order to gain control over it.
Collapse
Affiliation(s)
- JOSEPH G. SINKOVICS
- St. Joseph Hospital's Cancer Institute Affiliated with the H.L. Moffitt Comprehensive Cancer Center; Department of Molecular Medicine, The University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
62
|
DED or alive: assembly and regulation of the death effector domain complexes. Cell Death Dis 2015; 6:e1866. [PMID: 26313917 PMCID: PMC4558505 DOI: 10.1038/cddis.2015.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Collapse
|
63
|
Gao D, Qiu L, Gao Q, Hou Z, Wang L, Song L. Repertoire and evolution of TNF superfamily in Crassostrea gigas: implications for expansion and diversification of this superfamily in Mollusca. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:251-260. [PMID: 25910814 DOI: 10.1016/j.dci.2015.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Tumor necrosis factor superfamily (TNFSF) members represent a group of cytokines participating in diverse immunological, pathological and developmental pathways. However, compared with deuterostomia and cnidaia, the composition and evolution of TNF homologous in protostomia are still not well understood. In the present study, a total of 81 TNF superfamily (TNFSF) genes from 15 mollusk species, including 23 TNFSF genes from Crassostrea gigas, were surveyed by genome-wide bioinformatics analysis. The phylogenetic analysis showed that 14 out of 23 C. gigas TNFSF genes in five clades exhibited orthologous relationships with Pinctada fucata TNFSF genes. Moreover, there were 15 C. gigas TNFSF genes located in oyster-specific clusters, which were contributed by small-scaled tandem and/or segmental duplication events in oyster. By comparing the sequences of duplicated TNFSF pairs, exon loss and variant in exon/intron length were revealed as the major modes of divergence in gene structure. Most of the duplicated C. gigas TNFSF pairs were evolved under purifying selection with consistent tissue expression patterns, implying functional constraint shaped diversification. This study demonstrated the expansion and early divergence of TNF superfamily in C. gigas, which provides potential insight into revealing the evolution and function of this superfamily in mollusk.
Collapse
Affiliation(s)
- Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Qiang Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Zhanhui Hou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Road, Qingdao 266071, China
| | | |
Collapse
|
64
|
Clark IA, Vissel B. Amyloid β: one of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer's disease. Br J Pharmacol 2015; 172:3714-27. [PMID: 25939581 PMCID: PMC4523330 DOI: 10.1111/bph.13181] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
This review concerns how the primary inflammation preceding the generation of certain key damage-associated molecular patterns (DAMPs) arises in Alzheimer's disease (AD). In doing so, it places soluble amyloid β (Aβ), a protein hitherto considered as a primary initiator of AD, in a novel perspective. We note here that increased soluble Aβ is one of the proinflammatory cytokine-induced DAMPs recognized by at least one of the toll-like receptors on and in various cell types. Moreover, Aβ is best regarded as belonging to a class of DAMPs, as do the S100 proteins and HMBG1, that further exacerbate production of these same proinflammatory cytokines, which are already enhanced, and induces them further. Moreover, variation in levels of other DAMPs of this same class in AD may explain why normal elderly patients can exhibit high Aβ plaque levels, and why removing Aβ or its plaque does not retard disease progression. It may also explain why mouse transgenic models, having been designed to generate high Aβ, can be treated successfully by this approach.
Collapse
Affiliation(s)
- I A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National UniversityCanberra, ACT, Australia
| | - B Vissel
- Neurodegeneration Research Group, Garvan InstituteSydney, NSW, Australia
| |
Collapse
|
65
|
Dixon GB, Davies SW, Aglyamova GA, Meyer E, Bay LK, Matz MV. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes. Science 2015; 348:1460-2. [PMID: 26113720 DOI: 10.1126/science.1261224] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection.
Collapse
Affiliation(s)
- Groves B Dixon
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Sarah W Davies
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Galina A Aglyamova
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Line K Bay
- Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia.
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, 205 W. 24th Street C0990, Austin, TX 78712, USA.
| |
Collapse
|
66
|
A Neurologist's Guide to TNF Biology and to the Principles behind the Therapeutic Removal of Excess TNF in Disease. Neural Plast 2015. [PMID: 26221543 PMCID: PMC4510439 DOI: 10.1155/2015/358263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.
Collapse
|
67
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
68
|
Seneca FO, Palumbi SR. The role of transcriptome resilience in resistance of corals to bleaching. Mol Ecol 2015; 24:1467-84. [DOI: 10.1111/mec.13125] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Francois O. Seneca
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| | - Stephen R. Palumbi
- Department of Biology; Stanford University; Hopkins Marine Station Pacific Grove CA 93950 USA
| |
Collapse
|
69
|
Tarrant AM, Gilmore TD, Reitzel AM, Levy O, Technau U, Martindale MQ. Current directions and future perspectives from the third Nematostella research conference. ZOOLOGY 2014; 118:135-40. [PMID: 25450665 DOI: 10.1016/j.zool.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022]
Abstract
The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, N. vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene-environment interactions.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA 02543, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Adam M Reitzel
- Department of Biological Sciences, The University of North Carolina at Charlotte, Woodward Hall 245, Charlotte, NC 28223, USA
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St. Augustine, FL 32136, USA
| |
Collapse
|
70
|
Sakamaki K, Shimizu K, Iwata H, Imai K, Satou Y, Funayama N, Nozaki M, Yajima M, Nishimura O, Higuchi M, Chiba K, Yoshimoto M, Kimura H, Gracey AY, Shimizu T, Tomii K, Gotoh O, Akasaka K, Sawasaki T, Miller DJ. The apoptotic initiator caspase-8: its functional ubiquity and genetic diversity during animal evolution. Mol Biol Evol 2014; 31:3282-301. [PMID: 25205508 DOI: 10.1093/molbev/msu260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The caspases, a family of cysteine proteases, play multiple roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 (Casp8), which was first identified in humans, functions as an initiator caspase in the apoptotic signaling mediated by cell-surface death receptors. To understand the evolution of function in the Casp8 protein family, casp8 orthologs were identified from a comprehensive range of vertebrates and invertebrates, including sponges and cnidarians, and characterized at both the gene and protein levels. Some introns have been conserved from cnidarians to mammals, but both losses and gains have also occurred; a new intron arose during teleost evolution, whereas in the ascidian Ciona intestinalis, the casp8 gene is intronless and is organized in an operon with a neighboring gene. Casp8 activities are near ubiquitous throughout the animal kingdom. Exogenous expression of a representative range of nonmammalian Casp8 proteins in cultured mammalian cells induced cell death, implying that these proteins possess proapoptotic activity. The cnidarian Casp8 proteins differ considerably from their bilaterian counterparts in terms of amino acid residues in the catalytic pocket, but display the same substrate specificity as human CASP8, highlighting the complexity of spatial structural interactions involved in enzymatic activity. Finally, it was confirmed that the interaction with an adaptor molecule, Fas-associated death domain protein, is also evolutionarily ancient. Thus, despite structural diversity and cooption to a variety of new functions, the ancient origins and near ubiquitous distribution of this activity across the animal kingdom emphasize the importance and utility of Casp8 as a central component of the metazoan molecular toolkit.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kouhei Shimizu
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hiroaki Iwata
- Multi-Scale Research Center for Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kenichiro Imai
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mamiko Yajima
- Bio Med Molecular, Cellular Biology Biochemistry Department, Brown University, Providence, RI
| | - Osamu Nishimura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Mayura Higuchi
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kumiko Chiba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michi Yoshimoto
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Haruna Kimura
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Andrew Y Gracey
- Marine Environmental Biology, University of Southern California, Los Angeles, CA
| | - Takashi Shimizu
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kentaro Tomii
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Osamu Gotoh
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Koji Akasaka
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - David J Miller
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|