51
|
Eftekharpour E. The neuronal nucleus: a new battlefield in fight against neurodegeneration. Aging (Albany NY) 2023; 15:898-904. [PMID: 36806186 PMCID: PMC10008506 DOI: 10.18632/aging.204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aging is an inevitable fact of life which brings along a series of age-associated diseases. Although medical innovations and patient care improvement have increased our life expectancy, the rate of age-associated diseases have also increased. Nervous system is specifically prone to these diseases that cause neuronal loss in different anatomical regions. Alzheimer's disease is the best-known example of age-associated illnesses and is diagnosed by accumulation of intracellular Neurofibrillary tangles and extracellular Amyloid Plaques resulting in dementia. However, therapeutic attempts aiming at the removal of these plaques and tangles to reverse the cognitive decline have generally failed in human patients and may compromise the patient's health. We have learnt that interruption of neuronal housekeeping systems such as autophagy contributes to formation of these aggregates, and therefore understanding the underlying mechanisms that lead to failure of these endogenous protective systems may provide valuable information and novel therapies. The house keeping systems are delicately regulated through gene expression and chromatin modifications in the nucleus, however, the contribution of this largest cellular organelle in pathophysiology of the disease has been overlooked. During the last few years, a wealth of information on neuronal nucleus has emerged that provides a strong rationale for examining its contribution to the pathophysiology of the disease. In this research perspective, I have attempted to summarize the latest research on neuronal nucleus, with a special focus on nuclear lamina damage and its downstream events to rationalize the need for focusing on the neuronal nucleus as a therapeutic target.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
52
|
Colussi C, Aceto G, Ripoli C, Bertozzi A, Li Puma DD, Paccosi E, D'Ascenzo M, Grassi C. Cytoplasmic HDAC4 recovers synaptic function in the 3×Tg mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2023; 49:e12861. [PMID: 36331820 PMCID: PMC10099707 DOI: 10.1111/nan.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/26/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
AIMS Early dysfunction in Alzheimer's disease (AD) is characterised by alterations of synapse structure and function leading to dysmorphic neurites, decreased spine density, impaired synaptic plasticity and cognitive deficits. The class II member HDAC4, which recently emerged as a crucial factor in shaping synaptic plasticity and memory, was found to be altered in AD. We investigated how the modulation of HDAC4 may contribute to counteracting AD pathogenesis. METHODS Using a cytoplasmic HDAC4 mutant (HDAC4SD ), we studied the recovery of synaptic function in hippocampal tissue and primary neurons from the triple-transgenic mouse model of AD (3×Tg-AD). RESULTS Here, we report that in wild-type mice, HDAC4 is localised at synapses and interacts with postsynaptic proteins, whereas in the 3×Tg-AD, it undergoes nuclear import, reducing its interaction with synaptic proteins. Of note, HDAC4 delocalisation was induced by both amyloid-β and tau accumulation. Overexpression of the HDAC4SD mutant in CA1 pyramidal neurons of organotypic hippocampal slices obtained from 3×Tg-AD mice increased dendritic length and promoted the enrichment of N-cadherin, GluA1, PSD95 and CaMKII proteins at the synaptic level compared with AD neurons transfected with the empty vector. Moreover, HDAC4 overexpression recovered the level of SUMO2/3ylation of PSD95 in AD hippocampal tissue, and in AD organotypic hippocampal slices, the HDAC4SD rescued spine density and synaptic transmission. CONCLUSIONS These results highlight a new role of cytoplasmic HDAC4 in providing a structural and enzymatic regulation of postsynaptic proteins. Our findings suggest that controlling HDAC4 localisation may represent a promising strategy to rescue synaptic function in AD, potentially leading to memory improvement.
Collapse
Affiliation(s)
- Claudia Colussi
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti', National Research Council, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessia Bertozzi
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti', National Research Council, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elena Paccosi
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti', National Research Council, Rome, Italy
| | - Marcello D'Ascenzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
53
|
Histone Modifications in Alzheimer's Disease. Genes (Basel) 2023; 14:genes14020347. [PMID: 36833274 PMCID: PMC9956192 DOI: 10.3390/genes14020347] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.
Collapse
|
54
|
Luo B, Chen J, Zhou GF, Xie XY, Tang J, Wen QX, Song L, Xie SQ, Long Y, Chen GJ, Hu XT. Apicidin attenuates memory deficits by reducing the Aβ load in APP/PS1 mice. CNS Neurosci Ther 2023; 29:1300-1311. [PMID: 36708130 PMCID: PMC10068467 DOI: 10.1111/cns.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Amyloid beta (Aβ) is an important pathological feature of Alzheimer's disease (AD). A disintegrin and metalloproteinase 10 (ADAM10) can reduce the production of toxic Aβ by activating the nonamyloidogenic pathway of amyloid precursor protein (APP). We previously found that apicidin, which is a histone deacetylase (HDAC) inhibitor, can promote the expression of ADAM10 and reduce the production of Aβ in vitro. This study was designed to determine the potential of apicidin treatment to reverse learning and memory impairments in an AD mouse model and the possible correlation of these effects with ADAM10. METHODS Nine-month-old APP/PS1 mice and C57 mice received intraperitoneal injections of apicidin or vehicle for 2 months. At 11 months of age, we evaluated the memory performance of mice with Morris water maze (MWM) and context fear conditioning tests. The Aβ levels were assessed in mouse brain using the immunohistochemical method and ELISA. The expression of corresponding protein involved in proteolytic processing of APP and the phosphorylation of tau were assessed by Western blotting. RESULTS Apicidin reversed the deficits of spatial reference memory and contextual fear memory, attenuated the formation of Aβ-enriched plaques, and decreased the levels of soluble and insoluble Aβ40/42 in APP/PS1 mice. Moreover, apicidin significantly increased the expression of ADAM10, improved the level of sAPPα, and reduced the production of sAPPβ, but did not affect the levels of phosphorylated tau in APP/PS1 mice. CONCLUSION Apicidin significantly improves the AD symptoms of APP/PS1 mice by regulating the expression of ADAM10, which may contribute to decreasing the levels of Aβ rather than decreasing the phosphorylation of tau.
Collapse
Affiliation(s)
- Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yan Long
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Tong Hu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China.,Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
55
|
Three-dimensional chromatin architecture datasets for aging and Alzheimer's disease. Sci Data 2023; 10:51. [PMID: 36693875 PMCID: PMC9873630 DOI: 10.1038/s41597-023-01948-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Recently, increasing studies are indicating a close association between dysregulated enhancers and neurodegenerative diseases, such as Alzheimer's disease (AD). However, their contributions were poorly defined for lacking direct links to disease genes. To bridge this gap, we presented the Hi-C datasets of 4 AD patients, 4 dementia-free aged and 3 young subjects, including 30 billion reads. As applications, we utilized them to link the AD risk SNPs and dysregulated epigenetic marks to the target genes. Combining with epigenetic data, we observed more detailed interactions among regulatory regions and found that many known AD risk genes were under long-distance promoter-enhancer interactions. For future AD and aging studies, our datasets provide a reference landscape to better interpret findings of association and epigenetic studies for AD and aging process.
Collapse
|
56
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
57
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
58
|
Bhatia S, Singh M, Singh T, Singh V. Scrutinizing the Therapeutic Potential of PROTACs in the Management of Alzheimer's Disease. Neurochem Res 2023; 48:13-25. [PMID: 35987974 DOI: 10.1007/s11064-022-03722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023]
Abstract
Finding an effective cure for Alzheimer's disease has eluded scientists despite intense research. The disease is a cause of suffering for millions of people worldwide and is characterized by dementia accompanied by cognitive and motor deficits, ultimately culminating in the death of the patient. The course of the disease progression has various underlying contributing pathways, with the first and foremost factor being the development and accumulation of aberrant and misfolded proteins exhibiting neurotoxic functions. The impairment of cellular clearance mechanisms adds to their accumulation, resulting in neuronal death. This is where the PROteolysis TArgeting Chimera (PROTAC) technology comes into play, bringing the UPS degradation machinery in the proximity of the target protein for initiating its degradation and clearing abnormal protein debris with unparalleled precision demonstrating an edge over traditional protein inhibitors in many respects. The technology is widely explored in cancer research and utilized in the treatment of various tumors and malignancies, and is now being applied in treating AD. This review explores the application of PROTAC technology in developing lead compounds for managing this deadly disease along with detailing the pieces of evidence justifying its utility and efficacy.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A &M University Health Science Centre, Bryan, TX, 77807, USA
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
59
|
Shokhirev MN, Johnson AA. An integrative machine-learning meta-analysis of high-throughput omics data identifies age-specific hallmarks of Alzheimer's disease. Ageing Res Rev 2022; 81:101721. [PMID: 36029998 DOI: 10.1016/j.arr.2022.101721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an incredibly complex and presently incurable age-related brain disorder. To better understand this debilitating disease, we collated and performed a meta-analysis on publicly available RNA-Seq, microarray, proteomics, and microRNA samples derived from AD patients and non-AD controls. 4089 samples originating from brain tissues and blood remained after applying quality filters. Since disease progression in AD correlates with age, we stratified this large dataset into three different age groups: < 75 years, 75-84 years, and ≥ 85 years. The RNA-Seq, microarray, and proteomics datasets were then combined into different integrated datasets. Ensemble machine learning was employed to identify genes and proteins that can accurately classify samples as either AD or control. These predictive inputs were then subjected to network-based enrichment analyses. The ability of genes/proteins associated with different pathways in the Molecular Signatures Database to diagnose AD was also tested. We separately identified microRNAs that can be used to make an AD diagnosis and subjected the predicted gene targets of the most predictive microRNAs to an enrichment analysis. The following key themes emerged from our machine learning and bioinformatics analyses: cell death, cellular senescence, energy metabolism, genomic integrity, glia, immune system, metal ion homeostasis, oxidative stress, proteostasis, and synaptic function. Many of the results demonstrated unique age-specificity. For example, terms highlighting cellular senescence only emerged in the earliest and intermediate age ranges while the majority of results relevant to cell death appeared in the youngest patients. Existing literature corroborates the importance of these hallmarks in AD.
Collapse
Affiliation(s)
- Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | | |
Collapse
|
60
|
Li Y, Lin S, Gu Z, Chen L, He B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorg Med Chem Lett 2022; 76:129015. [DOI: 10.1016/j.bmcl.2022.129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
|
61
|
Squarzoni A, Scuteri A, Cavaletti G. HDACi: The Columbus' Egg in Improving Cancer Treatment and Reducing Neurotoxicity? Cancers (Basel) 2022; 14:5251. [PMID: 36358670 PMCID: PMC9654569 DOI: 10.3390/cancers14215251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 08/29/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes that modify gene expression through the lysine acetylation of both histone and non-histone proteins, leading to a broad range of effects on various biological pathways. New insights on this topic broadened the knowledge on their biological activity and even more questions arose from those discoveries. The action of HDACs is versatile in biological pathways and, for this reason, inhibitors of HDACs (HDACis) have been proposed as a way to interfere with HDACs' involvement in tumorigenesis. In 2006, the first HDACi was approved by FDA for the treatment of cutaneous T-cell lymphoma; however, more selective HDACis were recently approved. In this review, we will consider new information on HDACs' expression and their regulation for the treatment of central and peripheral nervous system diseases.
Collapse
Affiliation(s)
- Angelica Squarzoni
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- PhD Program in Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| |
Collapse
|
62
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
63
|
Yang H, Li J, Li X, Ma L, Hou M, Zhou H, Zhou R. Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Front Mol Neurosci 2022; 15:927530. [PMID: 36117918 PMCID: PMC9470852 DOI: 10.3389/fnmol.2022.927530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) has long been considered as one of the most important pathogenic factors in Alzheimer’s disease (AD), but the specific pathogenic mechanism of Aβ is still not completely understood. In recent years, the development of structural biology technology has led to new understandings about Aβ molecular structures, Aβ generation and clearance from the brain and peripheral tissues, and its pathological toxicity. The purpose of the review is to discuss Aβ metabolism and toxicity, and the therapeutic strategy of AD based on the latest progress in molecular structures of Aβ. The Aβ structure at the atomic level has been analyzed, which provides a new and refined perspective to comprehend the role of Aβ in AD and to formulate therapeutic strategies of AD.
Collapse
Affiliation(s)
- Hai Yang
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Jinping Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoxiong Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Linqiu Ma
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingliang Hou
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huadong Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Rui Zhou
- Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Rui Zhou,
| |
Collapse
|
64
|
Zhang S, Wei D, Lv S, Wang L, An H, Shao W, Wang Y, Huang Y, Peng D, Zhang Z. Scutellarin Modulates the Microbiota-Gut-Brain Axis and Improves Cognitive Impairment in APP/PS1 Mice. J Alzheimers Dis 2022; 89:955-975. [PMID: 35964195 DOI: 10.3233/jad-220532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Scutellarin, a flavonoid purified from the Chinese herb Erigeron breviscapus, has been reported to prevent Alzheimer's disease (AD) by affecting Aβ assembly. Given the low brain uptake rate of scutellarin, we hypothesize that the microbiota-gut-brain axis may be a potential route by which scutellarin prevents AD. OBJECTIVE This study aimed to explore the microbiota-gut-brain mechanism by which scutellarin prevented AD. METHODS Scutellarin was administrated to APP/PS1 mouse model of AD for two months, and the behaviors, pathological changes as well as gut microbial changes in APP/PS1 mice were evaluated after scutellarin treatment. RESULTS This study found that scutellarin improved Aβ pathology, neuroinflammation, and cognitive deficits in APP/PS1 mice. It elucidated the effects of scutellarin on the diversity and activity of gut microbiota in APP/PS1 mice and these findings promoted us to focus on inflammation-related bacteria and short-chain fatty acids (SCFAs). Cognitive behaviors were significantly associated with inflammatory cytokines and inflammation-related bacteria, suggesting that microbiota-gut-brain axis was involved in this model and that inflammatory pathway played a crucial role in this axis. Moreover, we observed that cAMP-PKA-CREB-HDAC3 pathway downstream of SCFAs was activated in microglia of AD and inactivated by scutellarin. Furthermore, by chromatin immunoprecipitation (ChIP) assays, we found that the increased association between acetylated histone 3 and interleukin-1β (IL-1β) promoter in AD mice was reversed by scutellarin, leading to a decreased level of IL-1β in scutellarin-treated AD mice. CONCLUSION Scutellarin reverses neuroinflammation and cognitive impairment in APP/PS1 mice via beneficial regulation of gut microbiota and cAMP-PKA-CREB-HDAC3 signaling in microglia.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,BABRI Center, Beijing Normal University, Beijing, China
| | - Shuang Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Lei Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Haiting An
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Center, Beijing Normal University, Beijing, China
| | - Wen Shao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Yun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Center, Beijing Normal University, Beijing, China
| | - Yaping Huang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Dantao Peng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China Department of Neurology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Center, Beijing Normal University, Beijing, China
| |
Collapse
|
65
|
Yang L, Hao JR, Gao Y, Yang X, Shen XR, Wang HY, Sun N, Gao C. HDAC3 of dorsal hippocampus induces postoperative cognitive dysfunction in aged mice. Behav Brain Res 2022; 433:114002. [PMID: 35810999 DOI: 10.1016/j.bbr.2022.114002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) affects a substantial number of aged individuals. Although advanced age has been regarded as the only independent risk factor for cognitive decline following anesthesia and surgery, the exact cellular and molecular mechanisms remain poorly understood. Histone deacetylase 3 (HDAC3), an epigenetic regulator of memory plays an important role in age-dependent disease. In this study, we investigated the role of HDAC3 in POCD using a laparotomy mouse model. The results showed that the level of HDAC3 in the dorsal hippocampus (DH) was elevated in aged mice compared with young mice. The surgery impaired the spatial-temporal memory in aged mice, as indicated in the object location memory (OLM) and temporal order memory (TOM) tests. Model mice also exhibited increased expression of HDAC3 protein and decreased levels of dendritic spine density and synaptic plasticity-related proteins in the DH. Selectively blocking HDAC3 in the DH of aged mice reversed spatial-temporal memory impairment induced by surgery and restored dendritic spine density and synaptic plasticity-related proteins in the DH. Overexpression of HDAC3 by adeno-associated virus in the DH of young mice mimicked the behavioral deficits induced by anesthesia and surgery. Our results indicated that HDAC3 negatively regulates spatial-temporal memory in aged mice after anesthesia and surgery. Targeting HDAC3 might represent a potential therapy to avoid POCD.
Collapse
Affiliation(s)
- Li Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China; The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| | - Yin Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China; The Affiliated Nanjing Drum Tower Hospital of Xuzhou Medical University, Nanjing, Jiangsu 210008, China.
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| | - Xiao-Ran Shen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| | - Hu-Yi Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, 221004 Xuzhou, Jiangsu, China.
| |
Collapse
|
66
|
Ran J, Zhang Y, Zhang S, Li H, Zhang L, Li Q, Qin J, Li D, Sun L, Xie S, Zhang X, Liu L, Liu M, Zhou J. Targeting the HDAC6-Cilium Axis Ameliorates the Pathological Changes Associated with Retinopathy of Prematurity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105365. [PMID: 35619548 PMCID: PMC9313505 DOI: 10.1002/advs.202105365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Retinopathy of prematurity (ROP) is one of the leading causes of childhood visual impairment and blindness. However, there are still very few effective pharmacological interventions for ROP. Histone deacetylase 6 (HDAC6)-mediated disassembly of photoreceptor cilia has recently been implicated as an early event in the pathogenesis of ROP. Herein it is shown that enhanced expression of HDAC6 by intravitreal injection of adenoviruses encoding HDAC6 induces the typical pathological changes associated with ROP in mice, including disruption of the membranous disks of photoreceptor outer segments and a decrease in electroretinographic amplitudes. Hdac6 transgenic mice exhibit similar ROP-related defects in retinal structures and functions and disassembly of photoreceptor cilia, whereas Hdac6 knockout mice are resistant to oxygen change-induced retinal defects. It is further shown that blocking HDAC6-mediated cilium disassembly by intravitreal injection of small-molecule compounds protect mice from ROP-associated retinal defects. The findings indicate that pharmacological targeting of the HDAC6-cilium axis may represent a promising strategy for the prevention of ROP.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yao Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Haixia Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Qingchao Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Lei Sun
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Songbo Xie
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and DiseasesEye Institute and School of OptometryTianjin Medical University Eye HospitalTianjin300384China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Min Liu
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Jun Zhou
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| |
Collapse
|
67
|
Han Y, Chen L, Liu J, Chen J, Wang C, Guo Y, Yu X, Zhang C, Chu H, Ma H. A Class I HDAC Inhibitor Rescues Synaptic Damage and Neuron Loss in APP-Transfected Cells and APP/PS1 Mice through the GRIP1/AMPA Pathway. Molecules 2022; 27:molecules27134160. [PMID: 35807406 PMCID: PMC9268711 DOI: 10.3390/molecules27134160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
As a neurodegenerative disease, Alzheimer’s disease (AD) seriously affects the health of older people. Changes in synapses occur first over the course of the disease, perhaps even before the formation of Aβ plaques. Histone deacetylase (HDAC) mediates the damage of Aβ oligomers to dendritic spines. Therefore, we examined the relationship between HDAC activity and synaptic defects using an HDAC inhibitor (HDACI), BG45, in the human neuroblastoma SH-SY5Y cell line with stable overexpression of Swedish mutant APP (APPsw) and in APP/PS1 transgenic mice during this study. The cells were treated with 15 μM BG45 and the APP/PS1 mice were treated with 30 mg/kg BG45. We detected the levels of synapse-related proteins, HDACs, tau phosphorylation, and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors using Western blotting and immunohistochemistry. We also measured the expression of cytoskeletal proteins in the cell model. The mRNA levels of the glutamate ion receptor alginate subunit 2 (GRIK2), sodium voltage-gated channel beta subunit (SCN3B), synaptophysin (SYP), Grm2 (the gene encoding glutamate receptor subunit 2 (GluR2)), Grid2IP, glutamate receptor interacting protein 1 (GRIP1), and GRIP2 were detected to explore the effects of the HDACI on regulating the expression of synaptic proteins and AMPA receptors. According to our studies, the expressions of HDAC1, HDAC2, and HDAC3 were increased, which were accompanied by the downregulation of the synapse-related proteins SYP, postsynaptic dendritic protein (PSD-95), and spinophilin as early as 24 h after transfection with the APPsw gene. BG45 upregulated the expression of synapse-related proteins and repaired cytoskeletal damage. In vivo, BG45 alleviated the apoptosis-mediated loss of hippocampal neurons, upregulated synapse-related proteins, reduced Aβ deposition and phosphorylation of tau, and increased the levels of the synapse-related genes GRIK2, SCN3B, SYP, Grm2, and Grid2IP. BG45 increased the expression of the AMPA receptor subunits GluA1, GluA2, and GluA3 on APPsw-transfected cells and increased GRIP1 and GRIP2 expression and AMPA receptor phosphorylation in vivo. Based on these results, HDACs are involved in the early process of synaptic defects in AD models, and BG45 may rescue synaptic damage and the loss of hippocampal neurons by specifically inhibiting HDAC1, HDAC2, and HDAC3, thereby modulating AMPA receptor transduction, increasing synapse-related gene expression, and finally enhancing the function of excitatory synapses. BG45 may be considered a potential drug for the treatment of early AD in further studies.
Collapse
|
68
|
The HDAC inhibitor CI-994 acts as a molecular memory aid by facilitating synaptic and intracellular communication after learning. Proc Natl Acad Sci U S A 2022; 119:e2116797119. [PMID: 35613054 PMCID: PMC9295763 DOI: 10.1073/pnas.2116797119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Memory formation relies on a plethora of functions, including epigenetic modifications. Over recent years, multiple studies have indicated the potential of HDAC inhibitors (HDACis) as cognitive enhancers, but their mode of action is not fully understood. Here, we tested whether HDACi treatment improves memory formation via “cognitive epigenetic priming,” stipulating that HDACis—without inherent target specificity—specifically enhance naturally occurring plasticity processes. We found that combining HDACis with fear learning, but not either treatment alone, enhances synaptic plasticity as well as memory-promoting transcriptional signaling in the hippocampus, a brain area recruited by fear learning, but not in unrelated areas. These results lend experimental support to the theory of cognitive epigenetic priming. Long-term memory formation relies on synaptic plasticity, neuronal activity-dependent gene transcription, and epigenetic modifications. Multiple studies have shown that HDAC inhibitor (HDACi) treatments can enhance individual aspects of these processes and thereby act as putative cognitive enhancers. However, their mode of action is not fully understood. In particular, it is unclear how systemic application of HDACis, which are devoid of substrate specificity, can target pathways that promote memory formation. In this study, we explore the electrophysiological, transcriptional, and epigenetic responses that are induced by CI-994, a class I HDACi, combined with contextual fear conditioning (CFC) in mice. We show that CI-994–mediated improvement of memory formation is accompanied by enhanced long-term potentiation in the hippocampus, a brain region recruited by CFC, but not in the striatum, a brain region not primarily implicated in fear learning. Furthermore, using a combination of bulk and single-cell RNA-sequencing, we find that, when paired with CFC, HDACi treatment engages synaptic plasticity-promoting gene expression more strongly in the hippocampus, specifically in the dentate gyrus (DG). Finally, using chromatin immunoprecipitation-sequencing (ChIP-seq) of DG neurons, we show that the combined action of HDACi application and conditioning is required to elicit enhancer histone acetylation in pathways that underlie improved memory performance. Together, these results indicate that systemic HDACi administration amplifies brain region-specific processes that are naturally induced by learning.
Collapse
|
69
|
Fernández-Bolaños JG, López Ó. Butyrylcholinesterase inhibitors as potential anti-Alzheimer's agents: an updated patent review (2018-present). Expert Opin Ther Pat 2022; 32:913-932. [PMID: 35623095 DOI: 10.1080/13543776.2022.2083956] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) constitutes one of the most complex and devastating diseases, with an extraordinarily high increase expected for the next few years. Despite the numerous efforts accomplished so far there is still no cure but just palliative treatments. AREAS COVERED The main topic covered herein has been the development of butyrylcholinesterase (BuChE) inhibitors with the aim of increasing the levels of the neurotransmitter acetylcholine (ACh). Two main groups of compounds have been considered: multitarget and non-multitarget ligands, depending if the structural design is focused or not on other key targets and pathogenic factors of the disease. Seventeen patents regarding multitarget-directed ligands (MTDLs), twelve for not multitarget derivatives, and three for miscellaneous uses have been covered in the period 2018‒2021. EXPERT OPINION BuChE is an attractive target in the treatment of AD for many reasons. It is the most prevalent cholinesterase within more advanced stages of the disease, so drugs inhibiting it would be suitable for the treatment of mid- to severe Alzheimer's patients. Moreover, BuChE has been proved to be connected with some other key hallmarks of the disease, like amyloidogenesis; hybridization of a BuChE-targeting pharmacophore with other scaffolds designed for other therapeutic targets is quite a promising design for potential anti-Alzheimer's drugs.
Collapse
Affiliation(s)
- José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Sevilla, Spain
| |
Collapse
|
70
|
Moreno-Yruela C, Olsen CA. Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Med Chem Lett 2022; 13:779-785. [PMID: 35586419 PMCID: PMC9109163 DOI: 10.1021/acsmedchemlett.1c00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) 1-3 regulate chromatin structure and gene expression. These three enzymes are targets for cancer chemotherapy and have been studied for the treatment of immune disorders and neurodegeneration, but there is a lack of selective pharmacological tool compounds to unravel their individual roles. Potent inhibitors of HDACs 1-3 often display slow-binding kinetics, which causes a delay in inhibitor-enzyme equilibration and may affect assay readout. Here we compare the potencies and selectivities of slow-binding inhibitors measured by discontinuous and continuous assays. We find that entinostat, a clinical candidate, inhibits HDACs 1-3 by a two-step slow-binding mechanism with lower potencies than previously reported. In addition, we show that RGFP966, commercialized as an HDAC3-selective probe, is a slow-binding inhibitor with inhibitor constants of 57, 31, and 13 nM against HDACs 1-3, respectively. These data highlight the need for thorough kinetic investigation in the development of selective HDAC probes.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
71
|
Hemagirri M, Sasidharan S. Biology of aging: Oxidative stress and RNA oxidation. Mol Biol Rep 2022; 49:5089-5105. [PMID: 35449319 DOI: 10.1007/s11033-022-07219-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
The prevalence of aged people has increased rapidly in recent years and brings profound demographic changes worldwide. The multi-level progression of aging occurs at diverse stages of complexity, from cell to organ systems and eventually to the human as a whole. The cellular and molecular damages are usually regulated by the cells; repair or degrade mechanisms. However, these mechanisms are not entirely functional; their effectiveness decreases with age due to influence from endogenous sources like oxidative stress, which all contribute to the aging process. The hunt for novel strategies to increase the man's longevity since ancient times needs better understandings of the biology of aging, oxidative stress, and their roles in RNA oxidation. The critical goal in developing new strategies to increase the man's longevity is to compile the novel developed knowledge on human aging into a single picture, preferably able to understand the biology of aging and the contributing factors. This review discusses the biology of aging, oxidative stress, and their roles in RNA oxidation, leading to aging in humans.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia.
| |
Collapse
|
72
|
Chatterjee S, Bahl E, Mukherjee U, Walsh EN, Shetty MS, Yan AL, Vanrobaeys Y, Lederman JD, Giese KP, Michaelson J, Abel T. Endoplasmic reticulum chaperone genes encode effectors of long-term memory. SCIENCE ADVANCES 2022; 8:eabm6063. [PMID: 35319980 PMCID: PMC8942353 DOI: 10.1126/sciadv.abm6063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/28/2022] [Indexed: 06/10/2023]
Abstract
The mechanisms underlying memory loss associated with Alzheimer's disease and related dementias (ADRD) remain unclear, and no effective treatments exist. Fundamental studies have shown that a set of transcriptional regulatory proteins of the nuclear receptor 4a (Nr4a) family serve as molecular switches for long-term memory. Here, we show that Nr4a proteins regulate the transcription of genes encoding chaperones that localize to the endoplasmic reticulum (ER). These chaperones fold and traffic plasticity-related proteins to the cell surface during long-lasting forms of synaptic plasticity and memory. Dysregulation of Nr4a transcription factors and ER chaperones is linked to ADRD, and overexpressing Nr4a1 or the chaperone Hspa5 ameliorates long-term memory deficits in a tau-based mouse model of ADRD, pointing toward innovative therapeutic approaches for treating memory loss. Our findings establish a unique molecular concept underlying long-term memory and provide insights into the mechanistic basis of cognitive deficits in dementia.
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Ethan Bahl
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Emily N. Walsh
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Amy L. Yan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph D. Lederman
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | - Jacob Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
73
|
Martínez-Iglesias O, Naidoo V, Carrera I, Cacabelos R. Epigenetic Studies in the Male APP/BIN1/COPS5 Triple-Transgenic Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:2446. [PMID: 35269588 PMCID: PMC8909965 DOI: 10.3390/ijms23052446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is a major health problem worldwide. The lack of efficacy of existing therapies for AD is because of diagnosis at late stages of the disease, limited knowledge of biomarkers, and molecular mechanisms of AD pathology, as well as conventional drugs that are focused on symptomatic rather than mechanistic features of the disease. The connection between epigenetics and AD, however, may be useful for the development of novel therapeutics or diagnostic biomarkers for AD. The aim of this study was to investigate a pathogenic role for epigenetics and other biomarkers in the male APP/BIN1/COPS5 triple-transgenic (3xTg) mouse model of AD. In the APP/BIN1/COPS5 3xTg-AD mouse hippocampus, sirtuin expression and activity decreased, HDAC3 expression and activity increased, PSEN1 mRNA levels were unchanged, PSEN2 and APOE expression was reduced, and levels of the pro-inflammatory marker IL-6 increased; levels of pro-inflammatory COX-2 and TNFα and apoptotic (NOS3) markers increased slightly, but these were non-significant. In fixed mouse-brain slices, immunoreactivity for CD11b and β-amyloid immunostaining increased. APP/BIN1/COPS5 3xTg-AD mice are a suitable model for evaluating epigenetic changes in AD, the discovery of new epigenetic-related biomarkers for AD diagnosis, and new epidrugs for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165 Corunna, Spain; (V.N.); (I.C.); (R.C.)
| | | | | | | |
Collapse
|
74
|
Beneficial Effects of Spirulina Consumption on Brain Health. Nutrients 2022; 14:nu14030676. [PMID: 35277035 PMCID: PMC8839264 DOI: 10.3390/nu14030676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
Spirulina is a microscopic, filamentous cyanobacterium that grows in alkaline water bodies. It is extensively utilized as a nutraceutical food supplement all over the world due to its high levels of functional compounds, such as phycocyanins, phenols and polysaccharides, with anti-inflammatory, antioxidant, immunomodulating properties both in vivo and in vitro. Several scientific publications have suggested its positive effects in various pathologies such as cardiovascular diseases, hypercholesterolemia, hyperglycemia, obesity, hypertension, tumors and inflammatory diseases. Lately, different studies have demonstrated the neuroprotective role of Spirulina on the development of the neural system, senility and a number of pathological conditions, including neurological and neurodegenerative diseases. This review focuses on the role of Spirulina in the brain, highlighting how it exerts its beneficial anti-inflammatory and antioxidant effects, acting on glial cell activation, and in the prevention and/or progression of neurodegenerative diseases, in particular Parkinson’s disease, Alzheimer’s disease and Multiple Sclerosis; due to these properties, Spirulina could be considered a potential natural drug.
Collapse
|
75
|
Kumbhar N, Nimal S, Barale S, Kamble S, Bavi R, Sonawane K, Gacche R. Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation. Sci Rep 2022; 12:1712. [PMID: 35110603 PMCID: PMC8810932 DOI: 10.1038/s41598-022-05698-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023] Open
Abstract
In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent therapeutic target for the design and development of candidate drugs against various types of cancers and other human disorders. Herein, we have performed ligand-based pharmacophore modeling, virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors against HDAC3. The predicted best pharmacophore model 'Hypo 1' showed excellent correlation (R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference (124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor (HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer's randomization with a 95% of confidence level and the external test set of 60 compounds with a good correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug-like properties calculations followed by molecular docking resulted in identifying 22 representative hit compounds. Performed 50 ns of MD simulations on top three hits were retained the salient π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active site pocket of HDAC3. Total binding energy calculated by MM-PBSA showed that the Hit 1 and Hit 2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence of molecular interactions in co-crystallized FDA-approved drugs. We conclude that the screened hit compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave the way for developing them as effective therapeutic agents for the treatment of different cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India
| | - Sagar Barale
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Subodh Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rohit Bavi
- School of Chemical Science, Punyashlok Ahilyadevi Holkar Solapur University, Solapur, Maharashtra (MS), 413255, India
| | - Kailas Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra (MS), 416004, India
| | - Rajesh Gacche
- Department of Biotechnology, Savitribai Phule Pune University Pune, Pune, Maharashtra (MS), 411007, India.
| |
Collapse
|
76
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
77
|
Overexpression of miR-132-3p contributes to neuronal protection in in vitro and in vivo models of Alzheimer's disease. Behav Brain Res 2022; 417:113584. [PMID: 34536429 DOI: 10.1016/j.bbr.2021.113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
One of the neuropathological hallmarks of Alzheimer's disease (AD) is accumulation and deposition of amyloid-beta (Aβ1-42) plaques in the hippocampus. Recently, microRNAs (miRNAs), have been demonstrated to play an essential role in AD. We have previously demonstrated that miR-132-3p exerts neuroprotection via regulating histone deacetylase 3 (HDAC3) in a mouse model of AD. In the present study, we further unveiled neuroprotective roles of miR-132-3p in transgenic amyloid precursor protein/presenilin 1 (APP/PS1) mice compared with those in age-matched wild-type C57BL/6 mice. Lentiviral-mediated inhibition or overexpression of miR-132-3p in the hippocampus of APP/PS1 mice was used to explore the contributions of hippocampal miR-132-3p in spatial memory, amyloid burden, apoptosis, and the number of hippocampal cells in a mouse model of AD. Overexpression of hippocampal miR-132-3p ameliorated spatial memory deficits in the Morris water maze, reduced both Aβ1-42 accumulation and apoptosis, and promoted the numbers of hippocampal cells in the brains of APP/PS1 mice. Furthermore, trichostatin A (TSA) promoted the expression of miR-132-3p in Aβ1-42-burdened neurons while increasing the expression levels of synaptic proteins. Taken together, our results suggest that miR-132-3p may represent a promising therapeutic target for the treatment of AD.
Collapse
|
78
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
79
|
Sang C, Philbert SA, Hartland D, Unwin RD, Dowsey AW, Xu J, Cooper GJS. Coenzyme A-Dependent Tricarboxylic Acid Cycle Enzymes Are Decreased in Alzheimer's Disease Consistent With Cerebral Pantothenate Deficiency. Front Aging Neurosci 2022; 14:893159. [PMID: 35754968 PMCID: PMC9232186 DOI: 10.3389/fnagi.2022.893159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
Sporadic Alzheimer's disease (sAD) is the commonest cause of age-related neurodegeneration and dementia globally, and a leading cause of premature disability and death. To date, the quest for a disease-modifying therapy for sAD has failed, probably reflecting our incomplete understanding of aetiology and pathogenesis. Drugs that target aggregated Aβ/tau are ineffective, and metabolic defects are now considered to play substantive roles in sAD pathobiology. We tested the hypothesis that the recently identified, pervasive cerebral deficiency of pantothenate (vitamin B5) in sAD, might undermine brain energy metabolism by impairing levels of tricarboxylic acid (TCA)-cycle enzymes and enzyme complexes, some of which require the pantothenate-derived cofactor, coenzyme A (CoA) for their normal functioning. We applied proteomics to measure levels of the multi-subunit TCA-cycle enzymes and their cytoplasmic homologues. We analysed six functionally distinct brain regions from nine sAD cases and nine controls, measuring 33 cerebral proteins that comprise the nine enzymes of the mitochondrial-TCA cycle. Remarkably, we found widespread perturbations affecting only two multi-subunit enzymes and two enzyme complexes, whose function is modulated, directly or indirectly by CoA: pyruvate dehydrogenase complex, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and succinyl-CoA synthetase. The sAD cases we studied here displayed widespread deficiency of pantothenate, the obligatory precursor of CoA. Therefore, deficient cerebral pantothenate can damage brain-energy metabolism in sAD, at least in part through impairing levels of these four mitochondrial-TCA-cycle enzymes.
Collapse
Affiliation(s)
- Crystal Sang
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Sasha A. Philbert
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Danielle Hartland
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Richard. D Unwin
- Stoller Biomarker Discovery Centre & Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew W. Dowsey
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery & Experimental Therapeutics, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- *Correspondence: Garth J. S. Cooper
| |
Collapse
|
80
|
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer's disease. Int J Biol Macromol 2021; 192:895-903. [PMID: 34662652 DOI: 10.1016/j.ijbiomac.2021.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Epigenetics in the current times has become a gateway to acquire answers to questions that were left unanswered by classical and modern genetics, be it resolving the complex mystery behind neurodegenerative disorders or understanding the complexity behind life-threatening cancers. It has presented to the world an entirely new dimension and has added a dynamic angle to an otherwise static field of genetics. Alzheimer's disease is one of the most prevalent neurodegenerative disorders is largely found to be a result of alterations in epigenetic pathways. These changes majorly comprise an imbalance in DNA methylation levels and altered acetylation and methylation of histones. They are often seen to cross-link with metabolic regulatory pathways such as that of mTOR, contributing significantly to the pathophysiology of AD. This review focusses on the study of the interplay of the mTOR regulatory pathway with that of epigenetic machinery that may elevate the rate of early diagnosis and prove to be a gateway to the development of an efficient and novel therapeutic strategy for the treatment of Alzheimer's disease at an early stage.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ruchika Kumari
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly 243 123, India
| | - Shweta Tyagi
- HNo-88, Ranjit Avenue, Bela Chowk, Kota Nihang, Punjab 140001, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh. India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
81
|
Alquezar C, Schoch KM, Geier EG, Ramos EM, Scrivo A, Li KH, Argouarch AR, Mlynarski EE, Dombroski B, DeTure M, Dickson DW, Yokoyama JS, Cuervo AM, Burlingame AL, Schellenberg GD, Miller TM, Miller BL, Kao AW. TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. SCIENCE ADVANCES 2021; 7:eabg3897. [PMID: 34739309 PMCID: PMC8570595 DOI: 10.1126/sciadv.abg3897] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/17/2021] [Indexed: 05/20/2023]
Abstract
Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumulation and frontotemporal lobar degeneration. Now, we have identified genetic variants in TSC1 that decrease TSC1/hamartin levels and predispose to tauopathies such as Alzheimer’s disease and progressive supranuclear palsy. Cellular and murine models of TSC1 haploinsufficiency, as well as human brains carrying a TSC1 risk variant, accumulated tau protein that exhibited aberrant acetylation. This acetylation hindered tau degradation via chaperone-mediated autophagy, thereby leading to its accumulation. Aberrant tau acetylation in TSC1 haploinsufficiency resulted from the dysregulation of both p300 acetyltransferase and SIRT1 deacetylase. Pharmacological modulation of either enzyme restored tau levels. This study substantiates TSC1 as a novel tauopathy risk gene and includes TSC1 haploinsufficiency as a genetic model for tauopathies. In addition, these findings promote tau acetylation as a rational target for tauopathy therapeutics and diagnostic.
Collapse
Affiliation(s)
- Carolina Alquezar
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kathleen M. Schoch
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ethan G. Geier
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aurora Scrivo
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andrea R. Argouarch
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabeth E. Mlynarski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Beth Dombroski
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Michael DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jennifer S. Yokoyama
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ana M. Cuervo
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4238, USA
| | - Timothy M. Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce L. Miller
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aimee W. Kao
- UCSF Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Corresponding author.
| |
Collapse
|
82
|
Qu W, Zhuang Y, Li X. The roles of epigenetic modifications in neurodegenerative diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:642-650. [PMID: 34986527 PMCID: PMC8732261 DOI: 10.3724/zdxbyxb-2021-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/30/2021] [Indexed: 06/14/2023]
Abstract
In neuronal system, epigenetic modifications are essential for neuronal development, the fate determination of neural stem cells and neuronal function. The dysfunction of epigenetic regulation is closely related to occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease. Abnormally elevated DNA methylation inhibits the expression of some DNA repair-related genes and affects the progression of Huntington's disease. In the brain of Alzheimer's disease patients, the levels of H3K27ac and H3K9ac histone modifications increased. In addition, the alteration of RNA methylation in animal models of Alzheimer's disease and Parkinson's disease showed discrepancy trends. Therefore, epigenetic modifications may serve as potential therapeutic targets for neurodegenerative diseases. Here, we summarize the recent progress of the roles of epigenetic modifications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenzheng Qu
- of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Yingliang Zhuang
- of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xuekun Li
- of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
83
|
Wander CM, Song J. The neurogenic niche in Alzheimer's disease. Neurosci Lett 2021; 762:136109. [PMID: 34271133 PMCID: PMC9013442 DOI: 10.1016/j.neulet.2021.136109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Adult hippocampal neurogenesis is the process of generation and functional incorporation of new neurons, formed by adult neural stem cells in the dentate gyrus. Adult hippocampal neurogenesis is highly dependent upon the integration of dynamic external stimuli and is instrumental in the formation of new spatial memories. Adult hippocampal neurogenesis is therefore uniquely sensitive to the summation of neuronal circuit and neuroimmune environments that comprise the neurogenic niche, and has powerful implications in diseases of aging and neurological disorders. This sensitivity underlies the neurogenic niche alterations commonly observed in Alzheimer's disease, the most common form of dementia. This review summarizes Alzheimer's disease associated changes in neuronal network activity, neuroinflammatory processes, and adult neural stem cell fate choice that ultimately result in neurogenic niche dysfunction and impaired adult hippocampal neurogenesis. A more comprehensive understanding of the complex changes mediating neurogenic niche disturbances in Alzheimer's disease will aid development of future therapies targeting adult neurogenesis.
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
84
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
85
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
86
|
Zhou C, Liu M, Mei X, Li Q, Zhang W, Deng P, He Z, Xi Y, Tong T, Pi H, Lu Y, Chen C, Zhang L, Yu Z, Zhou Z, He M. Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147014. [PMID: 34088129 DOI: 10.1016/j.scitotenv.2021.147014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro. Ni exposure through drinking water (10 mg Ni/L, 12 weeks) caused learning and memory impairment in mice. Reduced dendrite complexity was observed in both Ni-exposed mouse hippocampi and Ni-treated (200 μM, 72 h) primary cultured hippocampal neurons. The levels of histone acetylation, especially at histone H3 lysine 9 (H3K9ac), were reduced in Ni-exposed mouse hippocampi and cultured neurons. RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing analyses revealed that H3K9ac-modulated gene expression were downregulated. Treatment with sodium butyrate, a histone deacetylase inhibitor, attenuated Ni-induced H3K9 hypoacetylation, neural gene downregulation and dendrite complexity reduction in cultured neurons. Sodium butyrate also restored Ni-induced memory impairment in mice. These results indicate that Ni-induced H3K9 hypoacetylation may be a contributor to the neurotoxicity of Ni. The finding that Ni disturbs histone acetylation in the nervous system may provide new insight into the health risk of chronic Ni exposure.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Mengyu Liu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China; Department of Medical Laboratory, General Hospital of the Central Theater Command of the Chinese People's Liberation Army, 430070 Wuhan, People's Republic of China
| | - Xiang Mei
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Qian Li
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University, 400037 Chongqing, People's Republic of China
| | - Wenjuan Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhixin He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yu Xi
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Tong Tong
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, School of Public Health, Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, 310058 Hangzhou, People's Republic of China.
| | - Mindi He
- Department of Occupational Health, Army Medical University, 400038 Chongqing, People's Republic of China.
| |
Collapse
|
87
|
Zheng XH, Wang LL, Zheng MZ, Zhong JJ, Chen YY, Shen YL. RGFP966 inactivation of the YAP pathway attenuates cardiac dysfunction induced by prolonged hypothermic preservation. J Zhejiang Univ Sci B 2021; 21:703-715. [PMID: 32893527 PMCID: PMC7519627 DOI: 10.1631/jzus.b2000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Oxidative stress and apoptosis are the key factors that limit the hypothermic preservation time of donor hearts to within 4-6 h. The aim of this study was to investigate whether the histone deacetylase 3 (HDAC3) inhibitor RGFP966 could protect against cardiac injury induced by prolonged hypothermic preservation. Rat hearts were hypothermically preserved in Celsior solution with or without RGFP966 for 12 h followed by 60 min of reperfusion. Hemodynamic parameters during reperfusion were evaluated. The expression and phosphorylation levels of mammalian STE20-like kinase-1 (Mst1) and Yes-associated protein (YAP) were determined by western blotting. Cell apoptosis was measured by the terminal deoxynucleotidyl-transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) method. Addition of RGFP966 in Celsior solution significantly inhibited cardiac dysfunction induced by hypothermic preservation. RGFP966 inhibited the hypothermic preservation-induced increase of the phosphorylated (p)-Mst1/Mst1 and p-YAP/YAP ratios, prevented a reduction in total YAP protein expression, and increased the nuclear YAP protein level. Verteporfin (VP), a small molecular inhibitor of YAP-transcriptional enhanced associate domain (TEAD) interaction, partially abolished the protective effect of RGFP966 on cardiac function, and reduced lactate dehydrogenase activity and malondialdehyde content. RGFP966 increased superoxide dismutase, catalase, and glutathione peroxidase gene and protein expression, which was abolished by VP. RGFP966 inhibited hypothermic preservation-induced overexpression of B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax) and cleaved caspase-3, increased Bcl-2 mRNA and protein expression, and reduced cardiomyocyte apoptosis. The antioxidant and anti-apoptotic effects of RGFP966 were cancelled by VP. The results suggest that supplementation of Celsior solution with RGFP966 attenuated prolonged hypothermic preservation-induced cardiac dysfunction. The mechanism may involve inhibition of oxidative stress and apoptosis via inactivation of the YAP pathway.
Collapse
Affiliation(s)
- Xiao-he Zheng
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin-lin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ming-zhi Zheng
- Department of Pharmacology, Hangzhou Medical College, Hangzhou 310053, China
| | - Jin-jie Zhong
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying-ying Chen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Obstetrics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yue-liang Shen
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
88
|
Schmitt HM, Fehrman RL, Maes ME, Yang H, Guo LW, Schlamp CL, Pelzel HR, Nickells RW. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34398198 PMCID: PMC8375002 DOI: 10.1167/iovs.62.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. Methods Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. Results Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. Conclusions Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Heather M. Schmitt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
- Department of Ophthalmology, Duke University, Durham, NC, United States
| | - Rachel L. Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
| | - Margaret E. Maes
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Huan Yang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Lian-Wang Guo
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Cassandra L. Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Heather R. Pelzel
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI, United States
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
89
|
Ning L, Rui X, Bo W, Qing G. The critical roles of histone deacetylase 3 in the pathogenesis of solid organ injury. Cell Death Dis 2021; 12:734. [PMID: 34301918 PMCID: PMC8302660 DOI: 10.1038/s41419-021-04019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 3 (HDAC3) plays a crucial role in chromatin remodeling, which, in turn, regulates gene transcription. Hence, HDAC3 has been implicated in various diseases, including ischemic injury, fibrosis, neurodegeneration, infections, and inflammatory conditions. In addition, HDAC3 plays vital roles under physiological conditions by regulating circadian rhythms, metabolism, and development. In this review, we summarize the current knowledge of the physiological functions of HDAC3 and its role in organ injury. We also discuss the therapeutic value of HDAC3 in various diseases.
Collapse
Affiliation(s)
- Li Ning
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiong Rui
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wang Bo
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Geng Qing
- grid.412632.00000 0004 1758 2270Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| |
Collapse
|
90
|
Zhang F, Qi L, Feng Q, Zhang B, Li X, Liu C, Li W, Liu Q, Yang D, Yin Y, Peng C, Wu H, Tang ZH, Zhou X, Xiang Z, Zhang Z, Wang H, Wei B. HIPK2 phosphorylates HDAC3 for NF-κB acetylation to ameliorate colitis-associated colorectal carcinoma and sepsis. Proc Natl Acad Sci U S A 2021; 118:e2021798118. [PMID: 34244427 PMCID: PMC8285910 DOI: 10.1073/pnas.2021798118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although inflammation is critical for the clearance of pathogens, uncontrolled inflammation also contributes to the development of multiple diseases such as cancer and sepsis. Since NF-κB-mediated transactivation in the nucleus is pivotal downstream of various stimuli to induce inflammation, searching the nuclear-localized targets specifically regulating NF-κB activation will provide important therapeutic application. Here, we have identified that homeodomain-interacting protein kinase 2 (HIPK2), a nuclear serine/threonine kinase, increases its expression in inflammatory macrophages. Importantly, HIPK2 deficiency or overexpression could enhance or inhibit inflammatory responses in LPS-stimulated macrophages, respectively. HIPK2-deficient mice were more susceptible to LPS-induced endotoxemia and CLP-induced sepsis. Adoptive transfer of Hipk2+/- bone marrow cells (BMs) also aggravated AOM/DSS-induced colorectal cancer. Mechanistically, HIPK2 bound and phosphorylated histone deacetylase 3 (HDAC3) at serine 374 to inhibit its enzymatic activity, thus reducing the deacetylation of p65 at lysine 218 to suppress NF-κB activation. Notably, the HDAC3 inhibitors protected wild-type or Hipk2-/- BMs-reconstituted mice from LPS-induced endotoxemia. Our findings suggest that the HIPK2-HDAC3-p65 module in macrophages restrains excessive inflammation, which may represent a new layer of therapeutic mechanism for colitis-associated colorectal cancer and sepsis.
Collapse
Affiliation(s)
- Fang Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China
| | - Linlin Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiuyun Feng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Baokai Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyue Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chang Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiaojie Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Han Wu
- Division of Trauma Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhao-Hui Tang
- Division of Trauma Surgery, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Zhijiang Zhang
- School of Communication & Information Engineering, Shanghai University, Shanghai 200444, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of the Chinese Academy of Sciences, Shanghai 200031, China;
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
91
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
92
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|
93
|
An FM, Liu Z, Xuan XR, Liu QS, Wei CX. Sanweidoukou decoction, a Chinese herbal formula, ameliorates β-amyloid protein-induced neuronal insult via modulating MAPK/NF-κB signaling pathways: Studies in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114002. [PMID: 33705924 DOI: 10.1016/j.jep.2021.114002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Sanweidoukou decoction (DK-3) was a classical formula for the treatment of nervous system diseases, recorded in the Chinese medical classic Sibu Yidian. AIM OF THE STUDY The present study is aim to investigate the neuroprotective effects of DK-3 on β-amyloid (Aβ) protein -induced AD-like pathologies and underlying molecular mechanisms both in vitro and in vivo studies. MATERIALS AND METHODS Hydrolysates of DK-3 were analyzed by LC-ESI-MS/MS. In vitro, MTT was utilized to examine effects of DK-3 on Aβ25-35-induced cytotoxicity in PC12 cells. In vivo, male Sprague-Dawley rats were administered with Aβ25-35 to induce AD-like pathologies and behavioral evaluations were conducted via Morris water maze (MWM) test. Histopathological changes were observed by Hematoxylin-eosin (HE) straining. Immunohistochemistry (IHC) was used to detect the tau hyperphosphorylation at Thr181 site. The expression levels of tau hyperphosphorylation, inflammation-related cytokines such as COX-2, iNOS, TNF-α, IL-1β, IL-6, the phosphorylated state of various mitogen-activated protein kinase (MAPK) signaling molecules (p38 MAPK, ERK, and JNK) and activation of nuclear factor κB (NF-κB) in vitro and in vivo were assessed via Western blot. RESULTS In vitro, DK-3 dose-dependently increased cell viability of PC12 cells induced by Aβ25-35. In vivo, DK-3 improved learning and memory abilities of Aβ25-35-induced AD-like rats. Moreover, DK-3 reversed hyperphosphorylation of tau and reduced the production of inflammation-related cytokines through significantly inhibited MAPK and NF-κB signaling pathways both in vitro and in vivo studies. CONCLUSION The present study suggested that the traditional Chinese medicine DK-3 may play a role in preventing and treating AD by reducing the hyperphosphorylation of tau protein and the expressions of inflammation-related cytokines via modulating the MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Feng-Mao An
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Zheng Liu
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Xin-Ran Xuan
- Affiliated Hospitals, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Beijing, PR China.
| | - Cheng-Xi Wei
- Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, PR China.
| |
Collapse
|
94
|
Chitotriosidase attenuates brain inflammation via HDAC3/NF-κB pathway in D-galactose and aluminum-induced rat model with cognitive impairments. Neurosci Res 2021; 172:73-79. [PMID: 34111442 DOI: 10.1016/j.neures.2021.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Chitotriosidase (CHIT1, chitinase 1) is increased in the cerebrospinal fluid and peripheral blood of Alzheimer's disease (AD) patients. Our previous study has shown that CHIT1 provides potential protection through microglial polarization and reduction of β-amyloid (Aβ) oligomers on rat models of AD. Histone deacetylase 3 (HDAC3) plays a significant role in the expression and regulation of proteins related to the pathophysiology of AD. In addition, nuclear factor-kappa B (NF-κB) signaling pathway activation in neurons is associated with the progression of AD. NF-κB activation is regulated by HDAC3 deacetylation. In the present study, we researched the role of CHIT1 in HDAC3/NF-κB signaling in D-galactose (D-gal) and aluminum-exposed rat model with cognitive impairments. Following CHIT1 treatment, we found that the protein and mRNA levels of HDAC3 and NF-κB were reduced, the expression level of IκBα increased, anti-inflammatory factors (Arg-1, IL-10, and CD206) were elevated while pro-inflammatory factors (TNF-a, iNOS, and IL-1β) were decreased in D-gal/aluminum-induced AD rats. These results indicate that CHIT1 can regulate brain inflammation via HDAC3/NF-κB p65 pathway, contributing to improvement of cognitive impairment.
Collapse
|
95
|
Svob Strac D, Konjevod M, Sagud M, Nikolac Perkovic M, Nedic Erjavec G, Vuic B, Simic G, Vukic V, Mimica N, Pivac N. Personalizing the Care and Treatment of Alzheimer's Disease: An Overview. Pharmgenomics Pers Med 2021; 14:631-653. [PMID: 34093032 PMCID: PMC8169052 DOI: 10.2147/pgpm.s284615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive, complex, and multifactorial neurodegenerative disorder, still without effective and stable therapeutic strategies. Currently, available medications for AD are based on symptomatic therapy, which include acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonist. Additionally, medications such as antipsychotic drugs, antidepressants, sedative, and hypnotic agents, and mood stabilizers are used for the management of behavioral and psychological symptoms of dementia (BPSD). Clinical research has been extensively investigated treatments focusing on the hallmark pathology of AD, including the amyloid deposition, tau hyperphosphorylation, neuroinflammation, and vascular changes; however, so far without success, as all new potential drugs failed to show significant clinical benefit. The underlying heterogeneous etiology and diverse symptoms of AD suggest that a precision medicine strategy is required, which would take into account the complex genetic, epigenetic, and environmental landscape of each AD patient. The article provides a comprehensive overview of the literature on AD, the current and potential therapy of both cognitive symptoms as well as BPSD, with a special focus on gut microbiota and epigenetic modifications as new emerging drug targets. Their specific patterns could represent the basis for novel individually tailored approaches aimed to optimize precision medicine strategies for AD prevention and treatment. However, the successful application of precision medicine to AD demands a further extensive research of underlying pathological processes, as well as clinical and biological complexity of this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Department of Psychiatry, Clinical Hospital Centre Zagreb, Zagreb, Croatia
- University of Zagreb Medical School, Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Goran Simic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Vana Vukic
- Department of Neuroscience, Croatian Institute for Brain Research, Zagreb, Croatia
| | | | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
96
|
Histone deacetylase 3 in hippocampus contributes to memory impairment after chronic constriction injury of sciatic nerve in mice. Pain 2021; 162:382-395. [PMID: 32868749 DOI: 10.1097/j.pain.0000000000002056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic neuropathic pain is frequently accompanied by memory impairment, yet the underlying mechanisms remain unclear. Here, we showed that mice displayed memory impairment starting at 14 days and lasting for at least 21 days after chronic constriction injury (CCI) of unilateral sciatic nerve in mice. Systemic administration of the pan histone deacetylase (HDAC) inhibitor sodium butyrate attenuated this memory impairment. More specifically, we found that hippocampus HDAC3 was involved in this process because the levels of its mRNA and protein increased significantly in the hippocampus at 14 and 21 days after CCI, but not sham surgery. Systemic administration of the selective HDAC3 antagonist RGFP966 attenuated CCI-induced memory impairment, improved hippocampal long-term potentiation impairment, and rescued reductions of dendritic spine density and synaptic plasticity-associated protein in the hippocampus. In addition, HDAC3 overexpression in the hippocampus led to memory impairment without affecting basal nociceptive responses in naive mice. Our findings suggest that HDAC3 contributes to memory impairment after CCI by impairing synaptic plasticity in hippocampus. Histone deacetylase 3 might serve as a potential molecular target for therapeutic treatment of memory impairment under neuropathic pain conditions.
Collapse
|
97
|
Wilson GD, Wilson TG, Hanna A, Fontanesi G, Kulchycki J, Buelow K, Pruetz BL, Michael DB, Chinnaiyan P, Maddens ME, Martinez AA, Fontanesi J. Low Dose Brain Irradiation Reduces Amyloid-β and Tau in 3xTg-AD Mice. J Alzheimers Dis 2021; 75:15-21. [PMID: 32280098 DOI: 10.3233/jad-200030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that low doses of external beam ionizing irradiation reduced amyloid-β (Aβ) plaques and improved cognition in APP/PS1 mice. In this study we investigated the effects of radiation in an age-matched series of 3xTg-AD mice. Mice were hemibrain-irradiated with 5 fractions of 2 Gy and sacrificed 8 weeks after the end of treatment. Aβ and tau were assessed using immunohistochemistry and quantified using image analysis with Definiens Tissue Studio. We observed a significant reduction in Aβ plaque burden and tau staining; these two parameters were significantly correlated. This preliminary data is further support that low doses of radiation may be beneficial in Alzheimer's disease.
Collapse
Affiliation(s)
- George D Wilson
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Thomas G Wilson
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Alaa Hanna
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | | | - Justin Kulchycki
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | - Katie Buelow
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA
| | | | - Daniel B Michael
- Michigan Head and Spine Institute, Southfield, MI, USA.,Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | - Michael E Maddens
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Alvaro A Martinez
- Radiation Oncology Institute, Division of Michigan Healthcare Professionals, Farmington Hills, MI, USA
| | - James Fontanesi
- Radiation Oncology Department, Beaumont Health, Royal Oak, MI, USA.,Department of Neurosurgery, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
98
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br J Clin Pharmacol 2021; 87:4577-4597. [PMID: 33971031 DOI: 10.1111/bcp.14889] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
The histone deacetylase (HDAC) enzymes, a class of epigenetic regulators, are historically well established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a high number of clinical trials involving HDAC inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 32 agents with HDAC-inhibiting properties, of which 29 were found to interact with the HDAC enzymes as their primary therapeutic target. In this review, we provide an overview of the clinical drug development highlighting the recent advances and provide analysis of specific trials and, where applicable, chemical structures. We found haematologic neoplasms continue to represent the majority of clinical indications for this class of drugs; however, it is clear that there is an ongoing trend towards diversification. Therapies for non-oncology indications including HIV infection, muscular dystrophies, inflammatory diseases as well as neurodegenerative diseases such as Alzheimer's disease, frontotemporal dementia and Friedreich's ataxia are achieving promising clinical progress. Combinatory regimens are proving to be useful to improve responsiveness among FDA-approved agents; however, it often results in increased treatment-related toxicities. This analysis suggests that the indication field is broadening through a high number of clinical trials while several fields of preclinical development are also promising.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
99
|
Wu S, Zhang J, Jiang C, Wang S, Que R, An L. Up-regulation of neprilysin mediates the protection of fructo-oligosaccharides against Alzheimer's disease. Food Funct 2021; 11:6565-6572. [PMID: 32644062 DOI: 10.1039/d0fo00161a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fructo-oligosaccharides (FOS), an important prebiotic, have been proved to have a beneficial effect on Alzheimer's disease (AD); however, the specific mechanism remains to be confirmed. Senile plaques are one of the main neuropathological features of AD and the core of senile plaques mainly consists of extracellular beta-amyloid (Aβ). Reducing Aβ accumulation in the brain is an important therapeutic strategy for AD. Neprilysin (NEP), a major Aβ-degrading enzyme, has been found to be decreased in the AD brain. Evidence has shown that the expression of NEP is associated with histone acetylation levels. Histone deacetylases (HDACs) are the key enzymes in the modulation of histone acetylation modification. Importantly, several metabolites of FOS have been demonstrated to be pan-HDAC inhibitors. In this study, we demonstrate that FOS ameliorate cognitive impairment and alleviate Aβ accumulation in the brain of AD model mice. The regulation of HDAC2 on NEP plays an important role in the anti-AD effect of FOS.
Collapse
Affiliation(s)
- Sining Wu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Jingzhu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Congmin Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Sihui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Ran Que
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| | - Li An
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
100
|
Ghiboub M, Elfiky AMI, de Winther MPJ, Harker NR, Tough DF, de Jonge WJ. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J Pers Med 2021; 11:336. [PMID: 33922725 PMCID: PMC8145108 DOI: 10.3390/jpm11050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Ahmed M. I. Elfiky
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Medicine, Institute for Cardiovascular Prevention (IPEK), 80336 Munich, Germany
| | - Nicola R. Harker
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - David F. Tough
- Adaptive Immunity Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (N.R.H.); (D.F.T.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (A.M.I.E.)
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|