51
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
52
|
Castagnola S, Delhaye S, Folci A, Paquet A, Brau F, Duprat F, Jarjat M, Grossi M, Béal M, Martin S, Mantegazza M, Bardoni B, Maurin T. New Insights Into the Role of Ca v2 Protein Family in Calcium Flux Deregulation in Fmr1-KO Neurons. Front Mol Neurosci 2018; 11:342. [PMID: 30319351 PMCID: PMC6170614 DOI: 10.3389/fnmol.2018.00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability (ID) and a leading cause of autism, results from the loss of expression of the Fmr1 gene which encodes the RNA-binding protein Fragile X Mental Retardation Protein (FMRP). Among the thousands mRNA targets of FMRP, numerous encode regulators of ion homeostasis. It has also been described that FMRP directly interacts with Ca2+ channels modulating their activity. Collectively these findings suggest that FMRP plays critical roles in Ca2+ homeostasis during nervous system development. We carried out a functional analysis of Ca2+ regulation using a calcium imaging approach in Fmr1-KO cultured neurons and we show that these cells display impaired steady state Ca2+ concentration and an altered entry of Ca2+ after KCl-triggered depolarization. Consistent with these data, we show that the protein product of the Cacna1a gene, the pore-forming subunit of the Cav2.1 channel, is less expressed at the plasma membrane of Fmr1-KO neurons compared to wild-type (WT). Thus, our findings point out the critical role that Cav2.1 plays in the altered Ca2+ flux in Fmr1-KO neurons, impacting Ca2+ homeostasis of these cells. Remarkably, we highlight a new phenotype of cultured Fmr1-KO neurons that can be considered a novel cellular biomarker and is amenable to small molecule screening and identification of new drugs to treat FXS.
Collapse
Affiliation(s)
- Sara Castagnola
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | | | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Fabrice Duprat
- Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | - Marielle Jarjat
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Mauro Grossi
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Méline Béal
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | | | - Barbara Bardoni
- CNRS LIA "Neogenex", Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, IPMC, Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France.,CNRS LIA "Neogenex", Valbonne, France
| |
Collapse
|
53
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
54
|
Handling FMRP and its molecular partners: Structural insights into Fragile X Syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:3-14. [PMID: 30905341 DOI: 10.1016/j.pbiomolbio.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022]
Abstract
Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein (RBP) known to control different steps of mRNA metabolism, even though its complete function is not fully understood yet. Lack or mutations of FMRP lead to Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and a leading monogenic cause of autism spectrum disorder (ASD). It is well established that FMRP has a multi-domain architecture, a feature that allows this RBP to be engaged in a large interaction network with numerous proteins and mRNAs or non-coding RNAs. Insights into the three-dimensional (3D) structure of parts of its three domains (N-terminus, central domain and C-terminus) were obtained using Nuclear Magnetic Resonance and X-ray diffraction, but the complete 3D arrangement of each domain with respect to the others is still missing. Here, we review the structural features of FMRP and of the network of its protein and RNA interactions. Understanding these aspects is the first necessary step towards the design of novel compounds for new therapeutic interventions in FXS.
Collapse
|
55
|
Dockendorff TC, Labrador M. The Fragile X Protein and Genome Function. Mol Neurobiol 2018; 56:711-721. [PMID: 29796988 DOI: 10.1007/s12035-018-1122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Mariano Labrador
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
56
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
57
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
58
|
Abstract
Mutations in the cereblon (CRBN) gene cause human intellectual disability, one of the most common cognitive disorders. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. We investigated the role of CRBN in synaptic function and animal behavior using male mouse and Drosophila models. Crbn knock-out (KO) mice showed normal brain and spine morphology as well as intact synaptic plasticity; however, they also exhibited decreases in synaptic transmission and presynaptic release probability exclusively in excitatory synapses. Presynaptic function was impaired not only by loss of CRBN expression, but also by expression of pathogenic CRBN mutants (human R419X mutant and Drosophila G552X mutant). We found that the BK channel blockers paxilline and iberiotoxin reversed this decrease in presynaptic release probability in Crbn KO mice. In addition, paxilline treatment also restored normal cognitive behavior in Crbn KO mice. These results strongly suggest that increased BK channel activity is the pathological mechanism of intellectual disability in CRBN mutations.SIGNIFICANCE STATEMENTCereblon (CRBN), a well known target of the immunomodulatory drug thalidomide, was originally identified as a gene that causes human intellectual disability when mutated. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. Based on the idea that synaptic abnormalities are the most common factor in cognitive dysfunction, we monitored the synaptic structure and function of Crbn knock-out (KO) animals to identify the molecular mechanisms of intellectual disability. Here, we found that Crbn KO animals showed cognitive deficits caused by enhanced BK channel activity and reduced presynaptic glutamate release. Our findings suggest a physiological pathomechanism of the intellectual disability-related gene CRBN and will contribute to the development of therapeutic strategies for CRBN-related intellectual disability.
Collapse
|
59
|
Khayachi A, Gwizdek C, Poupon G, Alcor D, Chafai M, Cassé F, Maurin T, Prieto M, Folci A, De Graeve F, Castagnola S, Gautier R, Schorova L, Loriol C, Pronot M, Besse F, Brau F, Deval E, Bardoni B, Martin S. Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation. Nat Commun 2018; 9:757. [PMID: 29472612 PMCID: PMC5823917 DOI: 10.1038/s41467-018-03222-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/28/2018] [Indexed: 12/02/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function. Fragile X syndrome patients display intellectual disability and autism, caused by mutations in the RNA-binding protein fragile X mental retardation protein (FMRP). Here, the authors show that FMRP sumoylation is required for regulating spine density and maturation.
Collapse
Affiliation(s)
| | - Carole Gwizdek
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Damien Alcor
- Université Côte d'Azur, INSERM, C3M, 06200, Nice, France
| | - Magda Chafai
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Frédéric Cassé
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | | | | | | | - Romain Gautier
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Lenka Schorova
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Céline Loriol
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, INSERM, iBV, 06108, Nice, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, IPMC, 06560, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, 06560, Valbonne, France.
| |
Collapse
|
60
|
Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice. Cell Rep 2018; 16:3157-3166. [PMID: 27653682 DOI: 10.1016/j.celrep.2016.08.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/08/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model.
Collapse
|
61
|
Carreno-Munoz MI, Martins F, Medrano MC, Aloisi E, Pietropaolo S, Dechaud C, Subashi E, Bony G, Ginger M, Moujahid A, Frick A, Leinekugel X. Potential Involvement of Impaired BK Ca Channel Function in Sensory Defensiveness and Some Behavioral Disturbances Induced by Unfamiliar Environment in a Mouse Model of Fragile X Syndrome. Neuropsychopharmacology 2018; 43:492-502. [PMID: 28722023 PMCID: PMC5770751 DOI: 10.1038/npp.2017.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 01/20/2023]
Abstract
In fragile X syndrome (FXS), sensory hypersensitivity and impaired habituation is thought to result in attention overload and various behavioral abnormalities in reaction to the excessive and remanent salience of environment features that would normally be ignored. This phenomenon, termed sensory defensiveness, has been proposed as the potential cause of hyperactivity, hyperarousal, and negative reactions to changes in routine that are often deleterious for FXS patients. However, the lack of tools for manipulating sensory hypersensitivity has not allowed the experimental testing required to evaluate the relevance of this hypothesis. Recent work has shown that BMS-204352, a BKCa channel agonist, was efficient to reverse cortical hyperexcitability and related sensory hypersensitivity in the Fmr1-KO mouse model of FXS. In the present study, we report that exposing Fmr1-KO mice to novel or unfamiliar environments resulted in multiple behavioral perturbations, such as hyperactivity, impaired nest building and excessive grooming of the back. Reversing sensory hypersensitivity with the BKCa channel agonist BMS-204352 prevented these behavioral abnormalities in Fmr1-KO mice. These results are in support of the sensory defensiveness hypothesis, and confirm BKCa as a potentially relevant molecular target for the development of drug medication against FXS/ASD.
Collapse
Affiliation(s)
- Maria Isabel Carreno-Munoz
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,University of the Basque Country (UPV/EHU), Donostia, Spain
| | - Fabienne Martins
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maria Carmen Medrano
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Elisabetta Aloisi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Susanna Pietropaolo
- University of Bordeaux, INCIA, Pessac, France,CNRS, INCIA, UMR 5287, Pessac, France
| | - Corentin Dechaud
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Enejda Subashi
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillaume Bony
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | | | - Andreas Frick
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Xavier Leinekugel
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France,University of Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France,Neurocentre Magendie, INSERM U1215, Université de Bordeaux, 146 rue Leo Saignat, 33077 Bordeaux, France, Tel: +33 6 09 55 53 39, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
62
|
Song T, Liang S, Liu J, Zhang T, Yin Y, Geng C, Gao S, Feng Y, Xu H, Guo D, Roberts A, Gu Y, Cang Y. CRL4 antagonizes SCFFbxo7-mediated turnover of cereblon and BK channel to regulate learning and memory. PLoS Genet 2018; 14:e1007165. [PMID: 29370161 PMCID: PMC5800687 DOI: 10.1371/journal.pgen.1007165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/06/2018] [Accepted: 12/25/2017] [Indexed: 12/18/2022] Open
Abstract
Intellectual disability (ID), one of the most common human developmental disorders, can be caused by genetic mutations in Cullin 4B (Cul4B) and cereblon (CRBN). CRBN is a substrate receptor for the Cul4A/B-DDB1 ubiquitin ligase (CRL4) and can target voltage- and calcium-activated BK channel for ER retention. Here we report that ID-associated CRL4CRBN mutations abolish the interaction of the BK channel with CRL4, and redirect the BK channel to the SCFFbxo7 ubiquitin ligase for proteasomal degradation. Glioma cell lines harbouring CRBN mutations record density-dependent decrease of BK currents, which can be restored by blocking Cullin ubiquitin ligase activity. Importantly, mice with neuron-specific deletion of DDB1 or CRBN express reduced BK protein levels in the brain, and exhibit similar impairment in learning and memory, a deficit that can be partially rescued by activating the BK channel. Our results reveal a competitive targeting of the BK channel by two ubiquitin ligases to achieve exquisite control of its stability, and support changes in neuronal excitability as a common pathogenic mechanism underlying CRL4CRBN-associated ID.
Collapse
Affiliation(s)
- Tianyu Song
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenghui Liang
- Translational and Regenerative Medicine Center, Aston Medical School, Aston University, Birmingham, United Kingdom
| | - Jiye Liu
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingyue Zhang
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifei Yin
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenlu Geng
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaobing Gao
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Feng
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Xu
- Laboratory of Molecular Pharmacology, Institute of Molecular Medicine, Peking University, Peking, China
| | - Dongqing Guo
- Laboratory of Molecular Pharmacology, Institute of Molecular Medicine, Peking University, Peking, China
| | - Amanda Roberts
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, University of California, San Diego, La Jolla, California, United States of America
| | - Yuchun Gu
- Translational and Regenerative Medicine Center, Aston Medical School, Aston University, Birmingham, United Kingdom
- * E-mail: (YC); (YG)
| | - Yong Cang
- Life Sciences Institute and Innovation Center for Cell Signalling Network, Zhejiang University, Hangzhou, Zhejiang, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (YC); (YG)
| |
Collapse
|
63
|
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50:106-120. [PMID: 29190314 PMCID: PMC5846707 DOI: 10.1093/abbs/gmx124] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
The TGF-β superfamily signaling is involved in a variety of biological processes during embryogenesis and in adult tissue homeostasis. Faulty regulation of the signaling pathway that transduces the TGF-β superfamily signals accordingly leads to a number of ailments, such as cancer and cardiovascular, metabolic, urinary, intestinal, skeletal, and immune diseases. In recent years, a number of studies have elucidated the essential roles of TGF-βs and BMPs during neuronal development in the maintenance of appropriate innervation and neuronal activity. The new advancement implicates significant roles of the aberrant TGF-β superfamily signaling in the pathogenesis of neurological disorders. In this review, we compile a number of reports implicating the deregulation of TGF-β/BMP signaling pathways in the pathogenesis of cognitive and neurodegenerative disorders in animal models and patients. We apologize in advance that the review falls short of providing details of the role of TGF-β/BMP signaling or mechanisms underlying the pathogenesis of neurological disorders. The goal of this article is to reveal a gap in our knowledge regarding the association between TGF-β/BMP signaling pathways and neuronal tissue homeostasis and development and facilitate the research with a potential to develop new therapies for neurological ailments by modulating the pathways.
Collapse
Affiliation(s)
- Risa Kashima
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
64
|
Harper CB, Mancini GMS, van Slegtenhorst M, Cousin MA. Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiol Dis 2017; 108:298-306. [PMID: 28887151 PMCID: PMC5673032 DOI: 10.1016/j.nbd.2017.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/27/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022] Open
Abstract
Following exocytosis, synaptic vesicles (SVs) have to be reformed with the correct complement of proteins in the correct stoichiometry to ensure continued neurotransmission. Synaptophysin is a highly abundant, integral SV protein necessary for the efficient retrieval of the SV SNARE protein, synaptobrevin II (sybII). However the molecular mechanism underpinning synaptophysin-dependent sybII retrieval is still unclear. We recently identified a male patient with severe intellectual disability, hypotonia, epilepsy and callosal agenesis who has a point mutation in the juxtamembrane region of the fourth transmembrane domain of synaptophysin (T198I). This mutation had no effect on the activity-dependent retrieval of synaptophysin that was tagged with the genetically-encoded pH-sensitive reporter (pHluorin) in synaptophysin knockout hippocampal cultures. This suggested the mutant has no global effect on SV endocytosis, which was confirmed when retrieval of a different SV cargo (the glutamate transporter vGLUT1) was examined. However neurons expressing this T198I mutant did display impaired activity-dependent sybII retrieval, similar to that observed in synaptophysin knockout neurons. Interestingly this impairment did not result in an increased stranding of sybII at the plasma membrane. Screening of known human synaptophysin mutations revealed a similar presynaptic phenotype between T198I and a mutation found in X-linked intellectual disability. Thus this novel human synaptophysin mutation has revealed that aberrant retrieval and increased plasma membrane localisation of SV cargo can be decoupled in human disease.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Michael A Cousin
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
65
|
Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. Rare FMR1 gene mutations causing fragile X syndrome: A review. Am J Med Genet A 2017; 176:11-18. [PMID: 29178241 DOI: 10.1002/ajmg.a.38504] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 12/16/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, typically due to CGG-repeat expansions in the FMR1 gene leading to lack of expression. We identified a rare FMR1 gene mutation (c.413G>A), previously reported in a single patient and reviewed the literature for other rare FMR1 mutations. Our patient at 10 years of age presented with the classical findings of FXS including intellectual disability, autism, craniofacial findings, hyperextensibility, fleshy hands, flat feet, unsteady gait, and seizures but without the typical CGG-repeat expansion. He had more features of FXS than the previously reported patient with the same mutation. Twenty individuals reported previously with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene ranged in age from infancy to 50 years; most were verbal with limited speech, had autism and hyperactivity, and all had intellectual disability. Four of the 20 individuals had a mutation within exon 15, three within exon 5, and two within exon 2. The FMR1 missense mutation (c.413G>A) is the same as in a previously reported male where it was shown that there was preservation of the post-synaptic function of the fragile X mental retardation protein (FMRP), the encoded protein of the FMR1 gene was preserved. Both patients with this missense mutation had physical, cognitive, and behavioral features similarly seen in FXS.
Collapse
Affiliation(s)
- Adam F Sitzmann
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert T Hagelstrom
- Human Genetics Laboratory, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California-Davis Medical Center, Sacramento, California.,MIND Institute, University of California-Davis Medical Center, Sacramento, California
| | - Randi J Hagerman
- MIND Institute, University of California-Davis Medical Center, Sacramento, California.,Department of Pediatrics, University of California-Davis Medical Center, Sacramento, California
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
66
|
Zeidler S, de Boer H, Hukema RK, Willemsen R. Combination Therapy in Fragile X Syndrome; Possibilities and Pitfalls Illustrated by Targeting the mGluR5 and GABA Pathway Simultaneously. Front Mol Neurosci 2017; 10:368. [PMID: 29163043 PMCID: PMC5681991 DOI: 10.3389/fnmol.2017.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability and autism. The disorder is characterized by altered synaptic plasticity in the brain. Synaptic plasticity is tightly regulated by a complex balance of different synaptic pathways. In FXS, various synaptic pathways are disrupted, including the excitatory metabotropic glutamate receptor 5 (mGluR5) and the inhibitory γ-aminobutyric acid (GABA) pathways. Targeting each of these pathways individually, has demonstrated beneficial effects in animal models, but not in patients with FXS. This lack of translation might be due to oversimplification of the disease mechanisms when targeting only one affected pathway, in spite of the complexity of the many pathways implicated in FXS. In this report we outline the hypothesis that targeting more than one pathway simultaneously, a combination therapy, might improve treatment effects in FXS. In addition, we present a glance of the first results of chronic combination therapy on social behavior in Fmr1 KO mice. In contrast to what we expected, targeting both the mGluR5 and the GABAergic pathways simultaneously did not result in a synergistic effect, but in a slight worsening of the social behavior phenotype. This does implicate that both pathways are interconnected and important for social behavior. Our results underline the tremendous fine-tuning that is needed to reach the excitatory-inhibitory balance in the synapse in relation to social behavior. We believe that alternative strategies focused on combination therapy should be further explored, including targeting pathways in different cellular compartments or cell-types.
Collapse
Affiliation(s)
- Shimriet Zeidler
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Helen de Boer
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
67
|
Davis JK, Broadie K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 2017; 33:703-714. [PMID: 28826631 PMCID: PMC5610095 DOI: 10.1016/j.tig.2017.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.
Collapse
Affiliation(s)
- Jenna K Davis
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
68
|
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.
Collapse
|
69
|
Akins MR, Berk-Rauch HE, Kwan KY, Mitchell ME, Shepard KA, Korsak LIT, Stackpole EE, Warner-Schmidt JL, Sestan N, Cameron HA, Fallon JR. Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum Mol Genet 2017; 26:192-209. [PMID: 28082376 DOI: 10.1093/hmg/ddw381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 11/14/2022] Open
Abstract
Local mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons. Here we use a combination of genetic, quantitative imaging and super-resolution microscopy approaches to show that mature axons in the mammalian brain contain ribosomes, the translational regulator FMRP and a subset of FMRP mRNA targets. This axonal translational machinery is associated with Fragile X granules (FXGs), which are restricted to axons in a stereotyped subset of brain circuits. FXGs and associated axonal translational machinery are present in hippocampus in humans as old as 57 years. This FXG-associated axonal translational machinery is present in adult rats, even when adult neurogenesis is blocked. In contrast, in mouse this machinery is only observed in juvenile hippocampal axons. This differential developmental expression was specific to the hippocampus, as both mice and rats exhibit FXGs in mature axons in the adult olfactory system. Experiments in Fmr1 null mice show that FMRP regulates axonal protein expression but is not required for axonal transport of ribosomes or its target mRNAs. Axonal translational machinery is thus a feature of adult CNS neurons. Regulation of this machinery by FMRP could support complex behaviours in humans throughout life.
Collapse
Affiliation(s)
- Michael R Akins
- Department of Biology, Drexel University, Philadelphia, PA, USA.,Department of Neuroscience, Brown University, Providence, RI
| | | | - Kenneth Y Kwan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Lulu I T Korsak
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | | | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, RI
| |
Collapse
|
70
|
Luque MA, Beltran-Matas P, Marin MC, Torres B, Herrero L. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. PLoS One 2017; 12:e0185067. [PMID: 28931075 PMCID: PMC5607184 DOI: 10.1371/journal.pone.0185067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency-current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells.
Collapse
Affiliation(s)
| | | | - M. Carmen Marin
- Department of Physiology. University of Seville, Seville, Spain
| | - Blas Torres
- Department of Physiology. University of Seville, Seville, Spain
| | - Luis Herrero
- Department of Physiology. University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
71
|
Zaidman NA, Panoskaltsis-Mortari A, O'Grady SM. Large-conductance Ca 2+ -activated K + channel activation by apical P2Y receptor agonists requires hydrocortisone in differentiated airway epithelium. J Physiol 2017; 595:4631-4645. [PMID: 28481415 DOI: 10.1113/jp274200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hydrocortisone (HC) is required for activation of large-conductance Ca2+ -activated K+ current (BK) by purinergic receptor agonists. HC reduces insertion of the stress-regulated exon (STREX) in the KCNMA1 gene, permitting protein kinase C (PKC)-dependent channel activation. Overlapping and unique purinergic signalling regions exist at the apical border of differentiated surface cells. BK channels localize in the cilia of surface cells. ABSTRACT In the present study we investigated the role of hydrocortisone (HC) on uridine-5'-triphosphate (UTP)-stimulated ion transport in differentiated, pseudostratified epithelia derived from normal human bronchial basal cells. The presence of a UTP-stimulated, paxilline-sensitive large-conductance Ca2+ -activated K+ (BK) current was demonstrated in control epithelia but was not stimulated in epithelia differentiated in the absence of HC (HC0). Addition of the BK channel opener NS11021 directly activated channels in control epithelia; however, under HC0 conditions, activation only occurred when UTP was added after NS11021. The PKC inhibitors GF109203x and Gö6983 blocked BK activation by UTP in control epithelia, suggesting that PKC-mediated phosphorylation plays a permissive role in purinoceptor-stimulated BK activation. Moreover, HC0 epithelia expressed significantly more KCNMA1 containing the stress-regulated exon (STREX), a splice-variant of the α-subunit that displays altered channel regulation by phosphorylation, compared to control epithelia. Furthermore, BK channels as well as purinergic receptors were shown to localize in unique and overlapping domains at the apical membrane of ciliated surface cells. These results establish a previously unrecognized role for glucocorticoids in regulation of BK channels in airway epithelial cells.
Collapse
Affiliation(s)
- Nathan A Zaidman
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA
| | - Angela Panoskaltsis-Mortari
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, 660E MCRB, Minneapolis, MN, USA
| | - Scott M O'Grady
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN, USA.,Department of Animal Science, University of Minnesota, 480 Haecker Hall, St. Paul, Minneapolis, MN, USA
| |
Collapse
|
72
|
Abekhoukh S, Sahin HB, Grossi M, Zongaro S, Maurin T, Madrigal I, Kazue-Sugioka D, Raas-Rothschild A, Doulazmi M, Carrera P, Stachon A, Scherer S, Drula Do Nascimento MR, Trembleau A, Arroyo I, Szatmari P, Smith IM, Milà M, Smith AC, Giangrande A, Caillé I, Bardoni B. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis Model Mech 2017; 10:463-474. [PMID: 28183735 PMCID: PMC5399562 DOI: 10.1242/dmm.025809] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Cytoplasmic FMRP interacting protein 1 (CYFIP1) is a candidate gene for intellectual disability (ID), autism, schizophrenia and epilepsy. It is a member of a family of proteins that is highly conserved during evolution, sharing high homology with its Drosophila homolog, dCYFIP. CYFIP1 interacts with the Fragile X mental retardation protein (FMRP, encoded by the FMR1 gene), whose absence causes Fragile X syndrome, and with the translation initiation factor eIF4E. It is a member of the WAVE regulatory complex (WRC), thus representing a link between translational regulation and the actin cytoskeleton. Here, we present data showing a correlation between mRNA levels of CYFIP1 and other members of the WRC. This suggests a tight regulation of the levels of the WRC members, not only by post-translational mechanisms, as previously hypothesized. Moreover, we studied the impact of loss of function of both CYFIP1 and FMRP on neuronal growth and differentiation in two animal models - fly and mouse. We show that these two proteins antagonize each other's function not only during neuromuscular junction growth in the fly but also during new neuronal differentiation in the olfactory bulb of adult mice. Mechanistically, FMRP and CYFIP1 modulate mTor signaling in an antagonistic manner, likely via independent pathways, supporting the results obtained in mouse as well as in fly at the morphological level. Collectively, our results illustrate a new model to explain the cellular roles of FMRP and CYFIP1 and the molecular significance of their interaction.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - H Bahar Sahin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Mauro Grossi
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Samantha Zongaro
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Thomas Maurin
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| | - Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain.,IDIBAPS, Barcelona, Spain
| | - Daniele Kazue-Sugioka
- Université Côte d'Azur, Nice, France.,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France.,Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil
| | - Annick Raas-Rothschild
- Institute of Rare Diseases, Institute of Medical Genetics, The Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Mohamed Doulazmi
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France
| | - Pilar Carrera
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrea Stachon
- Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil
| | - Steven Scherer
- Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
| | | | - Alain Trembleau
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France
| | - Ignacio Arroyo
- Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Peter Szatmari
- Centre for Addiction and Mental Health, Hospital for Sick Children, Department of Psychiatry, University of Toronto, Canada, M5G 1X8
| | - Isabel M Smith
- Departments of Pediatrics and Psychology & Neuroscience, Dalhousie University and IWK Health Centre, Halifax, Canada, B3K 6R8
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clinic, 08036 Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBERER), Barcelona, Spain.,IDIBAPS, Barcelona, Spain
| | - Adam C Smith
- Instituto de Pesquisa Pelé Pequeno Principe, Curitiba 80250-060, Brazil.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto and Program in Laboratory Medicine, University Health Network, Toronto, Canada
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France.,CNRS, UMR7104, 67400 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Isabelle Caillé
- Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS UMR8256, IBPS, Neuroscience Paris Seine, France.,Sorbonne Paris Cité, Université Paris Diderot-Paris 7, 75013 Paris, France
| | - Barbara Bardoni
- Université Côte d'Azur, Nice, France .,CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne, France.,CNRS Associated International Laboratory (LIA) 'Neogenex', 06560 Valbonne, France
| |
Collapse
|
73
|
Wahlstrom-Helgren S, Klyachko VA. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits. J Neurophysiol 2016; 116:2564-2575. [PMID: 27605532 DOI: 10.1152/jn.00413.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Vitaly A Klyachko
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
74
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
75
|
RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway. Int J Mol Sci 2016; 17:ijms17060985. [PMID: 27338369 PMCID: PMC4926514 DOI: 10.3390/ijms17060985] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/23/2016] [Accepted: 06/14/2016] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs act by post-transcriptionally regulating the gene expression of 30%–60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP’s interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex.
Collapse
|
76
|
Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes. Neuroscience 2016; 324:202-17. [DOI: 10.1016/j.neuroscience.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
|
77
|
Griguoli M, Sgritta M, Cherubini E. Presynaptic BK channels control transmitter release: physiological relevance and potential therapeutic implications. J Physiol 2016; 594:3489-500. [PMID: 26969302 DOI: 10.1113/jp271841] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca(2+) sensitivity, voltage dependence and gating properties. Abundantly expressed in the CNS, they have the peculiar characteristic of being activated by both voltage and intracellular calcium rise. The increase in intracellular calcium via voltage-dependent calcium channels (Cav ) during spiking triggers conformational changes and BK channel opening. This narrows the action potential and induces a fast after-hyperpolarization that shuts calcium channels. The tight coupling between BK and Cav channels at presynaptic active zones makes them particularly suitable for regulating calcium entry and neurotransmitter release. While in most synapses, BK channels exert a negative control on transmitter release under basal conditions, in others they do so only under pathological conditions, serving as an emergency brake to protect against hyperactivity. In particular cases, by interacting with other channels (i.e. limiting the activation of the delayed rectifier and the inactivation of Na(+) channels), BK channels induce spike shortening, increase in firing rate and transmitter release. Changes in transmitter release following BK channel dysfunction have been implicated in several neurological disorders including epilepsy, schizophrenia, fragile X syndrome, mental retardation and autism. In particular, two mutations, one in the α and one in the β3 subunit, resulting in a gain of function have been associated with epilepsy. Hence, these discoveries have allowed identification of BK channels as new drug targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Martina Sgritta
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI) 'Fondazione Rita Levi-Montalcini', Via del Fosso di Fiorano 64, 00143, Rome, Italy.,International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
78
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
79
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
80
|
Broek JAC, Lin Z, de Gruiter HM, van 't Spijker H, Haasdijk ED, Cox D, Ozcan S, van Cappellen GWA, Houtsmuller AB, Willemsen R, de Zeeuw CI, Bahn S. Synaptic vesicle dynamic changes in a model of fragile X. Mol Autism 2016; 7:17. [PMID: 26933487 PMCID: PMC4772588 DOI: 10.1186/s13229-016-0080-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. METHODS Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. RESULTS Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. CONCLUSIONS Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.
Collapse
Affiliation(s)
- Jantine A C Broek
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Zhanmin Lin
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| | | | - Heleen van 't Spijker
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Elize D Haasdijk
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| | - David Cox
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sureyya Ozcan
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I de Zeeuw
- Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neurosciences, Royal Academy for Arts and Sciences, Amsterdam, The Netherlands
| | - Sabine Bahn
- Cambridge Centre for Neuropsychiatric Research, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.,Department of Neurosciences, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
81
|
Abstract
UNLABELLED Fragile X syndrome (FXS), the most common form of inherited mental retardation, is a neurodevelopmental disorder caused by silencing of the FMR1 gene, which in FXS becomes inactivated during human embryonic development. We have shown recently that this process is recapitulated by in vitro neural differentiation of FX human embryonic stem cells (FX-hESCs), derived from FXS blastocysts. In the present study, we analyzed morphological and functional properties of neurons generated from FX-hESCs. Human FX neurons can fire single action potentials (APs) to depolarizing current commands, but are unable to discharge trains of APs. Their APs are of a reduced amplitudes and longer durations than controls. These are reflected in reduced inward Na(+) and outward K(+) currents. In addition, human FX neurons contain fewer synaptic vesicles and lack spontaneous synaptic activity. Notably, synaptic activity in these neurons can be restored by coculturing them with normal rat hippocampal neurons, demonstrating a critical role for synaptic mechanisms in FXS pathology. This is the first extensive functional analysis of human FX neurons derived in vitro from hESCs that provides a convenient tool for studying molecular mechanisms underlying the impaired neuronal functions in FXS. SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by silencing of the FMR1 gene. In this study, we describe for the first time the properties of neurons developed from human embryonic stem cells (hESCs) that carry the FMR1 mutation and are grown in culture for extended periods. These neurons are retarded compared with controls in several morphological and functional properties. In vitro neural differentiation of FX hESCs can thus serve as a most relevant system for the analysis of molecular mechanisms underlying the impaired neuronal functions in FXS.
Collapse
|
82
|
Tekcan A. In Silico Analysis of FMR1 Gene Missense SNPs. Cell Biochem Biophys 2016; 74:109-27. [PMID: 26880065 DOI: 10.1007/s12013-016-0722-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
The FMR1 gene, a member of the fragile X-related gene family, is responsible for fragile X syndrome (FXS). Missense single-nucleotide polymorphisms (SNPs) are responsible for many complex diseases. The effect of FMR1 gene missense SNPs is unknown. The aim of this study, using in silico techniques, was to analyze all known missense mutations that can affect the functionality of the FMR1 gene, leading to mental retardation (MR) and FXS. Data on the human FMR1 gene were collected from the Ensembl database (release 81), National Centre for Biological Information dbSNP Short Genetic Variations database, 1000 Genomes Browser, and NHLBI Exome Sequencing Project Exome Variant Server. In silico analysis was then performed. One hundred-twenty different missense SNPs of the FMR1 gene were determined. Of these, 11.66 % of the FMR1 gene missense SNPs were in highly conserved domains, and 83.33 % were in domains with high variety. The results of the in silico prediction analysis showed that 31.66 % of the FMR1 gene SNPs were disease related and that 50 % of SNPs had a pathogenic effect. The results of the structural and functional analysis revealed that although the R138Q mutation did not seem to have a damaging effect on the protein, the G266E and I304N SNPs appeared to disturb the interaction between the domains and affect the function of the protein. This is the first study to analyze all missense SNPs of the FMR1 gene. The results indicate the applicability of a bioinformatics approach to FXS and other FMR1-related diseases. I think that the analysis of FMR1 gene missense SNPs using bioinformatics methods would help diagnosis of FXS and other FMR1-related diseases.
Collapse
Affiliation(s)
- Akin Tekcan
- School of Health, Ahi Evran University, Kirsehir, Turkey.
| |
Collapse
|
83
|
Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry. Neurobiol Dis 2016; 89:76-87. [PMID: 26851502 DOI: 10.1016/j.nbd.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023] Open
Abstract
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period.
Collapse
|
84
|
Suhl JA, Warren ST. Single-Nucleotide Mutations in FMR1 Reveal Novel Functions and Regulatory Mechanisms of the Fragile X Syndrome Protein FMRP. J Exp Neurosci 2015; 9:35-41. [PMID: 26819560 PMCID: PMC4720182 DOI: 10.4137/jen.s25524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome is a monogenic disorder and a common cause of intellectual disability. Despite nearly 25 years of research on FMR1, the gene underlying the syndrome, very few pathological mutations other than the typical CGG-repeat expansion have been reported. This is in contrast to other X-linked, monogenic, intellectual disability disorders, such as Rett syndrome, where many point mutations have been validated as causative of the disorder. As technology has improved and significantly driven down the cost of sequencing, allowing for whole genes to be sequenced with relative ease, in-depth sequencing studies on FMR1 have recently been performed. These studies have led to the identification of novel variants in FMR1, where some of which have been functionally evaluated and are likely pathogenic. In this review, we discuss recently identified FMR1 variants, the ways these novel variants cause dysfunction, and how they reveal new regulatory mechanisms and functionalities of the gene.
Collapse
Affiliation(s)
- Joshua A Suhl
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen T Warren
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.; Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
85
|
Deng PY, Klyachko VA. Genetic upregulation of BK channel activity normalizes multiple synaptic and circuit defects in a mouse model of fragile X syndrome. J Physiol 2015; 594:83-97. [PMID: 26427907 DOI: 10.1113/jp271031] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Single-channel recordings in CA3 pyramidal neurons revealed that large-conductance calcium-activated K(+) (BK) channel open probability was reduced by loss of fragile X mental retardation protein (FMRP) and that FMRP acts on BK channels by modulating the channel's gating kinetics. Fmr1/BKβ4 double knockout mice were generated to genetically upregulate BK channel activity in the absence of FMRP. Deletion of the BKβ4 subunit alleviated reduced BK channel open probability via increasing BK channel open frequency, but not through prolonging its open duration. Genetic upregulation of BK channel activity via deletion of BKβ4 normalized action potential duration, excessive glutamate release and short-term synaptic plasticity during naturalistic stimulus trains in excitatory hippocampal neurons in the absence of FMRP. Genetic upregulation of BK channel activity via deletion of BKβ4 was sufficient to normalize excessive epileptiform activity in an in vitro model of seizure activity in the hippocampal circuit in the absence of FMRP. Loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), yet the mechanisms underlying the pathophysiology of FXS are incompletely understood. Recent studies identified important new functions of FMRP in regulating neural excitability and synaptic transmission via both translation-dependent mechanisms and direct interactions of FMRP with a number of ion channels in the axons and presynaptic terminals. Among these presynaptic FMRP functions, FMRP interaction with large-conductance calcium-activated K(+) (BK) channels, specifically their auxiliary β4 subunit, regulates action potential waveform and glutamate release in hippocampal and cortical pyramidal neurons. Given the multitude of ion channels and mechanisms that mediate presynaptic FMRP actions, it remains unclear, however, to what extent FMRP-BK channel interactions contribute to synaptic and circuit defects in FXS. To examine this question, we generated Fmr1/β4 double knockout (dKO) mice to genetically upregulate BK channel activity in the absence of FMRP and determine its ability to normalize multilevel defects caused by FMRP loss. Single-channel analyses revealed that FMRP loss reduced BK channel open probability, and this defect was compensated in dKO mice. Furthermore, dKO mice exhibited normalized action potential duration, glutamate release and short-term dynamics during naturalistic stimulus trains in hippocampal pyramidal neurons. BK channel upregulation was also sufficient to correct excessive seizure susceptibility in an in vitro model of seizure activity in hippocampal slices. Our studies thus suggest that upregulation of BK channel activity normalizes multi-level deficits caused by FMRP loss.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, CIMED, Washington University, St Louis, MO, USA
| |
Collapse
|
86
|
Abstract
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.
Collapse
|
87
|
A 3' untranslated region variant in FMR1 eliminates neuronal activity-dependent translation of FMRP by disrupting binding of the RNA-binding protein HuR. Proc Natl Acad Sci U S A 2015; 112:E6553-61. [PMID: 26554012 DOI: 10.1073/pnas.1514260112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome is a common cause of intellectual disability and autism spectrum disorder. The gene underlying the disorder, fragile X mental retardation 1 (FMR1), is silenced in most cases by a CGG-repeat expansion mutation in the 5' untranslated region (UTR). Recently, we identified a variant located in the 3'UTR of FMR1 enriched among developmentally delayed males with normal repeat lengths. A patient-derived cell line revealed reduced levels of endogenous fragile X mental retardation protein (FMRP), and a reporter containing a patient 3'UTR caused a decrease in expression. A control reporter expressed in cultured mouse cortical neurons showed an expected increase following synaptic stimulation that was absent when expressing the patient reporter, suggesting an impaired response to neuronal activity. Mobility-shift assays using a control RNA detected an RNA-protein interaction that is lost with the patient RNA, and HuR was subsequently identified as an associated protein. Cross-linking immunoprecipitation experiments identified the locus as an in vivo target of HuR, supporting our in vitro findings. These data suggest that the disrupted interaction of HuR impairs activity-dependent translation of FMRP, which may hinder synaptic plasticity in a clinically significant fashion.
Collapse
|
88
|
Wahlstrom-Helgren S, Klyachko VA. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome. J Physiol 2015; 593:5009-24. [PMID: 26282581 DOI: 10.1113/jp271190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated inhibitory synapses of Fmr1 KO mice in a GABAB receptor-dependent manner. Inhibitory synapse and feed-forward circuit defects are mediated predominately by presynaptic GABAB receptor signalling in the TA pathway of Fmr1 KO mice. GABAB receptor-mediated inhibitory synapse defects are circuit-specific and are not observed in the Schaffer collateral pathway-associated inhibitory synapses in stratum radiatum. ABSTRACT Circuit hyperexcitability has been implicated in neuropathology of fragile X syndrome, the most common inheritable cause of intellectual disability. Yet, how canonical unitary circuits are affected in this disorder remains poorly understood. Here, we examined this question in the context of the canonical feed-forward inhibitory circuit formed by the temporoammonic (TA) branch of the perforant path, the major cortical input to the hippocampus. TA feed-forward circuits exhibited a marked increase in excitation/inhibition ratio and major functional defects in spike modulation tasks in Fmr1 knock-out (KO) mice, a fragile X mouse model. Changes in feed-forward circuits were caused specifically by inhibitory, but not excitatory, synapse defects. TA-associated inhibitory synapses exhibited increase in paired-pulse ratio and in the coefficient of variation of IPSPs, consistent with decreased GABA release probability. TA-associated inhibitory synaptic transmission in Fmr1 KO mice was also more sensitive to inhibition of GABAB receptors, suggesting an increase in presynaptic GABAB receptor (GABAB R) signalling. Indeed, the differences in inhibitory synaptic transmission between Fmr1 KO and wild-type (WT) mice were eliminated by a GABAB R antagonist. Inhibition of GABAB Rs or selective activation of presynaptic GABAB Rs also abolished the differences in the TA feed-forward circuit properties between Fmr1 KO and WT mice. These GABAB R-mediated defects were circuit-specific and were not observed in the Schaffer collateral pathway-associated inhibitory synapses. Our results suggest that the inhibitory synapse dysfunction in the cortico-hippocampal pathway of Fmr1 KO mice causes hyperexcitability and feed-forward circuit defects, which are mediated in part by a presynaptic GABAB R-dependent reduction in GABA release.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Departments of Cell Biology and Physiology, Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
89
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
90
|
Zeidler S, Hukema RK, Willemsen R. The quest for targeted therapy in fragile X syndrome. Expert Opin Ther Targets 2015; 19:1277-81. [PMID: 26294013 DOI: 10.1517/14728222.2015.1079176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fragile X syndrome (FXS) is the most common, monogenetic cause of intellectual disability and autism-spectrum disorders. Although there is no effective therapy, greater understanding of disturbed neuronal pathways has introduced options for targeted therapy. But whereas many FXS phenotypes were improved in preclinical studies with drugs targeting these pathways in the FXS mouse model, attempts to translate these animal-model success stories into treatment of patients in clinical trials have been extremely disappointing. Complicating factors, particularly in animal studies, include mouse inbred strains, variability in functional studies between laboratories, publication bias and lack of reliable and objective primary outcome measures in both mice and patients. Possibly most important, however, is one factor that has been little explored: the complexity of the molecular imbalance in FXS and the need to simultaneously target several different disturbed pathways and different cellular compartments. New, well-conceived animal studies should generate more productive approaches in the quest for targeted therapy for FXS.
Collapse
Affiliation(s)
- Shimriet Zeidler
- a Erasmus MC, Department of Clinical Genetics , P.O. Box 2040, 3000 CA Rotterdam, The Netherlands +31 107 043 152 ;
| | - Renate K Hukema
- a Erasmus MC, Department of Clinical Genetics , P.O. Box 2040, 3000 CA Rotterdam, The Netherlands +31 107 043 152 ;
| | - Rob Willemsen
- a Erasmus MC, Department of Clinical Genetics , P.O. Box 2040, 3000 CA Rotterdam, The Netherlands +31 107 043 152 ;
| |
Collapse
|
91
|
Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc Natl Acad Sci U S A 2015; 112:E4697-706. [PMID: 26307763 DOI: 10.1073/pnas.1502258112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a "multiple hit" effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome.
Collapse
|
92
|
Wang T, de Kok L, Willemsen R, Elgersma Y, Borst JGG. In vivo synaptic transmission and morphology in mouse models of Tuberous sclerosis, Fragile X syndrome, Neurofibromatosis type 1, and Costello syndrome. Front Cell Neurosci 2015; 9:234. [PMID: 26190969 PMCID: PMC4490249 DOI: 10.3389/fncel.2015.00234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Defects in the rat sarcoma viral oncogene homolog (Ras)/extracellular-signal-regulated kinase and the phosphatidylinositol 3-kinase-mammalian target of rapamycin (mTOR) signaling pathways are responsible for several neurodevelopmental disorders. These disorders are an important cause for intellectual disability; additional manifestations include autism spectrum disorder, seizures, and brain malformations. Changes in synaptic function are thought to underlie the neurological conditions associated with these syndromes. We therefore studied morphology and in vivo synaptic transmission of the calyx of Held synapse, a relay synapse in the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, in mouse models of tuberous sclerosis complex (TSC), Fragile X syndrome (FXS), Neurofibromatosis type 1 (NF1), and Costello syndrome. Calyces from both Tsc1+/- and from Fmr1 knock-out (KO) mice showed increased volume and surface area compared to wild-type (WT) controls. In addition, in Fmr1 KO animals a larger fraction of calyces showed complex morphology. In MNTB principal neurons of Nf1+/- mice the average delay between EPSPs and APs was slightly smaller compared to WT controls, which could indicate an increased excitability. Otherwise, no obvious changes in synaptic transmission, or short-term plasticity were observed during juxtacellular recordings in any of the four lines. Our results in these four mutants thus indicate that abnormalities of mTOR or Ras signaling do not necessarily result in changes in in vivo synaptic transmission.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Laura de Kok
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands ; ENCORE Expertise Center for Neurodevelopmental disorders, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam Rotterdam, Netherlands
| |
Collapse
|
93
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
94
|
|
95
|
Wang H. Fragile X mental retardation protein: from autism to neurodegenerative disease. Front Cell Neurosci 2015; 9:43. [PMID: 25729352 PMCID: PMC4325920 DOI: 10.3389/fncel.2015.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
96
|
Myrick LK, Hashimoto H, Cheng X, Warren ST. Human FMRP contains an integral tandem Agenet (Tudor) and KH motif in the amino terminal domain. Hum Mol Genet 2014; 24:1733-40. [PMID: 25416280 DOI: 10.1093/hmg/ddu586] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fragile X syndrome, a common cause of intellectual disability and autism, is due to mutational silencing of the FMR1 gene leading to the absence of its gene product, fragile X mental retardation protein (FMRP). FMRP is a selective RNA binding protein owing to two central K-homology domains and a C-terminal arginine-glycine-glycine (RGG) box. However, several properties of the FMRP amino terminus are unresolved. It has been documented for over a decade that the amino terminus has the ability to bind RNA despite having no recognizable functional motifs. Moreover, the amino terminus has recently been shown to bind chromatin and influence the DNA damage response as well as function in the presynaptic space, modulating action potential duration. We report here the amino terminal crystal structures of wild-type FMRP, and a mutant (R138Q) that disrupts the amino terminus function, containing an integral tandem Agenet and discover a novel KH motif.
Collapse
Affiliation(s)
| | | | | | - Stephen T Warren
- Department of Human Genetics, Department of Biochemistry Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|