51
|
Jia SZ, Xu XW, Zhang ZH, Chen C, Chen YB, Huang SL, Liu Q, Hoffmann PR, Song GL. Selenoprotein K deficiency-induced apoptosis: A role for calpain and the ERS pathway. Redox Biol 2021; 47:102154. [PMID: 34601426 PMCID: PMC8495175 DOI: 10.1016/j.redox.2021.102154] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident protein, is regulated by dietary selenium and expressed at a relatively high level in neurons. SELENOK has been shown to participate in oxidation resistance, calcium (Ca2+) flux regulation, and the ER-associated degradation (ERAD) pathway in immune cells. However, its role in neurons has not been elucidated. Here, we demonstrated that SELENOK gene knockout markedly enhanced ER stress (ERS) and increased apoptosis in neurons. SELENOK gene knockout elicited intracellular Ca2+ flux and activated the m-calpain/caspase-12 cascade, thus inducing neuronal apoptosis both in vivo and in vitro. In addition, SELENOK knockout significantly reduced cognitive ability and increased anxiety in 7-month-old mice. Our findings reveal an unexpected role of SELENOK in regulating ERS-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xin-Wen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu-Bin Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shao-Ling Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
52
|
Ma C, Martinez-Rodriguez V, Hoffmann PR. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Int J Mol Sci 2021; 22:ijms222011174. [PMID: 34681834 PMCID: PMC8540796 DOI: 10.3390/ijms222011174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.
Collapse
|
53
|
Zhang ZH, Chen C, Jia SZ, Cao XC, Liu M, Tian J, Hoffmann PR, Xu HX, Ni JZ, Song GL. Selenium Restores Synaptic Deficits by Modulating NMDA Receptors and Selenoprotein K in an Alzheimer's Disease Model. Antioxid Redox Signal 2021; 35:863-884. [PMID: 32475153 DOI: 10.1089/ars.2019.7990] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shi-Zheng Jia
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xian-Chun Cao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Hua-Xi Xu
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
54
|
Gong T, Hashimoto AC, Sasuclark AR, Khadka VS, Gurary A, Pitts MW. Selenoprotein M Promotes Hypothalamic Leptin Signaling and Thioredoxin Antioxidant Activity. Antioxid Redox Signal 2021; 35:775-787. [PMID: 30648404 PMCID: PMC8617589 DOI: 10.1089/ars.2018.7594] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Selenoproteins are an essential class of proteins involved in redox signaling and energy metabolism. However, the functions of many selenoproteins are not clearly established. Selenoprotein M (SELENOM), an endoplasmic reticulum (ER)-resident oxidoreductase bearing structural similarity to thioredoxin (TXN), is among those yet to be fully characterized. This protein is highly expressed in hypothalamic regions involved in leptin signaling and has been previously linked to energy metabolism. Herein, we performed a series of studies using in vivo and in vitro models to probe the specific influence of SELENOM on hypothalamic leptin signaling and assess SELENOM-regulated pathways. Innovation and Results: Our initial experiment in vivo demonstrated that (i) leptin promotes hypothalamic expression of SELENOM and (ii) leptin-induced STAT3 phosphorylation is impeded by SELENOM deficiency. Additional in vitro studies using mHypoE-44 immortalized hypothalamic neurons corroborated these findings, as SELENOM deficiency obstructed downstream STAT3 phosphorylation and cytosolic calcium responses evoked by leptin treatment. Correspondingly, SELENOM overexpression enhanced leptin sensitivity. Microarray analysis conducted in parallel on hypothalamic tissue and mHypoE-44 cells revealed multiple genes significantly affected by SELENOM deficiency, including thioredoxin interacting protein, a negative regulator of the TXN system. Further analysis determined that (i) SELENOM itself possesses intrinsic TXN activity and (ii) SELENOM deficiency leads to a reduction in overall TXN activity. Finally, mHypoE-44 cells lacking SELENOM displayed diminished activation of the nuclear factor kappa-light-chain enhancer of activated B-cells (NF-κB) signaling pathway and increased susceptibility to ER stress-mediated cell death. Conclusion: In sum, these findings establish SELENOM as a positive regulator of leptin signaling and TXN antioxidant activity in the hypothalamus. Antioxid. Redox Signal. 35, 775-787.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, Hawaii, USA
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Alexandru R Sasuclark
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Vedbar S Khadka
- Bioinformatics Core in the Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Alexandra Gurary
- Department of Tropical Medicine, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, Medical Microbiolgy, and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
55
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
56
|
Davis Armstrong NM, Chen WM, Hsu FC, Brewer MS, Cullell N, Fernández-Cadenas I, Williams SR, Sale MM, Worrall BB, Keene KL. DNA methylation analyses identify an intronic ZDHHC6 locus associated with time to recurrent stroke in the Vitamin Intervention for Stroke Prevention (VISP) clinical trial. PLoS One 2021; 16:e0254562. [PMID: 34252155 PMCID: PMC8274879 DOI: 10.1371/journal.pone.0254562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant DNA methylation profiles have been implicated in numerous cardiovascular diseases; however, few studies have investigated how these epigenetic modifications contribute to stroke recurrence. The aim of this study was to identify methylation loci associated with the time to recurrent cerebro- and cardiovascular events in individuals of European and African descent. DNA methylation profiles were generated for 180 individuals from the Vitamin Intervention for Stroke Prevention clinical trial using Illumina HumanMethylation 450K BeadChip microarrays, resulting in beta values for 470,871 autosomal CpG sites. Ethnicity-stratified survival analyses were performed using Cox Proportional Hazards regression models for associations between each methylation locus and the time to recurrent stroke or composite vascular event. Results were validated in the Vall d’Hebron University Hospital cohort from Barcelona, Spain. Network analyses of the methylation loci were generated using weighted gene coexpression network analysis. Primary analysis identified four significant loci, cg04059318, ch.2.81927627R, cg03584380, and cg24875416, associated with time to recurrent stroke. Secondary analysis identified three loci, cg00076998, cg16758041, and cg02365967, associated with time to composite vascular endpoint. Locus cg03584380, which is located in an intron of ZDHHC6, was replicated in the Vall d’Hebron University Hospital cohort. The results from this study implicate the degree of methylation at cg03584380 is associated with the time of recurrence for stroke or composite vascular events across two ethnically diverse groups. Furthermore, modules of loci were associated with clinical traits and blood biomarkers including previous number of strokes, prothrombin fragments 1 + 2, thrombomodulin, thrombin-antithrombin complex, triglyceride levels, and tissue plasminogen activator. Ultimately, these loci could serve as potential epigenetic biomarkers that could identify at-risk individuals in recurrence-prone populations.
Collapse
Affiliation(s)
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Michael S. Brewer
- Department of Biology, East Carolina University, Greenville, NC, United States of America
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Stephen R. Williams
- Department of Neurology, University of Virginia, Charlottesville, VA, United States of America
| | - Michèle M. Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America
| | - Bradford B. Worrall
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States of America
- Department of Neurology, University of Virginia, Charlottesville, VA, United States of America
| | - Keith L. Keene
- Department of Biology, East Carolina University, Greenville, NC, United States of America
- Center for Health Disparities, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
- * E-mail:
| |
Collapse
|
57
|
Pathak S, Gokhroo A, Kumar Dubey A, Majumdar S, Gupta S, Almeida A, Mahajan GB, Kate A, Mishra P, Sharma R, Kumar S, Vishwakarma R, Balakrishnan A, Atreya H, Nandi D. 7-Hydroxy Frullanolide, a sesquiterpene lactone, increases intracellular calcium amounts, lowers CD4 + T cell and macrophage responses, and ameliorates DSS-induced colitis. Int Immunopharmacol 2021; 97:107655. [PMID: 33901737 DOI: 10.1016/j.intimp.2021.107655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/19/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.
Collapse
Affiliation(s)
- Sanmoy Pathak
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Abhijeet Gokhroo
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashim Kumar Dubey
- Undergraduate Program, Indian Institute of Science, Bangalore 560012, India
| | - Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Souradeep Gupta
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Asha Almeida
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Girish B Mahajan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Abhijeet Kate
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Prabhu Mishra
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Rajiv Sharma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Sanjay Kumar
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Ram Vishwakarma
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Arun Balakrishnan
- High Throughput Department, Piramal Research Center,1 Nirlon Complex, Off Western Express Highway, Goregaon East, Mumbai 400063, India
| | - Hanudatta Atreya
- NMR Research Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
58
|
Abstract
Protein palmitoylation is the post-translational attachment of fatty acids, most commonly palmitate (C16 : 0), onto a cysteine residue of a protein. This reaction is catalysed by a family of integral membrane proteins, the zDHHC protein acyltransferases (PATs), so-called due to the presence of an invariant Asp-His-His-Cys (DHHC) cysteine-rich domain harbouring the catalytic centre of the enzyme. Conserved throughout eukaryotes, the zDHHC PATs are encoded by multigene families and mediate palmitoylation of thousands of protein substrates. In humans, a number of zDHHC proteins are associated with human diseases, including intellectual disability, Huntington's disease, schizophrenia and cancer. Key to understanding the physiological and pathophysiological importance of individual zDHHC proteins is the identification of their protein substrates. Here, we will describe the approaches and challenges in assigning substrates for individual zDHHCs, highlighting key mechanisms that underlie substrate recruitment.
Collapse
Affiliation(s)
- Martin Ian P Malgapo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Maurine E Linder
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
59
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
60
|
Parys JB, Bultynck G, Vervliet T. IP 3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:215-237. [PMID: 34050869 DOI: 10.1007/978-3-030-67696-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intracellular Ca2+ signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP3R), a ubiquitously expressed Ca2+-release channel, mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP3Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP3R in cancer, as it participates in most of the so-called "hallmarks of cancer". In particular, the IP3R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP3R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP3Rs in these various processes are discussed. The relative levels of the IP3R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP3R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
61
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
62
|
Abstract
Protein S-acylation (commonly known as palmitoylation) is a widespread reversible lipid modification, which plays critical roles in regulating protein localization, activity, stability, and complex formation. The deregulation of protein S-acylation contributes to many diseases such as cancer and neurodegenerative disorders. The past decade has witnessed substantial progress in proteomic analysis of protein S-acylation, which significantly advanced our understanding of S-acylation biology. In this review, we summarized the techniques for the enrichment of S-acylated proteins or peptides, critically reviewed proteomic studies of protein S-acylation at eight different levels, and proposed major challenges for the S-acylproteomics field. In summary, proteome-scale analysis of protein S-acylation comes of age and will play increasingly important roles in discovering new disease mechanisms, biomarkers, and therapeutic targets.
Collapse
Affiliation(s)
- Yang Wang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
63
|
Ma C, Hoffmann PR. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin Cell Dev Biol 2020; 115:54-61. [PMID: 33214077 DOI: 10.1016/j.semcdb.2020.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that plays a key role in regulating the immune system. T cells are of particular interest due to their important role in promoting adaptive immunity against pathogens and cancer as well as regulating tolerance, all of which are influenced by dietary Se levels. The biological effects of Se are mainly exerted through the actions of the proteins into which it is inserted, i.e. selenoproteins. Thus, the roles that selenoproteins play in regulating T cell biology and molecular mechanisms involved have emerged as important areas of research for understanding how selenium affects immunity. Members of this diverse family of proteins exhibit a wide variety of functions within T cells that include regulating calcium flux induced by T cell receptor (TCR) engagement, shaping the redox tone of T cells before, during, and after activation, and linking TCR-induced activation to metabolic reprogramming required for T cell proliferation and differentiation. This review summarizes recent insights into the roles that selenoproteins play in these processes and their implications in understanding how Se may influence immunity.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, Hawaii 96813 USA.
| |
Collapse
|
64
|
Salaun C, Locatelli C, Zmuda F, Cabrera González J, Chamberlain LH. Accessory proteins of the zDHHC family of S-acylation enzymes. J Cell Sci 2020; 133:133/22/jcs251819. [PMID: 33203738 DOI: 10.1242/jcs.251819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Almost two decades have passed since seminal work in Saccharomyces cerevisiae identified zinc finger DHHC domain-containing (zDHHC) enzymes as S-acyltransferases. These enzymes are ubiquitous in the eukarya domain, with 23 distinct zDHHC-encoding genes in the human genome. zDHHC enzymes mediate the bulk of S-acylation (also known as palmitoylation) reactions in cells, transferring acyl chains to cysteine thiolates, and in so-doing affecting the stability, localisation and function of several thousand proteins. Studies using purified components have shown that the minimal requirements for S-acylation are an appropriate zDHHC enzyme-substrate pair and fatty acyl-CoA. However, additional proteins including GCP16 (also known as Golga7), Golga7b, huntingtin and selenoprotein K, have been suggested to regulate the activity, stability and trafficking of certain zDHHC enzymes. In this Review, we discuss the role of these accessory proteins as essential components of the cellular S-acylation system.
Collapse
Affiliation(s)
- Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Carolina Locatelli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Filip Zmuda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Juan Cabrera González
- Fac. de Ciencias Químicas, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
65
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
66
|
O'Brien MJ, Beijerink NJ, Sansom M, Thornton SW, Chew T, Wade CM. A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed. Sci Rep 2020; 10:18223. [PMID: 33106515 PMCID: PMC7589484 DOI: 10.1038/s41598-020-75243-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Inborn errors of metabolism are genetic conditions that can disrupt intermediary metabolic pathways and cause defective absorption and metabolism of dietary nutrients. In an Australian Kelpie breeding population, 17 puppies presented with intestinal lipid malabsorption. Juvenile dogs exhibited stunted postnatal growth, steatorrhea, abdominal distension and a wiry coat. Using genome-wide association analysis, an associated locus on CFA28 (Praw = 2.87E-06) was discovered and validated in a closely related population (Praw = 1.75E-45). A 103.3 kb deletion NC_006610.3CFA28:g.23380074_23483377del, containing genes Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5) and Zinc Finger DHHC-Type Containing 6 (ZDHHC6), was characterised using whole transcriptomic data. Whole transcriptomic sequencing revealed no expression of ACSL5 and disrupted splicing of ZDHHC6 in jejunal tissue of affected Kelpies. The ACSL5 gene plays a key role in long chain fatty acid absorption, a phenotype similar to that of our affected Kelpies has been observed in a knockout mouse model. A PCR-based diagnostic test was developed and confirmed fully penetrant autosomal recessive mode of inheritance. We conclude the structural variant causing a deletion of the ACSL5 gene is the most likely cause for intestinal lipid malabsorption in the Australian Kelpie.
Collapse
Affiliation(s)
- Mitchell J O'Brien
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Niek J Beijerink
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.,Veterinaire Specialisten Vught, Reutsedijk 8a, 5264 PC, Vught, The Netherlands
| | - Mandy Sansom
- Callicoma Kelpies, Grafton, NSW, 2460, Australia
| | - Sarah W Thornton
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.,Unaffiliated, Los Altos, USA
| | - Tracy Chew
- Sydney Informatic Hub, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
67
|
Loncke J, Kerkhofs M, Kaasik A, Bezprozvanny I, Bultynck G. Recent advances in understanding IP3R function with focus on ER-mitochondrial Ca2+ transfers. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Stix R, Lee CJ, Faraldo-Gómez JD, Banerjee A. Structure and Mechanism of DHHC Protein Acyltransferases. J Mol Biol 2020; 432:4983-4998. [PMID: 32522557 DOI: 10.1016/j.jmb.2020.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/01/2023]
Abstract
S-acylation, whereby a fatty acid chain is covalently linked to a cysteine residue by a thioester linkage, is the most prevalent kind of lipid modification of proteins. Thousands of proteins are targets of this post-translational modification, which is catalyzed by a family of eukaryotic integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs). Our knowledge of the repertoire of S-acylated proteins has been rapidly expanding owing to development of the chemoproteomic techniques. There has also been an increasing number of reports in the literature documenting the importance of S-acylation in human physiology and disease. Recently, the first atomic structures of two different DHHC-PATs were determined using X-ray crystallography. This review will focus on the insights gained into the molecular mechanism of DHHC-PATs from these structures and highlight representative data from the biochemical literature that they help explain.
Collapse
Affiliation(s)
- Robyn Stix
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul-Jin Lee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Philippe JM, Jenkins PM. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol 2020; 35:60-75. [PMID: 31969037 DOI: 10.1080/09687688.2019.1710274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein palmitoylation is a critical posttranslational modification that regulates protein trafficking, localization, stability, sorting and function. In mammals, addition of this lipid modification onto proteins is mediated by a family of 23 palmitoyl acyl transferases (PATs). PATs often palmitoylate substrates in a promiscuous manner, precluding our understanding of how these enzymes achieve specificity for their substrates. Despite generous efforts to identify consensus motifs defining PAT-substrate specificity, it remains to be determined whether additional factors beyond interaction motifs, such as local palmitoylation, participate in PAT-substrate selection. In this review, we emphasize the role of local palmitoylation, in which substrates are palmitoylated and trapped in the same subcellular compartments as their PATs, as a mechanism of enzyme-substrate specificity. We focus here on non-Golgi-localized PATs, as physical proximity to their substrates enables them to engage in local palmitoylation, compared to Golgi PATs, which often direct trafficking of their substrates elsewhere. PAT subcellular localization may be an under-recognized, yet important determinant of PAT-substrate specificity that may work in conjunction or completely independently of interaction motifs. We also discuss some current hypotheses about protein motifs that contribute to localization of non-Golgi-localized PATs, important for the downstream targeting of their substrates.
Collapse
Affiliation(s)
- Julie M Philippe
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
70
|
Stanishevska NV. Selenoproteins and their emerging roles in signaling pathways. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The functional activity of selenoproteins has a wide range of effects on complex pathogenetic processes, including teratogenesis, immuno-inflammatory, neurodegenerative. Being active participants and promoters of many signaling pathways, selenoproteins support the lively interest of a wide scientific community. This review is devoted to the analysis of recent data describing the participation of selenoproteins in various molecular interactions mediating important signaling pathways. Data processing was carried out by the method of complex analysis. For convenience, all selenoproteins were divided into groups depending on their location and function. Among the group of selenoproteins of the ER membrane, selenoprotein N affects the absorption of Ca2+ by the endoplasmic reticulum mediated by oxidoreductin (ERO1), a key player in the CHOP/ERO1 branch, a pathogenic mechanism that causes myopathy. Another selenoprotein of the ER membrane selenoprotein K binding to the DHHC6 protein affects the IP3R receptor that regulates Ca2+ flux. Selenoprotein K is able to affect another protein of the endoplasmic reticulum CHERP, also appearing in Ca2+ transport. Selenoprotein S, associated with the lumen of ER, is able to influence the VCP protein, which ensures the incorporation of selenoprotein K into the ER membrane. Selenoprotein M, as an ER lumen protein, affects the phosphorylation of STAT3 by leptin, which confirms that Sel M is a positive regulator of leptin signaling. Selenoprotein S also related to luminal selenoproteins ER is a modulator of the IRE1α-sXBP1 signaling pathway. Nuclear selenoprotein H will directly affect the suppressor of malignant tumours, p53 protein, the activation of which increases with Sel H deficiency. The same selenoprotein is involved in redox regulation. Among the cytoplasmic selenoproteins, abundant investigations are devoted to SelP, which affects the PI3K/Akt/Erk signaling pathway during ischemia/reperfusion, is transported into the myoblasts through the plasmalemma after binding to the apoER2 receptor, and into the neurons to the megaline receptor and in general, selenoprotein P plays the role of a pool that stores the necessary trace element and releases it, if necessary, for vital selenoproteins. The thioredoxin reductase family plays a key role in the invasion and metastasis of salivary adenoid cystic carcinoma through the influence on the TGF-β-Akt/GSK-3β pathway during epithelial-mesenchymal transition. The deletion of thioredoxin reductase 1 affects the levels of messengers of the Wnt/β-catenin signaling pathway. No less studied is the glutathione peroxidase group, of which GPX3 is able to inhibit signaling in the Wnt/β-catenin pathway and thereby inhibit thyroid metastasis, as well as suppress protein levels in the PI3K/Akt/c-fos pathway. A key observation is that in cases of carcinogenesis, a decrease in GPX3 and its hypermethylation are almost always found. Among deiodinases, deiodinase 3 acts as a promoter of the oncogenes BRAF, MEK or p38, while stimulating a decrease in the expression of cyclin D1. The dependence of the level of deiodinase 3 on the Hedgehog (SHH) signaling pathway is also noted. Methionine sulfoxide reductase A can compete for the uptake of ubiquitin, reduce p38, JNK and ERK promoters of the MAPK signaling pathway; methionine sulfoxide reductase B1 suppresses MAPK signaling messengers, and also increases PARP and caspase 3.
Collapse
|
71
|
Wang Y, Lu H, Fang C, Xu J. Palmitoylation as a Signal for Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:399-424. [DOI: 10.1007/978-981-15-3266-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Pan Y, Xiao Y, Pei Z, Cummins TR. S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability. J Biol Chem 2020; 295:6151-6164. [PMID: 32161114 DOI: 10.1074/jbc.ra119.012423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
S-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978 S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.
Collapse
Affiliation(s)
- Yanling Pan
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - Zifan Pei
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
73
|
Gadalla MR, Veit M. Toward the identification of ZDHHC enzymes required for palmitoylation of viral protein as potential drug targets. Expert Opin Drug Discov 2019; 15:159-177. [PMID: 31809605 DOI: 10.1080/17460441.2020.1696306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction: S-acylation is the attachment of fatty acids not only to cysteines of cellular, but also of viral proteins. The modification is often crucial for the protein´s function and hence for virus replication. Transfer of fatty acids is mediated by one or several of the 23 members of the ZDHHC family of proteins. Since their genes are linked to various human diseases, they represent drug targets.Areas covered: The authors explore whether targeting acylation of viral proteins might be a strategy to combat viral diseases. Many human pathogens contain S-acylated proteins; the ZDHHCs involved in their acylation are currently identified. Based on the 3D structure of two ZDHHCs, the regulation and the biochemistry of the palmitolyation reaction and the lipid and protein substrate specificities are discussed. The authors then speculate how ZDHHCs might recognize S-acylated membrane proteins of Influenza virus.Expert opinion: Although many viral diseases can now be treated, the available drugs bind to viral proteins that rapidly mutate and become resistant. To develop inhibitors for the genetically more stable cellular ZDHHCs, their binding sites for viral substrates need to be identified. If only a few cellular proteins are recognized by the same binding site, development of specific inhibitors may have therapeutic potential.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, Berlin, Germany.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Michael Veit
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
74
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
75
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
76
|
Marciel MP, Hoffmann PR. Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer. Biol Trace Elem Res 2019; 192:60-68. [PMID: 31187393 PMCID: PMC6801056 DOI: 10.1007/s12011-019-01774-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Many of the 25 members of the selenoprotein family function as enzymes that utilize their selenocysteine (Sec) residues to catalyze redox-based reactions. However, some selenoproteins likely do not exert enzymatic activity by themselves and selenoprotein K (SELENOK) is one such selenoprotein family member that uses its Sec residue in an alternative manner. SELENOK is an endoplasmic reticulum (ER) transmembrane protein that has been shown to be important for ER stress and for calcium-dependent signaling. Molecular mechanisms for the latter have recently been elucidated using knockout mice and genetically manipulated cell lines. These studies have shown that SELENOK interacts with an enzyme in the ER membrane, DHHC6 (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain), and the SELENOK/DHHC6 complex catalyzes the transfer of acyl groups such as palmitate to cysteine residues in target proteins, i.e., palmitoylation. One protein palmitoylated by SELENOK/DHHC6 is the calcium channel protein, the inositol 1,4,5-trisphosphate receptor (IP3R), which is acylated as a means for stabilizing the tetrameric calcium channel in the ER membrane. Factors that lower SELENOK levels or function impair IP3R-driven calcium flux. This role for SELENOK is important for the activation and proliferation of immune cells, and recently, a critical role for SELENOK in promoting calcium flux for the progression of melanoma has been demonstrated. This review provides a summary of these findings and their implications in terms of designing new therapeutic interventions that target SELENOK for treating cancers like melanoma.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
77
|
Rocca C, Pasqua T, Boukhzar L, Anouar Y, Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cell Mol Life Sci 2019; 76:3969-3985. [PMID: 31218451 PMCID: PMC11105271 DOI: 10.1007/s00018-019-03195-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France.
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France.
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy
- "Fondazione Umberto Veronesi", Milan, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University, 76821, Mont-Saint-Aignan, France
- Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Rende, Italy.
- National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
78
|
Kim YC, Lee SE, Kim SK, Jang HD, Hwang I, Jin S, Hong EB, Jang KS, Kim HS. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation. Nat Chem Biol 2019; 15:907-916. [PMID: 31427815 DOI: 10.1038/s41589-019-0344-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR)/myeloid differentiation primary response protein (MYD88) signaling aggravates sepsis by impairing neutrophil migration to infection sites. However, the role of intracellular fatty acids in TLR/MYD88 signaling is unclear. Here, inhibition of fatty acid synthase by C75 improved neutrophil chemotaxis and increased the survival of mice with sepsis in cecal ligation puncture and lipopolysaccharide-induced septic shock models. C75 specifically blocked TLR/MYD88 signaling in neutrophils. Treatment with GSK2194069 that targets a different domain of fatty acid synthase, did not block TLR signaling or MYD88 palmitoylation. De novo fatty acid synthesis and CD36-mediated exogenous fatty acid incorporation contributed to MYD88 palmitoylation. The binding of IRAK4 to the MYD88 intermediate domain and downstream signal activation required MYD88 palmitoylation at cysteine 113. MYD88 was palmitoylated by ZDHHC6, and ZDHHC6 knockdown decreased MYD88 palmitoylation and TLR/MYD88 activation upon lipopolysaccharide stimulus. Thus, intracellular saturated fatty acid-dependent palmitoylation of MYD88 by ZDHHC6 is a therapeutic target of sepsis.
Collapse
Affiliation(s)
- Young-Chan Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Sang Eun Lee
- Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Somi K Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Duk Jang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Injoo Hwang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Sooryeonhwa Jin
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Eun-Byeol Hong
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea.,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, South Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, Korea. .,Korea Research-Driven Hospital, Seoul National University Hospital, Seoul, Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,World Class University Program, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
79
|
Rimessi A, Pedriali G, Vezzani B, Tarocco A, Marchi S, Wieckowski MR, Giorgi C, Pinton P. Interorganellar calcium signaling in the regulation of cell metabolism: A cancer perspective. Semin Cell Dev Biol 2019; 98:167-180. [PMID: 31108186 DOI: 10.1016/j.semcdb.2019.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Organelles were originally considered to be individual cellular compartments with a defined organization and function. However, recent studies revealed that organelles deeply communicate within each other via Ca2+ exchange. This communication, mediated by specialized membrane regions in close apposition between two organelles, regulate cellular functions, including metabolism and cell fate decisions. Advances in microscopy techniques, molecular biology and biochemistry have increased our understanding of these interorganelle platforms. Research findings suggest that interorganellar Ca2+ signaling, which is altered in cancer, influences tumorigenesis and tumor progression by controlling cell death programs and metabolism. Here, we summarize the available data on the existence and composition of interorganelle platforms connecting the endoplasmic reticulum with mitochondria, the plasma membrane, or endolysosomes. Finally, we provide a timely overview of the potential function of interorganellar Ca2+ signaling in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Gaia Pedriali
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Bianca Vezzani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Anna Tarocco
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Neonatal Intensive Care Unit, University Hospital S. Anna Ferrara, 44124 Ferrara, Italy
| | - Saverio Marchi
- Dept. of Clinical and Molecular Sciences, Polytechnical University of Marche, 60126 Ancona, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy.
| |
Collapse
|
80
|
Meng XL, Chen CL, Liu YY, Su SJ, Gou JM, Huan FN, Wang D, Liu HS, Ben SB, Lu J. Selenoprotein SELENOK Enhances the Migration and Phagocytosis of Microglial Cells by Increasing the Cytosolic Free Ca 2+ Level Resulted from the Up-Regulation of IP 3R. Neuroscience 2019; 406:38-49. [PMID: 30849448 DOI: 10.1016/j.neuroscience.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/14/2023]
Abstract
Enhancing the migration and phagocytosis of microglial cells is of great significance for the reducing of the risk of the neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The effect of mouse selenoprotein K (mSELENOK) on the migration and phagocytosis of BV2 microglial cells and its mechanism were studied. The results showed that the over-expression of mSELENOK can increase the migratory and phagocytic abilities of the microglial cells, while the knockdown of mSELENOK can decrease the migratory and phagocytic abilities of the cells. The cytosolic free Ca2+ level and inositol trisphosphate receptor (IP3R) mRNA transcript and protein expression were also increased significantly as the consequence of the over-expression of mSELENOK in the microglial cells. On the contrary, the level of cytosolic free Ca2+ and the mRNA transcript and protein expression of IP3R in mSELENOK knockdown cells were decreased significantly. 2-aminoethoxydiphenyl borate (2-APB), an antagonist of IP3R, could prevent the increased migration, phagocytosis, and cytosolic free Ca2+ level of mSELENOK over-expressed microglial cells, and knockdown of IP3R3 could reduce the increased cytosolic Ca2+ level in mSELENOK over-expressed microglial cells. Further studies revealed that selenium supplement (Na2SeO3) can increase the expression of mSELENOK in microglial cells significantly. In summary, these data suggest that mSELENOK can increase cytosolic free Ca2+ level of microglial cells by up-regulating the expression of IP3R, thus enhancing the migration and phagocytosis of microglial cells. Our results indicated that mSELENOK is an important selenoprotein, which plays a role in trace element selenium's functions and can enhance the migration and phagocytosis of microglial cells.
Collapse
Affiliation(s)
- Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Chang-Lan Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| | - Ying-Ying Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Shu-Jie Su
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jiang-Min Gou
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Feng-Ning Huan
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Dan Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China
| | - Hong-Sheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, China
| | - Song-Bin Ben
- School of Life Science, Liaoning University, Shenyang, China
| | - Jing Lu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China; Research Center for Natural product pharmacy of Liaoning Province, Shenyang, China.
| |
Collapse
|
81
|
Sun Z, Xu Z, Wang D, Yao H, Li S. Selenium deficiency inhibits differentiation and immune function and imbalances the Th1/Th2 of dendritic cells. Metallomics 2019; 10:759-767. [PMID: 29766201 DOI: 10.1039/c8mt00039e] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenium (Se) deficiency inhibits immune cell differentiation, affects immune response, and leads to cellular and humoral immune dysfunction. However, the impact of Se deficiency on the differentiation and Th1/Th2 balance of dendritic cells is still unclear. In this study, we replicated a model of Se-deficient chickens by feeding the chickens with a low-Se diet (i.e., the content of Se is 0.008 mg per kg diet). On this basis, we explored the effect of Se deficiency on the differentiation of chicken dendritic cells by induction culture of peripheral blood monocyte cells. We induced chicken dendritic cells by incubating mononuclear cells with a 100 ng mL-1 recombinant chicken granulocyte-macrophage colony-stimulating factor and 20 ng mL-1 recombinant chicken IL-4 for total 7 days. The results showed that Se deficiency decreased the expression of cell-surface markers including CD11c, CD40, CD86, and MHC II. Furthermore, we analyzed the cytokine profiles using real-time quantitative PCR and ELISA. The results indicated that Se deficiency inhibited the expression of selenoproteins and changed the secretion of IL-10, IL-12p40, and IFN-γ. Additionally, Se deficiency weakened the ability of dendritic cells to stimulate the proliferation of mixed allogeneic lymphocytes. In conclusion, Se deficiency suppressed the differentiation and immune function of chicken dendritic cells by down-regulating the expression of CD11c, CD40, CD86, MHC II, and selenoproteins. The result also showed that the Th1/Th2 imbalance was induced by enhancing the secretion of Th1-type cytokine IL-12p40 and IFN-γ and reducing that of Th2-type cytokine IL-10. Our findings contribute to understanding the mechanism of Se deficiency in the differentiation and immune function of chicken dendritic cells.
Collapse
Affiliation(s)
- Zhepeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | | | | | | | | |
Collapse
|
82
|
Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca 2+ signaling in cell survival and death. Cell Calcium 2019; 79:89-97. [PMID: 30889512 DOI: 10.1016/j.ceca.2019.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Physiological signaling by reactive oxygen species (ROS) and their pathophysiological role in cell death are well recognized. This review focuses on two ROS targets that are key to local Ca2+ signaling at the ER/mitochondrial interface - notably, inositol trisphosphate receptors (IP3Rs) and the mitochondrial calcium uniporter (MCU). Both transport systems are central to molecular mechanisms in cell survival and death. Methods for the measurement of the redox state of these proteins and for the detection of ROS nanodomains are described. Recent results on the redox regulation of these proteins are reviewed.
Collapse
Affiliation(s)
- Suresh K Joseph
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - David M Booth
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael P Young
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
83
|
Matt L, Kim K, Chowdhury D, Hell JW. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front Mol Neurosci 2019; 12:8. [PMID: 30766476 PMCID: PMC6365469 DOI: 10.3389/fnmol.2019.00008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Many postsynaptic proteins undergo palmitoylation, the reversible attachment of the fatty acid palmitate to cysteine residues, which influences trafficking, localization, and protein interaction dynamics. Both palmitoylation by palmitoyl acyl transferases (PAT) and depalmitoylation by palmitoyl-protein thioesterases (PPT) is regulated in an activity-dependent, localized fashion. Recently, palmitoylation has received attention for its pivotal contribution to various forms of synaptic plasticity, the dynamic modulation of synaptic strength in response to neuronal activity. For instance, palmitoylation and depalmitoylation of the central postsynaptic scaffold protein postsynaptic density-95 (PSD-95) is important for synaptic plasticity. Here, we provide a comprehensive review of studies linking palmitoylation of postsynaptic proteins to synaptic plasticity.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karam Kim
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Dhrubajyoti Chowdhury
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
84
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
85
|
Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, Booth DM, Hajnóczky G. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. J Biol Chem 2018; 293:17464-17476. [PMID: 30228182 PMCID: PMC6231128 DOI: 10.1074/jbc.ra118.005624] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 μm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells.
Collapse
Affiliation(s)
- Suresh K Joseph
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| | - Michael P Young
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kamil Alzayady
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - David I Yule
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - Mehboob Ali
- the Center for Perinatal Research, Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43205
| | - David M Booth
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - György Hajnóczky
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
86
|
Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med 2018; 127:145-152. [PMID: 29800653 DOI: 10.1016/j.freeradbiomed.2018.05.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Selenoprotein T (SELENOT, SELT) is a thioredoxin-like enzyme anchored at the endoplasmic reticulum (ER) membrane, whose primary structure is highly conserved during evolution. SELENOT is abundant in embryonic tissues and its activity is essential during development since its gene knockout in mice is lethal early during embryogenesis. Although its expression is repressed in most adult tissues, SELENOT remains particularly abundant in endocrine organs such as the pituitary, pancreas, thyroid and testis, suggesting an important role of this selenoprotein in hormone production. Our recent studies showed indeed that SELENOT plays a key function in insulin and corticotropin biosynthesis and release by regulating ER proteostasis. Although SELENOT expression is low or undetectable in most cerebral structures, its gene conditional knockout in brain provokes anatomical alterations that impact mice behavior. This suggests that SELENOT also plays an important role in brain development and function. In addition, SELENOT is induced after injury in brain or liver and exerts a cytoprotective effect. Thus, the data gathered during the last ten years of intense investigation of this newly discovered thioredoxin-like enzyme point to an essential function during development and in adult endocrine organs or lesioned brain, most likely by regulating ER redox circuits that control homeostasis and survival of cells with intense metabolic activity.
Collapse
Affiliation(s)
- Youssef Anouar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France.
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, INSERM, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, 76821 Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine of Normandy, 76000 Rouen, France
| |
Collapse
|
87
|
Abstract
The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system. These two cell populations are anorexigenic neurons expressing proopiomelanocortin (POMC) and orexigenic neurons that express agouti-related peptide (AGRP). Several important studies have demonstrated that reactive oxygen species and endoplasmic reticulum stress significantly impact these hypothalamic neuronal populations that regulate global energy metabolism. Reactive oxygen species and redox homeostasis are influenced by selenoproteins, an essential class of proteins that incorporate selenium co-translationally in the form of the 21st amino acid, selenocysteine. Levels of these proteins are regulated by dietary selenium intake and they are widely expressed in the brain. Of additional relevance, selenium supplementation has been linked to metabolic alterations in both animal and human studies. Recent evidence also indicates that hypothalamic selenoproteins are significant modulators of energy metabolism in both neurons and tanycytes, a population of glial-like cells lining the floor of the 3rd ventricle within the hypothalamus. This review article will summarize current understanding of the regulatory influence of redox status on hypothalamic nutrient sensing and highlight recent work revealing the importance of selenoproteins in the hypothalamus.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Matthew W Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
88
|
Ko PJ, Dixon SJ. Protein palmitoylation and cancer. EMBO Rep 2018; 19:embr.201846666. [PMID: 30232163 DOI: 10.15252/embr.201846666] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
Protein S-palmitoylation is a reversible post-translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S-palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp-His-His-Cys (DHHC)-family palmitoyl S-acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl-protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S-palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
89
|
Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients 2018; 10:E1203. [PMID: 30200430 PMCID: PMC6163284 DOI: 10.3390/nu10091203] [Citation(s) in RCA: 535] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Selenium is an essential micronutrient that plays a crucial role in development and a wide variety of physiological processes including effect immune responses. The immune system relies on adequate dietary selenium intake and this nutrient exerts its biological effects mostly through its incorporation into selenoproteins. The selenoproteome contains 25 members in humans that exhibit a wide variety of functions. The development of high-throughput omic approaches and novel bioinformatics tools has led to new insights regarding the effects of selenium and selenoproteins in human immuno-biology. Equally important are the innovative experimental systems that have emerged to interrogate molecular mechanisms underlying those effects. This review presents a summary of the current understanding of the role of selenium and selenoproteins in regulating immune cell functions and how dysregulation of these processes may lead to inflammation or immune-related diseases.
Collapse
Affiliation(s)
- Joseph C Avery
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
90
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
91
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
92
|
Varlamova EG. Participation of selenoproteins localized in the ER in the processes occurring in this organelle and in the regulation of carcinogenesis-associated processes. J Trace Elem Med Biol 2018; 48:172-180. [PMID: 29773177 DOI: 10.1016/j.jtemb.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023]
Abstract
The functions performed by the ER are diverse: synthesis of steroid hormones, synthesis of proteins for the plasma membrane, lysosomes, as well as proteins meant for exocytosis, protein folding, formation of disulfide bonds, N-linked glycosylation, etc. Selenoproteins localized in this organelle are definitely involved in the processes occurring in it, and the most common of them include participation in protein degradation, regulation of ER stress and redox metabolism. ER stress has been registered in many types of cancer cells. The ability to persist under prolonged ER stress increases their survival, resistance to drugs and immunity. Disturbances in the redox regulation of the cell cycle, which result in the accumulation of misfolded proteins in the ER, viral infection, disruption of Ca2+ regulation, are known to cause an evolutionarily conserved reaction - unfolded protein response (UPR) and, ultimately, lead to ER stress. Since selenoproteins, as oxidoreductases, possess antioxidant properties, and their role in the regulation of important processes, such as carcinogenesis and ER stress, has been actively studied in the recent decades, the subject of this review is highly relevant.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science, Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
93
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
94
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
95
|
Marciel MP, Khadka VS, Deng Y, Kilicaslan P, Pham A, Bertino P, Lee K, Chen S, Glibetic N, Hoffmann FW, Matter ML, Hoffmann PR. Selenoprotein K deficiency inhibits melanoma by reducing calcium flux required for tumor growth and metastasis. Oncotarget 2018; 9:13407-13422. [PMID: 29568366 PMCID: PMC5862587 DOI: 10.18632/oncotarget.24388] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
Interest has emerged in the therapeutic potential of inhibiting store operated calcium (Ca2+) entry (SOCE) for melanoma and other cancers because malignant cells exhibit a strong dependence on Ca2+ flux for disease progression. We investigated the effects of deleting Selenoprotein K (SELENOK) in melanoma since previous work in immune cells showed SELENOK was required for efficient Ca2+ flux through the endoplasmic reticulum Ca2+ channel protein, inositol 1,4,5-trisphosphate receptor (IP3R), which is due to the role SELENOK plays in palmitoylating and stabilizing the expression of IP3R. CRISPR/Cas9 was used to generate SELENOK-deficiency in human melanoma cells and this led to reduced Ca2+ flux and impaired IP3R function, which inhibited cell proliferation, invasion, and migration. Ca2+-dependent signaling through calcineurin was inhibited with SELENOK-deficiency, and gene array analyses together with evaluation of transcript and protein levels showed altered transcriptional programs that ultimately disrupted stemness and pro-growth properties. In vivo investigations were conducted using the Grm1-Tg transgenic mouse strain that develops spontaneous metastatic melanoma, which was crossed with SELENOK−/− mice to generate the following littermates: Grm1-Tg/SELENOK−/−, Grm1-Tg/SELENOK−/+, Grm1-Tg/SELENOK+/+. SELENOK-deficiency in Grm1-Tg/SELENOK−/− male and female mice inhibited primary tumor growth on tails and ears and reduced metastasis to draining lymph nodes down to levels equivalent to non-tumor control mice. Cancer stem cell pools were also decreased in Grm1-Tg/SELENOK−/− mice compared to littermates. These results suggest that melanoma requires SELENOK expression for IP3R dependent maintenance of stemness, tumor growth and metastasic potential, thus revealing a new potential therapeutic target for treating melanoma and possibly other cancers.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Vedbar S Khadka
- Bioinformatics Core in the Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Youping Deng
- Bioinformatics Core in the Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Pascal Kilicaslan
- Biotechnology Department, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Andrew Pham
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Katie Lee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | - Suzie Chen
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, U.S.A
| | | | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| | | | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, U.S.A
| |
Collapse
|
96
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
97
|
Zhang Z, Liu J, Rozovsky S. Preparation of Selenocysteine-Containing Forms of Human SELENOK and SELENOS. Methods Mol Biol 2018; 1661:241-263. [PMID: 28917050 PMCID: PMC6160314 DOI: 10.1007/978-1-4939-7258-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenoprotein K (SELENOK) and Selenoprotein S (SELENOS) are the members of the endoplasmic-reticulum-associated degradation (ERAD) complex, which is responsible for translocating misfolded proteins from the endoplasmic reticulum (ER) to the cytosol for degradation. Besides its involvement in the ERAD, SELENOK was shown to bind and stabilize the palmitoyl transferase DHHC6, and thus contributes to palmitoylation. SELENOK and SELENOS reside in the ER membrane by the way of a single transmembrane helix. Both contain an intrinsically disordered region with a selenocysteine (Sec) located one or two residues away from the C-terminus. Here, we describe the preparation of the Sec-containing forms of SELENOS and SELENOK. SELENOK, which contains no native cysteines, was prepared in an E. coli cysteine auxotroph strain by exploiting the codon and the insertion machinery of Cys for the incorporation of Sec. In contrast, the preparation of SELENOS, which contains functionally important cysteine residues, relied on E. coli's native Sec incorporation mechanism.
Collapse
Affiliation(s)
- Zhengqi Zhang
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA.
| |
Collapse
|
98
|
Fredericks GJ, Hoffmann FW, Hondal RJ, Rozovsky S, Urschitz J, Hoffmann PR. Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate. Antioxidants (Basel) 2017; 7:antiox7010004. [PMID: 29286308 PMCID: PMC5789314 DOI: 10.3390/antiox7010004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Selenoprotein K (SELENOK) is a selenocysteine (Sec)-containing protein localized in the endoplasmic reticulum (ER) membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids) enzyme to promote protein acyl transferase (PAT) reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys) residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50%) under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92), we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur.
Collapse
Affiliation(s)
- Gregory J Fredericks
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA.
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE 19716, USA.
| | - Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
99
|
Hamieh A, Cartier D, Abid H, Calas A, Burel C, Bucharles C, Jehan C, Grumolato L, Landry M, Lerouge P, Anouar Y, Lihrmann I. Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Rep 2017; 18:1935-1946. [PMID: 28928140 DOI: 10.15252/embr.201643504] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein T (SelT) is a recently characterized thioredoxin-like protein whose expression is very high during development, but is confined to endocrine tissues in adulthood where its function is unknown. We report here that SelT is required for adaptation to the stressful conditions of high hormone level production in endocrine cells. Using immunofluorescence and TEM immunogold approaches, we find that SelT is expressed at the endoplasmic reticulum membrane in all hormone-producing pituitary cell types. SelT knockdown in corticotrope cells promotes unfolded protein response (UPR) and ER stress and lowers endoplasmic reticulum-associated protein degradation (ERAD) and hormone production. Using a screen in yeast for SelT-membrane protein interactions, we sort keratinocyte-associated protein 2 (KCP2), a subunit of the protein complex oligosaccharyltransferase (OST). In fact, SelT interacts not only with KCP2 but also with other subunits of the A-type OST complex which are depleted after SelT knockdown leading to POMC N-glycosylation defects. This study identifies SelT as a novel subunit of the A-type OST complex, indispensable for its integrity and for ER homeostasis, and exerting a pivotal adaptive function that allows endocrine cells to properly achieve the maturation and secretion of hormones.
Collapse
Affiliation(s)
- Abdallah Hamieh
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dorthe Cartier
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Houssni Abid
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - André Calas
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Carole Burel
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Christine Bucharles
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cedric Jehan
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Luca Grumolato
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Patrice Lerouge
- Institute for Research and Innovation in Biomedicine, Rouen, France.,Glyco-MEV Laboratory, Rouen-Normandie University UNIROUEN, Mont-Saint-Aignan, France
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen-Normandie University UNIROUEN, Inserm, U1239, Mont-Saint-Aignan, France .,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
100
|
Abstract
Cancer survival is largely impacted by the dissemination of cancer cells from the original tumor site to secondary tissues or organs through metastasis. Targets for antimetastatic therapies have recently become a focus of research, but progress will require a better understanding of the molecular mechanisms driving metastasis. Selenoproteins play important roles in many of the cellular activities underlying metastasis including cell adhesion, matrix degradation and migration, invasion into the blood and extravasation into secondary tissues, and subsequent proliferation into metastatic tumors along with the angiogenesis required for growth. In this review the roles identified for different selenoproteins in these steps and how they may promote or inhibit metastatic cancers is discussed. These roles include selenoenzyme modulation of redox tone and detoxification of reactive oxygen species, calcium homeostasis and unfolded protein responses regulated by endoplasmic reticulum selenoproteins, and the multiple physiological responses influenced by other selenoproteins.
Collapse
Affiliation(s)
- Michael P Marciel
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peter R Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|