51
|
Neidle S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules 2024; 29:3653. [PMID: 39125057 PMCID: PMC11314571 DOI: 10.3390/molecules29153653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.
Collapse
Affiliation(s)
- Stephen Neidle
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
52
|
Ngo KH, Liew CW, Heddi B, Phan AT. Structural Basis for Parallel G-Quadruplex Recognition by an Ankyrin Protein. J Am Chem Soc 2024; 146:13709-13713. [PMID: 38738955 DOI: 10.1021/jacs.4c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
G-Quadruplex (G4) structures formed by guanine-rich DNA and RNA sequences are implicated in various biological processes. Understanding the mechanisms by which proteins recognize G4 structures is crucial for elucidating their functional roles. Here we present the X-ray crystal structure of an ankyrin protein bound to a parallel G4 structure. Our findings reveal a new specific recognition mode in which a bundle of α-helices and loops of the ankyrin form a flat surface to stack on the G-tetrad core. The protein employs a combination of hydrogen bonds and hydrophobic contacts to interact with the G4, and electrostatic interaction is used to enhance the binding affinity. This binding mechanism provides valuable insights into understanding G4 recognition by proteins.
Collapse
Affiliation(s)
- Khac Huy Ngo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Brahim Heddi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
53
|
Cui Y, Liu H, Ming Y, Zhang Z, Liu L, Liu R. Prediction of strand-specific and cell-type-specific G-quadruplexes based on high-resolution CUT&Tag data. Brief Funct Genomics 2024; 23:265-275. [PMID: 37357985 DOI: 10.1093/bfgp/elad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
G-quadruplex (G4), a non-classical deoxyribonucleic acid structure, is widely distributed in the genome and involved in various biological processes. In vivo, high-throughput sequencing has indicated that G4s are significantly enriched at functional regions in a cell-type-specific manner. Therefore, the prediction of G4s based on computational methods is necessary instead of the time-consuming and laborious experimental methods. Recently, G4 CUT&Tag has been developed to generate higher-resolution sequencing data than ChIP-seq, which provides more accurate training samples for model construction. In this paper, we present a new dataset construction method based on G4 CUT&Tag sequencing data and an XGBoost prediction model based on the machine learning boost method. The results show that our model performs well within and across cell types. Furthermore, sequence analysis indicates that the formation of G4 structure is greatly affected by the flanking sequences, and the GC content of the G4 flanking sequences is higher than non-G4. Moreover, we also identified G4 motifs in the high-resolution dataset, among which we found several motifs for known transcription factors (TFs), such as SP2 and BPC. These TFs may directly or indirectly affect the formation of the G4 structure.
Collapse
Affiliation(s)
- Yizhi Cui
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Hongzhi Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yutong Ming
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zheng Zhang
- Department of Computer Science and Software Engineering, Auburn University, Auburn, 36830, Alabama, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, Zhejiang, China
| | - Ruijun Liu
- School of Computer Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
54
|
Galli S, Flint G, Růžičková L, Di Antonio M. Genome-wide mapping of G-quadruplex DNA: a step-by-step guide to select the most effective method. RSC Chem Biol 2024; 5:426-438. [PMID: 38725910 PMCID: PMC11078208 DOI: 10.1039/d4cb00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
The development of methods that enabled genome-wide mapping of DNA G-quadruplex structures in chromatin has played a critical role in providing evidence to support the formation of these structures in living cells. Over the past decade, a variety of methods aimed at mapping G-quadruplexes have been reported in the literature. In this critical review, we have sought to provide a technical overview on the relative strengths and weaknesses of the genomics approaches currently available, offering step-by-step guidance to assessing experimental needs and selecting the most appropriate method to achieve effective genome-wide mapping of DNA G-quadruplexes.
Collapse
Affiliation(s)
- Silvia Galli
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Gem Flint
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
| | - Lucie Růžičková
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub 82 Wood Lane London UK
- Institute of Chemical Biology, Molecular Science Research Hub 82 Wood Lane London UK
- The Francis Crick Institute 1 Midland Road London UK
| |
Collapse
|
55
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
56
|
Zheng BX, Long W, Zheng W, Zeng Y, Guo XC, Chan KH, She MT, Leung ASL, Lu YJ, Wong WL. Mitochondria-Selective Dicationic Small-Molecule Ligand Targeting G-Quadruplex Structures for Human Colorectal Cancer Therapy. J Med Chem 2024; 67:6292-6312. [PMID: 38624086 DOI: 10.1021/acs.jmedchem.3c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 μM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wende Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yaoxun Zeng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
57
|
Léguillier V, Heddi B, Vidic J. Recent Advances in Aptamer-Based Biosensors for Bacterial Detection. BIOSENSORS 2024; 14:210. [PMID: 38785684 PMCID: PMC11117931 DOI: 10.3390/bios14050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection.
Collapse
Affiliation(s)
- Vincent Léguillier
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Brahim Heddi
- ENS Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, 91190 Gif-sur-Yvette, France
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institut, Université Paris-Saclay, UMR 1319, 78350 Jouy-en-Josas, France;
| |
Collapse
|
58
|
Li W, Wen Y, Wang K, Ding Z, Wang L, Chen Q, Xie L, Xu H, Zhao H. Developing a machine learning model for accurate nucleoside hydrogels prediction based on descriptors. Nat Commun 2024; 15:2603. [PMID: 38521777 PMCID: PMC10960799 DOI: 10.1038/s41467-024-46866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Supramolecular hydrogels derived from nucleosides have been gaining significant attention in the biomedical field due to their unique properties and excellent biocompatibility. However, a major challenge in this field is that there is no model for predicting whether nucleoside derivative will form a hydrogel. Here, we successfully develop a machine learning model to predict the hydrogel-forming ability of nucleoside derivatives. The optimal model with a 71% (95% Confidence Interval, 0.69-0.73) accuracy is established based on a dataset of 71 reported nucleoside derivatives. 24 molecules are selected via the optimal model external application and the hydrogel-forming ability is experimentally verified. Among these, two rarely reported cation-independent nucleoside hydrogels are found. Based on their self-assemble mechanisms, the cation-independent hydrogel is found to have potential applications in rapid visual detection of Ag+ and cysteine. Here, we show the machine learning model may provide a tool to predict nucleoside derivatives with hydrogel-forming ability.
Collapse
Affiliation(s)
- Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Kaichao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zihan Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
59
|
Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, Nguyen MT, Ivanova OM, Dolgusheva VА, Varizhuk AM, Tikhomirov AS, Shchekotikhin AE. Thiadiazole-, selenadiazole- and triazole-fused anthraquinones as G-quadruplex targeting anticancer compounds. Eur J Med Chem 2024; 268:116222. [PMID: 38387333 DOI: 10.1016/j.ejmech.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Tatiana S Vedekhina
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571, Moscow, Russia
| | - Alexander S Gostev
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Miusskaya square, 9, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Olga M Ivanova
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia
| | - Vladislava А Dolgusheva
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | | | | |
Collapse
|
60
|
Ahmed AA, Chen S, Roman-Escorza M, Angell R, Oxenford S, McConville M, Barton N, Sunose M, Neidle D, Haider S, Arshad T, Neidle S. Structure-activity relationships for the G-quadruplex-targeting experimental drug QN-302 and two analogues probed with comparative transcriptome profiling and molecular modeling. Sci Rep 2024; 14:3447. [PMID: 38342953 PMCID: PMC10859377 DOI: 10.1038/s41598-024-54080-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
The tetrasubstituted naphthalene diimide compound QN-302 binds to G-quadruplex (G4) DNA structures. It shows high potency in pancreatic ductal adenocarcinoma (PDAC) cells and inhibits the transcription of cancer-related genes in these cells and in PDAC animal models. It is currently in Phase 1a clinical evaluation as an anticancer drug. A study of structure-activity relationships of QN-302 and two related analogues (CM03 and SOP1247) is reported here. These have been probed using comparisons of transcriptional profiles from whole-genome RNA-seq analyses, together with molecular modelling and molecular dynamics simulations. Compounds CM03 and SOP1247 differ by the presence of a methoxy substituent in the latter: these two compounds have closely similar transcriptional profiles. Whereas QN-302 (with an additional benzyl-pyrrolidine group), although also showing down-regulatory effects in the same cancer-related pathways, has effects on distinct genes, for example in the hedgehog pathway. This distinctive pattern of genes affected by QN-302 is hypothesized to contribute to its superior potency compared to CM03 and SOP1247. Its enhanced ability to stabilize G4 structures has been attributed to its benzyl-pyrrolidine substituent fitting into and filling most of the space in a G4 groove compared to the hydrogen atom in CM03 or the methoxy group substituent in SOP1247.
Collapse
Affiliation(s)
- Ahmed Abdullah Ahmed
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Shuang Chen
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | | | - Richard Angell
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Sally Oxenford
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Artios Ltd, Cambridge, CB22 3FH, UK
| | | | | | - Mihiro Sunose
- Sygnature Discovery Ltd, BioCity, Nottingham, NG1 1GR, UK
| | - Dan Neidle
- Tax Policy Associates, London, EC1R 0ET, UK
| | - Shozeb Haider
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Tariq Arshad
- Qualigen Therapeutics Inc, Carlsbad, CA, 92011, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
61
|
Metangle S, Ranjan N. Preferential Binding of a Red Emissive Julolidine Derivative to a Promoter G-Quadruplex. Chembiochem 2024; 25:e202300527. [PMID: 37926689 DOI: 10.1002/cbic.202300527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The therapeutic potential of G-quadruplexes has increased significantly with the growing understanding of their functional roles in pathogens apart from human diseases such as cancer. Here, we report the synthesis of three julolidine-based molecules and their binding to nucleic acids. Among the synthesized molecules, compound 1 exhibited red emissive fluorescence with a distinct preference for Pu22 G-quadruplex. The binding of compound 1 to Pu22 G-quadruplex, initially identified through a fluorescence-based screening, was further confirmed by UV-vis, fluorescence spectroscopy, and circular dichroism-based experiments. Thermal denaturation of compound 1 in the presence of Pu22 G-quadruplex revealed a concentration-dependent stabilization (~10.0 °C at 1 : 3 stoichiometry). Fluorescence-based experiments revealed 1 : 1 stoichiometry of the interaction and an association constant (Ka ) of 5.67×106 M-1 . CD experiments displayed that the parallel conformation of the G-quadruplex was retained on compound 1's binding and signs of higher order binding/complex formation were observed at high compound 1 to DNA ratio. Molecular docking studies revealed the dominance of stacking and van der Waals interactions in the molecular recognition which was aided by some close-distance interactions involving the quinolinium nitrogen atom.
Collapse
Affiliation(s)
- Sachin Metangle
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, 226002, India
| |
Collapse
|
62
|
Singh S, Sharma AK, Gade HM, Agarwal V, Nasani R, Verma N, Sharma B. Stimuli-responsive and self-healing supramolecular Zn(II)-guanosine metal-organic gel for Schottky barrier diode application. SOFT MATTER 2024; 20:1025-1035. [PMID: 38197513 DOI: 10.1039/d3sm01405c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Spontaneous formation of a supramolecular metal-organic hydrogel using unsubstituted guanosine as a ligand and Zn2+ ions is reported. Guanosine, in the presence of NaOH, self-assembled into a stable G-quadruplex structure, which underwent crosslinking through Zn2+ ions to afford a stable hydrogel. The gel has been characterized using several spectroscopic as well as microscopic studies. The hydrogel demonstrated excellent stimuli responsiveness towards various chemicals and pH. Furthermore, the gel exhibited intrinsic thixotropic behavior and showed self-healing and injectable properties. The optical properties of the Zn-guanosine metallo-hydrogel suggested a semiconducting nature of the gel, which has been exploited for fabricating a thin film device based on a Schottky diode interface between metal and a semiconductor. The fabricated device shows excellent charge transport characteristics and linear rectifying behavior. The findings are likely to pave the way for newer research in the area of soft electronic devices fabricated using materials synthesized by employing simple biomolecules.
Collapse
Affiliation(s)
- Surbhi Singh
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Atul Kumar Sharma
- Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Hrushikesh M Gade
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Rajendar Nasani
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Nisha Verma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Malviya Nagar, Jaipur 302017, India.
| |
Collapse
|
63
|
Kamiya Y, Lao S, Ariyoshi J, Sato F, Asanuma H. Unexpectedly stable homopurine parallel triplex of SNA:RNA*SNA and L- aTNA:RNA*L- aTNA. Chem Commun (Camb) 2024; 60:1257-1260. [PMID: 38175608 DOI: 10.1039/d3cc05555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Homopurine strands are known to form antiparallel triplexes stabilized by G*G and A*A Hoogsteen pairs, which have two hydrogen bonds. But there has been no report on the parallel triplex formation of homopurine involving both adenosine and guanosine to the duplex. In this paper, we first report parallel triplex formation between a homopurine serinol nucleic acid (SNA) strand and an RNA/SNA duplex. Melting profiles revealed that the parallel SNA:RNA*SNA triplex was remarkably stable, even though the A*A pair has a single hydrogen bond. An L-acyclic threoninol nucleic acid (L-aTNA) homopurine strand also formed a stable parallel triplex with an L-aTNA/RNA duplex.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558, Japan.
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Siyuan Lao
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Jumpei Ariyoshi
- Laboratory of Bioanalytical Chemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558, Japan.
| | - Fuminori Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
64
|
Nicolás Á, Quero JG, Barroso M, Gándara Z, Gude L. DNA Interactions and Biological Activity of 2,9-Disubstituted 1,10-Phenanthroline Thiosemicarbazone-Based Ligands and a 4-Phenylthiazole Derivative. BIOLOGY 2024; 13:60. [PMID: 38275736 PMCID: PMC10813753 DOI: 10.3390/biology13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Four 1,10-phenanthroline derivatives (1-4) were synthesized as potential telomeric DNA binders, three substituted in their chains with thiosemicarbazones (TSCs) and one 4-phenylthiazole derivative. The compounds were characterized using NMR, HRMS, FTIR-spectroscopy and combustion elemental analysis. Quadruplex and dsDNA interactions were preliminarily studied, especially for neutral derivative 1, using FRET-based DNA melting assays, equilibrium dialysis (both competitive and non-competitive), circular dichroism and viscosity titrations. The TSC derivatives bind and stabilize the telomeric Tel22 quadruplex more efficiently than dsDNA, with an estimated 24-fold selectivity determined through equilibrium dialysis for compound 1. In addition, cytotoxic activity against various tumor cells (PC-3, DU145, HeLa, MCF-7 and HT29) and two normal cell lines (HFF-1 and RWPE-1) was evaluated. Except for the 4-phenylthiazole derivative, which was inactive, the compounds showed moderate cytotoxic properties, with the salts displaying lower IC50 values (30-80 μM), compared to the neutral TSC, except in PC-3 cells (IC50 (1) = 18 μM). However, the neutral derivative was the only compound that exhibited a modest selectivity in the case of prostate cells (tumor PC-3 versus healthy RWPE-1). Cell cycle analysis and Annexin V/PI assays revealed that the compounds can produce cell death by apoptosis, an effect that has proven to be similar to that demonstrated by other known 1,10-phenanthroline G4 ligands endowed with antitumor properties, such as PhenDC3 and PhenQE8.
Collapse
Affiliation(s)
- Álvaro Nicolás
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Julia G. Quero
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Marta Barroso
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
| | - Zoila Gándara
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Lourdes Gude
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), 28805 Madrid, Spain; (Á.N.)
- Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
65
|
Yatsunyk LA, Neidle S. On Water Arrangements in Right- and Left-Handed DNA Structures. Molecules 2024; 29:505. [PMID: 38276583 PMCID: PMC10820154 DOI: 10.3390/molecules29020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
DNA requires hydration to maintain its structural integrity. Crystallographic analyses have enabled patterns of water arrangements to be visualized. We survey these water motifs in this review, focusing on left- and right-handed duplex and quadruplex DNAs, together with the i-motif. Common patterns of linear spines of water organization in grooves have been identified and are widely prevalent in right-handed duplexes and quadruplexes. By contrast, a left-handed quadruplex has a distinctive wheel of hydration populating the almost completely circular single groove in this structure.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA;
| | - Stephen Neidle
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
66
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
67
|
Guneri D, Waller ZAE. Utility of intercalator displacement assays for screening of ligands for i-motif DNA structures. Methods Enzymol 2024; 695:221-232. [PMID: 38521586 DOI: 10.1016/bs.mie.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cytosine rich sequences can form intercalated, i-motif DNA structures stabilized by hemi-protonated cytosine:cytosine base pairing. These sequences are often located in regulatory regions of genes such as promoters. Ligands targeting i-motif structures may provide potential leads for treatments for genetic disease. The focus on ligands interacting with i-motif DNA has been increasing in recent years. Here, we describe the fluorescent intercalator displacement (FID) assay using thiazole orange binding i-motif DNA and assess the binding affinity of a ligand to the i-motif DNA by displacing thiazole orange. This provides a time and cost-effective high throughput screening of ligands against secondary DNA structures for hit identification.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, London, United Kingdom.
| | - Zoë A E Waller
- School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
68
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
69
|
De Magis A, Schult P, Schönleber A, Linke R, Ludwig KU, Kümmerer BM, Paeschke K. TMPRSS2 isoform 1 downregulation by G-quadruplex stabilization induces SARS-CoV-2 replication arrest. BMC Biol 2024; 22:5. [PMID: 38185627 PMCID: PMC10773119 DOI: 10.1186/s12915-023-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND SARS-CoV-2 infection depends on the host cell factors angiotensin-converting enzyme 2, ACE2, and the transmembrane serinprotease 2, TMPRSS2. Potential inhibitors of these proteins would be ideal targets against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. Our data opens the possibility that changes within TMPRSS2 can modulate the outcome during a SARS-CoV-2 infection. RESULTS We reveal that TMPRSS2 acts not only during viral entry but has also an important role during viral replication. In addition to previous functions for TMPRSS2 during viral entry, we determined by specific downregulation of distinct isoforms that only isoform 1 controls and supports viral replication. G-quadruplex (G4) stabilization by chemical compounds impacts TMPRSS2 gene expression. Here we extend and in-depth characterize these observations and identify that a specific G4 in the first exon of the TMPRSS2 isoform 1 is particular targeted by the G4 ligand and affects viral replication. Analysis of potential single nucleotide polymorphisms (SNPs) reveals that a reported SNP at this G4 in isoform 1 destroys the G4 motif and makes TMPRSS2 ineffective towards G4 treatment. CONCLUSION These findings uncover a novel mechanism in which G4 stabilization impacts SARS-CoV-2 replication by changing TMPRSS2 isoform 1 gene expression.
Collapse
Affiliation(s)
- Alessio De Magis
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Philipp Schult
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Antonia Schönleber
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Rebecca Linke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Beate M Kümmerer
- Institute of Virology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Katrin Paeschke
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Department of Oncology, Haematology and Rheumatology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
70
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
71
|
Huang R, Feng Y, Gao Z, Ahmed A, Zhang W. The Epigenomic Features and Potential Functions of PEG- and PDS-Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2024; 25:634. [PMID: 38203805 PMCID: PMC10779103 DOI: 10.3390/ijms25010634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (R.H.); (Y.F.); (Z.G.); (A.A.)
| |
Collapse
|
72
|
Satapathy SN, Nial PS, Tulsiyan KD, Subudhi U. Light rare earth elements stabilize G-quadruplex structure in variants of human telomeric sequences. Int J Biol Macromol 2024; 254:127703. [PMID: 37918592 DOI: 10.1016/j.ijbiomac.2023.127703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Recently, light rare earth elements (LREEs) are gaining importance in modern-day technologies. Thus, the entry of LREEs into biochemical pathways cannot be ignored, which might affect the conformation of biomacromolecules. Herein, for the first time, we discover the G-quadruplex formation in the human telomeric variants in presence of micromolar concentrations of LREEs. Thermal melting show that the LREE-induced unimolecular G-quadruplex structure. Isothermal titration calorimetry, UV-vis, and CD spectroscopy results suggest the binding stoichiometry of lanthanide ions to telomeric variants is 2:1. The data confirms that the LREE ions coordinate between adjacent G-quartets. The excess LREE ions are most likely binding to quadruplex loops. The CD spectra revealed that the LREE-induced quadruplex in human telomere and its variant have antiparallel orientation. The binding equilibria of LREEs have been studied both in the presence and absence of competing metal cations. Addition of LREEs to the Na+ or K+-induced G-quadruplexes led to conformational change, which may be ascribed to the displacement of K+ or Na+ ions by LREE ions and formation of a more compact LREE-induced G-quadruplex structure in human telomeric variant. Moreover, the thymine in the central loop of the human telomeric sequence stabilizes LREE induced G-quadruplex.
Collapse
Affiliation(s)
- Sampat N Satapathy
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
73
|
Wei D, Mai Z, Li X, Yu T, Li J. Poly(G) 7 box: a functional element of mammalian 18S rRNA involved in translation. RNA Biol 2024; 21:8-18. [PMID: 39233564 PMCID: PMC11382726 DOI: 10.1080/15476286.2024.2399310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
In eukaryotes, the ribosomal small subunit (40S) is composed of 18S rRNA and 33 ribosomal proteins. 18S rRNA has a special secondary structure and is an indispensable part of the translation process. Herein, a special sequence located in mammalian 18S rRNA named Poly(G)7box, which is composed of seven guanines, was found. Poly(G)7 can form a special and stable secondary structure by binding to the translation elongation factor subunit eEF1D and the ribosomal protein RPL32. Poly(G)7box was transfected into cells, and the translation efficiency of cells was inhibited. We believe that Poly(G)7box is an important translation-related functional element located on mammalian 18S rRNA, meanwhile the Poly(G)7 located on mRNA 5' and 3' box does not affect mRNA translation.
Collapse
Affiliation(s)
- Dahao Wei
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhangyu Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinan Li
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianli Yu
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- Laboratory of Oncology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
74
|
Kastl M, Hersperger F, Kierdorf K, Paeschke K. Detection of G-Quadruplex DNA Structures in Macrophages. Methods Mol Biol 2024; 2713:453-462. [PMID: 37639141 DOI: 10.1007/978-1-0716-3437-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In addition to the canonical B-DNA conformation, DNA can fold into different secondary structures. Among them are G-quadruplex structures (G4s). G4 structures are very stable and can fold in specific guanine-rich regions in DNA and RNA. Different in silico, in vitro, and in cellulo experiments have shown that G4 structures form so far in all tested organisms. There are over 700,000 predicted G4s in higher eukaryotes, but it is so far assumed that not all will form at the same time. Their formation is dynamically regulated by proteins and is cell type-specific and even changes during the cell cycle or during different exogenous or endogenous stimuli (e.g., infection or developmental stages) can alter the G4 level. G4s have been shown to accumulate in cancer cells where they contribute to gene expression changes and the mutagenic burden of the tumor. Specific targeting of G4 structures to impact the expression of oncogenes is currently discussed as an anti-cancer treatment. In a tumor microenvironment, not only the tumor cells will be targeted by G4 stabilization but also immune cells such as macrophages. Although G4s were detected in multiple organisms and different cell types, only little is known about their role in immune cells. Here, we provide a detailed protocol to detect G4 formation in the nucleus of macrophages of vertebrates and invertebrates by microscopic imaging.
Collapse
Affiliation(s)
- Melanie Kastl
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
75
|
Lopina OD, Sidorenko SV, Fedorov DA, Klimanova EA. G-Quadruplexes as Sensors of Intracellular Na+/K + Ratio: Potential Role in Regulation of Transcription and Translation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S262-S277. [PMID: 38621755 DOI: 10.1134/s0006297924140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 04/17/2024]
Abstract
Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.
Collapse
Affiliation(s)
- Olga D Lopina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | | - Dmitry A Fedorov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|
76
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
77
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
78
|
Figueiredo J, Djavaheri-Mergny M, Ferret L, Mergny JL, Cruz C. Harnessing G-quadruplex ligands for lung cancer treatment: A comprehensive overview. Drug Discov Today 2023; 28:103808. [PMID: 38414431 DOI: 10.1016/j.drudis.2023.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 02/29/2024]
Abstract
Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.
Collapse
Affiliation(s)
- Joana Figueiredo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Mojgan Djavaheri-Mergny
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Lucille Ferret
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Equipe Labellisée par la Ligue contre le Cancer, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France; Faculté de Médecine, Université de Paris Saclay, Paris, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120 Palaiseau, France.
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Faculdade de Ciências da Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
79
|
Mehra K, Khurana S, Kukreti S, Kaushik M. Nanomaterials and DNA multistranded structures: a treasure hunt for targeting specific biomedical applications. J Biomol Struct Dyn 2023; 41:11324-11340. [PMID: 36546729 DOI: 10.1080/07391102.2022.2159878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The advent in nanoscience and nanotechnology has enabled the successful synthesis and characterization of different nanomaterials with unique electrical, optical, magnetic and catalytic activities. However, with respect to sensing applications, nanomaterials intrinsically lack target recognition ability to selectively bind with the analyte. DNA, an important genetic material carrying biopolymer is polymorphic in nature and shows structural polymorphism, forming secondary/multistranded structures like hairpin, cruciform, pseudoknot, duplex, triplex, G-quadruplex and i-motif. Studies reported so far have suggested that these polymorphic structures have been targeted specifically for the treatment or diagnosis of various diseases. DNA is widely used in conjugation with nanomaterials for the development of nanoarchitectures due to its rigidity, sequence programmability and specific molecular recognition, which makes this biomolecule a treasure for designing of DNA based frameworks. These two entities (DNA and nanomaterials) can be used in association with each other, as their alliance can result into creation of novel assay platforms for different purposes, ranging from imaging, sensing and diagnostics to targeted delivery. In this review, we have discussed about the recent reports on association of various mutistranded/ polymorphic forms of DNA with nanomaterials. Furthermore, different applications using this versatile DNA-nanomaterial assembly has also been elaborated at length. This review aims to target the interests of scientists from various interdisciplinary fields, including biologists, chemists and nanotechnologists, who wish to gain an understanding of nano-fabrications using a plethora of DNA polymorphic forms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Komal Mehra
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Sonia Khurana
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic acids research lab, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate chemistry lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
80
|
Pathak R. G-Quadruplexes in the Viral Genome: Unlocking Targets for Therapeutic Interventions and Antiviral Strategies. Viruses 2023; 15:2216. [PMID: 38005893 PMCID: PMC10674748 DOI: 10.3390/v15112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
81
|
McGorman B, Poole S, López MV, Kellett A. Analysis of non-canonical three- and four-way DNA junctions. Methods 2023; 219:30-38. [PMID: 37690737 DOI: 10.1016/j.ymeth.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The development of compounds that can selectively bind with non-canonical DNA structures has expanded in recent years. Junction DNA, including three-way junctions (3WJs) and four-way Holliday junctions (HJs), offer an intriguing target for developmental therapeutics as both 3WJs and HJs are involved in DNA replication and repair processes. However, there are a limited number of assays available for the analysis of junction DNA binding. Here, we describe the design and execution of multiplex fluorescent polyacrylamide gel electrophoresis (PAGE) and microscale thermophoresis (MST) assays that enable evaluation of junction-binding compounds. Two well characterised junction-binding compounds-a C6 linked bis-acridine ligand and an iron(II)-bound peptide helicate, which recognise HJs and 3WJs, respectively-were employed as probes for both MST and PAGE experiments. The multiplex PAGE assay expands beyond previously reported fluorescent PAGE as it uses four individual fluorophores that can be combined to visualise single-strands, pseudo-duplexes, and junction DNA present during 3WJ and HJ formation. The use of MST to identify the binding affinity of junction binding agents is, to our knowledge, first reported example of this technique. The combined use of PAGE and MST provides complementary results for the visualisation of 3WJ and HJ formation and the direct binding affinity (Kd and EC50) of these agents. These assays can be used to aid the discovery and design of new therapeutics targeting non-canonical nucleic acid structures.
Collapse
Affiliation(s)
- Bríonna McGorman
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Simon Poole
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Inorgánica. Universidade de Santiago de Compostela., Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Andrew Kellett
- SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
82
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
83
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
84
|
Bai G, Endres T, Kühbacher U, Greer BH, Peacock EM, Crossley MP, Sathirachinda A, Cortez D, Eichman BF, Cimprich KA. HLTF Prevents G4 Accumulation and Promotes G4-induced Fork Slowing to Maintain Genome Stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.563641. [PMID: 37961428 PMCID: PMC10634870 DOI: 10.1101/2023.10.27.563641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
Collapse
|
85
|
Serrano-León IM, Prieto P, Aguilar M. Telomere and subtelomere high polymorphism might contribute to the specificity of homologous recognition and pairing during meiosis in barley in the context of breeding. BMC Genomics 2023; 24:642. [PMID: 37884878 PMCID: PMC10601145 DOI: 10.1186/s12864-023-09738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Barley (Hordeum vulgare) is one of the most popular cereal crops globally. Although it is a diploid species, (2n = 2x = 14) the study of its genome organization is necessary in the framework of plant breeding since barley is often used in crosses with other cereals like wheat to provide them with advantageous characters. We already have an extensive knowledge on different stages of the meiosis, the cell division to generate the gametes in species with sexual reproduction, such as the formation of the synaptonemal complex, recombination, and chromosome segregation. But meiosis really starts with the identification of homologous chromosomes and pairing initiation, and it is still unclear how chromosomes exactly choose a partner to appropriately pair for additional recombination and segregation. In this work we present an exhaustive molecular analysis of both telomeres and subtelomeres of barley chromosome arms 2H-L, 3H-L and 5H-L. As expected, the analysis of multiple features, including transposable elements, repeats, GC content, predicted CpG islands, recombination hotspots, G4 quadruplexes, genes and targeted sequence motifs for key DNA-binding proteins, revealed a high degree of variability both in telomeres and subtelomeres. The molecular basis for the specificity of homologous recognition and pairing occurring in the early chromosomal interactions at the start of meiosis in barley may be provided by these polymorphisms. A more relevant role of telomeres and most distal part of subtelomeres is suggested.
Collapse
Affiliation(s)
- I M Serrano-León
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain
| | - P Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal S/N., Campus Alameda del Obispo, 14004, Córdoba, Spain.
| | - M Aguilar
- Área de Fisiología Vegetal, Universidad de Córdoba, Campus de Rabanales, Edif. C4, 3ª Planta, Córdoba, Spain
| |
Collapse
|
86
|
Kaur B, Sharma P, Arora P, Sood V. QUFIND: tool for comparative prediction and mining of G4 quadruplexes overlapping with CpG islands. Front Genet 2023; 14:1265808. [PMID: 37953924 PMCID: PMC10634401 DOI: 10.3389/fgene.2023.1265808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures in DNA that have been shown to be involved in gene regulation. They play a vital role in the cellular processes and several pathogens including bacteria, fungi, and viruses have also been shown to possess G4s that help them in their pathogenesis. Additionally, cross-talk among the CpG islands and G4s has been shown to influence biological processes. The virus-encoded G4s are affected by the mutational landscape leading to the formation/deletion of these G4s. Therefore, understanding and predicting these multivariate effects on traditional and non-traditional quadruplexes forms an important area of research, that is, yet to be investigated. We have designed a user-friendly webserver QUFIND (http://soodlab.com/qufinder/) that can predict traditional as well as non-traditional quadruplexes in a given sequence. QUFIND is connected with ENSEMBL and NCBI so that the sequences can be fetched in a real-time manner. The algorithm is designed in such a way that the user is provided with multiple options to customize the base (A, T, G, or C), size of the stem (2-5), loop length (1-30), number of bulges (1-5) as well as the number of mismatches (0-2) enabling the identification of any of the secondary structure as per their interest. QUFIND is designed to predict both CpG islands as well as G4s in a given sequence. Since G4s are very short as compared to the CpG islands, hence, QUFIND can also predict the overlapping G4s within CpG islands. Therefore, the user has the flexibility to identify either overlapping or non-overlapping G4s along with the CpG islands. Additionally, one section of QUFIND is dedicated to comparing the G4s in two viral sequences. The visualization is designed in such a manner that the user is able to see the unique quadruplexes in both the input sequences. The efficiency of QUFIND is calculated on G4s obtained from G4 high throughput sequencing data (n = 1000) or experimentally validated G4s (n = 329). Our results revealed that QUFIND is able to predict G4-quadruplexes obtained from G4-sequencing data with 90.06% prediction accuracy whereas experimentally validated quadruplexes were predicted with 97.26% prediction accuracy.
Collapse
Affiliation(s)
- Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Malka Ganj, India
| | - Priya Sharma
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Malka Ganj, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| |
Collapse
|
87
|
Babagond V, Katagi K, Pandith A, Akki M, Jaggal A. Unique development of a new dual application probe for selective detection of antiparallel G-quadruplex sequences. Analyst 2023; 148:5507-5513. [PMID: 37789760 DOI: 10.1039/d3an01109g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
G-Quadruplex (G4) structures play vital roles in many biological processes; consequently, they have been implicated in various human diseases like cancer, Alzheimer's disease etc. The selective detection of G4 DNA structures is of great interest for understanding their roles and biological functions. Hence, development of multifunctional fluorescent probes is indeed essential. In this investigation, we have synthesized a quinolinium based dual application probe (QnMF) that presents molecular rotor properties. This dual application molecular rotor is able to detect selectively antiparallel G4 sequences (22AG in 100 mM NaCl) through a turn-on response over other G4 topologies. The QnMF also contains a distinct fluorine-19 that undergoes a significant chemical shift in response to microenvironmental changes around the molecule when bound to G4 structures. The probe QnMF exhibits significantly brighter fluorescence emissions in glycerol (ε × ϕ = 2800 cm-1 M-1) and relatively less brighter fluorescence emissions in methanol (ε × ϕ = 40.5 cm-1 M-1). The restricted rotation inherent property of the QnMF molecular rotor is responsible for brighter fluorescence and leads to enhancement in the fluorescence upon binding to the G4 structure. Overall, the probe's dual detection method makes it useful for monitoring the G4 structures that are abundant and plays a vital role in living organisms.
Collapse
Affiliation(s)
- Vardhaman Babagond
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Kariyappa Katagi
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Anup Pandith
- International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan, Republic of China
| | - Mahesh Akki
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| | - Ashwini Jaggal
- Research Centre, Department of Chemistry, Karnatak University's Karnatak Science College Dharwad, Karnataka, India.
| |
Collapse
|
88
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
89
|
Baser A, Basar B, Dogan HB, Sener G, Ozsamur NG, Celik FS, Altves S, Erbas-Cakmak S. Reprograming cancer cells by a BODIPY G-quadruplex stabiliser. Chem Commun (Camb) 2023; 59:12447-12450. [PMID: 37779498 DOI: 10.1039/d3cc03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A cationic BODIPY-based G-quadruplex-selective stabiliser is developed and shown to decrease cancer cell migration-invasion up to 90%. The expression of critical genes (HIF1α, VIM, CDH1) related to metastasis is modulated. The stabiliser reprograms hypoxia-adaptive metabolism and an 1.82-fold increase in O2 consumption, enabling back-to-normal switching of energy metabolism, is observed. Stabilisers with a strong G-quadruplex affinity (0.38 μM Kd) significantly contribute to small molecule anti-cancer approaches.
Collapse
Affiliation(s)
- Aminesena Baser
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Beyza Basar
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| | - Hanim Beyza Dogan
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Gulnur Sener
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Nezahat Gokce Ozsamur
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| | - Fatma Secer Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
| | - Safaa Altves
- Department of Medicinal Biology, Institute of Health Sciences, Necmettin Erbakan University, Meram, 42080, Konya, Turkey
| | - Sundus Erbas-Cakmak
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| |
Collapse
|
90
|
Jiang WJ, Hu C, Lai F, Pang W, Yi X, Xu Q, Wang H, Zhou J, Zhu H, Zhong C, Kuang Z, Fan R, Shen J, Zhou X, Wang YJ, Wong CCL, Zheng X, Wu HJ. Assessing base-resolution DNA mechanics on the genome scale. Nucleic Acids Res 2023; 51:9552-9566. [PMID: 37697433 PMCID: PMC10570052 DOI: 10.1093/nar/gkad720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).
Collapse
Affiliation(s)
- Wen-Jie Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
- School of Basic Medical Sciences, Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 102206 Beijing, China
| | - Congcong Hu
- Department of Mathematics, Shanghai Normal University, 200234 Shanghai, China
| | - Futing Lai
- School of Basic Medical Sciences, Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 102206 Beijing, China
| | - Weixiong Pang
- Department of Mathematics, Shanghai Ocean University, 201306 Shanghai, China
| | - Xinyao Yi
- Department of Mathematics, Shanghai Normal University, 200234 Shanghai, China
| | - Qianyi Xu
- University of California, San Diego, CA 92103, USA
| | - Haojie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jialu Zhou
- Department of Gynecology and Obstetrics, Chinese PLA General Hospital, 100853 Beijing, China
| | - Hanwen Zhu
- School of Basic Medical Sciences, Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 102206 Beijing, China
| | - Chunge Zhong
- College of Life and Health Sciences, Northeastern University, 110819 Shenyang, China
| | - Zeyu Kuang
- School of Basic Medical Sciences, Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 102206 Beijing, China
| | - Ruiqi Fan
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
| | - Jing Shen
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
| | - Xiaorui Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
| | - Yu-Juan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730 Beijing, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Hua-Jun Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142 Beijing, China
- School of Basic Medical Sciences, Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 102206 Beijing, China
| |
Collapse
|
91
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
92
|
Šponer JE, Šponer J, Výravský J, Matyášek R, Kovařík A, Dudziak W, Ślepokura K. Crystallization as a selection force at the polymerization of nucleotides in a prebiotic context. iScience 2023; 26:107600. [PMID: 37664611 PMCID: PMC10470394 DOI: 10.1016/j.isci.2023.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Accumulation and selection of nucleotides is one of the most challenging problems surrounding the origin of the first RNA molecules on our planet. In the current work we propose that guanosine 3',5' cyclic monophosphate could selectively crystallize upon evaporation of an acidic prebiotic pool containing various other nucleotides. The conditions of the evaporative crystallization are fully compatible with the subsequent acid catalyzed polymerization of this cyclic nucleotide reported in earlier studies and may be relevant in a broad range of possible prebiotic environments. Albeit cytidine 3',5' cyclic monophosphate has the ability to selectively accumulate under the same conditions, its crystal structure is not likely to support polymer formation.
Collapse
Affiliation(s)
- Judit E. Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Jakub Výravský
- TESCAN Brno, s.r.o, Libušina třída 1, 62300 Brno, Czech Republic
- Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman Matyášek
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Wojciech Dudziak
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Katarzyna Ślepokura
- University of Wrocław, Faculty of Chemistry, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
93
|
Wang J, Huang H, Zhao K, Teng Y, Zhao L, Xu Z, Zheng Y, Zhang L, Li C, Duan Y, Liang K, Zhou X, Cheng X, Xia Y. G-quadruplex in hepatitis B virus pregenomic RNA promotes its translation. J Biol Chem 2023; 299:105151. [PMID: 37567479 PMCID: PMC10485161 DOI: 10.1016/j.jbc.2023.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Haiyan Huang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Conghui Li
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kaiwei Liang
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Department of Pathology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
94
|
Fang J, Zheng L, Liu Y, Peng Y, Yang Q, Huang Y, Zhang J, Luo L, Shen D, Tan Y, Lu X, Feng G. Smart G-quadruplex hydrogels: From preparations to comprehensive applications. Int J Biol Macromol 2023; 247:125614. [PMID: 37414320 DOI: 10.1016/j.ijbiomac.2023.125614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
In recent years, the accelerated development of G-quadruplexes and hydrogels has driven the development of intelligent biomaterials. Based on the excellent biocompatibility and special biological functions of G-quadruplexes, and the hydrophilicity, high-water retention, high water content, flexibility and excellent biodegradability of hydrogels, G-quadruplex hydrogels are widely used in various fields by combining the dual advantages of G-quadruplexes and hydrogels. Here, we provide a systematic and comprehensive classification of G-quadruplex hydrogels in terms of preparation strategies and applications. This paper reveals how G-quadruplex hydrogels skillfully utilize the special biological functions of G-quadruplexes and the skeleton structure of hydrogels, and expounds its applications in the fields of biomedicine, biocatalysis, biosensing and biomaterials. In addition, we deeply analyze the challenges in preparation, applications, stability and safety of G-quadruplex hydrogels, as well as potential future development directions.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiali Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dunkai Shen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuyan Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xuefen Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
95
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
96
|
Sannapureddi RKR, Mohanty MK, Salmon L, Sathyamoorthy B. Conformational Plasticity of Parallel G-Quadruplex─Implications on Duplex-Quadruplex Motifs. J Am Chem Soc 2023. [PMID: 37428641 DOI: 10.1021/jacs.3c03218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
DNA G-quadruplexes are essential motifs in molecular biology performing a wide range of functions enabled by their unique and diverse structures. In this study, we focus on the conformational plasticity of the most abundant and biologically relevant parallel G-quadruplex topology. A multipronged approach of structure survey, solution-state NMR spectroscopy, and molecular dynamics simulations unravels subtle yet essential features of the parallel G-quadruplex topology. Stark differences in flexibility are observed for the nucleotides depending upon their positioning in the tetrad planes that are intricately correlated with the conformational sampling of the propeller loop. Importantly, the terminal nucleotides in the 5'-end versus the 3'-end of the parallel quadruplex display differential dynamics that manifests their ability to accommodate a duplex on either end of the G-quadruplex. The conformational plasticity characterized in this study provides essential cues toward biomolecular processes such as small molecular binding, intermolecular quadruplex stacking, and implications on how a duplex influences the structure of a neighboring quadruplex.
Collapse
Affiliation(s)
| | - Manish Kumar Mohanty
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, UMR 5082 (CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1), University of Lyon, Villeurbanne 69100, France
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
97
|
Bhuyan SK, Wang L, Jinata C, Kinghorn AB, Liu M, He W, Sharma R, Tanner JA. Directed Evolution of a G-Quadruplex Peroxidase DNAzyme and Application in Proteomic DNAzyme-Aptamer Proximity Labeling. J Am Chem Soc 2023. [PMID: 37276197 DOI: 10.1021/jacs.3c02625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNAzymes have been limited in application by their low catalytic rates. Here, we evolved a new peroxidase DNAzyme mSBDZ-X-3 through a directed evolution method based on the capture of self-biotinylated DNA catalyzed by its intrinsic peroxidase activity. The mSBDX-X-3 DNAzyme has a parallel G-quadruplex structure and has more favorable catalytic properties than all previously reported peroxidase DNAzyme variants. We applied mSBDZ-X-3 in an aptamer-coupled proximity-based labeling proteomic assay to determine the proteins that bind to cell surface cancer biomarkers EpCAM and nucleolin. Confocal microscopy, western blot analysis, and LC-MS/MS showed that the hybrid DNAzyme aptamer-coupled proximity assay-labeled proteins associated with EpCAM and nucleolin within 6-12 min in fixed cancer cells. The labeled proteins were identified by mass spectrometry. This study provides a highly efficient peroxidase DNAzyme, a methodology for selection of such variants, and a method for its application in spatial proteomics using entirely nucleic acid-based tooling.
Collapse
Affiliation(s)
- Soubhagya K Bhuyan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Lin Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Chandra Jinata
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mengping Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weisi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
98
|
Passalacqua LFM, Banco MT, Moon JD, Li X, Jaffrey SR, Ferré-D'Amaré AR. Intricate 3D architecture of a DNA mimic of GFP. Nature 2023; 618:1078-1084. [PMID: 37344591 PMCID: PMC10754392 DOI: 10.1038/s41586-023-06229-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Banco
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared D Moon
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Xing Li
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
99
|
Patidar RK, Tiwari K, Tiwari R, Ranjan N. Promoter G-Quadruplex Binding Styryl Benzothiazolium Derivative for Applications in Ligand Affinity Ranking and as Ethidium Bromide Substitute in Gel Staining. ACS APPLIED BIO MATERIALS 2023. [PMID: 37229607 DOI: 10.1021/acsabm.3c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fluorescent compounds that can preferentially interact with certain nucleic acids are of great importance in new drug discovery in a multitude of functions including fluorescence-based displacement assays and gel staining. Here, we report the discovery of an orange emissive styryl-benzothiazolium derivative (compound 4) which interacts preferentially with Pu22 G-quadruplex DNA among a pool of nucleic acid structures containing G-quadruplex, duplex, and single-stranded DNA structures as well as RNA structures. Fluorescence-based binding analysis revealed that compound 4 interacts with Pu22 G-quadruplex DNA in a 1:1 DNA to ligand binding stoichiometry. The association constant (Ka) for this interaction was found to be 1.12 (±0.15) × 106 M-1. Circular dichroism studies showed that the binding of the probe does not cause changes in the overall parallel G-quadruplex conformation; however, signs of higher-order complex formation were seen in the form of exciton splitting in the chromophore absorption region. UV-visible spectroscopy studies confirmed the stacking nature of the interaction of the fluorescent probe with the G-quadruplex which was further complemented by heat capacity measurement studies. Finally, we have shown that this fluorescent probe can be used toward G-quadruplex-based fluorescence displacement assays for ligand affinity ranking and as a substitute for ethidium bromide in gel staining.
Collapse
Affiliation(s)
- Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Khushboo Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow, Uttar Pradesh, India 226002
| |
Collapse
|
100
|
Liu J, Liu S, Zou C, Xu S, Zhou C. Research Progress in Construction and Application of Enzyme-Based DNA Logic Gates. IEEE Trans Nanobioscience 2023; 22:245-258. [PMID: 35679378 DOI: 10.1109/tnb.2022.3181615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a research hotspot in the field of information processing, DNA computing exhibits several important underlying characteristics-from parallel computing and low energy consumption to high-performance storage capabilities-thereby enabling its wide application in nanomachines, molecular encryption, biological detection, medical diagnosis, etc. Based on DNA computing, the most rapidly developed field focuses on DNA molecular logic-gates computing. In particular, the recent advances in enzyme-based DNA logic gates has emerged as ideal materials for constructing DNA logic gates. In this review, we explore protein enzymes that can manipulate DNA, especially, nicking enzymes and polymerases with high efficiency and specificity, which are widely used in constructing DNA logic gates, as well as ribozyme that can construct DNA logic gates following various mechanism with distinct biomaterials. Accordingly, the review highlights the characteristics and applications of various types of DNAzyme-based logic gates models, considering their future developments in information, biomedicine, chemistry, and computers.
Collapse
|