51
|
Lee DJ, Busby SJW, Lloyd GS. Exploitation of a Chemical Nuclease to Investigate the Location and Orientation of the Escherichia coli RNA Polymerase α Subunit C-terminal Domains at Simple Promoters That Are Activated by Cyclic AMP Receptor Protein. J Biol Chem 2003; 278:52944-52. [PMID: 14530288 DOI: 10.1074/jbc.m308300200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
52
|
Richard CL, Tandon A, Sloan NR, Kranz RG. RNA polymerase subunit requirements for activation by the enhancer-binding protein Rhodobacter capsulatus NtrC. J Biol Chem 2003; 278:31701-8. [PMID: 12794072 DOI: 10.1074/jbc.m304430200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodobacter capsulatus NtrC is an enhancer-binding protein that activates transcription of the R. capsulatus sigma 70 RNA polymerase, but does not activate the Escherichia coli sigma 70-RNA polymerase at the nifA1 promoter. We utilized R. capsulatus:E. coli hybrid RNA polymerases assembled in vitro to investigate the subunits required for protein-protein interaction with RcNtrC at the nifA1mut1 promoter. Assembly of core Rc alpha beta beta' or hybrid RNA polymerases containing the Rc beta beta' subunits absolutely require the inclusion of an omega subunit, with the Ec omega subunit only partially promoting RNA polymerase assembly. The Rc alpha Ec beta beta' RNA polymerase is not activated by RcNtrC. Moreover, a mutant form of the Rc alpha lacking the alpha C-terminal domain, when assembled with the Rc beta beta'omega and sigma 70 subunits, is activated by RcNtrC. These results suggest that the R. capsulatus alpha subunit is not important for RcNtrC interaction. All hybrid RNA polymerases that contained the Rc beta' were activated by RcNtrC, suggesting that the Rc beta' subunit plays an important role. It is proposed that RcNtrC recruits R. capsulatus sigma 70-RNA polymerase to the promoter through interaction with Rc beta'. RcNtrC interacts with RNA polymerase from a unique position, with dimers centered at -118 bp from the start site. Placing the RcNtrC tandem binding sites on the opposite face of the helix (-113 bp) completely abolished transcription activation. Moving the RcNtrC tandem binding sites 20 bp closer to or further from the promoter significantly reduced activation, again suggesting unique spatial constraints on how RcNtrC interacts with the R. capsulatus RNA polymerase.
Collapse
Affiliation(s)
- Cynthia L Richard
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
53
|
Minakhin L, Severinov K. On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended -10 galP1 promoter. J Biol Chem 2003; 278:29710-8. [PMID: 12801925 DOI: 10.1074/jbc.m304906200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial promoters of the extended -10 class contain a single consensus element, and the DNA sequence upstream of this element is not critical for promoter activity. Open promoter complexes can be formed on an extended -10 Escherichia coli galP1 promoter at temperatures as low as 6 degrees C, when complexes on most promoters are closed. Here, we studied the contribution of upstream contacts to promoter complex formation using galP1 and its derivatives lacking the extended -10 motif and/or containing the -35 promoter consensus element. A panel of E. coli RNA polymerase holoenzymes containing two, one, or no alpha-subunit C-terminal domains (alpha CTD) and either wild-type sigma 70 subunit or sigma 70 lacking region 4.2 was assembled and tested for promoter complex formation. At 37 degrees C, alpha CTD and sigma 70 region 4.2 were individually dispensable for promoter complex formation on galP1 derivatives with extended -10 motif. However, no promoter complexes formed when both alpha CTD and sigma 70 region 4.2 were absent. Thus, in the context of an extended -10 promoter, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA can functionally substitute for each other. In contrast, at low temperature, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA were found to be functionally distinct, for sigma 70 region 4.2 but not alpha CTD was required for open promoter complex formation on galP1 derivatives with extended -10 motif. We propose a model involving sigma 70 region 4.2 interaction with the beta flap domain that explains these observations.
Collapse
Affiliation(s)
- Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
54
|
Artsimovitch I, Svetlov V, Murakami KS, Landick R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J Biol Chem 2003; 278:12344-55. [PMID: 12511572 DOI: 10.1074/jbc.m211214200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study of mutant enzymes can reveal important details about the fundamental mechanism and regulation of RNA polymerase, the central enzyme of gene expression. However, such studies are complicated by the multisubunit structure of RNA polymerase and by its indispensability for cell growth. Previously, mutant RNA polymerases have been produced by in vitro assembly from isolated subunits or by in vivo assembly upon overexpression of a single mutant subunit. Both approaches can fail if the mutant subunit is toxic or incorrectly folded. Here we describe an alternative strategy, co-overexpression and in vivo assembly of RNA polymerase subunits, and apply this method to characterize the role of sequence insertions present in the Escherichia coli enzyme. We find that co-overexpression of its subunits allows assembly of an RNA polymerase lacking a 188-amino acid insertion in the beta' subunit. Based on experiments with this and other mutant E. coli enzymes with precisely excised sequence insertions, we report that the beta' sequence insertion and, to a lesser extent, an N-terminal beta sequence insertion confer characteristic stability to the open initiation complex, frequency of abortive initiation, and pausing during transcript elongation relative to RNA polymerases, such as that from Bacillus subtilis, that lack the sequence insertions.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
55
|
Nechaev S, Imburgio D, Severinov K. Purification and Characterization of Bacteriophage-Encoded Inhibitors of Host RNA Polymerase: T-Odd Phage gp2-like Proteins. Methods Enzymol 2003; 370:212-25. [PMID: 14712647 DOI: 10.1016/s0076-6879(03)70019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Sergei Nechaev
- University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
56
|
Phadtare S, Severinov K, Inouye M. Assay of Transcription Antitermination by Proteins of the CspA Family. Methods Enzymol 2003; 371:460-71. [PMID: 14712721 DOI: 10.1016/s0076-6879(03)71034-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
57
|
Schneider DA, Murray HD, Gourse RL. Measuring control of transcription initiation by changing concentrations of nucleotides and their derivatives. Methods Enzymol 2003; 370:606-17. [PMID: 14712679 DOI: 10.1016/s0076-6879(03)70051-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David A Schneider
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706-1567, USA
| | | | | |
Collapse
|
58
|
Finney AH, Blick RJ, Murakami K, Ishihama A, Stevens AM. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J Bacteriol 2002; 184:4520-8. [PMID: 12142422 PMCID: PMC135237 DOI: 10.1128/jb.184.16.4520-4528.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During quorum sensing in Vibrio fischeri, the luminescence, or lux, operon is regulated in a cell density-dependent manner by the activator LuxR in the presence of an acylated homoserine lactone autoinducer molecule [N-(3-oxohexanoyl) homoserine lactone]. LuxR, which binds to the lux operon promoter at a position centered at -42.5 relative to the transcription initiation site, is thought to function as an ambidextrous activator making multiple contacts with RNA polymerase (RNAP). The specific role of the alpha-subunit C-terminal domain (alphaCTD) of RNAP in LuxR-dependent transcriptional activation of the lux operon promoter has been investigated. The effects of 70 alanine substitution variants of the alpha subunit were determined in vivo by measuring the rate of transcription of the lux operon via luciferase assays in recombinant Escherichia coli. The mutant RNAPs from strains exhibiting at least twofold-increased or -decreased activity in comparison to the wild type were further examined by in vitro assays. Since full-length LuxR has not been purified, an autoinducer-independent N-terminally truncated form of LuxR, LuxRDeltaN, was used for in vitro studies. Single-round transcription assays were performed using reconstituted mutant RNAPs in the presence of LuxRDeltaN, and 14 alanine substitutions in the alphaCTD were identified as having negative effects on the rate of transcription from the lux operon promoter. Five of these 14 alpha variants were also involved in the mechanisms of both LuxR- and LuxRDeltaN-dependent activation in vivo. The positions of these residues lie roughly within the 265 and 287 determinants in alpha that have been identified through studies of the cyclic AMP receptor protein and its interactions with RNAP. This suggests a model where residues 262, 265, and 296 in alpha play roles in DNA recognition and residues 290 and 314 play roles in alpha-LuxR interactions at the lux operon promoter during quorum sensing.
Collapse
Affiliation(s)
- Angela H Finney
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
59
|
Mekler V, Kortkhonjia E, Mukhopadhyay J, Knight J, Revyakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 2002; 108:599-614. [PMID: 11893332 DOI: 10.1016/s0092-8674(02)00667-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.
Collapse
Affiliation(s)
- Vladimir Mekler
- Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Heyduk E, Baichoo N, Heyduk T. Interaction of the alpha-subunit of Escherichia coli RNA polymerase with DNA: rigid body nature of the protein-DNA contact. J Biol Chem 2001; 276:44598-603. [PMID: 11571305 DOI: 10.1074/jbc.m107760200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.
Collapse
Affiliation(s)
- E Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
61
|
Meng W, Belyaeva T, Savery NJ, Busby SJ, Ross WE, Gaal T, Gourse RL, Thomas MS. UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Nucleic Acids Res 2001; 29:4166-78. [PMID: 11600705 PMCID: PMC60210 DOI: 10.1093/nar/29.20.4166] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The UP element stimulates transcription from the rrnB P1 promoter through a direct interaction with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). We investigated the effect on transcription from rrnB P1 of varying both the location of the UP element and the length of the alpha subunit interdomain linker, separately and in combination. Displacement of the UP element by a single turn of the DNA helix resulted in a large decrease in transcription from rrnB P1, while displacement by half a turn or two turns totally abolished UP element-dependent transcription. Deletions of six or more amino acids from within the alpha subunit linker resulted in a decrease in UP element-dependent stimulation, which correlated with decreased binding of alphaCTD to the UP element. Increasing the alpha linker length was less deleterious to RNA polymerase function at rrnB P1 but did not compensate for the decrease in activation that resulted from displacing the UP element. Our results suggest that the location of the UP element at rrnB P1 is crucial to its function and that the natural length of the alpha subunit linker is optimal for utilisation of the UP element at this promoter.
Collapse
Affiliation(s)
- W Meng
- Laboratory of Molecular Microbiology, Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 2001; 98:892-7. [PMID: 11158566 PMCID: PMC14680 DOI: 10.1073/pnas.98.3.892] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial DNA-dependent RNA polymerase (RNAP) has subunit composition beta'betaalpha(I)alpha(II)omega. The role of omega has been unclear. We show that omega is homologous in sequence and structure to RPB6, an essential subunit shared in eukaryotic RNAP I, II, and III. In Escherichia coli, overproduction of omega suppresses the assembly defect caused by substitution of residue 1362 of the largest subunit of RNAP, beta'. In yeast, overproduction of RPB6 suppresses the assembly defect caused by the equivalent substitution in the largest subunit of RNAP II, RPB1. High-resolution structural analysis of the omega-beta' interface in bacterial RNAP, and comparison with the RPB6-RPB1 interface in yeast RNAP II, confirms the structural relationship and suggests a "latching" mechanism for the role of omega and RPB6 in promoting RNAP assembly.
Collapse
Affiliation(s)
- L Minakhin
- Waksman Institute, Department of Genetics, Department of Chemistry and Howard Hughes Medical Institute, Rutgers, The State University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Mah TF, Kuznedelov K, Mushegian A, Severinov K, Greenblatt J. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev 2000; 14:2664-75. [PMID: 11040219 PMCID: PMC316996 DOI: 10.1101/gad.822900] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli NusA protein modulates pausing, termination, and antitermination by associating with the transcribing RNA polymerase core enzyme. NusA can be covalently cross-linked to nascent RNA within a transcription complex, but does not bind RNA on its own. We have found that deletion of the 79 carboxy-terminal amino acids of the 495-amino-acid NusA protein allows NusA to bind RNA in gel mobility shift assays. The carboxy-terminal domain (CTD) of the alpha subunit of RNA polymerase, as well as the bacteriophage lambda N gene antiterminator protein, bind to carboxy-terminal regions of NusA and enable full-length NusA to bind RNA. Binding of NusA to RNA in the presence of alpha or N involves an amino-terminal S1 homology region that is otherwise inactive in full-length NusA. The interaction of the alpha-CTD with full-length NusA stimulates termination. N may prevent termination by inducing NusA to interact with N utilization (nut) site RNA rather than RNA near the 3' end of the nascent transcript. Sequence analysis showed that the alpha-CTD contains a modified helix-hairpin-helix motif (HhH), which is also conserved in the carboxy-terminal regions of some eubacterial NusA proteins. These HhH motifs may mediate protein-protein interactions in NusA and the alpha-CTD.
Collapse
Affiliation(s)
- T F Mah
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
64
|
Naryshkina T, Rogulja D, Golub L, Severinov K. Inter- and intrasubunit interactions during the formation of RNA polymerase assembly intermediate. J Biol Chem 2000; 275:31183-90. [PMID: 10906130 DOI: 10.1074/jbc.m003884200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used yeast two-hybrid and in vitro co-immobilization assays to study the interaction between the Escherichia coli RNA polymerase (RNAP) alpha and beta subunits during the formation of alpha(2)beta, a physiological RNAP assembly intermediate. We show that a 430-amino acid-long fragment containing beta conserved segments F, G, H, and a short part of segment I forms a minimal domain capable of specific interaction with alpha. The alpha-interacting domain is held together by protein-protein interactions between beta segments F and I. Residues in catalytically important beta segments H and I directly participate in alpha binding; substitutions of strictly conserved segment H Asp(1084) and segment I Gly(1215) abolish alpha(2)beta formation in vitro and are lethal in vivo. The importance of these beta amino acids in alpha binding is fully supported by the structural model of the Thermus aquaticus RNAP core enzyme. We also demonstrate that determinants of RNAP assembly are conserved, and that a homologue of beta Asp(1084) in A135, the beta-like subunit of yeast RNAP I, is responsible for interaction with AC40, the largest alpha-like subunit. However, the A135-AC40 interaction is weak compared with the E. coli alpha-beta interaction, and A135 mutation that abolishes the interaction is phenotypically silent. The results suggest that in eukaryotes additional RNAP subunits orchestrate the enzyme assembly by stabilizing weak, but specific interactions of core subunits.
Collapse
Affiliation(s)
- T Naryshkina
- Waksman Institute for Microbiology and the Department of Genetics, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
65
|
Richet E. Synergistic transcription activation: a dual role for CRP in the activation of an Escherichia coli promoter depending on MalT and CRP. EMBO J 2000; 19:5222-32. [PMID: 11013224 PMCID: PMC302108 DOI: 10.1093/emboj/19.19.5222] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the Escherichia coli malEp promoter relies on the formation of a higher order structure involving cooperative binding of MalT to promoter-proximal and promoter-distal sites as well as CRP binding to three sites located in between. MalT is the primary activator and one function of CRP is to facilitate cooperative binding of MalT to its cognate sites by bending the intervening DNA. It is shown here that CRP also participates directly in malEp activation. This function is carried out by the molecule of CRP bound to the CRP site centered at -139.5 (CRP site 3). This molecule of CRP recruits RNA polymerase by promoting the binding of the RNA polymerase alpha subunit C-terminal domain (alphaCTD) to DNA immediately downstream from CRP site 3, via a contact between alphaCTD and activating region I of CRP. The action of MalT and CRP at malEp hence provides the example of a novel and complex mechanism for transcriptional synergy in prokaryotes whereby one activator both helps the primary activator to form a productive complex with promoter DNA and interacts directly with RNA polymerase holoenzyme.
Collapse
Affiliation(s)
- E Richet
- Unité de Génétique Moléculaire, URA CNRS 1773, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
66
|
Fritsch PS, Urbanowski ML, Stauffer GV. Role of the RNA polymerase alpha subunits in MetR-dependent activation of metE and metH: important residues in the C-terminal domain and orientation requirements within RNA polymerase. J Bacteriol 2000; 182:5539-50. [PMID: 10986259 PMCID: PMC110999 DOI: 10.1128/jb.182.19.5539-5550.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many transcription factors activate by directly interacting with RNA polymerase (RNAP). The C terminus of the RNAP alpha subunit (alphaCTD) is a common target of activators. We used both random mutagenesis and alanine scanning to identify alphaCTD residues that are crucial for MetR-dependent activation of metE and metH. We found that these residues localize to two distinct faces of the alphaCTD. The first is a complex surface consisting of residues important for alpha-DNA interactions, activation of both genes (residues 263, 293, and 320), and activation of either metE only (residues 260, 276, 302, 306, 309, and 322) or metH only (residues 258, 264, 290, 294, and 295). The second is a distinct cluster of residues important for metE activation only (residues 285, 289, 313, and 314). We propose that a difference in the location of the MetR binding site for activation at these two promoters accounts for the differences in the residues of alpha required for MetR-dependent activation. We have designed an in vitro reconstitution-purification protocol that allows us to specifically orient wild-type or mutant alpha subunits to either the beta-associated or the beta'-associated position within RNAP (comprising alpha(2), beta, beta', and sigma subunits). In vitro transcriptions using oriented alpha RNAP indicate that a single alphaCTD on either the beta- or the beta'-associated alpha subunit is sufficient for MetR activation of metE, while MetR interacts preferentially with the alphaCTD on the beta-associated alpha subunit at metH. We propose that the different alphaCTD requirements at these two promoters are due to a combination of the difference in the location of the activation site and limits on the rotational flexibility of the alphaCTD.
Collapse
Affiliation(s)
- P S Fritsch
- Molecular Biology Graduate Program, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
67
|
Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A 2000; 97:7784-9. [PMID: 10884409 PMCID: PMC16622 DOI: 10.1073/pnas.97.14.7784] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone, which is thought to facilitate translation at low temperature by destabilizing mRNA structures. Here we demonstrate that CspA, as well as homologous RNA chaperones CspE and CspC, are transcription antiterminators. In vitro, the addition of physiological concentrations of recombinant CspA, CspE, or CspC decreased transcription termination at several intrinsic terminators and also decreased transcription pausing. In vivo, overexpression of cloned CspC and CspE at 37 degrees C was sufficient to induce transcription of the metY-rpsO operon genes nusA, infB, rbfA, and pnp located downstream of multiple transcription terminators. Similar induction of downstream metY-rpsO operon genes was observed at cold shock, a condition to which the cell responds by massive overproduction of CspA. The products of nusA, infB, rbfA, and pnp-NusA, IF2, RbfA, and PNP-are known to be induced at cold shock. We propose that the cold-shock induction of nusA, infB, rbfA, and pnp occurs through transcription antitermination, which is mediated by CspA and other cold shock-induced Csp proteins.
Collapse
Affiliation(s)
- W Bae
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
68
|
Naryshkin N, Revyakin A, Kim Y, Mekler V, Ebright RH. Structural organization of the RNA polymerase-promoter open complex. Cell 2000; 101:601-11. [PMID: 10892647 DOI: 10.1016/s0092-8674(00)80872-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have used systematic site-specific protein-DNA photocrosslinking to define interactions between bacterial RNA polymerase (RNAP) and promoter DNA in the catalytically competent RNAP-promoter open complex (RPo). We have mapped more than 100 distinct crosslinks between individual segments of RNAP subunits and individual phosphates of promoter DNA. The results provide a comprehensive description of protein-DNA interactions in RPo, permit construction of a detailed model for the structure of RPo, and permit analysis of effects of a transcriptional activator on the structure of RPo.
Collapse
Affiliation(s)
- N Naryshkin
- Howard Hughes Medical Institute, Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
69
|
Meng W, Savery NJ, Busby SJ, Thomas MS. The Escherichia coli RNA polymerase alpha subunit linker: length requirements for transcription activation at CRP-dependent promoters. EMBO J 2000; 19:1555-66. [PMID: 10747024 PMCID: PMC310225 DOI: 10.1093/emboj/19.7.1555] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The C-terminal domain of the Escherichia coli RNA polymerase alpha subunit (alphaCTD) plays a key role in transcription initiation at many activator-dependent promoters. This domain is connected to the N-terminal domain by an unstructured linker, which is proposed to confer a high degree of mobility on alphaCTD. To investigate the role of this linker in transcription activation we tested the effect of altering the linker length on promoters dependent on the cyclic AMP receptor protein (CRP). Short deletions within the alpha linker decrease CRP-dependent transcription at a Class I promoter while increasing the activity of a Class II promoter. Linker extension impairs CRP-dependent transcription from both promoters, with short extensions exerting a more marked effect on the Class II promoter. Activation at both classes of promoter was shown to remain dependent upon activating region 1 of CRP. These results show that the response to CRP of RNA polymerase containing linker-modified alpha subunits is class specific. These observations have important implications for the architecture of transcription initiation complexes at CRP-dependent promoters.
Collapse
Affiliation(s)
- W Meng
- Division of Molecular and Genetic Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | | | | | | |
Collapse
|
70
|
Katayama A, Fujita N, Ishihama A. Mapping of subunit-subunit contact surfaces on the beta' subunit of Escherichia coli RNA polymerase. J Biol Chem 2000; 275:3583-92. [PMID: 10652354 DOI: 10.1074/jbc.275.5.3583] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase core enzyme of Escherichia coli with the catalytic activity of RNA polymerization is assembled sequentially under the order: 2alpha --> alpha(2) --> alpha(2)beta --> alpha(2)betabeta'. The core enzyme gains the activities of promoter recognition and transcription initiation after binding the sigma subunit. The subunit-subunit contact surfaces of beta' subunit (1407 residues) were analyzed by testing complex formation between various beta' fragments and either the alpha(2)beta complex or the sigma(70) subunit. Results indicate that two regions, one central region between residues 515 and 842 and the other COOH-terminal proximal region downstream from residue 1141, are involved in binding the alpha(2)beta complex; and the NH(2)-terminal proximal region between residues 201 and 345 plays a major role in binding the sigma(70) subunit. However, both alpha(2)beta binding sites have weak activity of the sigma(70) subunit; likewise, the sigma(70) subunit-contact surface has weak binding activity of the alpha(2)beta complex. The sites involved in the catalytic function of RNA polymerization are all located within two spacer regions sandwiched between these three subunit-subunit contact surfaces.
Collapse
Affiliation(s)
- A Katayama
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
71
|
Olekhnovich IN, Kadner RJ. RNA polymerase alpha and sigma(70) subunits participate in transcription of the Escherichia coli uhpT promoter. J Bacteriol 1999; 181:7266-73. [PMID: 10572130 PMCID: PMC103689 DOI: 10.1128/jb.181.23.7266-7273.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fundamental questions in bacterial gene regulation concern how multiple regulatory proteins interact with the transcription apparatus at a single promoter and what are the roles of protein contacts with RNA polymerase and changes in DNA conformation. Transcription of the Escherichia coli uhpT gene, encoding the inducible sugar phosphate transporter, is dependent on the response regulator UhpA and is stimulated by the cyclic AMP receptor protein (CAP). UhpA binds to multiple sites in the uhpT promoter between positions -80 and -32 upstream of the transcription start site, and CAP binds to a single site centered at position -103.5. The role in uhpT transcription of portions of RNA polymerase Esigma(70) holoenzyme which affect regulation at other promoters was examined by using series of alanine substitutions throughout the C-terminal domains of RpoA (residues 255 to 329) and of RpoD (residues 570 to 613). Alanine substitutions that affected in vivo expression of a uhpT-lacZ transcriptional fusion were tested for their effect on in vitro transcription activity by using reconstituted holoenzymes. Consistent with the binding of UhpA near the -35 region, residues K593 and K599 in the C-terminal region of RpoD were necessary for efficient uhpT expression in response to UhpA alone. Their requirement was overcome when CAP was also present. In addition, residues R265, G296, and S299 in the DNA-binding surface of the C-terminal domain of RpoA (alphaCTD) were important for uhpT transcription even in the presence of CAP. Substitutions at several other positions had effects in cells but not during in vitro transcription with saturating levels of the transcription factors. Two DNase-hypersensitive sites near the upstream end of the UhpA-binding region were seen in the presence of all three transcription factors. Their appearance required functional alphaCTD but not the presence of upstream DNA. These results suggest that both transcription activators depend on or interact with different subunits of RNA polymerase, although their role in formation of proper DNA geometry may also be crucial.
Collapse
Affiliation(s)
- I N Olekhnovich
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
72
|
Sharp MM, Chan CL, Lu CZ, Marr MT, Nechaev S, Merritt EW, Severinov K, Roberts JW, Gross CA. The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev 1999; 13:3015-26. [PMID: 10580008 PMCID: PMC317155 DOI: 10.1101/gad.13.22.3015] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1999] [Accepted: 10/05/1999] [Indexed: 11/24/2022]
Abstract
The sigma subunit of eubacterial RNA polymerase is required throughout initiation, but how it communicates with core polymerase (alpha(2)betabeta') is poorly understood. The present work addresses the location and function of the interface of sigma with core. Our studies suggest that this interface is extensive as mutations in six conserved regions of sigma(70) hinder the ability of sigma to bind core. Direct binding of one of these regions to core can be demonstrated using a peptide-based approach. The same regions, and even equivalent residues, in sigma(32) and sigma(70) alter core interaction, suggesting that sigma(70) family members use homologous residues, at least in part, to interact with core. Finally, the regions of sigma that we identify perform specialized functions, suggesting that different portions of the interface perform discrete roles during transcription initiation.
Collapse
Affiliation(s)
- M M Sharp
- University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Markov D, Naryshkina T, Mustaev A, Severinov K. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. Genes Dev 1999; 13:2439-48. [PMID: 10500100 PMCID: PMC317019 DOI: 10.1101/gad.13.18.2439] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All multisubunit DNA-dependent RNA polymerases (RNAP) are zinc metalloenzymes, and at least two zinc atoms are present per enzyme molecule. RNAP residues involved in zinc binding and the functional role of zinc ions in the transcription mechanism or RNAP structure are unknown. Here, we locate four cysteine residues in the Escherichia coli RNAP largest subunit, beta', that coordinate one of the two zinc ions tightly associated with the enzyme. In the absence of zinc, or when zinc binding is prevented by mutation, the in vitro-assembled RNAP retains the proper subunit stoichiometry but is not functional. We demonstrate that zinc acts as a molecular chaperone, converting denatured beta' into a compact conformation that productively associates with other RNAP subunits. The beta' residues coordinating zinc are conserved throughout eubacteria and chloroplasts, but are absent from homologs from eukaryotes and archaea. Thus, the involvement of zinc in the RNAP assembly may be a unique feature of eubacterial-type enzymes.
Collapse
Affiliation(s)
- D Markov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, New Jersey 08854 USA
| | | | | | | |
Collapse
|
74
|
Lohrke SM, Nechaev S, Yang H, Severinov K, Jin SJ. Transcriptional activation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. J Bacteriol 1999; 181:4533-9. [PMID: 10419950 PMCID: PMC103583 DOI: 10.1128/jb.181.15.4533-4539.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-component regulatory system, composed of virA and virG, is indispensable for transcription of virulence genes within Agrobacterium tumefaciens. However, virA and virG are insufficient to activate transcription from virulence gene promoters within Escherichia coli cells, indicating a requirement for additional A. tumefaciens genes. In a search for these additional genes, we have identified the rpoA gene, encoding the alpha subunit of RNA polymerase (RNAP), which confers significant expression of a virB promoter (virBp)::lacZ fusion in E. coli in the presence of an active transcriptional regulator virG gene. We conducted in vitro transcription assays using either reconstituted E. coli RNAP or hybrid RNAP in which the alpha subunit was derived from A. tumefaciens. The two forms of RNAP were equally efficient in transcription from a sigma(70)-dependent E. coli galP1 promoter; however, only the hybrid RNAP was able to transcribe virBp in a virG-dependent manner. In addition, we provide evidence that the alpha subunit from A. tumefaciens, but not from E. coli, is able to interact with the VirG protein. These data suggest that transcription of virulence genes requires specific interaction between VirG and the alpha subunit of A. tumefaciens and that the alpha subunit from E. coli is unable to effectively interact with the VirG protein. This work provides the basis for future studies designed to examine vir gene expression as well as the T-DNA transfer process in E. coli.
Collapse
Affiliation(s)
- S M Lohrke
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
75
|
Nechaev S, Severinov K. Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J Mol Biol 1999; 289:815-26. [PMID: 10369763 DOI: 10.1006/jmbi.1999.2782] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 64 amino acid residue product of bacteriophage T7 gene 2 (gp2) binds the Escherichia coli RNA polymerase and inhibits transcription. We localized the gp2 binding site to within 53 amino acid residues in the functionally dispensable region of the RNA polymerase beta' subunit. We investigated the effect of gp2 on transcription at a -10/-35 promoter and at an "extended -10" promoter. Our results indicate that binding of gp2 to the sigma70holoenzyme (Esigma70) prevents promoter recognition at -10/-35 promoters. Once open promoter complexes are formed, however, Esigma70transcription is resistant to gp2, since gp2 can no longer bind RNA polymerase. Surprisingly, transcription inhibition by gp2 is both sigma and promoter-specific. gp2 has little effect on Esigma70transcription from an extended -10 promoter, which does not depend on sigma70region 4 interactions with the -35 promoter box for its activity. gp55-dependent phage T4 late promoter transcription is also resistant to gp2. From these results, we conclude that the interaction of the sigma70region 4 with the -35 consensus promoter element is the primary target of gp2 inhibition.
Collapse
Affiliation(s)
- S Nechaev
- Rutgers, The State University, Piscataway, NJ, 08854, USA
| | | |
Collapse
|
76
|
He Y, Gaal T, Karls R, Donohue TJ, Gourse RL, Roberts GP. Transcription activation by CooA, the CO-sensing factor from Rhodospirillum rubrum. The interaction between CooA and the C-terminal domain of the alpha subunit of RNA polymerase. J Biol Chem 1999; 274:10840-5. [PMID: 10196160 DOI: 10.1074/jbc.274.16.10840] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CooA, a member of the cAMP receptor protein (CRP) family, is a CO-sensing transcription activator from Rhodospirillum rubrum that binds specific DNA sequences in response to CO. The location of the CooA-binding sites relative to the start sites of transcription suggested that the CooA-dependent promoters are analogous to class II CRP-dependent promoters. In this study, we developed an in vivo CooA reporter system in Escherichia coli and an in vitro transcription assay using RNA polymerases (RNAP) from E. coli and from Rhodobacter sphaeroides to study the transcription properties of CooA and the protein-protein interaction between CooA and RNAP. The ability of CooA to activate CO-dependent transcription in vivo in heterologous backgrounds suggested that CooA is sufficient to direct RNAP to initiate transcription and that no other factors are required. This hypothesis was confirmed in vitro with purified CooA and purified RNAP. Use of a mutant form of E. coli RNAP with alpha subunits lacking their C-terminal domain (alpha-CTD) dramatically decreased CooA-dependent transcription of the CooA-regulated R. rubrum promoter PcooF in vitro, which indicates that alpha-CTD plays an important role in this activation. DNase I footprinting analysis showed that CooA facilitates binding of wild-type RNAP, but not alpha-CTD-truncated RNAP, to PcooF. This facilitated binding provides evidence for a direct contact between CooA and alpha-CTD of RNAP during activation of transcription. Mapping the CooA-contact site in alpha-CTD suggests that CooA is similar but not identical to CRP in terms of its contact sites to the alpha-CTD at class II promoters.
Collapse
Affiliation(s)
- Y He
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
77
|
Kainz M, Gourse RL. The C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase is required for efficient rho-dependent transcription termination. J Mol Biol 1998; 284:1379-90. [PMID: 9878357 DOI: 10.1006/jmbi.1998.2272] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We screened a collection of single alanine residue substitution mutants spanning the entire C-terminal domain of the alpha subunit (alphaCTD) of Escherichia coli RNA polymerase (RNAP) for defects in rho-dependent transcription termination at lambdatR1 in vivo and in vitro, and thereby identified a patch of amino acid residues in the alphaCTD required for efficient rho-dependent termination. NusA addition led to the stimulation of rho-dependent termination under our conditions in vitro. The termination defects of a few mutant RNAPs could be attributed to altered interactions with the NusA protein, but rho-dependent termination by most of the defective RNAPs was still stimulated normally by NusA. The NusA-enhanced transcription pausing behaviors of the mutant RNAPs did not always correlate with their rho-dependent termination phenotypes. We conclude that the alphaCTD is a target for interactions with NusA that influence both termination and pausing, but in addition it participates in rho-dependent transcription termination in a NusA-independent manner.
Collapse
Affiliation(s)
- M Kainz
- Department of Bacteriology, University of Wisconsin, 1550 Linden Drive, Madison, WI, 53706, USA
| | | |
Collapse
|
78
|
Abstract
A highly ordered program of temporal and spatial gene activation during sporulation in Bacillus subtilis is governed by the principal RNA polymerase, and RNA polymerases containing at least five developmental sigma factors appearing successively during sporulation. This report describes a rapid procedure for extracting RNA polymerase from sporulating B. subtilis cells, which involves the construction of hexahistidine tagged beta' subunit of RNA polymerase and the isolation of RNA polymerase holoenzyme with Ni2+-NTA resin. In in vitro transcription of various promoters with the RNA polymerase thus purified, we observed the temporal change of each RNA polymerase activity during sporulation. This procedure enables isolation of RNA polymerase within 4h, starting with cell pellets. Our results indicated that a principal sigma factor, sigmaA, could be detected in a holoenzyme form during all the stages of growth and sporulation, while the other sigma factors sigmaH, sigmaE, sigmaF, sigmaG, and sigmaK involved in sporulation could be detected sequentially during sporulation. Moreover, Spo0A, the central transcription factor of commitment to sporulation, was also co-purified with RNA polymerase at early stages of sporulation.
Collapse
Affiliation(s)
- M Fujita
- Radioisotope Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
79
|
Beier D, Spohn G, Rappuoli R, Scarlato V. Functional analysis of the Helicobacter pylori principal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription. Mol Microbiol 1998; 30:121-34. [PMID: 9786190 DOI: 10.1046/j.1365-2958.1998.01043.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned the rpoD gene encoding the principal sigma (sigma) factor of Helicobacter pylori. The deduced amino acid sequence reveals a predicted polypeptide of 676 residues that has amino acid homology with the principal sigma factors of a number of divergent prokaryotes. We have designated this factor sigma80. Amino acid sequence analysis suggests that region 1.1 is missing in sigma80 and that a region with homology to a regulatory protein from Bacillus subtilis phage SPO1 is present. Genetic studies have indicated that sigma80 is not compatible with the transcriptional machinery of Escherichia coli. However, in vitro sigma80 could be assembled into the E. coli RNA polymerase and could bind to E. coli and H. pylori promoters, suggesting that the sigma80-containing RNA polymerase has the same stoichiometry as the native complex. By exchanging protein domains between E. coli and H. pylori sigma factors, we demonstrate that the sigma80 domain inhibiting transcription from E. coli promoters is confined within the non-conserved spacer region, implying that the spacer region of prokaryotic primary sigma factors plays an important role in the process of transcription. Consistent with its restricted niche and with the availability of a very restricted number of transcriptional regulators, H. pylori may have evolved a spacer region of the sigma factor to modulate total transcription and to quickly respond to microenvironmental changes.
Collapse
Affiliation(s)
- D Beier
- Department of Molecular Biology, Chiron SpA, IRIS Research Institute, Siena, Italy
| | | | | | | |
Collapse
|
80
|
Zakharova N, Bass I, Arsenieva E, Nikiforov V, Severinov K. Mutations in and monoclonal antibody binding to evolutionary hypervariable region of Escherichia coli RNA polymerase beta' subunit inhibit transcript cleavage and transcript elongation. J Biol Chem 1998; 273:24912-20. [PMID: 9733798 DOI: 10.1074/jbc.273.38.24912] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 190 amino acid-long region centered around position 1050 of the 1407-amino acid-long beta' subunit of Escherichia coli RNA polymerase (RNAP) is absent from homologues in eukaryotes, archaea and many bacteria. In chloroplasts, the corresponding region can be more than 900 amino acids long. The role of this hypervariable region was studied by deletion mutagenesis of the cloned E. coli rpoC, encoding beta'. Long deletions mimicking beta' from Gram-positive bacteria failed to assemble into RNAP. Mutants with short, 40-60-amino acid-long deletions spanning beta' residues 941-1130 assembled into active RNAP in vitro. These mutant enzymes were defective in the transcript cleavage reaction and had dramatically reduced transcription elongation rates at subsaturating substrate concentrations due to prolonged pausing at sites of transcriptional arrest. Binding of a monoclonal antibody, Pyn1, to the hypervariable region inhibited transcription elongation and intrinsic transcript cleavage and, to a lesser degree, GreB-induced transcript cleavage, but did not interfere with GreB binding to RNAP. We propose that mutations in and antibody binding to the hypervariable, functionally dispensable region of beta' inhibit transcript cleavage and elongation by distorting the flanking conserved segment G in the active center.
Collapse
Affiliation(s)
- N Zakharova
- Waksman Institute, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
81
|
Jourdan AD, Stauffer GV. Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 1998; 180:4865-71. [PMID: 9733689 PMCID: PMC107511 DOI: 10.1128/jb.180.18.4865-4871.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GcvA protein is required for both glycine-mediated activation and purine-mediated repression of the gcvTHP operon. Random and site-directed PCR mutagenesis was used to create nucleotide changes in gcvA to identify residues of the protein involved in activation, repression, and DNA binding. Single amino acid substitutions at L30 and F31 cause a defect in activation of a gcvT-lacZ fusion but have no effect on repression or DNA binding. Single amino acid substitutions at V32 and S38 cause the loss of binding of GcvA to DNA. A deletion of the carboxy-terminal 14 amino acids of GcvA results in the loss of purine-mediated repression and, consequently, a constitutive activation of a gcvT-lacZ fusion. The results of this study partially define regions of GcvA involved in activation, repression, and DNA binding and demonstrate that these functions of GcvA are genetically separable.
Collapse
Affiliation(s)
- A D Jourdan
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
82
|
Bertoni G, Fujita N, Ishihama A, de Lorenzo V. Active recruitment of sigma54-RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and alphaCTD. EMBO J 1998; 17:5120-8. [PMID: 9724648 PMCID: PMC1170840 DOI: 10.1093/emboj/17.17.5120] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequence elements determining the binding of the sigma54-containing RNA polymerase (sigma54-RNAP) to the Pu promoter of Pseudomonas putida have been examined. Contrary to previous results in related systems, we show that the integration host factor (IHF) binding stimulates the recruitment of the enzyme to the -12/-24 sequence motifs. Such a recruitment, which is fully independent of the activator of the system, XylR, requires the interaction of the C-terminal domain of the alpha subunit of RNAP with specific DNA sequences upstream of the IHF site which are reminiscent of the UP elements in sigma70 promoters. Our data show that this interaction is mainly brought about by the distinct geometry of the promoter region caused by IHF binding and the ensuing DNA bending. These results support the view that binding of sigma54-RNAP to a promoter is a step that can be subjected to regulation by factors (e.g. IHF) other than the sole intrinsic affinity of sigma54-RNAP for the -12/-24 site.
Collapse
Affiliation(s)
- G Bertoni
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
83
|
Hiremath CN, Ladias JA. Expression and purification of recombinant hRPABC25, hRPABC17, and hRPABC14.4, three essential subunits of human RNA polymerases I, II, and III. Protein Expr Purif 1998; 13:198-204. [PMID: 9675063 DOI: 10.1006/prep.1998.0889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of eukaryotic genes is performed by RNA polymerases I, II, and III, which synthesize ribosomal, messenger, and transfer RNAs, respectively. Eukaryotic RNA polymerases are large macromolecular complexes composed of multiple subunits. Among these subunits, five are shared by all RNA polymerases and are essential for cell growth and viability. Remarkably, the human common subunits are structurally conserved and functionally interchangeable with their yeast homologues and are believed to play an important role in the assembly of the three transcription complexes. To understand the structure and function of human RNA polymerases, we overexpressed the common subunits hRPABC25, hRPABC17, and hRPABC14.4 as hexahistidine fusions in Escherichia coli. The recombinant proteins were purified using metal-chelate affinity chromatography on Ni-NTA resin and gel filtration. Depending on the subunit, the yield was 5-17 mg of purified recombinant protein per liter of culture medium. The purified proteins were of high quality and sufficient quantity for structural studies, as demonstrated by the successful crystallization of hRPABC17 and hRPABC14.4. The expression and purification of the common subunits hRPABC25, hRPABC17, and hRPABC14. 4 will make possible their structural analysis with X-ray crystallography and nuclear magnetic resonance, providing important insights into the structure and function of the three human RNA polymerases.
Collapse
Affiliation(s)
- C N Hiremath
- Division of Experimental Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
84
|
Savery NJ, Lloyd GS, Kainz M, Gaal T, Ross W, Ebright RH, Gourse RL, Busby SJ. Transcription activation at Class II CRP-dependent promoters: identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. EMBO J 1998; 17:3439-47. [PMID: 9628879 PMCID: PMC1170680 DOI: 10.1093/emboj/17.12.3439] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many transcription factors, including the Escherichia coli cyclic AMP receptor protein (CRP), act by making direct contacts with RNA polymerase. At Class II CRP-dependent promoters, CRP activates transcription by making two such contacts: (i) an interaction with the RNA polymerase alpha subunit C-terminal domain (alphaCTD) that facilitates initial binding of RNA polymerase to promoter DNA; and (ii) an interaction with the RNA polymerase alpha subunit N-terminal domain that facilitates subsequent promoter opening. We have used random mutagenesis and alanine scanning to identify determinants within alphaCTD for transcription activation at a Class II CRP-dependent promoter. Our results indicate that Class II CRP-dependent transcription requires the side chains of residues 265, 271, 285-288 and 317. Residues 285-288 and 317 comprise a discrete 20x10 A surface on alphaCTD, and substitutions within this determinant reduce or eliminate cooperative interactions between alpha subunits and CRP, but do not affect DNA binding by alpha subunits. We propose that, in the ternary complex of RNA polymerase, CRP and a Class II CRP-dependent promoter, this determinant in alphaCTD interacts directly with CRP, and is distinct from and on the opposite face to the proposed determinant for alphaCTD-CRP interaction in Class I CRP-dependent transcription.
Collapse
Affiliation(s)
- N J Savery
- School of Biochemistry, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Belyaeva TA, Rhodius VA, Webster CL, Busby SJ. Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. J Mol Biol 1998; 277:789-804. [PMID: 9545373 DOI: 10.1006/jmbi.1998.1666] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a family of promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein (CRP), with one of the sites centred between base-pairs 41 and 42 upstream from the transcription start site, and the second site located further upstream. In vivo activity measurements show that the activity of these promoters is completely dependent on CRP and that, depending on the precise location, CRP bound at the upstream site increases transcription activation. Hydroxyl radical footprinting was exploited to investigate the binding of CRP and RNA polymerase holoenzyme (RNAP) to these promoters. The study shows that the C-terminal domains of the RNAP alpha subunits bind adjacent to the upstream CRP and that their precise positioning depends on the location of upstream-bound CRP. The C-terminal domains of the RNAP alpha subunits interact with both the upstream and downstream-bound CRP via activating region 1 of CRP.
Collapse
Affiliation(s)
- T A Belyaeva
- School of Biochemistry, University of Birmingham, Birmingham, B15 2TT, U.K
| | | | | | | |
Collapse
|
86
|
Larkin RM, Guilfoyle TJ. Two small subunits in Arabidopsis RNA polymerase II are related to yeast RPB4 and RPB7 and interact with one another. J Biol Chem 1998; 273:5631-7. [PMID: 9488692 DOI: 10.1074/jbc.273.10.5631] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An Arabidopsis cDNA (AtRPB15.9) that encoded a protein related to the RPB4 subunit in yeast RNA polymerase II was cloned. The predicted molecular mass of 15.9 kDa for the AtRPB15.9 protein was significantly smaller than 25 kDa for yeast RBP4. In SDS-PAGE, AtRPB15.9 migrated as the seventh or eighth largest subunit (i.e. apparent molecular mass of 14-15 kDa) in Arabidopsis RNA polymerase II, whereas RPB4 migrates as the fourth largest subunit (i.e. apparent molecular mass of 32 kDa) in yeast RNA polymerase II. Unlike yeast RPB4 and RPB7, which dissociate from RNA polymerase II under mildly denaturing conditions, plant subunits related to RPB4 and RPB7 are more stably associated with the enzyme. Recombinant AtRPB15.9 formed stable complexes with AtRPB19.5 (i.e. a subunit related to yeast RPB7) in vitro as did recombinant yeast RPB4 and RPB7 subunits. Stable heterodimers were also formed between AtRPB15. 9 and yeast RPB7 and between yeast RPB4 and AtRPB19.5.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
87
|
Steffen P, Ullmann A. Hybrid Bordetella pertussis-Escherichia coli RNA polymerases: selectivity of promoter activation. J Bacteriol 1998; 180:1567-9. [PMID: 9515928 PMCID: PMC107059 DOI: 10.1128/jb.180.6.1567-1569.1998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We constructed hybrid Bordetella pertussis-Escherichia coli RNA polymerases and compared productive interactions between transcription activators and cognate RNA polymerase subunits in an in vitro transcription system. Virulence-associated genes of B. pertussis, in the presence of their activator BvgA, are transcribed by all variants of hybrid RNA polymerases, whereas transcription at the E. coli lac promoter regulated by the cyclic AMP-catabolite gene activator protein has an absolute requirement for the E. coli alpha subunit. This suggests that activator contact sites involve a high degree of selectivity.
Collapse
Affiliation(s)
- P Steffen
- Unité de Biochimie Cellulaire, Institut Pasteur, Paris, France
| | | |
Collapse
|
88
|
Lloyd GS, Busby SJ, Savery NJ. Spacing requirements for interactions between the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase and the cAMP receptor protein. Biochem J 1998; 330 ( Pt 1):413-20. [PMID: 9461538 PMCID: PMC1219155 DOI: 10.1042/bj3300413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During transcription initiation at bacterial promoters, the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) can interact with DNA-sequence elements (known as UP elements) and with activator proteins. We have constructed a series of semi-synthetic promoters carrying both an UP element and a consensus DNA-binding site for the Escherichia coli cAMP receptor protein (CRP; a factor that activates transcription by making direct contacts with alphaCTD). At these promoters, the UP element was located at a variety of distances upstream of the CRP-binding site, which was fixed at position -41.5 bp upstream of the transcript start. At some positions, the UP element caused enhanced promoter activity whereas, at other positions, it had very little effect. In no case was the CRP-dependence of the promoter relieved. DNase I and hydroxyl-radical footprinting were used to study ternary RNA polymerase-CRP-promoter complexes formed at two of the most active of these promoters, and co-operativity between the binding of CRP and purified alpha subunits was studied. The footprints show that alphaCTD binds to the UP element as it is displaced upstream but that this displacement does not prevent alphaCTD from being contacted by CRP. Models to account for this are discussed.
Collapse
Affiliation(s)
- G S Lloyd
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | | |
Collapse
|
89
|
Mencía M, Monsalve M, Rojo F, Salas M. Substitution of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit by that from Bacillus subtilis makes the enzyme responsive to a Bacillus subtilis transcriptional activator. J Mol Biol 1998; 275:177-85. [PMID: 9466901 DOI: 10.1006/jmbi.1997.1463] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulatory protein p4 of Bacillus subtilis phage phi 29 activates transcription from the viral late A3 promoter by interacting with the C-terminal domain (CTD) of the B. subtilis RNA polymerase alpha subunit, thereby stabilizing the holoenzyme at the promoter. Protein p4 does not interact with the Escherichia coli RNA polymerase and cannot activate transcription with this enzyme. We have constructed a chimerical alpha subunit containing the N-terminal domain of the E. coli alpha subunit and the CTD of the B. subtilis alpha subunit. Reconstitution of RNA polymerases containing this chimerical alpha subunit, the E. coli beta and beta' subunits, and the vegetative sigma factor from either E. coli (sigma 70) or B. subtilis (sigma A), generated hybrid enzymes that were responsive to protein p4 and efficiently supported activation at the A3 promoter. Protein p4 activated transcription with the chimerical enzymes through the same activation surface used with B. subtilis RNA polymerase. Therefore, the B. subtilis alpha-CTD allowed activation by p4 even when the rest of the RNA polymerase subunits belonged to E. coli, a distantly related bacterium. These results strongly suggest that protein p4 works essentially by serving as an anchor that stabilizes RNA polymerase at the promoter.
Collapse
Affiliation(s)
- M Mencía
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
90
|
Wang Y, Severinov K, Loizos N, Fenyö D, Heyduk E, Heyduk T, Chait BT, Darst SA. Determinants for Escherichia coli RNA polymerase assembly within the beta subunit. J Mol Biol 1997; 270:648-62. [PMID: 9245594 DOI: 10.1006/jmbi.1997.1139] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used binding assays and other approaches to identify fragments of the Escherichia coli RNAP beta subunit involved in the obligatory interaction with the alpha subunit to form the stable assembly intermediate alpha2beta as well as in the interaction to recruit the beta' subunit into the alpha2beta sub-assembly. We show that two regions of evolutionarily conserved sequence near the C terminus of beta (conserved regions H and I) are central to the assembly of RNAP and likely make subunit-subunit contacts with both alpha and beta'.
Collapse
Affiliation(s)
- Y Wang
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Larkin RM, Guilfoyle TJ. Reconstitution of yeast and Arabidopsis RNA polymerase alpha-like subunit heterodimers. J Biol Chem 1997; 272:12824-30. [PMID: 9139743 DOI: 10.1074/jbc.272.19.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two subunits of about 36-44 kDa and 13-19 kDa in the eukaryotic nuclear RNA polymerases share limited amino acid sequence similarity to the alpha subunit in Escherichia coli RNA polymerase. The alpha subunit in the prokaryotic enzyme has a stoichiometry of 2, but the stoichiometry of the alpha-like subunits in the eukaryotic enzymes is not entirely clear. To gain insight into the subunit stoichiometry and assembly pathway for eukaryotic RNA polymerases, in vitro reconstitution experiments have been carried out with recombinant alpha-like subunits from yeast and plant RNA polymerase II. The large and small alpha-like subunits from each species formed stable heterodimers in vitro, but neither the large or small alpha-like subunits formed stable homodimers. Furthermore, mixed heterodimers were formed between corresponding subunits of yeast and plants, but were not formed between corresponding subunits in different RNA polymerases from the same species. Our results suggest that RNA polymerase II alpha-like heterodimers may be the equivalent of alpha homodimers found in E. coli RNA polymerase.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
92
|
Miller A, Wood D, Ebright RH, Rothman-Denes LB. RNA polymerase beta' subunit: a target of DNA binding-independent activation. Science 1997; 275:1655-7. [PMID: 9054361 DOI: 10.1126/science.275.5306.1655] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bacteriophage N4 single-stranded DNA binding protein (N4SSB) activates transcription by the Escherichia coli final sigma70-RNA polymerase at N4 late promoters. Here it is shown that the single-stranded DNA binding activity of N4SSB is not required for transcriptional activation. N4SSB interacts with the carboxyl terminus of the RNA polymerase beta' subunit in a region that is highly conserved in the largest subunits of prokaryotic and eukaryotic RNA polymerases.
Collapse
Affiliation(s)
- A Miller
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
93
|
Murakami K, Kimura M, Owens JT, Meares CF, Ishihama A. The two alpha subunits of Escherichia coli RNA polymerase are asymmetrically arranged and contact different halves of the DNA upstream element. Proc Natl Acad Sci U S A 1997; 94:1709-14. [PMID: 9050843 PMCID: PMC19981 DOI: 10.1073/pnas.94.5.1709] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RNA polymerase core enzyme of Escherichia coli is composed of two alpha subunits and one each of the beta and beta' subunits. The C-terminal domain of the RNA polymerase alpha subunit plays a key role in molecular communications with class I transcription factors and upstream (UP) elements of promoter DNA, using the same protein surface. To identify possible differences in the functional roles of the two alpha subunits, we have developed a reconstitution method for hybrid RNA polymerases containing two distinct alpha subunit derivatives in a defined orientation ("oriented alpha-heterodimer"). The binding sites of two alpha C-terminal domains on the UP element DNA were determined by hydroxyl radical-based DNA cleavage mediated by (p-bromoacetamidobenzyl)-EDTA x Fe, which was bound at Cys-269 on the UP recognition surface of one or both alpha subunits. The results clearly indicated that the two alpha subunits bind in tandem to two helix turns of the rrnBP1 UP element, and that the beta'-associated alpha subunit is bound to the promoter-distal region.
Collapse
Affiliation(s)
- K Murakami
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
94
|
Nègre D, Bonod-Bidaud C, Oudot C, Prost JF, Kolb A, Ishihama A, Cozzone AJ, Cortay JC. DNA flexibility of the UP element is a major determinant for transcriptional activation at the Escherichia coli acetate promoter. Nucleic Acids Res 1997; 25:713-8. [PMID: 9016619 PMCID: PMC146490 DOI: 10.1093/nar/25.4.713] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The specific interaction of the upstream element-containing promoter of the Escherichia coli acetate operon with either the RNA polymerase holoenzyme or its alpha subunit has been analyzed by the base removal method. Our results indicate that: (i) direct and specific base contacts can be detected in the acetate promoter-alpha subunit complex; (ii) base elimination in the upstream element of the acetate promoter enhances the binding of RNA polymerase. A similar effect is observed when studying the interactions between RNA polymerase and the rrnB ribosomal operon P1 promoter.
Collapse
Affiliation(s)
- D Nègre
- Institut de Biologie et Chimie des Proteines, Centre National de la Recherche Scientifique, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
95
|
van Ulsen P, Hillebrand M, Kainz M, Collard R, Zulianello L, van de Putte P, Gourse RL, Goosen N. Function of the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase in basal expression and integration host factor-mediated activation of the early promoter of bacteriophage Mu. J Bacteriol 1997; 179:530-7. [PMID: 8990307 PMCID: PMC178725 DOI: 10.1128/jb.179.2.530-537.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integration host factor (IHF) can activate transcription from the early promoter (Pe) of bacteriophage Mu both directly and indirectly. Indirect activation occurs through alleviation of H-NS-mediated repression of the Pe promoter (P. Van Ulsen, M. Hillebrand, L. Zulianello, P. Van de Putte, and N. Goosen, Mol. Microbiol. 21:567-578, 1996). The direct activation involves the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase. We investigated which residues in the alphaCTD are important for IHF-mediated activation of the Pe promoter. Initial in vivo screening, using a set of substitution mutants derived from an alanine scan (T. Gaal, W. Ross, E. E. Blatter, T. Tang, X. Jia, V. V. Krishnan, N. Assa-Munt, R. Ebright, and R. L. Gourse, Genes Dev. 10:16-26, 1996; H. Tang, K. Severinov, A. Goldfarb, D. Fenyo, B. Chait, and R. H. Ebright, Genes Dev. 8:3058-3067, 1994), indicated that the residues, which are required for transcription activation by the UP element of the rrnB P1 promoter (T. Gaal, W. Ross, E. E. Blatter, T. Tang, X. Jia, V. V. Krishnan, N. Assa-Munt, R. Ebright, and R. L. Gourse, Genes Dev. 10:16-26, 1996), are also important for Pe expression in the presence of IHF. Two of the RNA polymerase mutants, alphaR265A and alphaG296A, that affected Pe expression most in vivo were subsequently tested in in vitro transcription experiments. Mutant RNA polymerase with alphaR265A showed no IHF-mediated activation and a severely reduced basal level of transcription from the Pe promoter. Mutant RNA polymerase with alphaG296A resulted in a slightly reduced transcription from the Pe promoter in the absence of IHF but could still be activated by IHF. These results indicate that interaction of the alphaCTD with DNA is involved not only in the IHF-mediated activation of Pe transcription but also in maintaining the basal level of transcription from this promoter. Mutational analysis of the upstream region of the Pe promoter identified a sequence, positioned from -39 to -51 with respect to the transcription start site, that is important for basal Pe expression, presumably through binding of the alphaCTD. The role of the alphaCTD in IHF-mediated stimulation of transcription from the Pe promoter is discussed.
Collapse
Affiliation(s)
- P van Ulsen
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Niu W, Kim Y, Tau G, Heyduk T, Ebright RH. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 1996; 87:1123-34. [PMID: 8978616 PMCID: PMC4430116 DOI: 10.1016/s0092-8674(00)81806-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
At Class II catabolite activator protein (CAP)-dependent promoters, CAP activates transcription from a DNA site overlapping the DNA site for RNA polymerase. We show that transcription activation at Class II CAP-dependent promoters requires not only the previously characterized interaction between an activating region of CAP and the RNA polymerase alpha subunit C-terminal domain, but also an interaction between a second, promoter-class-specific activating region of CAP and the RNA polymerase alpha subunit N-terminal domain. We further show that the two interactions affect different steps in transcription initiation. Transcription activation at Class II CAP-dependent promoters provides a paradigm for understanding how an activator can make multiple interactions with the transcription machinery, each interaction being responsible for a specific mechanistic consequence.
Collapse
Affiliation(s)
- W Niu
- Department of Chemistry and Waksman Institute, Rutgers University, New Brunswick, New Jersey 08855, USA
| | | | | | | | | |
Collapse
|
97
|
Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta' subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:27969-74. [PMID: 8910400 DOI: 10.1074/jbc.271.44.27969] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta and beta' subunits of Escherichia coli DNA-dependent RNA polymerase are highly conserved throughout eubacterial and eukaryotic kingdoms. However, in some archaebacteria and chloroplasts, the corresponding sequences are "split" into smaller polypeptides that are encoded by separate genes. To test if such split sites can be accommodated into E. coli RNA polymerase, subunit fragments encoded by the segments of E. coli rpoB and rpoC genes corresponding to archaebacterial and chloroplast split subunits were individually overexpressed. The purified fragments, when mixed in vitro with complementing intact RNA polymerase subunits, yielded an active enzyme capable of catalyzing the phosphodiester bond formation. Thus, the large subunits of eubacteria and eukaryotes are composed of independent structural modules corresponding to the smaller subunits of archaebacteria and chloroplasts.
Collapse
Affiliation(s)
- K Severinov
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Heyduk T, Heyduk E, Severinov K, Tang H, Ebright RH. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting. Proc Natl Acad Sci U S A 1996; 93:10162-6. [PMID: 8816769 PMCID: PMC38354 DOI: 10.1073/pnas.93.19.10162] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'.
Collapse
Affiliation(s)
- T Heyduk
- Department of Biochemistry and Molecular Biology, St. Louis University Medical School, MO 63104, USA
| | | | | | | | | |
Collapse
|
99
|
Liu K, Zhang Y, Severinov K, Das A, Hanna MM. Role of Escherichia coli RNA polymerase alpha subunit in modulation of pausing, termination and anti-termination by the transcription elongation factor NusA. EMBO J 1996; 15:150-61. [PMID: 8598198 PMCID: PMC449927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The alpha subunit (alpha) of RNA polymerase (RNAP) is critical for assembly of polymerase and positive control of transcription initiation in Escherichia coli. Here, we report that alpha also plays a role in transcription elongation, and this involves a direct interaction between alpha and NusA factor. During in vitro transcription without NusA, alpha interacts with the nascent RNA, as revealed by photocrosslinking. When NusA is present, RNA crosslinks to NusA rather than to alpha. We show that this NusA-RNA interaction is diminished during transcription with an RNAP mutant that lacks the C-terminus of alpha beyond amino acid 235, including the so-called alpha CTD. The absence of alpha CTD also affects NusA's ability to enhance transcription pausing, termination at intrinsic terminators and anti-termination by the phage lambda Q anti-terminator, but not anti-termination by the lambda N anti-terminator. NusA functions are not recovered even when transcription with mutant RNAP is done with excess NusA, a condition which does restore NusA-RNA crosslinking. By affinity chromatography, we show that NusA interacts directly with alpha, and also with beta and beta', but not with mutant alpha. Hence, alpha-NusA interaction is vital for the control of transcript elongation and termination.
Collapse
Affiliation(s)
- K Liu
- Department of Botany and Microbiology, University of Oklahoma, Norman, 73019, USA
| | | | | | | | | |
Collapse
|
100
|
Gaal T, Ross W, Blatter EE, Tang H, Jia X, Krishnan VV, Assa-Munt N, Ebright RH, Gourse RL. DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. Genes Dev 1996; 10:16-26. [PMID: 8557191 DOI: 10.1101/gad.10.1.16] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Escherichia coli RNA polymerase alpha-subunit binds through its carboxy-terminal domain (alpha CTD) to a recognition element, the upstream (UP) element, in certain promoters. We used genetic and biochemical techniques to identify the residues in alpha CTD important for UP-element-dependent transcription and DNA binding. These residues occur in two regions of alpha CTD, close to but distinct from, residues important for interactions with certain transcription activators. We used NMR spectroscopy to determine the secondary structure of alpha CTD, alpha CTD contains a nonstandard helix followed by four alpha-helices. The two regions of alpha CTD important for DNA binding correspond to the first alpha-helix and the loop between the third and fourth alpha-helices. The alpha CTD DNA-binding domain architecture is unlike any DNA-binding architecture identified to date, and we propose that alpha CTD has a novel mode of interaction with DNA. Our results suggest models for alpha CTD-DNA and alpha CTD-DNA-activator interactions during transcription initiation.
Collapse
Affiliation(s)
- T Gaal
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|