51
|
Novel high throughput pooled shRNA screening identifies NQO1 as a potential drug target for host directed therapy for tuberculosis. Sci Rep 2016; 6:27566. [PMID: 27297123 PMCID: PMC4906352 DOI: 10.1038/srep27566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these "hits" belonged to the oxidoreductase functional category. NAD(P)H quinone oxidoreductase 1 (NQO1) was the top oxidoreductase "hit". NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies.
Collapse
|
52
|
Denuc A, Núñez E, Calvo E, Loureiro M, Miro-Casas E, Guarás A, Vázquez J, Garcia-Dorado D. New protein-protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med 2016; 20:794-803. [PMID: 26915330 PMCID: PMC4831365 DOI: 10.1111/jcmm.12792] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/17/2015] [Indexed: 01/24/2023] Open
Abstract
Connexin 43 (Cx43), the gap junction protein involved in cell-to-cell coupling in the heart, is also present in the subsarcolemmal fraction of cardiomyocyte mitochondria. It has been described to regulate mitochondrial potassium influx and respiration and to be important for ischaemic preconditioning protection, although the molecular effectors involved are not fully characterized. In this study, we looked for potential partners of mitochondrial Cx43 in an attempt to identify new molecular pathways for cardioprotection. Mass spectrometry analysis of native immunoprecipitated mitochondrial extracts showed that Cx43 interacts with several proteins related with mitochondrial function and metabolism. Among them, we selected for further analysis only those present in the subsarcolemmal mitochondrial fraction and known to be related with the respiratory chain. Apoptosis-inducing factor (AIF) and the beta-subunit of the electron-transfer protein (ETFB), two proteins unrelated to date with Cx43, fulfilled these conditions, and their interaction with Cx43 was proven by direct and reverse co-immunoprecipitation. Furthermore, a previously unknown molecular interaction between AIF and ETFB was established, and protein content and sub-cellular localization appeared to be independent from the presence of Cx43. Our results identify new protein-protein interactions between AIF-Cx43, ETFB-Cx43 and AIF-ETFB as possible players in the regulation of the mitochondrial redox state.
Collapse
Affiliation(s)
- Amanda Denuc
- Vall d'Hebron University Hospital and Reseach Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Estefanía Núñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Marta Loureiro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Elisabet Miro-Casas
- Vall d'Hebron University Hospital and Reseach Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adela Guarás
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - David Garcia-Dorado
- Vall d'Hebron University Hospital and Reseach Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
53
|
Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, Zhang B, Sun S, Lan HY, Li N, Li P. The decreased expression of electron transfer flavoprotein β is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med 2016; 37:1290-8. [PMID: 27035869 PMCID: PMC4829130 DOI: 10.3892/ijmm.2016.2533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/08/2016] [Indexed: 01/25/2023] Open
Abstract
Tubular injury is closely correlated with the development of progressive diabetic nephropathy (DN), particularly in cases of type 2 diabetes. The apoptosis of tubular cells has been recognized as a major cause of tubular atrophy, followed by tubulointerstitial fibrosis. Electron transfer flavoprotein β (ETFβ) is known as an important electron acceptor in energy metabolism, but its role in DN was not fully understood. In the present study, we examined the expression pattern of ETFβ using diabetic kidney samples and further investigated ETFβ involvement in tubular epithelial cell (TEC) apoptosis. Human renal biopsy specimens from patients with DN as well as a spontaneous rat model of diabetes using Otsuka Long-Evans Tokushima fatty (OLETF) rats, were employed in order to examine the expression of ETFβ and cell apoptosis in kidneys during the development of DN (for the rats, at 36 and 56 weeks of age respectively). Moreover, ETFβ siRNA was used to investigate the role of ETFβ in the apoptosis of renal tubular cells. Our present results showed that the expression of ETFβ in the kidneys was progressively decreased both in patients with DN and OLETF rats, which coincided with progressive renal injury and TEC apoptosis. In addition, the in vitro study demonstrated that knockdown of ETFβ caused apoptosis in tubular cells, as proven by the increased expression of pro-apoptotic proteins and TUNEL assay. Therefore, the findings of our present study suggest that ETFβ plays an important role in renal tubular cell apoptosis during the progression of DN.
Collapse
Affiliation(s)
- Hua Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Haojun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Xiaohong Chen
- Department of Nephrology, Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi, P.R. China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Qin Kong
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Meihua Yan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Bingxuan Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Sifan Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Ning Li
- Institute of Basic Medical Science, Peking Union Medical College, Beijing, P.R. China
| | - Ping Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
54
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
55
|
Chowdhury NP, Kahnt J, Buckel W. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. FEBS J 2015; 282:3149-60. [PMID: 25903584 DOI: 10.1111/febs.13308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over 50 years ago, it was reported that, in the anaerobic rumen bacterium Megasphaera elsdenii, the reduction of crotonyl-CoA to butyryl-CoA by NADH involved an electron transferring flavoprotein (Etf) as mediator [Baldwin RL, Milligan LP (1964) Biochim Biophys Acta 92, 421-432]. Purification and spectroscopic characterization revealed that this Etf contained 2 FAD, whereas, in the Etfs from aerobic and facultative bacteria, one FAD is replaced by AMP. Recently we detected a similar system in the related anaerobe Acidaminococcus fermentans that differed in the requirement of additional ferredoxin as electron acceptor. The whole process was established as flavin-based electron bifurcation in which the exergonic reduction of crotonyl-CoA by NADH mediated by Etf + butyryl-CoA dehydrogenase (Bcd) was coupled to the endergonic reduction of ferredoxin also by NADH. In the present study, we demonstrate that, under anaerobic conditions, Etf + Bcd from M. elsdenii bifurcate as efficiently as Etf + Bcd from A. fermentans. Under the aerobic conditions used in the study by Baldwin and Milligan and in the presence of catalytic amounts of crotonyl-CoA or butyryl-CoA, however, Etf + Bcd act as NADH oxidase producing superoxide and H2 O2 , whereas ferredoxin is not required. We hypothesize that, during bifurcation, oxygen replaces ferredoxin to yield superoxide. In addition, the formed butyryl-CoA is re-oxidized by a second oxygen molecule to crotonyl-CoA, resulting in a stoichiometry of 2 NADH consumed and 2 H2 O2 formed. As a result of the production of reactive oxygen species, electron bifurcation can be regarded as an Achilles' heel of anaerobes when exposed to air.
Collapse
Affiliation(s)
- Nilanjan P Chowdhury
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Jörg Kahnt
- Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| |
Collapse
|
56
|
Chen P, Yang W, Tian Y, Sun S, Chen G, Zhang C, Ma F, Xun Y, Shi L, Yang C, Zhao L, Zhou Y, Du H. Electron Transfer Flavoprotein Subunit Beta Is a Candidate Endothelial Cell Autoantigen in Behçet's Disease. PLoS One 2015; 10:e0124760. [PMID: 25915519 PMCID: PMC4410958 DOI: 10.1371/journal.pone.0124760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/05/2015] [Indexed: 01/10/2023] Open
Abstract
Behçet’s disease (BD) is a chronic inflammatory disease with multisystem involvement, and it is listed as a rare disease in the United States but is common in the Middle East, China, and Japan. The aim of this study was to identify novel autoantigens in Chinese patients with BD. First, the candidate autoantigens were screened by Western blotting, and the sequences of putative antigens were identified by LC-MALDI-TOF/TOF mass spectrometry. Next, the screened protein was cloned, expressed and purified. Then, an optimized ELISA was developed, and the serological criteria were evaluated using a large number of confirmed patients. One antigen with a molecular weight of approximately 28 kDa was identified as electron transfer flavoprotein subunit beta (ETFB). Positive reactivity was detected in recombinant human ETFB sera from 38 of 92 BD patients (41 %) and 1 of 90 healthy controls (1 %).
Collapse
Affiliation(s)
- Peng Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weikang Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yaping Tian
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shutao Sun
- Core Facility, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangyu Chen
- ImmunoHunt Corporation, 139 Fengtai Rd, Beijing, 100071, China
| | - ChunYan Zhang
- Department of Clinical Biochemistry, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fuxin Ma
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yiping Xun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lili Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chunhe Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lanqing Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yabin Zhou
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- * E-mail:
| |
Collapse
|
57
|
Małecki J, Ho AYY, Moen A, Dahl HA, Falnes PØ. Human METTL20 is a mitochondrial lysine methyltransferase that targets the β subunit of electron transfer flavoprotein (ETFβ) and modulates its activity. J Biol Chem 2014; 290:423-34. [PMID: 25416781 DOI: 10.1074/jbc.m114.614115] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteins are frequently modified by post-translational methylation of lysine residues, catalyzed by S-adenosylmethionine-dependent lysine methyltransferases (KMTs). Lysine methylation of histone proteins has been extensively studied, but it has recently become evident that methylation of non-histone proteins is also abundant and important. The human methyltransferase METTL20 belongs to a group of 10 established and putative human KMTs. We here found METTL20 to be associated with mitochondria and determined that recombinant METTL20 methylated a single protein in extracts from human cells. Using an methyltransferase activity-based purification scheme, we identified the β-subunit of the mitochondrially localized electron transfer flavoprotein (ETFβ) as the substrate of METTL20. Furthermore, METTL20 was found to specifically methylate two adjacent lysine residues, Lys(200) and Lys(203), in ETFβ both in vitro and in cells. Interestingly, the residues methylated by METTL20 partially overlap with the so-called "recognition loop" in ETFβ, which has been shown to mediate its interaction with various dehydrogenases. Accordingly, we found that METTL20-mediated methylation of ETFβ in vitro reduced its ability to receive electrons from the medium chain acyl-CoA dehydrogenase and the glutaryl-CoA dehydrogenase. In conclusion, the present study establishes METTL20 as the first human KMT localized to mitochondria and suggests that it may regulate cellular metabolism through modulating the interaction between its substrate ETFβ and dehydrogenases. Based on the previous naming of similar enzymes, we suggest the renaming of human METTL20 to ETFβ-KMT.
Collapse
Affiliation(s)
- Jędrzej Małecki
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Angela Y Y Ho
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Anders Moen
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Helge-André Dahl
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| | - Pål Ø Falnes
- From the Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0316, Norway
| |
Collapse
|
58
|
Grivennikova VG, Vinogradov AD. Mitochondrial production of reactive oxygen species. BIOCHEMISTRY (MOSCOW) 2014; 78:1490-511. [PMID: 24490736 DOI: 10.1134/s0006297913130087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.
Collapse
Affiliation(s)
- V G Grivennikova
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
59
|
Rhein VF, Carroll J, He J, Ding S, Fearnley IM, Walker JE. Human METTL20 methylates lysine residues adjacent to the recognition loop of the electron transfer flavoprotein in mitochondria. J Biol Chem 2014; 289:24640-51. [PMID: 25023281 PMCID: PMC4148887 DOI: 10.1074/jbc.m114.580464] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian mitochondria, protein methylation is a relatively uncommon post-transcriptional modification, and the extent of the mitochondrial protein methylome, the modifying methyltransferases, and their substrates have been little studied. As shown here, the β-subunit of the electron transfer flavoprotein (ETF) is one such methylated protein. The ETF is a heterodimer of α- and β-subunits. Lysine residues 199 and 202 of mature ETFβ are almost completely trimethylated in bovine heart mitochondria, whereas ETFα is not methylated. The enzyme responsible for the modifications was identified as methyltransferase-like protein 20 (METTL20). In human 143B cells, the methylation of ETFβ is less extensive and is diminished further by suppression of METTL20. Tagged METTL20 expressed in HEK293T cells specifically associates with the ETF and promotes the trimethylation of ETFβ lysine residues 199 and 202. ETF serves as a mobile electron carrier linking dehydrogenases involved in fatty acid oxidation and one-carbon metabolism to the membrane-associated ubiquinone pool. The methylated residues in ETFβ are immediately adjacent to a protein loop that recognizes and binds to the dehydrogenases. Suppression of trimethylation of ETFβ in mouse C2C12 cells oxidizing palmitate as an energy source reduced the consumption of oxygen by the cells. These experiments suggest that the oxidation of fatty acids in mitochondria and the passage of electrons via the ETF may be controlled by modulating the protein-protein interactions between the reduced dehydrogenases and the β-subunit of the ETF by trimethylation of lysine residues. METTL20 is the first lysine methyltransferase to be found to be associated with mitochondria.
Collapse
Affiliation(s)
- Virginie F Rhein
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Joe Carroll
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jiuya He
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - John E Walker
- From The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
60
|
Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S, Jayamani E, Kahnt J, Hornung M, Demmer U, Ermler U, Buckel W. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J Biol Chem 2013; 289:5145-57. [PMID: 24379410 DOI: 10.1074/jbc.m113.521013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD(+) complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH(-) is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH(-) by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH(•), immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH(-) that converts crotonyl-CoA to butyryl-CoA.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kim SH, Scott SA, Bennett MJ, Carson RP, Fessel J, Brown HA, Ess KC. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency. PLoS Genet 2013; 9:e1003563. [PMID: 23785301 PMCID: PMC3681725 DOI: 10.1371/journal.pgen.1003563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity. Mitochondrial disorders have multiple genetic causes and are usually associated with severe, multi-organ disease. We report a novel zebrafish model of mitochondrial disease by inactivating the etfa gene. Loss of this gene in humans causes multiple acyl-Co dehydrogenase deficiency (MADD) that manifests with brain, liver, heart, and kidney disease. While presentations are variable, many children with MADD have a severe form of the disease that rapidly leads to death. We report that etfa gene function is highly conserved in zebrafish as compared to humans. In addition we uncovered potential disease mechanisms that were previously unknown. These include the impact of maternal nutrition on disease severity in their offspring as well as the role mTOR kinase signaling. Inhibition of this kinase with the drug rapamycin partially reversed some of the symptoms suggesting this may be a new approach to treat mitochondrial disorders.
Collapse
Affiliation(s)
- Seok-Hyung Kim
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (SHK); (KCE)
| | - Sarah A. Scott
- Department of Pharmacology, The Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Michael J. Bennett
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Pennsylvania, United States of America
| | - Robert P. Carson
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Joshua Fessel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - H. Alex Brown
- Department of Pharmacology, The Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kevin C. Ess
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (SHK); (KCE)
| |
Collapse
|
62
|
Sato K, Nishina Y, Shiga K. Decomposition of the fluorescence spectra of two FAD molecules in electron-transferring flavoprotein from Megasphaera elsdenii. J Biochem 2013; 154:61-6. [PMID: 23606284 DOI: 10.1093/jb/mvt027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron-transferring flavoprotein (ETF) from Megasphaera elsdenii contains two FAD molecules, FAD-1 and FAD-2. FAD-2 shows an unusual absorption spectrum with a 400-nm peak. In contrast, ETFs from other sources such as pig contain one FAD and one AMP with the FAD showing a typical flavin absorption spectrum with 380- and 440-nm peaks. It is presumed that FAD-2 is the counterpart of the FAD in other ETFs. In this study, the FAD-1 and FAD-2 fluorescence spectra were determined by titration of FAD-1-bound ETF with FAD using excitation-emission matrix (EEM) fluorescence spectroscopy. The EEM data were globally analysed, and the FAD fluorescence spectra were calculated from the principal components using their respective absorption spectra. The FAD-2 fluorescence spectrum was different from that of pig ETF, which is more intense and blue-shifted. AMP-free pig ETF in acidic solution, which has a comparable absorption spectrum to FAD-2, also had a similar fluorescence spectrum. This result suggests that FAD-2 in M. elsdenii ETF and the FAD in acidic AMP-free pig ETF share a common microenvironment. A review of published ETF fluorescence spectra led to the speculation that the majority of ETF molecules in solution are in the conformation depicted by the crystal structure.
Collapse
Affiliation(s)
- Kyosuke Sato
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan.
| | | | | |
Collapse
|
63
|
Sato K, Nishina Y, Shiga K. Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii. J Biochem 2013; 153:565-72. [PMID: 23543477 DOI: 10.1093/jb/mvt026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron-transferring flavoprotein (ETF) from the anaerobic bacterium Megasphaera elsdenii is a heterodimer containing two FAD cofactors. Isolated ETF contains only one FAD molecule, FAD-1, because the other, FAD-2, is lost during purification. FAD-2 is recovered by adding FAD to the isolated ETF. The two FAD molecules in holoETF were characterized using NADH. Spectrophotometric titration of isolated ETF with NADH showed a two-electron reduction of FAD-1 according to a monophasic profile indicating that FAD-1 receives electrons from NADH without involvement of FAD-2. When holoETF was titrated with NADH, FAD-2 was reduced to an anionic semiquinone and then was fully reduced before the reduction of FAD-1. The midpoint potential values at pH 7 were +81, -136 and -279 mV for the reduction of oxidized FAD-2 to semiquinone, semiquinone to the fully reduced FAD-2 and the two-electron reduction of FAD-1, respectively. Both FAD-1 and FAD-2 in holoETF were reduced by excess NADH very rapidly. The reduction of FAD-2 was slowed by replacement of FAD-1 with 8-cyano-FAD indicating that FAD-2 receives electrons from FAD-1 but not from NADH directly. The present results suggest that FAD-2 is the counterpart of the FAD in human ETF, which contains one FAD and one AMP.
Collapse
Affiliation(s)
- Kyosuke Sato
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan.
| | | | | |
Collapse
|
64
|
Hugo LE, Monkman J, Dave KA, Wockner LF, Birrell GW, Norris EL, Kienzle VJ, Sikulu MT, Ryan PA, Gorman JJ, Kay BH. Proteomic biomarkers for ageing the mosquito Aedes aegypti to determine risk of pathogen transmission. PLoS One 2013; 8:e58656. [PMID: 23536806 PMCID: PMC3594161 DOI: 10.1371/journal.pone.0058656] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
Biomarkers of the age of mosquitoes are required to determine the risk of transmission of various pathogens as each pathogen undergoes a period of extrinsic incubation in the mosquito host. Using the 2-D Difference Gel Electrophoresis (2-D DIGE) procedure, we investigated the abundance of up to 898 proteins from the Yellow Fever and dengue virus vector, Aedes aegypti, during ageing. By applying a mixed-effects model of protein expression, we identified five common patterns of abundance change during ageing and demonstrated an age-related decrease in variance for four of these. This supported a search for specific proteins with abundance changes that remain tightly associated with ageing for use as ageing biomarkers. Using MALDI-TOF/TOF mass spectrometry we identified ten candidate proteins that satisfied strict biomarker discovery criteria (identified in two out of three multivariate analysis procedures and in two cohorts of mosquitoes). We validated the abundances of the four most suitable candidates (Actin depolymerising factor; ADF, Eukaryotic initiation factor 5A; eIF5A, insect cuticle protein Q17LN8, and Anterior fat body protein; AFP) using semi-quantitative Western analysis of individual mosquitoes of six ages. The redox-response protein Manganese superoxide dismutase (SOD2) and electron shuttling protein Electron transfer oxidoreductase (ETO) were subject to post-translational modifications affecting their charge states with potential effects on function. For the four candidates we show remarkably consistent decreases in abundance during ageing, validating initial selections. In particular, the abundance of AFP is an ideal biomarker candidate for whether a female mosquito has lived long enough to be capable of dengue virus transmission. We have demonstrated proteins to be a suitable class of ageing biomarkers in mosquitoes and have identified candidates for epidemiological studies of dengue and the evaluation of new disease reduction projects targeting mosquito longevity.
Collapse
Affiliation(s)
- Leon E Hugo
- Mosquito Control Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bertsch J, Parthasarathy A, Buckel W, Müller V. An electron-bifurcating caffeyl-CoA reductase. J Biol Chem 2013; 288:11304-11. [PMID: 23479729 DOI: 10.1074/jbc.m112.444919] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A low potential electron carrier ferredoxin (E0' ≈ -500 mV) is used to fuel the only bioenergetic coupling site, a sodium-motive ferredoxin:NAD(+) oxidoreductase (Rnf) in the acetogenic bacterium Acetobacterium woodii. Because ferredoxin reduction with physiological electron donors is highly endergonic, it must be coupled to an exergonic reaction. One candidate is NADH-dependent caffeyl-CoA reduction. We have purified a complex from A. woodii that contains a caffeyl-CoA reductase and an electron transfer flavoprotein. The enzyme contains three subunits encoded by the carCDE genes and is predicted to have, in addition to FAD, two [4Fe-4S] clusters as cofactor, which is consistent with the experimental determination of 4 mol of FAD, 9 mol of iron, and 9 mol of acid-labile sulfur. The enzyme complex catalyzed caffeyl-CoA-dependent oxidation of reduced methyl viologen. With NADH as donor, it catalyzed caffeyl-CoA reduction, but this reaction was highly stimulated by the addition of ferredoxin. Spectroscopic analyses revealed that ferredoxin and caffeyl-CoA were reduced simultaneously, and a stoichiometry of 1.3:1 was determined. Apparently, the caffeyl-CoA reductase-Etf complex of A. woodii uses the novel mechanism of flavin-dependent electron bifurcation to drive the endergonic ferredoxin reduction with NADH as reductant by coupling it to the exergonic NADH-dependent reduction of caffeyl-CoA.
Collapse
Affiliation(s)
- Johannes Bertsch
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
66
|
Hao XL, Yao HF, Cheng YZ, Wang RX. Homology cloning, sequence characterization, and expression analysis of cDNA encoding electron transfer flavoprotein beta polypeptide in mud crab (Scylla paramamosain). GENETICS AND MOLECULAR RESEARCH 2012; 11:4316-22. [PMID: 23212402 DOI: 10.4238/2012.november.12.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Electron transfer flavoproteins (ETFs) are αβ-heterodimers found in eukaryotic mitochondria and bacteria. Herein we report a full-length complementary DNA of a mud crab (Scylla paramamosain) ETF β subunit (Scpa-ETFB) isolated with a homology cloning strategy. The complete complementary DNA of the Scpa-ETFB contains a 17-nt 5'-untranslated region, a 765-nt open reading frame encoding 254 amino acids, and a 248-nt 3'-untranslated region. The high identity of Scpa-ETFB with ETFB in other organisms indicated that Scpa-ETFB is a new member of the ETFB family. Although the conserved motif associated with flavin adenine dinucleotide binding is absent in Scpa-ETFB, the signature sequences of the ETF superfamily were identified. Using reverse transcriptase polymerase chain reaction, we detected the messenger RNA transcript of Scpa-ETFB in high levels in the tissues of the hepatopancreas, ovary, heart, and muscle. Phylogenetic analysis showed that Scpa-ETFB is most closely related to the ETFB genes of Caligus rogercresseyi and Lepeophtheirus salmonis. These results provided basic information for elucidating the molecular mechanism of energy production in the mud crab.
Collapse
Affiliation(s)
- X L Hao
- College of Life Science, Jilin Normal University, Siping, China
| | | | | | | |
Collapse
|
67
|
Hamill MJ, Jost M, Wong C, Bene NC, Drennan CL, Elliott SJ. Electrochemical characterization of Escherichia coli adaptive response protein AidB. Int J Mol Sci 2012; 13:16899-915. [PMID: 23443126 PMCID: PMC3546729 DOI: 10.3390/ijms131216899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022] Open
Abstract
When exposed to known DNA-damaging alkylating agents, Escherichia coli cells increase production of four DNA repair enzymes: Ada, AlkA, AlkB, and AidB. The role of three enzymes (Ada, AlkA, and AlkB) in repairing DNA lesions has been well characterized, while the function of AidB is poorly understood. AidB has a distinct cofactor that is potentially related to the elusive role of AidB in adaptive response: a redox active flavin adenine dinucleotide (FAD). In this study, we report the thermodynamic redox properties of the AidB flavin for the first time, both for free protein and in the presence of potential substrates. We find that the midpoint reduction potential of the AidB flavin is within a biologically relevant window for redox chemistry at -181 mV, that AidB significantly stabilizes the flavin semiquinone, and that small molecule binding perturbs the observed reduction potential. Our electrochemical results combined with structural analysis allow for fresh comparisons between AidB and the homologous acyl-coenzyme A dehydrogenase (ACAD) family of enzymes. AidB exhibits several discrepancies from ACADs that suggest a novel catalytic mechanism distinct from that of the ACAD family enzymes.
Collapse
Affiliation(s)
- Michael J. Hamill
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; E-Mails: (M.J.H.); (N.C.B.)
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; E-Mails: (M.J.); (C.L.D.)
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; E-Mails: (M.J.); (C.L.D.)
| | - Cintyu Wong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; E-Mails: (M.J.); (C.L.D.)
| | - Nicholas C. Bene
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; E-Mails: (M.J.H.); (N.C.B.)
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA; E-Mails: (M.J.); (C.L.D.)
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sean J. Elliott
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215, USA; E-Mails: (M.J.H.); (N.C.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-358-2816; Fax: +1-617-353-6466
| |
Collapse
|
68
|
Hirokawa S, Shimanuki T, Kitajima H, Nishimori Y, Shimosaka M. Knockdown of electron transfer flavoprotein β subunit reduced TGF-β-induced α-SMA mRNA expression but not COL1A1 in fibroblast-populated three-dimensional collagen gel cultures. J Dermatol Sci 2012; 68:179-86. [DOI: 10.1016/j.jdermsci.2012.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/22/2012] [Accepted: 09/16/2012] [Indexed: 12/31/2022]
|
69
|
Heide H, Bleier L, Steger M, Ackermann J, Dröse S, Schwamb B, Zörnig M, Reichert AS, Koch I, Wittig I, Brandt U. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab 2012; 16:538-49. [PMID: 22982022 DOI: 10.1016/j.cmet.2012.08.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 05/09/2012] [Accepted: 08/17/2012] [Indexed: 11/20/2022]
Abstract
Macromolecular complexes are essential players in numerous biological processes. They are often large, dynamic, and rather labile; approaches to study them are scarce. Covering masses up to ∼30 MDa, we separated the native complexome of rat heart mitochondria by blue-native and large-pore blue-native gel electrophoresis to analyze its constituents by mass spectrometry. Similarities in migration patterns allowed hierarchical clustering into interaction profiles representing a comprehensive analysis of soluble and membrane-bound complexes of an entire organelle. The power of this bottom-up approach was validated with well-characterized mitochondrial multiprotein complexes. TMEM126B was found to comigrate with known assembly factors of mitochondrial complex I, namely CIA30, Ecsit, and Acad9. We propose terming this complex mitochondrial complex I assembly (MCIA) complex. Furthermore, we demonstrate that TMEM126B is required for assembly of complex I. In summary, complexome profiling is a powerful and unbiased technique allowing the identification of previously overlooked components of large multiprotein complexes.
Collapse
Affiliation(s)
- Heinrich Heide
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Covian R, Balaban RS. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 2012; 303:H940-66. [PMID: 22886415 DOI: 10.1152/ajpheart.00077.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on (32)P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the evaluation of this possibility will require the application of approaches developed for bacterial cell signaling to the mitochondria.
Collapse
Affiliation(s)
- Raul Covian
- Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20817, USA
| | | |
Collapse
|
71
|
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:94-113. [PMID: 22800682 DOI: 10.1016/j.bbabio.2012.07.002] [Citation(s) in RCA: 518] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/21/2023]
Abstract
The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (βγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches β-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔμH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔμH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043 Marburg, and Fachbereich Biologie, Philipps-Universität, Marburg, Germany.
| | | |
Collapse
|
72
|
Lam AK, Silva PN, Altamentova SM, Rocheleau JV. Quantitative imaging of electron transfer flavoprotein autofluorescence reveals the dynamics of lipid partitioning in living pancreatic islets. Integr Biol (Camb) 2012; 4:838-46. [PMID: 22733276 DOI: 10.1039/c2ib20075a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pancreatic islet β-cells metabolically sense nutrients to maintain blood glucose homeostasis through the regulated secretion of insulin. Long-term exposure to a mixed supply of excess glucose and fatty acids induces β-cell dysfunction and type II diabetes in a process termed glucolipotoxicity. Despite a number of documented mechanisms for glucolipotoxicity, the interplay between glucose and fatty acid oxidation in islets remains debated. Here, we develop confocal imaging of electron transfer flavoprotein (ETF) autofluorescence to reveal the dynamics of fatty acid oxidation in living pancreatic islets. This method further integrates microfluidic devices to hold the islets stationary in flow, and thus achieve ETF imaging in the β-cells with high spatial and temporal resolution. Our data first confirm that ETF autofluorescence reflects electron transport chain (ETC) activity downstream of Complex I, consistent with a response directly related to fatty acid metabolism. Together with two-photon imaging of NAD(P)H and confocal imaging of lipoamide dehydrogenase (LipDH) autofluorescence, we show that the ETC predominantly draws electrons from LipDH/NADH-dependent Complex I rather than from ETF/FADH(2)-dependent ETF:CoQ oxidoreductase (ETF-QO). Islets stimulated with palmitate also show increased ETF redox state that is dose-dependently diminished by glucose (>10 mM). Furthermore, stimulation with a glucose bolus causes a two-tier drop in the ETF redox state at ∼5 and ∼20 min, suggesting glucose metabolism immediately increases ETC activity and later decreases fatty acid oxidation. Our results demonstrate the utility of ETF imaging in characterizing fatty acid-induced redox responses with high subcellular and temporal resolution. Our results further demonstrate a dominant role of glucose metabolism over fatty acid oxidation in β-cells even when presented with a mixed nutrient condition associated with glucolipotoxicity.
Collapse
Affiliation(s)
- Alan K Lam
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON Canada
| | | | | | | |
Collapse
|
73
|
Alves E, Henriques BJ, Rodrigues JV, Prudêncio P, Rocha H, Vilarinho L, Martinho RG, Gomes CM. Mutations at the flavin binding site of ETF:QO yield a MADD-like severe phenotype in Drosophila. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1284-92. [PMID: 22580358 DOI: 10.1016/j.bbadis.2012.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 11/30/2022]
Abstract
Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of β-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a β-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD.
Collapse
Affiliation(s)
- Ema Alves
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lucas TG, Henriques BJ, Rodrigues JV, Bross P, Gregersen N, Gomes CM. Cofactors and metabolites as potential stabilizers of mitochondrial acyl-CoA dehydrogenases. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1658-63. [PMID: 21968293 DOI: 10.1016/j.bbadis.2011.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022]
Abstract
Protein misfolding is a hallmark of a number of metabolic diseases, in which fatty acid oxidation defects are included. The latter result from genetic deficiencies in transport proteins and enzymes of the mitochondrial β-oxidation, and milder disease conditions frequently result from conformational destabilization and decreased enzymatic function of the affected proteins. Small molecules which have the ability to raise the functional levels of the affected protein above a certain disease threshold are thus valuable tools for effective drug design. In this work we have investigated the effect of mitochondrial cofactors and metabolites as potential stabilizers in two β-oxidation acyl-CoA dehydrogenases: short chain acyl-CoA dehydrogenase and the medium chain acyl-CoA dehydrogenase as well as glutaryl-CoA dehydrogenase, which is involved in lysine and tryptophan metabolism. We found that near physiological concentrations (low micromolar) of FAD resulted in a spectacular enhancement of the thermal stabilities of these enzymes and prevented enzymatic activity loss during a 1h incubation at 40°C. A clear effect of the respective substrate, which was additive to that of the FAD effect, was also observed for short- and medium-chain acyl-CoA dehydrogenase but not for glutaryl-CoA dehydrogenase. In conclusion, riboflavin may be beneficial during feverish crises in patients with short- and medium-chain acyl-CoA dehydrogenase as well as in glutaryl-CoA dehydrogenase deficiencies, and treatment with substrate analogs to butyryl- and octanoyl-CoAs could theoretically enhance enzyme activity for some enzyme proteins with inherited folding difficulties.
Collapse
Affiliation(s)
- Tânia G Lucas
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
75
|
Swanson MA, Kathirvelu V, Majtan T, Frerman FE, Eaton GR, Eaton SS. Electron transfer flavoprotein domain II orientation monitored using double electron-electron resonance between an enzymatically reduced, native FAD cofactor, and spin labels. Protein Sci 2011; 20:610-20. [PMID: 21308847 DOI: 10.1002/pro.595] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human electron transfer flavoprotein (ETF) is a soluble mitochondrial heterodimeric flavoprotein that links fatty acid β-oxidation to the main respiratory chain. The crystal structure of human ETF bound to medium chain acyl-CoA dehydrogenase indicates that the flavin adenine dinucleotide (FAD) domain (αII) is mobile, which permits more rapid electron transfer with donors and acceptors by providing closer access to the flavin and allows ETF to accept electrons from at least 10 different flavoprotein dehydrogenases. Sequence homology is high and low-angle X-ray scattering is identical for Paracoccus denitrificans (P. denitrificans) and human ETF. To characterize the orientations of the αII domain of P. denitrificans ETF, distances between enzymatically reduced FAD and spin labels in the three structural domains were measured by double electron-electron resonance (DEER) at X- and Q-bands. An FAD to spin label distance of 2.8 ± 0.15 nm for the label in the FAD-containing αII domain (A210C) agreed with estimates from the crystal structure (3.0 nm), molecular dynamics simulations (2.7 nm), and rotamer library analysis (2.8 nm). Distances between the reduced FAD and labels in αI (A43C) were between 4.0 and 4.5 ± 0.35 nm and for βIII (A111C) the distance was 4.3 ± 0.15 nm. These values were intermediate between estimates from the crystal structure of P. denitrificans ETF and a homology model based on substrate-bound human ETF. These distances suggest that the αII domain adopts orientations in solution that are intermediate between those which are observed in the crystal structures of free ETF (closed) and ETF bound to a dehydrogenase (open).
Collapse
Affiliation(s)
- Michael A Swanson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | |
Collapse
|
76
|
Molecular analysis of 51 unrelated pedigrees with late-onset multiple acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A. J Mol Med (Berl) 2011; 89:569-76. [PMID: 21347544 DOI: 10.1007/s00109-011-0725-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Multiple acyl-CoA dehydrogenation deficiency (MADD) is an autosomal recessive disease affecting amino acid, fatty acid, and choline metabolisms and is a common genetic defect responsible for lipid storage myopathy. Most forms of MADD are caused by a deficiency of electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH). However, its molecular feature has not been found uniformly in previous reports of Chinese patients. A large cohort of 56 late-onset MADD patients from 51 unrelated pedigrees in southern China was recruited to investigate a clear correlation between clinical phenotype and molecular genetic basis. All exons of ETFA, ETFB, and ETFDH, including the intron-exon boundaries, and 5' and 3' untranslated regions were directly sequenced. ETFDH deficiencies affected 94.1% (48/51) of the pedigrees. ETFDH-c.250G>A is the most common mutation, representing a high allelic frequency of 83.3% (80/96). Carrier frequency of c.250G>A is estimated to be 1.35% (7/520) in the normal population. A significant reduced expression of ETFDH was identified in the muscle of ETFDH-deficient patients. ETFDH deficiency is a major cause of riboflavin-responsive MADD in southern China, and c.250G>A is an important mutation that could be employed as a fast and reliable screening method.
Collapse
|
77
|
A polymorphic position in electron transfer flavoprotein modulates kinetic stability as evidenced by thermal stress. FEBS Lett 2011; 585:505-10. [PMID: 21219902 DOI: 10.1016/j.febslet.2011.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The electron transfer flavoprotein (ETF) is a hub interacting with at least 11 mitochondrial flavoenzymes and linking them to the respiratory chain. Here we report the effect of the ETFα-T/I171 polymorphism on protein conformation and kinetic stability under thermal stress. Although variants have comparable thermodynamic stabilities, kinetically their behavior is rather distinct as ETFα-T171 displays increased susceptibility to cofactor flavin adenine dinucleotide (FAD) loss and enhanced kinetics of inactivation during thermal stress. Mimicking a fever episode yields substantial activity loss. However, the presence of substoichiometric concentrations of GroEL is sufficient to act as an effective buffer against long-term thermal denaturation. Our investigations are compatible with the notion that the ETFα-T171 variant displays an altered conformational landscape that results in reduced protein function under thermal stress.
Collapse
|
78
|
Abstract
In the present chapter, the structures and mechanisms of the major components of mammalian mitochondrial respiratory chains are reviewed. Particular emphasis is placed on the four protein complexes and their cofactors that catalyse the electron transfer pathway between oxidation of NADH and succinate and the reduction of oxygen to water. Current ideas are reviewed of how these electron transfer reactions are coupled to formation of the proton and charge gradient across the inner mitochondrial membrane that is used to drive ATP synthesis. Additional respiratory components that are found in mammalian and plant, fungal and algal mitochondria are also reviewed.
Collapse
|
79
|
Lasserre JP, Sylvius L, Joubert-Caron R, Caron M, Hardouin J. Organellar Protein Complexes of Caco-2 Human Cells Analyzed by Two-Dimensional Blue Native/SDS-PAGE and Mass Spectrometry. J Proteome Res 2010; 9:5093-107. [DOI: 10.1021/pr100381m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Paul Lasserre
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Loïk Sylvius
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Raymonde Joubert-Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Michel Caron
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| | - Julie Hardouin
- Laboratoire de Biochimie des Protéines et Protéomique, Université Paris 13, UMR CNRS 7033, 74 rue Marcel Cachin F-93017 Bobigny cedex, France, Institut de Biochimie et Génétique Cellulaires, Université Bordeaux 2, UMR CNRS 5095, 1 rue Camille Saint-Saëns F-33077 Bordeaux Cedex, France, and Laboratoire Polymères, Biopolymères, Surfaces, Equipe BRICS, Université de Rouen, UMR CNRS 6270, Boulevard Maurice de Broglie F-76821 Mont-Saint-Aignan cedex, France
| |
Collapse
|
80
|
Tan TC, Pitsawong W, Wongnate T, Spadiut O, Haltrich D, Chaiyen P, Divne C. H-bonding and positive charge at the N5/O4 locus are critical for covalent flavin attachment in trametes pyranose 2-oxidase. J Mol Biol 2010; 402:578-94. [PMID: 20708626 DOI: 10.1016/j.jmb.2010.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
Flavoenzymes perform a wide range of redox reactions in nature, and a subclass of flavoenzymes carry covalently bound cofactor. The enzyme-flavin bond helps to increase the flavin's redox potential to facilitate substrate oxidation in several oxidases. The formation of the enzyme-flavin covalent bond--the flavinylation reaction--has been studied for the past 40 years. For the most advocated mechanism of autocatalytic flavinylation, the quinone methide mechanism, appropriate stabilization of developing negative charges at the flavin N(1) and N(5) loci is crucial. Whereas the structural basis for stabilization at N(1) is relatively well studied, the structural requisites for charge stabilization at N(5) remain less clear. Here, we show that flavinylation of histidine 167 of pyranose 2-oxidase from Trametes multicolor requires hydrogen bonding at the flavin N(5)/O(4) locus, which is offered by the side chain of Thr169 when the enzyme is in its closed, but not open, state. Moreover, our data show that additional stabilization at N(5) by histidine 548 is required to ensure high occupancy of the histidyl-flavin bond. The combination of structural and spectral data on pyranose 2-oxidase mutants supports the quinone methide mechanism. Our results demonstrate an elaborate structural fine-tuning of the active site to complete its own formation that couples efficient holoenzyme synthesis to conformational substates of the substrate-recognition loop and concerted movements of side chains near the flavinylation ligand.
Collapse
Affiliation(s)
- Tien-Chye Tan
- Division of Biochemistry, School of Biotechnology, Royal Institute of Technology, Albanova University Center, Roslagstullsbacken 21, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
81
|
Henriques BJ, Bross P, Gomes CM. Mutational hotspots in electron transfer flavoprotein underlie defective folding and function in multiple acyl-CoA dehydrogenase deficiency. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1070-7. [PMID: 20674745 DOI: 10.1016/j.bbadis.2010.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/13/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
We have carried out an extensive in silico analysis on 18 disease associated missense mutations found in electron transfer flavoprotein (ETF), and found that mutations fall essentially in two groups, one in which mutations affect protein folding and assembly, and another one in which mutations impair catalytic activity and disrupt interactions with partner dehydrogenases. We have further experimentally analyzed three of these mutations, ETFβ-p.Cys42Arg, ETFβ-p.Asp128Asn and ETFβ-p.Arg191Cys, which have been found in homozygous form in patients and which typify different scenarios in respect to the clinical phenotypes. The ETFβ-p.Cys42Arg mutation, related to a severe form of multiple acyl-CoA dehydrogenase deficiency (MADD), affects directly the AMP binding site and intersubunit contacts and impairs correct protein folding. The two other variations, ETFβ-p.Asp128Asn and ETFβ-p.Arg191Cys, are both associated with mild MADD, but these mutations have a different impact on ETF. Although none affects the overall α/β fold topology as shown by far-UV CD, analysis of the purified proteins shows that both have substantially decreased enzymatic activity and conformational stability. Altogether, this study combines in silico analysis of mutations with experimental data and has allowed establishing structural hotspots within the ETF fold that are useful to provide a rationale for the prediction of effects of mutations in ETF.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
82
|
Felty Q. Proteomic 2D DIGE profiling of human vascular endothelial cells exposed to environmentally relevant concentration of endocrine disruptor PCB153 and physiological concentration of 17β-estradiol. Cell Biol Toxicol 2010; 27:49-68. [PMID: 20623170 DOI: 10.1007/s10565-010-9170-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022]
Abstract
Considering the recent studies that question previously reported cardio-protective effects of estrogen, there is a growing concern that endocrine disruptors may also contribute to the pathology of cardiovascular disease. PCB153 is one of the most commonly found polychlorinated biphenyls, and based on epidemiological studies, has been implicated in cardiovascular disease. The endocrine disruptor PCB153 has been reported to bind the estrogen receptor alpha, induce vessel formation, and increase the formation of reactive oxygen species in endothelial cells. Since PCB153-induced phenotypic changes are similar to estradiol, we postulated that PCB153 activates redox signaling pathways common to 17β-estradiol. Whether the effect of PCB153 on the proteome is comparable to 17β-estradiol is not known. Therefore we investigated the proteome of human microvascular endothelial cells exposed to PCB153 (100 ng/ml) for 24 h. Using 2D DIGE coupled to MALDI-time of flight (TOF)/TOF MS, we found 96 protein spots significantly (greater than 1.5-fold) modulated by experimental treatments. Mass spectrometry identified 11 of 13 protein spots with high confidence protein score CI that was greater than 95%. Of the identified proteins, lamin A/C and far upstream element-binding protein (FUBP1) were regulated similarly by both treatments. FUBP1 is of particular interest because it controls c-myc. While lamin A/C modulates transcription factor AP-1 function. Interestingly, both c-myc and AP-1 are redox-sensitive transcription factors known to regulate genes required for cell growth. Network analysis of these proteins showed transforming growth factor β-1 and c-myc to play central roles. While our findings do not reveal any mechanisms involved in PCB153-induced vascularization, the identified network does provide a potential target pathway for further mechanistic studies of these relationships.
Collapse
Affiliation(s)
- Quentin Felty
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
83
|
Pitsawong W, Sucharitakul J, Prongjit M, Tan TC, Spadiut O, Haltrich D, Divne C, Chaiyen P. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase. J Biol Chem 2010; 285:9697-9705. [PMID: 20089849 DOI: 10.1074/jbc.m109.073247] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyranose 2-oxidase (P2O) catalyzes the oxidation by O(2) of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H(2)O(2). Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr(169) forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O.sugar complex. Transient kinetics of wild-type (WT) and Thr(169) --> S/N/G/A replacement variants show that D-Glc binds to T169S, T169N, and WT with the same K(d) (45-47 mm), and the hydride transfer rate constants (k(red)) are similar (15.3-9.7 s(-1) at 4 degrees C). k(red) of T169G with D-glucose (0.7 s(-1), 4 degrees C) is significantly less than that of WT but not as severely affected as in T169A (k(red) of 0.03 s(-1) at 25 degrees C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of k(red). In the crystal structure of T169S, Ser(169) O gamma assumes a position identical to that of O gamma 1 in Thr(169); in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr(169) side chain are required for intermediate stabilization.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Patumwan, Bangkok 10300, Thailand
| | - Methinee Prongjit
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Tien-Chye Tan
- Division of Glycoscience, Kungliga Tekniska Högskolan Biotechnology, Royal Institute of Technology, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Oliver Spadiut
- Division of Glycoscience, Kungliga Tekniska Högskolan Biotechnology, Royal Institute of Technology, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Dietmar Haltrich
- Department of Food Science and Technology, Bodenkultur-University of Natural Resource and Applied Life Sciences, A-1190 Vienna, Austria
| | - Christina Divne
- Division of Glycoscience, Kungliga Tekniska Högskolan Biotechnology, Royal Institute of Technology, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
84
|
Swanson MA, Kathirvelu V, Majtan T, Frerman FE, Eaton GR, Eaton SS. DEER distance measurement between a spin label and a native FAD semiquinone in electron transfer flavoprotein. J Am Chem Soc 2010; 131:15978-9. [PMID: 19886689 DOI: 10.1021/ja9059816] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human mitochondrial electron transfer flavoprotein (ETF) accepts electrons from at least 10 different flavoprotein dehydrogenases and transfers electrons to a single electron acceptor in the inner membrane. Paracoccus denitrificans ETF has the identical function, shares the same three-dimensional structure and functional domains, and exhibits the same conformational mobility. It has been proposed that the mobility of the alphaII domain permits the promiscuous behavior of ETF with respect to a variety of redox partners. Double electron-electron resonance (DEER) measurements between a spin label and an enzymatically reduced flavin adenine dinucleotide (FAD) cofactor in P. denitrificans ETF gave two distributions of distances: a major component centered at 4.2 +/- 0.1 nm and a minor component centered at 5.1 +/- 0.2 nm. Both components had widths of approximately 0.3 nm. A distance of 4.1 nm was calculated using the crystal structure of P. denitrificans ETF, which agrees with the major component obtained from the DEER measurement. The observation of a second distribution suggests that ETF, in the absence of substrate, adopts some conformations that are intermediate between the predominant free and substrate-bound states.
Collapse
Affiliation(s)
- Michael A Swanson
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, USA
| | | | | | | | | | | |
Collapse
|
85
|
Spadiut O, Leitner C, Tan TC, Ludwig R, Divne C, Haltrich D. Mutations of Thr169 affect substrate specificity of pyranose 2-oxidase fromTrametes multicolor. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701789320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
86
|
Law LK, Tang NLS, Hui J, Fung SLM, Ruiter J, Wanders RJA, Fok TF, Lam CWK. Novel mutations in ETFDH gene in Chinese patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Clin Chim Acta 2009; 404:95-9. [PMID: 19265687 DOI: 10.1016/j.cca.2009.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD, OMIM 231680) or glutaric aciduria type II (GAII) is an inherited autosomal recessive disease affecting fatty acid, amino acid and choline metabolism, due to mutations in one of three genes namely, electron transfer flavoprotein alpha-subunit, ETFA (OMIM 608053), electron transfer flavoprotein beta-subunit, ETFB (OMIM 130410) and electron transfer flavoprotein dehydrogenase, ETFDH (OMIM 231675). Some MADD patients are responsive to riboflavin treatment with an excellent prognosis. Recently, mutations in ETFDH were found to be responsible for all riboflavin-responsive MADD patients. In this study, we present the clinical features and molecular studies of 2 Chinese families with riboflavin-responsive MADD. METHODS Genomic DNA was extracted from peripheral blood samples or skin fibroblast cultures from the patients and normal controls. The thirteen exons of ETFDH were amplified by PCR. PCR products were sequenced in both forward and reverse directions. To rule out mutations in other genes, phenotype segregation was studied in the families by microsatellite markers in the proximity of the 3 genes, ETFA, ETFB and ETFDH. RESULTS Four novel mutations in ETFDH were detected in the 2 families. In family 1, a frame shift mutation, c.1355delG which introduced a premature-termination codon (PTC), I454X in exon 11 of ETFDH was found. Another mutation was a c.250G>A transition in exon 3 of ETFDH, A84T. In family 2, two novel missense mutations were identified, P137S, in exon 4 and G467R in exon 11. No carrier of these four mutations was identified from about 150 alleles of healthy Chinese control subjects. CONCLUSIONS Four novel mutations (3 missenses and 1 deletion) in ETFDH were found in Chinese families that presented with riboflavin-responsive MADD, which further expands the list of mutations found in patients with riboflavin-responsive MADD. Furthermore, we illustrated the utility of phenotype-genotype segregation in MADD families to prioritize genes for sequencing or to rule out the presence of disease causing mutation in other genes in MADD and other diseases caused by multiple genes.
Collapse
Affiliation(s)
- Lap-Kay Law
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Lu Y, Jiao R, Chen X, Zhong J, Ji J, Shen P. Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. J Cell Biochem 2009; 105:1451-60. [PMID: 18980251 DOI: 10.1002/jcb.21965] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methylene blue (MB), a widely studied reagent, is investigated in this work for its usage in photodynamic therapy (PDT). PDT has been proved to be highly effective in the treatment of different types of cancers. Previous studies showed MB has both high affinity for mitochondria and high photodynamic efficiency. To elucidate the effects of MB in PDT, we analyzed PDT-induced apoptosis in HeLa cells by introducing different doses of MB into the culture media. Our data showed that MB-mediated PDT triggered intense apoptotic cell death through a series of steps, beginning with photochemical generation of reactive oxygen species. The release of cytochrome c and activation of caspase-3 indicated that MB-PDT-mediated apoptosis in HeLa cells was executed by the mitochondria-dependent apoptotic pathway. Importantly, proteomic studies confirmed that expression levels of several mitochondrial proteins were altered in MB-PDT-induced apoptosis, including TRAP1, mitochondrial elongation factor Tu and peroxiredoxin 3 isoform b. Western blot data showed that phosphorylation of ERK1/2 and PKA were reduced in MB-PDT treated cells, indicating several signal molecules participating in this apoptotic cascade. Moreover, MB-PDT induced an increase in the strength of interaction between Bcl-xL and dephosphorylated Bad. This led to loss of the pro-survival function of Bcl-xL and resulted in mitochondria-mediated apoptosis. This study provides solid evidence of a strong induction by MB-PDT of a mitochondria-dependent apoptosis cascade in HeLa cells.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
88
|
Henriques BJ, Rodrigues JV, Olsen RK, Bross P, Gomes CM. Role of flavinylation in a mild variant of multiple acyl-CoA dehydrogenation deficiency: a molecular rationale for the effects of riboflavin supplementation. J Biol Chem 2008; 284:4222-9. [PMID: 19088074 DOI: 10.1074/jbc.m805719200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the genes encoding the alpha-subunit and beta-subunit of the mitochondrial electron transfer flavoprotein (ETF) and the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) cause multiple acyl-CoA dehydrogenation deficiency (MADD), a disorder of fatty acid and amino acid metabolism. Point mutations in ETF, which may compromise folding, and/or activity, are associated with both mild and severe forms of MADD. Here we report the investigation on the conformational and stability properties of the disease-causing variant ETFbeta-D128N, and our findings on the effect of flavinylation in modulating protein conformational stability and activity. A combination of biochemical and biophysical methods including circular dichroism, visible absorption, flavin, and tryptophan fluorescence emission allowed the analysis of structural changes and of the FAD moiety. The ETFbeta-D128N variant retains the overall fold of the wild type, but under stress conditions its flavin becomes less tightly bound. Flavinylation is shown to improve the conformational stability and biological activity of a destabilized D128N variant protein. Moreover, the presence of flavin prevented proteolytic digestion by avoiding protein destabilization. A patient homozygous for the ETFbeta-D128N mutation developed severe disease symptoms in association with a viral infection and fever. In agreement, our results suggest that heat inactivation of the mutant may be more relevant at temperatures above 37 degrees C. To mimic a situation of fever in vitro, the flavinylation status was tested at 39 degrees C. FAD exerts the effect of a pharmacological chaperone, improving ETF conformation, and yielding a more stable and active enzyme. Our results provide a structural and functional framework that could help to elucidate the role that an increased cellular FAD content obtained from riboflavin supplementation may play in the molecular pathogenesis of not only MADD, but genetic disorders of flavoproteins in general.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-756 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
89
|
Suharti S, Murakami KS, de Vries S, Ferry JG. Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans. Biochemistry 2008; 47:11528-35. [PMID: 18842001 DOI: 10.1021/bi801012p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavoredoxin is a FMN-containing electron transfer protein that functions in the energy-yielding metabolism of Desulfovibrio gigas of the Bacteria domain. Although characterization of this flavoredoxin is the only one reported, a database search revealed homologues widely distributed in both the Bacteria and Archaea domains that define a novel family. To improve our understanding of this family, a flavoredoxin from Methanosarcina acetivorans of the Archaea domain was produced in Escherichia coli and biochemically characterized, and a high-resolution crystal structure was determined. The protein was shown to be a homodimer with a subunit molecular mass of 21 kDa containing one noncovalently bound FMN per monomer. Redox titration showed an E(m) of -271 mV with two electrons, consistent with no semiquinone observed in the potential range studied, a result suggesting the flavoredoxin functions as a two-electron carrier. However, neither of the obligate two-electron carriers, NAD(P)H and coenzyme F420H2, was a competent electron donor, whereas 2[4Fe-4S] ferredoxin reduced the flavoredoxin. The X-ray crystal structure determined at 2.05 A resolution revealed a homodimer containing one FMN per monomer, consistent with the biochemical characterization. The isoalloxazine ring of FMN was shown buried within a narrow groove approximately 10 A from the positively charged protein surface that possibly facilitates interaction with the negatively charged ferredoxin. The structure provides a basis for predicting the mechanism by which electrons are transferred between ferredoxin and FMN. The FMN is bound with hydrogen bonds to the isoalloxazine ring and electrostatic interactions with the phosphate moiety that, together with sequence analyses of homologues, indicate a novel FMN binding motif for the flavoredoxin family.
Collapse
Affiliation(s)
- Suharti Suharti
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
90
|
Messiha HL, Smith CI, Scrutton N, Weightman P. Evidence for protein conformational change at a Au(110)/protein interface. EUROPHYSICS LETTERS 2008; 83:180004. [PMID: 19325933 PMCID: PMC2660841 DOI: 10.1209/0295-5075/83/18004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.
Collapse
Affiliation(s)
- H. L. Messiha
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre 131 Princess Street, Manchester, M1 7ND, UK, EU
| | - C. I. Smith
- Department of Physics, University of Liverpool - Liverpool, L69 7ZE, UK, EU
| | - N.S. Scrutton
- Faculty of Life Sciences, University of Manchester, Manchester Interdisciplinary Biocentre 131 Princess Street, Manchester, M1 7ND, UK, EU
| | - P. Weightman
- Department of Physics, University of Liverpool - Liverpool, L69 7ZE, UK, EU
| |
Collapse
|
91
|
Yotsumoto Y, Hasegawa Y, Fukuda S, Kobayashi H, Endo M, Fukao T, Yamaguchi S. Clinical and molecular investigations of Japanese cases of glutaric acidemia type 2. Mol Genet Metab 2008; 94:61-7. [PMID: 18289905 DOI: 10.1016/j.ymgme.2008.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 01/06/2008] [Accepted: 01/06/2008] [Indexed: 11/20/2022]
Abstract
Glutaric acidemia type 2 (GA2) is an autosomal recessive disorder resulting from a deficiency of electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) that manifests from most severe neonatal to late-onset forms. However, the genetic defect responsible for the disease and clinical severity is not well-characterized. In order to understand the relationship between the phenotype and genetic defect, we investigated the clinical and molecular features of 15 Japanese patients, including 4 previously reported cases. Three patients had the neonatal form and 8 patients had the late-onset form, 1 of whom presented an extremely mild phenotype. Immunoblot analysis showed that either ETFalpha, ETFbeta, or ETFDH was significantly reduced or absent in all patients. However, no specific enzyme deficiency predominated, and there were no associations with the clinical severity. Genetic analyses identified 15 mutations including non-sense, missense, splice site mutations, and small deletions, in ETFA, ETFB and ETFDH genes. Although almost all mutations were unique to Japanese patients and no common mutations were found, some of them appeared to be associated with a specific phenotype. Our results suggest that clinical and mutational spectrums of Japanese GA2 patients are heterogeneous and that genetic diagnoses may help to predict a prognosis and provide more accurate diagnostic information for patients and families with GA2.
Collapse
Affiliation(s)
- Yuka Yotsumoto
- Department of Pediatrics, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
92
|
Sato K, Nishina Y, Shiga K, Tanaka F. Isomers in the excited state of electron-transferring flavoprotein from Megasphaera elsdenii: spectral resolution from the time-resolved fluorescence spectra. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 90:134-40. [PMID: 18234505 DOI: 10.1016/j.jphotobiol.2007.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 11/24/2007] [Accepted: 12/15/2007] [Indexed: 10/22/2022]
Abstract
Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.
Collapse
Affiliation(s)
- Kyosuke Sato
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | |
Collapse
|
93
|
Fielding AJ, Usselman RJ, Watmough N, Simkovic M, Frerman FE, Eaton GR, Eaton SS. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 190:222-32. [PMID: 18037314 PMCID: PMC2262937 DOI: 10.1016/j.jmr.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 10/20/2007] [Accepted: 11/02/2007] [Indexed: 05/25/2023]
Abstract
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Collapse
Affiliation(s)
- Alistair J. Fielding
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Robert J. Usselman
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Nicholas Watmough
- Center for Metalloprotein Spectroscopy and Biology and School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ
| | - Martin Simkovic
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Frank E. Frerman
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80262
| | - Gareth R. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| | - Sandra S. Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208
| |
Collapse
|
94
|
Mukhopadhyay A, Yang CS, Wei B, Weiner H. Precursor protein is readily degraded in mitochondrial matrix space if the leader is not processed by mitochondrial processing peptidase. J Biol Chem 2007; 282:37266-75. [PMID: 17959599 DOI: 10.1074/jbc.m706594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is not known why leader peptides are removed by the mitochondrial processing peptidase after import into the matrix space. The leaders of yeast aldehyde dehydrogenase (pALDH) and malate dehydrogenase were mutated so that they would not be processed after import. The recombinant nonprocessed precursor of yeast pALDH possessed a similar specific activity as the corresponding mature form but was much less stable. The nonprocessed pALDH was transformed into a yeast strain missing ALDHs. The transformed yeast grew slowly on ethanol as the sole carbon source showing that the nonprocessed precursor was functional in vivo. Western blot analysis showed that the amount of precursor was 15-20% of that found in cells transformed with the native enzyme. Pulse-chase experiments revealed that the turnover rate for the nonprocessed precursor was greater than that of the mature protein indicating that the nonprocessed precursor could have been degraded. By using carbonyl cyanide m-chlorophenylhydrazone, we showed that the nonprocessed precursor was degraded in the matrix space. The nonprocessed precursor forms of precursor yeast malate dehydrogenase and rat liver pALDH also were degraded in the matrix space of HeLa cell mitochondria faster than their corresponding mature forms. In the presence of o-phenanthroline, an inhibitor of mitochondrial processing peptidase, the wild type precursor was readily degraded in the matrix space. Collectively, this study showed that the precursor form is less stable in the matrix space than is the mature form and provides an explanation for why the leader peptide is removed from the precursors.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA.
| | | | | | | |
Collapse
|
95
|
Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 2007; 190:784-91. [PMID: 18039764 DOI: 10.1128/jb.01422-07] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
96
|
Toogood HS, Leys D, Scrutton NS. Dynamics driving function − new insights from electron transferring flavoproteins and partner complexes. FEBS J 2007; 274:5481-504. [DOI: 10.1111/j.1742-4658.2007.06107.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J Bacteriol 2007; 189:8145-53. [PMID: 17873051 PMCID: PMC2168664 DOI: 10.1128/jb.01017-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii couples caffeate reduction with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions, a process referred to as caffeate respiration. We addressed the nature of the hitherto unknown enzymatic activities involved in this process and their cellular localization. Cell extract of A. woodii catalyzes H(2)-dependent caffeate reduction. This reaction is strictly ATP dependent but can be activated also by acetyl coenzyme A (CoA), indicating that there is formation of caffeyl-CoA prior to reduction. Two-dimensional gel electrophoresis revealed proteins present only in caffeate-grown cells. Two proteins were identified by electrospray ionization-mass spectrometry/mass spectrometry, and the encoding genes were cloned. These proteins are very similar to subunits alpha (EtfA) and beta (EtfB) of electron transfer flavoproteins present in various anaerobic bacteria. Western blot analysis demonstrated that they are induced by caffeate and localized in the cytoplasm. Etf proteins are known electron carriers that shuttle electrons from NADH to different acceptors. Indeed, NADH was used as an electron donor for cytosolic caffeate reduction. Since the hydrogenase was soluble and used ferredoxin as an electron acceptor, the missing link was a ferredoxin:NAD(+) oxidoreductase. This activity could be determined and, interestingly, was membrane bound. A search for genes that could encode this activity revealed DNA fragments encoding subunits C and D of a membrane-bound Rnf-type NADH dehydrogenase that is a potential Na(+) pump. These data suggest the following electron transport chain: H(2) --> ferredoxin --> NAD(+) --> Etf --> caffeyl-CoA reductase. They also imply that the sodium motive step in the chain is the ferredoxin-dependent NAD(+) reduction catalyzed by Rnf.
Collapse
Affiliation(s)
- Frank Imkamp
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
98
|
Warda M, Kim HK, Kim N, Youm JB, Kang SH, Park WS, Khoa TM, Kim YH, Han J. Simulated hyperglycemia in rat cardiomyocytes: A proteomics approach for improved analysis of cellular alterations. Proteomics 2007; 7:2570-90. [PMID: 17647226 DOI: 10.1002/pmic.200700168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diabetic hyperglycemia can lead to stress-related cellular apoptosis of cardiac tissue. However, the mechanism by which hyperglycemia inflicts this damage on the structure and function of the heart is unclear. In this study, we examined the relationship between proteome alterations, mitochondrial function, and major biochemical and electrophysiological changes affecting cardiac performance during simulated short-term hyperglycemia. Two-dimensional comparative proteomics analysis of rat hearts perfused with glucose at high (30 mM) or control (5.5 mM) levels revealed that glucose loading alters cardiomyocyte proteomes. It increased expression levels of initial enzymes of the tricarboxylic acid cycle, and of enzymes of fatty acid beta-oxidation, with consequent up-regulation of enzymes of mitochondrial electron transport. It also markedly decreased expression of enzymes of glycolysis and the final steps of the tricarboxylic acid cycle. Glucose loading increased the rate of Bax-independent apoptosis. High glucose increased the duration of the action potential and elevated level of intracellular cytoplasmic calcium. Surprisingly, glucose loading did not influence levels of nitric oxide or mitochondrial superoxide in isolated cardiomyocytes. In summary, short-term simulated hyperglycemia attenuated expression of many anti-apoptotic proteins. This effect was apparently mediated via alterations in multiple biochemical pathways that collectively increased apoptotic susceptibility.
Collapse
Affiliation(s)
- Mohamad Warda
- Department of Physiology and Biophysics, College of Medicine, Biohealth Products Research Center, Cardiovascular and Metabolic Disease Center, FIRST Mitochondrial Research Group, Inje University, Busan, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bai F, Li Y, Xu H, Xia H, Yin T, Yao H, Zhang L, Zhang X, Bai Y, Jin S, Qiao M. Identification and functional characterization of pfm, a novel gene involved in swimming motility of Pseudomonas aeruginosa. Gene 2007; 401:19-27. [PMID: 17714889 DOI: 10.1016/j.gene.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/09/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa, an important opportunistic pathogen, has a single polar flagellum which is an important virulence and colonization factor by providing swimming motility. This paper describes the functional characterization of a novel gene pfm (PA2950) of P. aeruginosa. The pfm encodes a protein that is similar to a number of short-chain alcohol dehydrogenases of other bacterial species. Mutation of this gene results in a defect in swimming motility which can be completed back to that of wild type by a plasmid containing the pfm. Interestingly, the pfm mutant possesses an intact flagellum which does not rotate, thus giving rise to a non-motile phenotype. The pfm gene is encoded on an operon together with two upstream genes which code for electron transfer flavoprotein (ETF). Yeast two-hybrid tests indicated that the PFM interacts with the ETF, suggesting that the putative dehydrogenase (PFM) is involved in energy metabolism that is critical for the rotation of flagellum in P. aeruginosa.
Collapse
Affiliation(s)
- Fang Bai
- College of Life Sciences, Nankai University, Tianjin, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Biochemistry 2007; 46:483-91. [PMID: 17209558 PMCID: PMC2527739 DOI: 10.1021/bi061935g] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PutA is a novel flavoprotein in Escherichia coli that switches from a transcriptional repressor to a membrane-bound proline catabolic enzyme. Previous crystallographic studies of the PutA proline dehydrogenase (PRODH) domain under oxidizing conditions revealed that FAD N(5) and the ribityl 2'-OH group form hydrogen bonds with Arg431 and Arg556, respectively. Here we identify molecular interactions in the PutA PRODH active site that underlie redox-dependent functional switching of PutA. We report that reduction of the PRODH domain induces major structural changes in the FAD cofactor, including a 22 degrees bend of the isoalloxazine ring along the N(5)-N(10) axis, crankshaft rotation of the upper part of the ribityl chain, and formation of a new hydrogen bond network involving the ribityl 2'-OH group, FAD N(1), and Gly435. The roles of the FAD 2'-OH group and the FAD N(5)-Arg431 hydrogen bond pair in regulating redox-dependent PutA-membrane associations were tested using FAD analogues and site-directed mutagenesis. Kinetic membrane binding measurements and cell-based reporter gene assays of modified PutA proteins show that disrupting the FAD N(5)-Arg431 interaction impairs the reductive activation of PutA-membrane binding. We also show that the FAD 2'-OH group acts as a redox-sensitive toggle switch that controls PutA-membrane binding. These results illustrate a new versatility of the ribityl chain in flavoprotein mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donald F. Becker
- Address Correspondence to: Donald F. Becker, Phone: 402-472-9652; Fax: 402-472-472-7842. E-mail:
| |
Collapse
|