51
|
Ferdous MM, Bao Y, Vinciotti V, Liu X, Wilson P. Predicting gene expression from genome wide protein binding profiles. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.09.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
García-Sánchez A, Marqués-García F. Review of Methods to Study Gene Expression Regulation Applied to Asthma. Methods Mol Biol 2017; 1434:71-89. [PMID: 27300532 DOI: 10.1007/978-1-4939-3652-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Gene expression regulation is the cellular process that controls, increasing or decreasing, the expression of gene products (RNA or protein). A complex set of interactions between genes, RNA molecules, protein, and other components determined when and where specific genes are activated and the amount of protein or RNA produced. Here, we focus on several methods to study gene regulation applied to asthma and allergic research such as: Western Blot to identify and quantify proteins, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) to study protein interactions with nucleic acids, and RNA interference (RNAi) by which gene expression could be silenced.
Collapse
Affiliation(s)
- Asunción García-Sánchez
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain. .,Salamanca Institute for Biomedical Research (IBSAL), UniversityHospital of Salamanca, Salamanca, Spain.
| | - Fernando Marqués-García
- Salamanca Institute for Biomedical Research (IBSAL), Salamanca, Spain.,Department of Clinical Biochemistry, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
53
|
Nakayama TJ, Rodrigues FA, Neumaier N, Marcolino-Gomes J, Molinari HBC, Santiago TR, Formighieri EF, Basso MF, Farias JRB, Emygdio BM, de Oliveira ACB, Campos ÂD, Borém A, Harmon FG, Mertz-Henning LM, Nepomuceno AL. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization. PLoS One 2017; 12:e0187920. [PMID: 29145496 PMCID: PMC5690659 DOI: 10.1371/journal.pone.0187920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA in soybean roots under hypoxia.
Collapse
Affiliation(s)
- Thiago J. Nakayama
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fabiana A. Rodrigues
- Embrapa Soja, Empresa Brasileira de Pesquisa Agropecuária, Londrina, Paraná, Brazil
| | - Norman Neumaier
- Embrapa Soja, Empresa Brasileira de Pesquisa Agropecuária, Londrina, Paraná, Brazil
| | | | - Hugo B. C. Molinari
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal, Brazil
| | - Thaís R. Santiago
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal, Brazil
| | - Eduardo F. Formighieri
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal, Brazil
| | - Marcos F. Basso
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal, Brazil
| | - José R. B. Farias
- Embrapa Soja, Empresa Brasileira de Pesquisa Agropecuária, Londrina, Paraná, Brazil
| | - Beatriz M. Emygdio
- Embrapa Clima Temperado, Empresa Brasileira de Pesquisa Agropecuária, Pelotas, Rio Grande do Sul, Brazil
| | - Ana C. B. de Oliveira
- Embrapa Clima Temperado, Empresa Brasileira de Pesquisa Agropecuária, Pelotas, Rio Grande do Sul, Brazil
| | - Ângela D. Campos
- Embrapa Clima Temperado, Empresa Brasileira de Pesquisa Agropecuária, Pelotas, Rio Grande do Sul, Brazil
| | - Aluízio Borém
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Frank G. Harmon
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, United States of America
| | | | | |
Collapse
|
54
|
Fu H, LianpingYang, Zhang X. Noncoding Variants Functional Prioritization Methods Based on Predicted Regulatory Factor Binding Sites. Curr Genomics 2017; 18:322-331. [PMID: 29081688 PMCID: PMC5635616 DOI: 10.2174/1389202918666170228143619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/16/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS With the advent of the post genomic era, the research for the genetic mechanism of the diseases has found to be increasingly depended on the studies of the genes, the gene-networks and gene-protein interaction networks. To explore gene expression and regulation, the researchers have carried out many studies on transcription factors and their binding sites (TFBSs). Based on the large amount of transcription factor binding sites predicting values in the deep learning models, further computation and analysis have been done to reveal the relationship between the gene mutation and the occurrence of the disease. It has been demonstrated that based on the deep learning methods, the performances of the prediction for the functions of the noncoding variants are outperforming than those of the conventional methods. The research on the prediction for functions of Single Nucleotide Polymorphisms (SNPs) is expected to uncover the mechanism of the gene mutation affection on traits and diseases of human beings. RESULTS We reviewed the conventional TFBSs identification methods from different perspectives. As for the deep learning methods to predict the TFBSs, we discussed the related problems, such as the raw data preprocessing, the structure design of the deep convolution neural network (CNN) and the model performance measure et al. And then we summarized the techniques that usually used in finding out the functional noncoding variants from de novo sequence. CONCLUSION Along with the rapid development of the high-throughout assays, more and more sample data and chromatin features would be conducive to improve the prediction accuracy of the deep convolution neural network for TFBSs identification. Meanwhile, getting more insights into the deep CNN framework itself has been proved useful for both the promotion on model performance and the development for more suitable design to sample data. Based on the feature values predicted by the deep CNN model, the prioritization model for functional noncoding variants would contribute to reveal the affection of gene mutation on the diseases.
Collapse
Affiliation(s)
- Haoyue Fu
- College of Sciences, Northeastern University, Shenyang, China
| | - LianpingYang
- College of Sciences, Northeastern University, Shenyang, China
- University of Southern California, Dept. Biol. Sci., Program Mol & Computat Biol, USA
| | - Xiangde Zhang
- College of Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
55
|
Chapa TJ, Du Y, Sun R, Yu D, French AR. Proteomic and phylogenetic coevolution analyses of pM79 and pM92 identify interactions with RNA polymerase II and delineate the murine cytomegalovirus late transcription complex. J Gen Virol 2017; 98:242-250. [PMID: 27926822 DOI: 10.1099/jgv.0.000676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of the late viral gene expression in betaherpesviruses is largely undefined. We have previously shown that the murine cytomegalovirus proteins pM79 and pM92 are required for late gene transcription. Here, we provide insight into the mechanism of pM79 and pM92 activity by determining their interaction partners during infection. Co-immunoprecipitation-coupled MS studies demonstrate that pM79 and pM92 interact with an array of cellular and viral proteins involved in transcription. Specifically, we identify RNA polymerase II as a cellular target for both pM79 and pM92. We use inter-protein coevolution analysis to show how pM79 and pM92 likely assemble into a late transcription complex composed of late transcription regulators pM49, pM87 and pM95. Combining proteomic methods with coevolution computational analysis provides novel insights into the relationship between pM79, pM92 and RNA polymerase II and allows the generation of a model of the multi-component viral complex that regulates late gene transcription.
Collapse
Affiliation(s)
- Travis J Chapa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA.,Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dong Yu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
56
|
Guo J, Ling H, Ma J, Chen Y, Su Y, Lin Q, Gao S, Wang H, Que Y, Xu L. A sugarcane R2R3-MYB transcription factor gene is alternatively spliced during drought stress. Sci Rep 2017; 7:41922. [PMID: 28167824 PMCID: PMC5294458 DOI: 10.1038/srep41922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/30/2016] [Indexed: 11/28/2022] Open
Abstract
MYB transcription factors of the R2R3-MYB family have been shown to play important roles in many plant processes. A sugarcane R2R3-MYB gene (ScMYB2) and its two alternative forms of transcript (ScMYB2S1 and ScMYB2S2) were identified in this study. The deduced protein of ScMYB2S1 is a typical plant R2R3-MYB protein, while ScMYB2S2 encodes a truncated protein. Real-time qPCR analysis revealed that ScMYB2S1 is suppressed under PEG-simulated drought stress in sugarcane, while ScMYB2S2 is induced at later treatment stage. A senescence symptom was observed when ScMYB2S1 was injected into tobacco leaves mediated by Agrobacterium, but no symptom for ScMYB2S2. Further investigation showed that the expression levels of 4 senescence-associated genes, NtPR-1a, NtNYC1, NtCAT3 and NtABRE, were markedly induced in tobacco leaves after ScMYB2S1-injection, while they were not sensitive to ScMYB2S2-injection. Moreover, MDA and proline were also investigated after injection. Similarly, MDA and proline levels were induced by ABA and ScMYB2S1, while inhibited by ScMYB2S2. We propose that ScMYB2, by alternatively splicing two transcripts (ScMYB2S1 and ScMYB2S2), is involved in an ABA-mediated leaf senescence signaling pathway and play positive role in respond to drought-induced senescence in sugarcane. The results of this study provide information for further research in sugarcane stress processes.
Collapse
Affiliation(s)
- Jinlong Guo
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hui Ling
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Ma
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yun Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yachun Su
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qingliang Lin
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shiwu Gao
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Youxiong Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liping Xu
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
57
|
Laxa M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? FRONTIERS IN PLANT SCIENCE 2017; 7:1977. [PMID: 28111580 PMCID: PMC5216049 DOI: 10.3389/fpls.2016.01977] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/03/2023]
Abstract
Many plant promoters were characterized and used for transgene expression in plants. Even though these promoters drive high levels of transgene expression in plants, the expression patterns are rarely constitutive but restricted to some tissues and developmental stages. In terms of crop improvement not only the enhancement of expression per se but, in particular, tissue-specific and spatial expression of genes plays an important role. Introns were used to boost expression in transgenic plants in the field of crop improvement for a long time. However, the mechanism behind this so called intron-mediated enhancement (IME) is still largely unknown. This review highlights the complexity of IME on the levels of its regulation and modes of action and gives an overview on IME methodology, examples in fundamental research and models of proposed mechanisms. In addition, the application of IME in heterologous gene expression is discussed.
Collapse
Affiliation(s)
- Miriam Laxa
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
58
|
|
59
|
A comparative analysis of the ‘other roles’ of transcriptional factors from pathogenic organisms. Gene X 2016; 586:274-80. [DOI: 10.1016/j.gene.2016.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
|
60
|
Hu X, Guo W, Chen S, Xu Y, Li P, Wang H, Chu H, Li J, DU Y, Chen X, Zhang G, Zhao G. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells. Oncol Lett 2016; 11:3735-3742. [PMID: 27313685 DOI: 10.3892/ol.2016.4451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xuanyu Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wei Guo
- Department of Microbiology and Immunology, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yizhuo Xu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuwen DU
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaonan Chen
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guoqiang Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
61
|
Bunch H. Role of genome guardian proteins in transcriptional elongation. FEBS Lett 2016; 590:1064-75. [PMID: 27010360 DOI: 10.1002/1873-3468.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Maintaining genomic integrity is vital for cell survival and homeostasis. Mutations in critical genes in germ-line and somatic cells are often implicated with the onset or progression of diseases. DNA repair enzymes thus take important roles as guardians of the genome in the cell. Besides the known function to repair DNA damage, recent findings indicate that DNA repair enzymes regulate the transcription of protein-coding and noncoding RNA genes. In particular, a novel role of DNA damage response signaling has been identified in the regulation of transcriptional elongation. Topoisomerases-mediated DNA breaks appear important for the regulation. In this review, recent findings of these DNA break- and repair-associated enzymes in transcription and potential roles of transcriptional activation-coupled DNA breaks are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
62
|
|
63
|
Arimbasseri AG, Rijal K, Maraia RJ. Comparative overview of RNA polymerase II and III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 2015; 5:e27639. [PMID: 25764110 DOI: 10.4161/trns.27369] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.
Collapse
Affiliation(s)
- Aneeshkumar G Arimbasseri
- a Intramural Research Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | | | |
Collapse
|
64
|
Zhou X, Cain CE, Myrthil M, Lewellen N, Michelini K, Davenport ER, Stephens M, Pritchard JK, Gilad Y. Epigenetic modifications are associated with inter-species gene expression variation in primates. Genome Biol 2015; 15:547. [PMID: 25468404 PMCID: PMC4290387 DOI: 10.1186/s13059-014-0547-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Changes in gene regulation have long been thought to play an important role in evolution and speciation, especially in primates. Over the past decade, comparative genomic studies have revealed extensive inter-species differences in gene expression levels, yet we know much less about the extent to which regulatory mechanisms differ between species. RESULTS To begin addressing this gap, we perform a comparative epigenetic study in primate lymphoblastoid cell lines, to query the contribution of RNA polymerase II and four histone modifications, H3K4me1, H3K4me3, H3K27ac, and H3K27me3, to inter-species variation in gene expression levels. We find that inter-species differences in mark enrichment near transcription start sites are significantly more often associated with inter-species differences in the corresponding gene expression level than expected by chance alone. Interestingly, we also find that first-order interactions among the five marks, as well as chromatin states, do not markedly contribute to the degree of association between the marks and inter-species variation in gene expression levels, suggesting that the marginal effects of the five marks dominate this contribution. CONCLUSIONS Our observations suggest that epigenetic modifications are substantially associated with changes in gene expression levels among primates and may represent important molecular mechanisms in primate evolution.
Collapse
|
65
|
Wang K, Nishida H. REGULATOR: a database of metazoan transcription factors and maternal factors for developmental studies. BMC Bioinformatics 2015; 16:114. [PMID: 25880930 PMCID: PMC4411712 DOI: 10.1186/s12859-015-0552-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Genes encoding transcription factors that constitute gene-regulatory networks and maternal factors accumulating in egg cytoplasm are two classes of essential genes that play crucial roles in developmental processes. Transcription factors control the expression of their downstream target genes by interacting with cis-regulatory elements. Maternal factors initiate embryonic developmental programs by regulating the expression of zygotic genes and various other events during early embryogenesis. RESULTS This article documents the transcription factors of 77 metazoan species as well as human and mouse maternal factors. We improved the previous method using a statistical approach adding Gene Ontology information to Pfam based identification of transcription factors. This method detects previously un-discovered transcription factors. The novel features of this database are: (1) It includes both transcription factors and maternal factors, although the number of species, in which maternal factors are listed, is limited at the moment. (2) Ontological representation at the cell, tissue, organ, and system levels has been specially designed to facilitate development studies. This is the unique feature in our database and is not available in other transcription factor databases. CONCLUSIONS A user-friendly web interface, REGULATOR ( http://www.bioinformatics.org/regulator/ ), which can help researchers to efficiently identify, validate, and visualize the data analyzed in this study, are provided. Using this web interface, users can browse, search, and download detailed information on species of interest, genes, transcription factor families, or developmental ontology terms.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
66
|
Budden DM, Hurley DG, Cursons J, Markham JF, Davis MJ, Crampin EJ. Predicting expression: the complementary power of histone modification and transcription factor binding data. Epigenetics Chromatin 2014; 7:36. [PMID: 25489339 PMCID: PMC4258808 DOI: 10.1186/1756-8935-7-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023] Open
Abstract
Background Transcription factors (TFs) and histone modifications (HMs) play critical roles in gene expression by regulating mRNA transcription. Modelling frameworks have been developed to integrate high-throughput omics data, with the aim of elucidating the regulatory logic that results from the interactions of DNA, TFs and HMs. These models have yielded an unexpected and poorly understood result: that TFs and HMs are statistically redundant in explaining mRNA transcript abundance at a genome-wide level. Results We constructed predictive models of gene expression by integrating RNA-sequencing, TF and HM chromatin immunoprecipitation sequencing and DNase I hypersensitivity data for two mammalian cell types. All models identified genome-wide statistical redundancy both within and between TFs and HMs, as previously reported. To investigate potential explanations, groups of genes were constructed for ontology-classified biological processes. Predictive models were constructed for each process to explore the distribution of statistical redundancy. We found significant variation in the predictive capacity of TFs and HMs across these processes and demonstrated the predictive power of HMs to be inversely proportional to process enrichment for housekeeping genes. Conclusions It is well established that the roles played by TFs and HMs are not functionally redundant. Instead, we attribute the statistical redundancy reported in this and previous genome-wide modelling studies to the heterogeneous distribution of HMs across chromatin domains. Furthermore, we conclude that statistical redundancy between individual TFs can be readily explained by nucleosome-mediated cooperative binding. This could possibly help the cell confer regulatory robustness by rejecting signalling noise and allowing control via multiple pathways. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-7-36) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David M Budden
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; NICTA Victoria Research Laboratory, The University of Melbourne, 3010 Parkville, Australia
| | - Daniel G Hurley
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia
| | - Joseph Cursons
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia
| | - John F Markham
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, 3010 Parkville, Australia
| | - Melissa J Davis
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, The University of Melbourne, 3010 Parkville, Australia ; NICTA Victoria Research Laboratory, The University of Melbourne, 3010 Parkville, Australia ; The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, 3010 Parkville, Australia ; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, 3010 Parkville, Australia ; Department of Mathematics and Statistics, The University of Melbourne, 3010 Parkville, Australia ; School of Medicine, The University of Melbourne, 3010 Parkville, Australia
| |
Collapse
|
67
|
Moslehi R, Ambroggio X, Nagarajan V, Kumar A, Dzutsev A. Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia. BMC Genomics 2014; 15:373. [PMID: 24885447 PMCID: PMC4229886 DOI: 10.1186/1471-2164-15-373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preeclampsia is a significant cause of maternal and fetal mortality and morbidity worldwide. We previously reported associations between trichothiodystrophy (TTD) nucleotide excision repair (NER) and transcription gene mutations in the fetus and the risk of gestational complications including preeclampsia. TTD NER/transcription genes, XPD, XPB and TTD-A, code for subunits of Transcription Factor (TF)IIH. Interpreting XPD mutations in the context of available biochemical data led us to propose adverse effects on CDK-activating kinase (CAK) subunit of TFIIH and TFIIH-mediated functions as a relevant mechanism in preeclampsia. In order to gain deeper insight into the underlying biologic mechanisms involving TFIIH-mediated functions in placenta, we analyzed NER/transcription and global gene expression profiles of normal and preeclamptic placentas and studied gene regulatory networks. RESULTS We found high expression of TTD NER/transcription genes in normal human placenta, above the mean of their expression in all organs. XPD and XPB were consistently expressed from 14 to 40 weeks gestation while expression of TTD-A was strongly negatively correlated (r=-0.7, P<0.0001) with gestational age. Analysis of gene expression patterns of placentas from a case-control study of preeclampsia using Algorithm for Reconstruction of Accurate Cellular Networks (ARACNE) revealed GTF2E1, a component of TFIIE which modulates TFIIH, among major regulators of differentially-expressed genes in preeclampsia. The basal transcription pathway was among the largest dysregulated protein-protein interaction networks in this preeclampsia dataset. Within the basal transcription pathway, significantly down-regulated genes besides GTF2E1 included those coding for the CAK complex of TFIIH, namely CDK7, CCNH, and MNAT1. Analysis of other relevant gene expression and gene regulatory network data also underscored the involvement of transcription pathways and identified JUNB and JUND (components of transcription factor AP-1) as transcription regulators of the network involving the TTD genes, GTF2E1, and selected gene regulators implicated in preeclampsia. CONCLUSIONS Our results indicate that TTD NER/transcription genes are expressed in placenta during gestational periods critical to preeclampsia development. Our overall findings suggest that impairment of TFIIH-mediated function in transcription in placenta is a likely mechanism leading to preeclampsia and provide etiologic clues which may be translated into therapeutic and preventive measures.
Collapse
Affiliation(s)
- Roxana Moslehi
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York (SUNY), Rensselaer, NY 12144, USA.
| | | | | | | | | |
Collapse
|
68
|
Villicaña C, Cruz G, Zurita M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int 2014; 14:18. [PMID: 24576043 PMCID: PMC3942515 DOI: 10.1186/1475-2867-14-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/21/2014] [Indexed: 01/11/2023] Open
Abstract
General transcription is required for the growth and survival of all living cells. However, tumor cells require extraordinary levels of transcription, including the transcription of ribosomal RNA genes by RNA polymerase I (RNPI) and mRNA by RNA polymerase II (RNPII). In fact, cancer cells have mutations that directly enhance transcription and are frequently required for cancer transformation. For example, the recent discovery that MYC enhances the transcription of the majority genes in the genome correlates with the fact that several transcription interfering drugs preferentially kill cancer cells. In recent years, advances in the mechanistic studies of the basal transcription machinery and the discovery of drugs that interfere with multiple components of transcription are being used to combat cancer. For example, drugs such as triptolide that targets the general transcription factors TFIIH and JQ1 to inhibit BRD4 are administered to target the high proliferative rate of cancer cells. Given the importance of finding new strategies to preferentially sensitize tumor cells, this review primarily focuses on several transcription inhibitory drugs to demonstrate that the basal transcription machinery constitutes a potential target for the design of novel cancer drugs. We highlight the drugs’ mechanisms for interfering with tumor cell survival, their importance in cancer treatment and the challenges of clinical application.
Collapse
Affiliation(s)
| | | | - Mario Zurita
- Departament of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico.
| |
Collapse
|
69
|
Integrative transcriptome analysis reveals dysregulation of canonical cancer molecular pathways in placenta leading to preeclampsia. Sci Rep 2014; 3:2407. [PMID: 23989136 PMCID: PMC3757356 DOI: 10.1038/srep02407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022] Open
Abstract
We previously suggested links between specific XPD mutations in the fetal genome and the risk of placental maldevelopment and preeclampsia, possibly due to impairment of Transcription Factor (TF)IIH-mediated functions in placenta. To identify the underlying mechanisms, we conducted the current integrative analysis of several relevant transcriptome data sources. Our meta-analysis revealed downregulation of TFIIH subunits in preeclamptic placentas. Our overall integrative analysis suggested that, in the presence of hypoxia and oxidative stress, EGFR signaling deficiency, which can be caused by TFIIH impairment as well as by other mechanisms, results in ATF3 upregulation, inducing mediators of clinical symptoms of preeclampsia such as FLT1 and ENG. EGFR- and ATF3-dependent pathways play prominent roles in cancer development. We propose that dysregulation of these canonical cancer molecular pathways occurs in preeclampsia and delineate the relevance of TFIIH, providing etiologic clues which could eventually translate into a therapeutic approach.
Collapse
|
70
|
Zhang B, Wang O, Qin J, Liu S, Sun S, Liu H, Kuang J, Jiang G, Zhang W. cis-Acting elements and trans-acting factors in the transcriptional regulation of raf kinase inhibitory protein expression. PLoS One 2013; 8:e83097. [PMID: 24386147 PMCID: PMC3873293 DOI: 10.1371/journal.pone.0083097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 11/01/2013] [Indexed: 12/16/2022] Open
Abstract
The Raf kinase inhibitory protein (RKIP) is down-regulated in multiple types of human cancers. Decreased RKIP transcription activity may be one of the major mechanisms responsible for the downregulation of RKIP expression in human diseases. To test this hypothesis, we need to gain basic knowledge of the transcriptional regulation of RKIP. To achieve this objective, we made a systematic effort to identify cis-acting elements and trans-acting factors that control RKIP promoter activity. We found that full RKIP promoter activity requires the region −56 to +261 relative to the transcription start site. Within the full promoter region, there are two motifs rich in G/C that responded to transcription factor Sp1, one cAMP-responsive element that responded to the transcription factor CREB, and one docking site for the histone acetylase p300. In human melanoma A375 cells and human cervical cancer HeLa cells, mutation or deletion of each of these cis-acting elements decreased promoter activity. In A375 cells, knockdown of the corresponding transcription factors Sp1, CREB, or p300 decreased RKIP promoter activity, whereas overexpression of CREB and p300 increased RKIP promoter activity. The results obtained with HeLa cells also supported the idea that Sp1 and CREB play positive roles in the regulation of RKIP transcription. These findings suggest that regulators of the expression or activity of Sp1, CREB, and p300 are involved in regulating RKIP transcription.
Collapse
Affiliation(s)
- Boyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ou Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jingchao Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shuaishuai Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Huitu Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| | - Wei Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (GJ); (WZ)
| |
Collapse
|
71
|
Kumari S, Ware D. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS One 2013; 8:e79011. [PMID: 24205361 PMCID: PMC3812177 DOI: 10.1371/journal.pone.0079011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays) and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max) reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS) exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica) and dicot (A. thaliana) genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.
Collapse
Affiliation(s)
- Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America,
- United States Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| |
Collapse
|
72
|
Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles. PLoS One 2013; 8:e67142. [PMID: 23825635 PMCID: PMC3692446 DOI: 10.1371/journal.pone.0067142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
Background Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups. Methodology/Principal Findings In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks. Results Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one. Conclusions The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis, which was of significant importance to monitor disease progression and improve therapeutic interventions.
Collapse
|
73
|
Hybrid electron microscopy-FRET imaging localizes the dynamical C-terminus of Tfg2 in RNA polymerase II-TFIIF with nanometer precision. J Struct Biol 2013; 184:52-62. [PMID: 23732819 DOI: 10.1016/j.jsb.2013.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 01/23/2023]
Abstract
TFIIF-a general transcription factor comprising two conserved subunits can associate with RNA polymerase II (RNAPII) tightly to regulate the synthesis of messenger RNA in eukaryotes. Herein, a hybrid method that combines electron microscopy (EM) and Förster resonance energy transfer (FRET) is described and used to localize the C-terminus of the second TFIIF subunit (Tfg2) in the architecture of RNAPII-TFIIF. In the first stage, a poly-histidine tag appended to the Tfg2 C-terminus was labeled with nickel-NTA nanogold and a seven-step single particle EM protocol was devised to obtain the region accessible by the nanogold in 3D, suggesting the Tfg2 C-terminus is proximal to the clamp of RNAPII. Next, the C-termini of the Rpb2 and the Rpb4 subunits of RNAPII, adjacent to the clamp, were selected for placing FRET satellites to enable the nano-positioning (NP) analysis, by which the localization precision was improved such that the Tfg2 C-terminus was found to dwell on the clamp ridge but could move to the clamp top during transcription. Because the tag receptive to the EM or FRET probes can be readily introduced to any protein subunit, this hybrid approach is generally applicable to complement cryo-EM study of many protein complexes to nanometer precision.
Collapse
|
74
|
Yedida GR, Nagini S, Mishra R. The importance of oncogenic transcription factors for oral cancer pathogenesis and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:179-88. [PMID: 23619350 DOI: 10.1016/j.oooo.2013.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 01/03/2023]
Abstract
Oral squamous cell carcinoma is a major cause of morbidity and mortality worldwide. Current experimental evidence shows that most important risk factors for oral cancer include tobacco use and excessive alcohol consumption and less well-defined risks include viral infection and a diet deficient in antioxidants. The positive correlation between various risk/etiologic factors of oral cancer and the activation of various transcription factors (TFs) has been reported in the literature. Although initially, TFs were considered to be very difficult targets for use in clinical treatment, recent technological advances have provided the ability to control these factors of cancer progression. This review focuses on the role of oncogenic transcription factors in oral cancer, their modes of activation through various biological pathways, the promises and pitfalls in viewing them as potent oncotargets, the way they can be controlled based on the current understanding, and the future research to be done in this area.
Collapse
Affiliation(s)
- Govinda Raju Yedida
- Centre for Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | | | | |
Collapse
|
75
|
Peng J, Chen J, Wang Y. Identifying cross-category relations in gene ontology and constructing genome-specific term association networks. BMC Bioinformatics 2013; 14 Suppl 2:S15. [PMID: 23368677 PMCID: PMC3549802 DOI: 10.1186/1471-2105-14-s2-s15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Gene Ontology (GO) has been widely used in biological databases, annotation projects, and computational analyses. Although the three GO categories are structured as independent ontologies, the biological relationships across the categories are not negligible for biological reasoning and knowledge integration. However, the existing cross-category ontology term similarity measures are either developed by utilizing the GO data only or based on manually curated term name similarities, ignoring the fact that GO is evolving quickly and the gene annotations are far from complete. Results In this paper we introduce a new cross-category similarity measurement called CroGO by incorporating genome-specific gene co-function network data. The performance study showed that our measurement outperforms the existing algorithms. We also generated genome-specific term association networks for yeast and human. An enrichment based test showed our networks are better than those generated by the other measures. Conclusions The genome-specific term association networks constructed using CroGO provided a platform to enable a more consistent use of GO. In the networks, the frequently occurred MF-centered hub indicates that a molecular function may be shared by different genes in multiple biological processes, or a set of genes with the same functions may participate in distinct biological processes. And common subgraphs in multiple organisms also revealed conserved GO term relationships. Software and data are available online at http://www.msu.edu/˜jinchen/CroGO.
Collapse
Affiliation(s)
- Jiajie Peng
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | | | | |
Collapse
|
76
|
Lavallée-Adam M, Rousseau J, Domecq C, Bouchard A, Forget D, Faubert D, Blanchette M, Coulombe B. Discovery of cell compartment specific protein-protein interactions using affinity purification combined with tandem mass spectrometry. J Proteome Res 2012; 12:272-81. [PMID: 23157168 DOI: 10.1021/pr300778b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Affinity purification combined with tandem mass spectrometry (AP-MS/MS) is a well-established method used to discover interaction partners for a given protein of interest. Because most AP-MS/MS approaches are performed using the soluble fraction of whole cell extracts (WCE), information about the cellular compartments where the interactions occur is lost. More importantly, classical AP-MS/MS often fails to identify interactions that take place in the nonsoluble fraction of the cell, for example, on the chromatin or membranes; consequently, protein complexes that are less soluble are underrepresented. In this paper, we introduce a method called multiple cell compartment AP-MS/MS (MCC-AP-MS/MS), which identifies the interactions of a protein independently in three fractions of the cell: the cytoplasm, the nucleoplasm, and the chromatin. We show that this fractionation improves the sensitivity of the method when compared to the classical affinity purification procedure using soluble WCE while keeping a very high specificity. Using three proteins known to localize in various cell compartments as baits, the CDK9 subunit of transcription elongation factor P-TEFb, the RNA polymerase II (RNAP II)-associated protein 4 (RPAP4), and the largest subunit of RNAP II, POLR2A, we show that MCC-AP-MS/MS reproducibly yields fraction-specific interactions. Finally, we demonstrate that this improvement in sensitivity leads to the discovery of novel interactions of RNAP II carboxyl-terminal domain (CTD) interacting domain (CID) proteins with POLR2A.
Collapse
Affiliation(s)
- Mathieu Lavallée-Adam
- McGill Centre for Bioinformatics and School of Computer Science, McGill University, Montréal, Québec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Urban A, Rossier J. Genetic targeting of specific neuronal cell types in the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2012; 196:163-92. [PMID: 22341326 DOI: 10.1016/b978-0-444-59426-6.00009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Understanding the structure and function of cortical circuits requires the identification of and control over specific cell types in the cortex. To address these obstacles, recent optogenetic approaches have been developed. The capacity to activate, silence, or monitor specific cell types by combining genetics, virology, and optics will decipher the role of specific groups of neurons within circuits with a spatiotemporal resolution that overcomes standard approaches. In this review, the various strategies for selective genetic targeting of a defined neuronal population are discussed as well as the pros and cons of the use of transgenic animals and recombinant viral vectors for the expression of transgenes in a specific set of neurons.
Collapse
Affiliation(s)
- Alan Urban
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France.
| | | |
Collapse
|
78
|
Abstract
A cDNA library from white alpaca (Vicugna pacos) skin was constructed using SMART technology to investigate the global gene expression profile in alpaca skin and identify genes associated with physiology of alpaca skin and pigmentation. A total of 5359 high-quality EST (expressed sequence tag) sequences were generated by sequencing random cDNA clones from the library. Clustering analysis of sequences revealed a total of 3504 unique sequences including 739 contigs (assembled from 2594 ESTs) and 2765 singletons. BLAST analysis against GenBank nr database resulted in 1287 significant hits (E-value < 10(-10)), of which 863 were annotated through gene ontology analysis. Transcripts for genes related to fleece quality, growth and coat color (e.g. collagen types I and III, troponin C2 and secreted protein acidic and rich in cysteine) were abundantly present in the library. Other genes, such as keratin family genes known to be involved in melanosome protein production, were also identified in the library. Members (KRT10, 14 and 15) of this gene family are evolutionarily conserved as revealed by a cross-species comparative analysis. This collection of ESTs provides a valuable resource for future research to understand the network of gene expression linked to physiology of alpaca skin and development of pigmentation.
Collapse
|
79
|
Moslehi R, Kumar A, Mills JL, Ambroggio X, Signore C, Dzutsev A. Phenotype-specific adverse effects of XPD mutations on human prenatal development implicate impairment of TFIIH-mediated functions in placenta. Eur J Hum Genet 2012; 20:626-31. [PMID: 22234153 DOI: 10.1038/ejhg.2011.249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations in XPD (ERCC2), XPB (ERCC3), and TTD-A (GTF2H5), genes involved in nucleotide excision repair and transcription, can cause several disorders including trichothiodystrophy (TTD) and xeroderma pigmentosum (XP). In this study, we tested the hypothesis that mutations in the XPD gene affect placental development in a phenotype-specific manner. To test our hypothesis and decipher potential biologic mechanisms, we compared all XPD-associated TTD (n=43) and XP (n=37) cases reported in the literature with respect to frequencies of gestational complications. Our genetic epidemiologic investigations of TTD and XP revealed that the exact genetic abnormality was relevant to the mechanism leading to gestational complications such as preeclampsia. Through structural mapping, we localized the preeclampsia-associated mutations to a C-terminal motif and the helicase surfaces of XPD, most likely affecting XPD's binding to cdk-activating kinase (CAK) and p44 subunits of transcription factor (TF) IIH. Our results suggested a link between TTD- but not XP-associated XPD mutations, placental maldevelopment and risk of pregnancy complications, possibly due to impairment of TFIIH-mediated functions in placenta. Our findings highlight the importance of the fetal genotype in development of gestational complications, such as preeclampsia. Therefore, future studies of genetic associations of preeclampsia and other placental vascular complications may benefit from focusing on genetic variants within the fetal DNA.
Collapse
Affiliation(s)
- Roxana Moslehi
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Albany, NY 12144, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Feklistov A, Darst SA. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit. Cell 2011; 147:1257-69. [PMID: 22136875 DOI: 10.1016/j.cell.2011.10.041] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 10/14/2022]
Abstract
The key step in bacterial promoter opening is recognition of the -10 promoter element (T(-12)A(-11)T(-10)A(-9)A(-8)T(-7) consensus sequence) by the RNA polymerase σ subunit. We determined crystal structures of σ domain 2 bound to single-stranded DNA bearing-10 element sequences. Extensive interactions occur between the protein and the DNA backbone of every -10 element nucleotide. Base-specific interactions occur primarily with A(-11) and T(-7), which are flipped out of the single-stranded DNA base stack and buried deep in protein pockets. The structures, along with biochemical data, support a model where the recognition of the -10 element sequence drives initial promoter opening as the bases of the nontemplate strand are extruded from the DNA double-helix and captured by σ. These results provide a detailed structural basis for the critical roles of A(-11) and T(-7) in promoter melting and reveal important insights into the initiation of transcription bubble formation.
Collapse
Affiliation(s)
- Andrey Feklistov
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
81
|
The distribution of GC nucleotides and regulatory sequence motifs in genes and their adjacent sequences. Gene 2011; 492:375-81. [PMID: 22101187 DOI: 10.1016/j.gene.2011.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/24/2011] [Accepted: 10/31/2011] [Indexed: 11/20/2022]
Abstract
The genomes of warm-blooded vertebrates are a mosaic of alternating fragments, isochores, with low and high GC contents and embedded genes. The evolutionary mechanisms leading to such structures are not fully understood. We have compared the distributions of GC base pairs in coding sequences and sequences spanning 5 kb upstream and downstream of genes in human and other species annotated in the RefSeq database and in different isochores of the human genome. Using our computer application NucleoSeq (available at www.bioinformatics.aei.polsl.pl), we also compared the average distributions of AT-rich regulatory motifs and transcription factor binding sites (TFBS) for single transcription factors with those in randomized sequences of the human genome, and revealed that some TFBS have a lower average frequency in a gene's promoter than in the randomized sequence, whereas for other transcription factors the opposite is observed. TFBS for some transcription factors show a higher frequency in the coding sequence than in the regulatory and in randomized sequences, suggesting their accumulation during evolution and possible functional roles. On the basis of the GC content in genes and their adjacent sequences which was similar in all species studied here, and the distribution of regulatory motifs, we hypothesize that the first step in evolution of many genes existing today was the joining of a GC-rich coding sequence to a region with a lower GC content and the potential to create regulatory motifs.
Collapse
|
82
|
Johnson AC, Ware LB, Himmelfarb J, Zager RA. HMG-CoA reductase activation and urinary pellet cholesterol elevations in acute kidney injury. Clin J Am Soc Nephrol 2011; 6:2108-13. [PMID: 21799150 DOI: 10.2215/cjn.02440311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Experimental acute kidney injury (AKI) activates the HMG-CoA reductase (HMGCR) gene, producing proximal tubule cholesterol loading. AKI also causes sloughing of proximal tubular cell debris into tubular lumina. This study tested whether these two processes culminate in increased urinary pellet cholesterol content, and whether the latter has potential AKI biomarker utility. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Urine samples were collected from 29 critically ill patients with (n = 14) or without (n= 15) AKI, 15 patients with chronic kidney disease, and 15 healthy volunteers. Centrifuged urinary pellets underwent lipid extraction, and the extracts were assayed for cholesterol content (factored by membrane phospholipid phosphate content). In vivo HMGCR activation was sought by measuring levels of RNA polymerase II (Pol II), and of a gene activating histone mark (H3K4m3) at exon 1 of the HMGCR gene (chromatin immunoprecipitation assay of urine chromatin samples). RESULTS AKI+ patients had an approximate doubling of urinary pellet cholesterol content compared with control urine samples (versus normal; P < 0.001). The values significantly correlated (r, 0.5; P < 0.01) with serum, but not urine, creatinine concentrations. Conversely, neither critical illness without AKI nor chronic kidney disease raised pellet cholesterol levels. Increased HMGCR activity in the AKI+ patients was supported by three- to fourfold increased levels of Pol II, and of H3K4m3, at the HMGCR gene (versus controls or AKI- patients). CONCLUSIONS (1) Clinical AKI, like experimental AKI, induces HMGCR gene activation; (2) increased urinary pellet cholesterol levels result; and (3) urine pellet cholesterol levels may have potential AKI biomarker utility. The latter will require future testing in a large prospective trial.
Collapse
Affiliation(s)
- Ali Cm Johnson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | |
Collapse
|
83
|
Shackleford TJ, Zhang Q, Tian L, Vu TT, Korapati AL, Baumgartner AM, Le XF, Liao WS, Claret FX. Stat3 and CCAAT/enhancer binding protein beta (C/EBP-beta) regulate Jab1/CSN5 expression in mammary carcinoma cells. Breast Cancer Res 2011; 13:R65. [PMID: 21689417 PMCID: PMC3218954 DOI: 10.1186/bcr2902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/21/2011] [Accepted: 06/20/2011] [Indexed: 01/11/2023] Open
Abstract
Introduction The c-Jun coactivator, Jun activation-domain binding protein 1 (Jab1) also known as the fifth component of the COP9 signalosome complex (CSN5), is a novel candidate oncogene whose aberrant expression contributes to the progression of breast carcinoma and other human cancers. The mechanism of Jab1 gene expression and its deregulation in cancer cells remains to be identified. We therefore investigated the transcriptional regulatory mechanisms of Jab1 expression in human breast carcinoma cells. Methods To identify potential regulators of Jab1 transcription, we cloned the 5' upstream region of the human Jab1 gene and mapped its transcriptional start site. We identified binding sequences for the CCAAT/enhancer binding protein (C/EBP) and GATA, as well as a signal transducer and activator of transcription-3 (Stat3) consensus sequence overlapping the C/EBP site, using 5'- deletion analysis and a gene reporter assay. Mutational analysis of these binding sites was performed to confirm their roles in promoting Jab1 transcription in breast cancer cells. We further confirmed these binding sites using electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays. We also analyzed whether the siRNA-mediated inactivation of Stat3 and Src could reduce Jab1-promoter activity and whether interleukine-6 (IL-6) could mediate increased Jab1 expression through Stat3 signaling. Results We identified binding sequences for C/EBP, GATA, as well as a Stat3 consensus sequence overlapping the C/EBP site in the promoter region of Jab1. C/EBP-beta2 is a potential transcriptional activator of Jab1 and mutation of the C/EBP/Stat3 binding site significantly reduced Jab1-promoter activity. In addition, inhibiting Stat3 significantly reduced Jab1-promoter activation. EMSA and ChIP assays confirmed that C/EBP, GATA1 and Stat3 bind to Jab1 promoter in breast carcinoma cells. We also found that Src, an activator of Stat3, is involved in Jab1-promoter activation. siRNA knockdown of Src reduced the Jab1-promoter activity, similar to the results seen when Stat3 was inhibited in breast carcinoma cells. Interestingly, reactivation of Stat3 in normal mammary epithelial cells (MCF-10A, MCF-10F) is sufficient to reactivate Jab1 expression. Treatment with the cytokine IL-6 resulted in increased Jab1 expression that was blocked by inhibition of Stat3. Conclusions These findings reveal a novel mechanism of Jab1 gene regulation and provide functional and mechanistic links between the Src/Stat3 and IL-6/Stat3 signaling axes that are involved in the activation of Jab1 transcription and regulation of this novel oncogenic protein.
Collapse
Affiliation(s)
- Terry J Shackleford
- Department of Systems Biology, University of Texas - MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Sengupta D, Bandyopadhyay S. Participation of microRNAs in human interactome: extraction of microRNA-microRNA regulations. MOLECULAR BIOSYSTEMS 2011; 7:1966-73. [PMID: 21483898 DOI: 10.1039/c0mb00347f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, a significant amount of research has been conducted for computational modeling of the microRNA (miRNA)-target gene interactions and inferring different kinds of biologically relevant association from their variable expressions, available from microarray experiments. However, topological organization of the miRNA-transcription factor (TF) induced regulatory network has not yet been analyzed at a genome scale. Evidently, by ignoring the regulatory relationship among the constituent molecules, we expose our model to a great deal of noise. Besides this, the miRNA-TF regulatory network also helps extract a putative set of regulations among miRNAs and hypothesize the miRNA-miRNA regulatory network. We constructed the miRNA and TF induced regulatory network for humans by combining all possible regulations between miRNAs and TFs. Topological analysis of the network revealed some of its non-trivial and intrinsic properties. The concept of topological overlap has been extended to formulate a novel dissimilarity measure that is capable of mining groups of closely interacting molecules from a weighted digraph such that the molecules in each group regulate each other to a large extent. Many of the identified TF modules are found to be enriched in different functional categories. On the other hand, many of the identified miRNA modules displayed significant associations with common diseases. Finally, the miRNA-TF induced regulatory network yields a putative miRNA inter-regulatory network which may be considered as the first step towards the understanding of the regulatory relationship amongst miRNAs. A large number of the validated regulations were found in the predicted set of regulations, having a significantly high average score. A web application is created to facilitate the search of the Putative miRNA-miRNA Regulations (PmmR). It can be accessed through the following link: .
Collapse
Affiliation(s)
- Debarka Sengupta
- Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India.
| | | |
Collapse
|
85
|
Ware LB, Johnson ACM, Zager RA. Renal cortical albumin gene induction and urinary albumin excretion in response to acute kidney injury. Am J Physiol Renal Physiol 2011; 300:F628-38. [PMID: 21147844 PMCID: PMC3064135 DOI: 10.1152/ajprenal.00654.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/29/2010] [Indexed: 01/01/2023] Open
Abstract
This study evaluated the potential utility of albuminuria as a "biomarker" of acute kidney injury (AKI) and tested whether AKI induces renal expression of the normally silent albumin gene. Urine albumin concentrations were measured in mice with five different AKI models (maleate, ischemia-reperfusion, rhabdomyolysis, endotoxemia, ureteral obstruction). Albumin gene induction in renal cortex, and in antimycin A-injured cultured proximal tubular cells, was assessed (mRNA levels; RNA polymerase II binding to the albumin gene). Albumin's clinical performance as an AKI biomarker was also tested (29 APACHE II-matched intensive care unit patients with and without AKI). Results were contrasted to those obtained for neutrophil gelatinase-associated lipocalin (NGAL), an established "AKI biomarker" gene. The experimental and clinical assessments indicated albumin's equivalence to NGAL as an AKI biomarker (greater specificity in experimental AKI; slightly better receiver-operating curve in humans). Furthermore, experimental AKI markedly induced the albumin gene (mRNA/RNA polymerase II binding increases; comparable to those seen for NGAL). Albumin gene activation in patients with AKI was suggested by fivefold increases in RNA polymerase II binding to urinary fragments of the albumin gene (vs. AKI controls). Experimental AKI also increased renal cortical mRNA levels for α-fetoprotein (albumin's embryonic equivalent). A correlate in patients was increased urinary α-fetoprotein excretion. We conclude that AKI can unmask, in the kidney, the normally silent renal albumin and α-fetoprotein genes. In addition, the urinary protein data independently indicate that albuminuria, and perhaps α-fetoprotein, have substantial utility as biomarkers of acute tubular injury.
Collapse
Affiliation(s)
- Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
86
|
Schaefer U, Schmeier S, Bajic VB. TcoF-DB: dragon database for human transcription co-factors and transcription factor interacting proteins. Nucleic Acids Res 2010; 39:D106-10. [PMID: 20965969 PMCID: PMC3013796 DOI: 10.1093/nar/gkq945] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The initiation and regulation of transcription in eukaryotes is complex and involves a large number of transcription factors (TFs), which are known to bind to the regulatory regions of eukaryotic DNA. Apart from TF–DNA binding, protein–protein interaction involving TFs is an essential component of the machinery facilitating transcriptional regulation. Proteins that interact with TFs in the context of transcription regulation but do not bind to the DNA themselves, we consider transcription co-factors (TcoFs). The influence of TcoFs on transcriptional regulation and initiation, although indirect, has been shown to be significant with the functionality of TFs strongly influenced by the presence of TcoFs. While the role of TFs and their interaction with regulatory DNA regions has been well-studied, the association between TFs and TcoFs has so far been given less attention. Here, we present a resource that is comprised of a collection of human TFs and the TcoFs with which they interact. Other proteins that have a proven interaction with a TF, but are not considered TcoFs are also included. Our database contains 157 high-confidence TcoFs and additionally 379 hypothetical TcoFs. These have been identified and classified according to the type of available evidence for their involvement in transcriptional regulation and their presence in the cell nucleus. We have divided TcoFs into four groups, one of which contains high-confidence TcoFs and three others contain TcoFs which are hypothetical to different extents. We have developed the Dragon Database for Human Transcription Co-Factors and Transcription Factor Interacting Proteins (TcoF-DB). A web-based interface for this resource can be freely accessed at http://cbrc.kaust.edu.sa/tcof/ and http://apps.sanbi.ac.za/tcof/.
Collapse
Affiliation(s)
- Ulf Schaefer
- Computational Bioscience Research Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
87
|
Anderson OD, Coleman-Derr D, Gu YQ, Heath S. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme. BMC PLANT BIOLOGY 2010; 10:113. [PMID: 20565711 PMCID: PMC3017810 DOI: 10.1186/1471-2229-10-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 06/16/2010] [Indexed: 05/14/2023]
Abstract
BACKGROUND Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. RESULTS The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. CONCLUSIONS The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings suggest variation in activity of LKR/SDH genes among plants. Although most plant genomes seem to contain a single conserved LKR/SDH gene per genome, poplar possesses multiple contiguous genes. A preponderance of SDH transcripts suggests the LKR region may be more rate-limiting. Only switchgrass has EST evidence for LKR monofunctional transcripts. Evidence for monofunctional SDH transcripts shows a novel intron in wheat, Brachypodium, and poplar.
Collapse
Affiliation(s)
- Olin D Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Devin Coleman-Derr
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Berkeley, CA 94720, USA
| | - Yong Q Gu
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Sekou Heath
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- 783 Euclid Avenue, Berkeley, CA 94708, USA
| |
Collapse
|
88
|
Polotsky VY, Savransky V, Bevans-Fonti S, Reinke C, Li J, Grigoryev DN, Shimoda LA. Intermittent and sustained hypoxia induce a similar gene expression profile in human aortic endothelial cells. Physiol Genomics 2010; 41:306-14. [PMID: 20197421 PMCID: PMC2869105 DOI: 10.1152/physiolgenomics.00091.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 02/24/2010] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea may cause vascular inflammation and atherosclerosis, which has been attributed to intermittent hypoxia (IH). Recent data suggest that IH, but not sustained hypoxia (SH), activates proinflammatory genes in HeLa cells. Effects of IH and SH on the gene expression profile in human aortic endothelial cells (HAEC) have not been compared. We perfused media with alternating flow of 16% and 0% O2 (IH) or constant flow of 4% O2 (SH-4%), 8% O2 (SH-8%), or 16% O2 (control) for 8 h. Illumina gene microarrays were performed, with subsequent verification by real-time PCR. Proinflammatory cytokines in the media were measured by ELISA. Both IH and SH-4% upregulated proinflammatory genes, including heat shock protein 90-kDa B1, tumor necrosis factor superfamily member 4, and thrombospondin 1. Among all proinflammatory genes, only IL-8 mRNA showed significantly higher levels of expression (1.78-fold) during IH, compared with SH-4%, but both types of hypoxic exposure elicited striking three- to eightfold increases in IL-8 and IL-6 protein levels in the media. IH and SH-4% also upregulated antioxidant genes, including heme oxygenase-1 and nuclear factor (erythroid-derived 2)-like 2 (NRF2), whereas classical genes regulated by hypoxia-inducible factor 1 (HIF-1), such as endothelin and glucose transporter GLUT1, were not induced. SH-8% induced changes in gene expression and cytokine secretion that were similar to those of IH and SH-4%. In conclusion, short exposures to IH and SH upregulate proinflammatory and antioxidant genes in HAEC and increase secretion of proinflammatory cytokines IL-8 and IL-6 into media in similar fashions.
Collapse
|
89
|
Abstract
More than 30 years of research on nuclear RNA polymerases (RNAP I, II, and III) has uncovered numerous factors that regulate the activity of these enzymes during the transcription reaction. However, very little is known about the machinery that regulates the fate of RNAPs before or after transcription. In particular, the mechanisms of biogenesis of the 3 nuclear RNAPs, which comprise both common and specific subunits, remains mostly uncharacterized and the proteins involved are yet to be discovered. Using protein affinity purification coupled to mass spectrometry (AP-MS), we recently unraveled a high-density interaction network formed by nuclear RNAP subunits from the soluble fraction of human cell extracts. Validation of the dataset using a machine learning approach trained to minimize the rate of false positives and false negatives yielded a high-confidence dataset and uncovered novel interactors that regulate the RNAP II transcription machinery, including a set of proteins we named the RNAP II-associated proteins (RPAPs). One of the RPAPs, RPAP3, is part of an 11-subunit complex we termed the RPAP3/R2TP/prefoldin-like complex. Here, we review the literature on the subunits of this complex, which points to a role in nuclear RNAP biogenesis.
Collapse
Affiliation(s)
- Philippe Cloutier
- Laboratory of Gene Transcription and Proteomics, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Benoit Coulombe
- Laboratory of Gene Transcription and Proteomics, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| |
Collapse
|
90
|
Averbeck D, Averbeck S. DNA Photodamage, Repair, Gene Induction and Genotoxicity Following Exposures to 254 nm UV and 8-Methoxypsoralen Plus UVA in a Eukaryotic Cell System. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09683.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
91
|
Emani S, Zhang J, Guo L, Guo H, Kuo PC. RNA stability regulates differential expression of the metastasis protein, osteopontin, in hepatocellular cancer. Surgery 2008; 143:803-12. [PMID: 18549897 PMCID: PMC2494577 DOI: 10.1016/j.surg.2008.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/17/2008] [Indexed: 12/16/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a potential therapeutic target in hepatocellular carcinoma (HCC), because it is a critical mediator of metastatic function. The molecular mechanisms that determine expression of OPN in HCC, however, are unknown. In this study, we examine differential OPN expression in the 2 HCC cell lines: HepG2 and Hep3B. METHODS OPN expression, metastatic function, OPN promoter activity, and active transcription of OPN mRNA and its decay were assessed in the 2 HCC cell lines using standard techniques. RNA gel-shift assays were performed to determine binding of cytoplasmic proteins to OPN mRNA. RESULTS Expression of OPN cellular/secreted protein and mRNA was greater in HepG2 than Hep3B cells (P < .01). Transient transfection of the OPN promoter construct demonstrated equivalent luciferase activities in the 2 cell lines; the rate of transcription was also equivalent as determined by chromatin immuno-precipitation assay. OPN mRNA half-life was 21 +/- 1 h and 3 +/- 1 h in HepG2 and Hep3B, respectively (P < .02). In HepG2 and Hep3B, the nucleotide sequence of OPN and its 5'-UTR, 3'-UTR, and poly (A) tail lengths were identical. A luciferase construct coupled in line with OPN-5'-UTR and OPN 3'-UTR presented greater expression in HepG2 (P < .01 vs Hep3B). Deletion of nt 10-57 of the OPN 5'-UTR restored luciferase and HA-tagged OPN protein expression in Hep3B but not in Hep G2. RNA gel-shift assays demonstrate different patterns of protein binding to OPN 5'-UTR between the 2 HCC cell lines. CONCLUSIONS We conclude that RNA stability is a new, previously unrecognized mechanism that regulates OPN expression in HCC to convey metastatic function.
Collapse
Affiliation(s)
- Sirisha Emani
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
92
|
Wild AL, Maddison DR. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet Evol 2008; 48:877-91. [PMID: 18644735 DOI: 10.1016/j.ympev.2008.05.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 04/29/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
Although nuclear protein-coding genes have proven broadly useful for phylogenetic inference, relatively few such genes are regularly employed in studies of Coleoptera, the most diverse insect order. We increase the number of loci available for beetle systematics by developing protocols for three genes previously unused in beetles (alpha-spectrin, RNA polymerase II and topoisomerase I) and by refining protocols for five genes already in use (arginine kinase, CAD, enolase, PEPCK and wingless). We evaluate the phylogenetic performance of each gene in a Bayesian framework against a presumably known test phylogeny. The test phylogeny covers 31 beetle specimens and two outgroup taxa of varying age, including three of the four extant beetle suborders and a denser sampling in Adephaga and in the carabid genus Bembidion. All eight genes perform well for Cenozoic divergences and accurately separate closely related species within Bembidion, but individual genes differ markedly in accuracy over the older Mesozoic and Permian divergences. The concatenated data reconstruct the test phylogeny with high support in both Bayesian and parsimony analyses, indicating that combining data from multiple nuclear loci will be a fruitful approach for assembling the beetle tree of life.
Collapse
Affiliation(s)
- Alexander L Wild
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
93
|
Akashi S, Nagakura S, Yamamoto S, Okuda M, Ohkuma Y, Nishimura Y. Structural characterization of human general transcription factor TFIIF in solution. Protein Sci 2008; 17:389-400. [PMID: 18218714 DOI: 10.1110/ps.073258108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of alpha and beta subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an alphabeta heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human alpha and beta subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC.
Collapse
Affiliation(s)
- Satoko Akashi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
94
|
Zhang ZD, Paccanaro A, Fu Y, Weissman S, Weng Z, Chang J, Snyder M, Gerstein MB. Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions. Genome Res 2007; 17:787-97. [PMID: 17567997 PMCID: PMC1891338 DOI: 10.1101/gr.5573107] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The comprehensive inventory of functional elements in 44 human genomic regions carried out by the ENCODE Project Consortium enables for the first time a global analysis of the genomic distribution of transcriptional regulatory elements. In this study we developed an intuitive and yet powerful approach to analyze the distribution of regulatory elements found in many different ChIP-chip experiments on a 10 approximately 100-kb scale. First, we focus on the overall chromosomal distribution of regulatory elements in the ENCODE regions and show that it is highly nonuniform. We demonstrate, in fact, that regulatory elements are associated with the location of known genes. Further examination on a local, single-gene scale shows an enrichment of regulatory elements near both transcription start and end sites. Our results indicate that overall these elements are clustered into regulatory rich "islands" and poor "deserts." Next, we examine how consistent the nonuniform distribution is between different transcription factors. We perform on all the factors a multivariate analysis in the framework of a biplot, which enhances biological signals in the experiments. This groups transcription factors into sequence-specific and sequence-nonspecific clusters. Moreover, with experimental variation carefully controlled, detailed correlations show that the distribution of sites was generally reproducible for a specific factor between different laboratories and microarray platforms. Data sets associated with histone modifications have particularly strong correlations. Finally, we show how the correlations between factors change when only regulatory elements far from the transcription start sites are considered.
Collapse
Affiliation(s)
- Zhengdong D. Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Alberto Paccanaro
- Department of Computer Science Royal Holloway, University of London, Egham Hill, TW20 0EX, United Kingdom
| | - Yutao Fu
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Sherman Weissman
- Department of Genetics, Yale University, New Haven, Connecticut 06510, USA
| | - Zhiping Weng
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering Department, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Chang
- Department of Statistics, Yale University, New Haven, Connecticut 06520, USA
| | - Michael Snyder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B. Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics Yale University, New Haven, Connecticut 06520, USA
- Corresponding author.E-mail ; fax (360) 838-7861
| |
Collapse
|
95
|
Panebra A, Schwarb MR, Glinka CB, Liggett SB. Heterogeneity of transcription factor expression and regulation in human airway epithelial and smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L453-62. [PMID: 17557803 PMCID: PMC6092943 DOI: 10.1152/ajplung.00084.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transcription factors represent a major mechanism by which cells establish basal and conditional expression of proteins, the latter potentially being adaptive or maladaptive in disease. The complement of transcription factors in two major structural cells of the lung relevant to asthma, airway epithelial and smooth muscle cells, is not known. A plate-based platform using nuclear extracts from these cells was used to assess potential expression by binding to oligonucleotide consensus sequences representing >300 transcription factors. Four conditions were studied: basal, beta-agonist exposure, culture under proasthmatic conditions (IL-13, IL-4, TGF-beta, and leukotriene D(4)), and the dual setting of beta-agonist with proasthmatic culture. Airway epithelial cells expressed 70 transcription factors, whereas airway smooth muscle expressed 110. High levels of multiple transcription factors not previously recognized as being expressed in these cells were identified. Moreover, expression/ binding patterns under these conditions revealed extreme discordance in the direction and magnitude of change between the cell types. Singular (one cell type displayed regulation) and antithetic (both cell types underwent expression changes but in opposite directions) regulation dominated these patterns, with concomitant regulation in both cell types being rare (<10%). beta-Agonist evoked up- and downregulation of transcription factors, which was highly influenced by the proasthmatic condition, with little overlap of factors regulated by beta-agonists under both conditions. Together, these results reveal complex, cell type-dependent networks of transcription factors in human airway epithelium and smooth muscle that are dynamically regulated in unique ways by beta-agonists and inflammation. These factors may represent additional components in asthma pathophysiology or potential new drug targets.
Collapse
Affiliation(s)
- Alfredo Panebra
- Cardiopulmonary Genomics Program, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
96
|
Hanawa F, Okamoto M, Towers GHN. Inhibition of Restriction Enzyme's DNA Sequence Recognition by PUVA Treatment†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740269ioreds2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
97
|
Hartman WR, Walters DE, Hentosh P. Presence of the anti-leukemic nucleotide analog, 2-chloro-2'-deoxyadenosine-5'-monophosphate, in a promoter sequence alters DNA binding of TATA-binding protein (TBP). Arch Biochem Biophys 2007; 459:223-32. [PMID: 17320040 DOI: 10.1016/j.abb.2006.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/12/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022]
Abstract
2-Chlorodeoxyadenosine (CldAdo, Cladribine), a nucleoside analog used in the treatment of hairy cell leukemia, is phosphorylated and incorporated into DNA, but is not an absolute chain terminator. We hypothesized that the presence of a chlorine molecule projecting into the DNA minor groove would affect DNA:protein-binding interactions. Here, we investigated recognition of and binding to double-stranded CldAMP-substituted TATA promoter sequences by human TATA-binding protein (TBP) using mobility shift assays. Depending on the site, CldAMP in place of dAMP within a TATA sequence decreased in vitro TBP binding by approximately 30% to 55% compared to control sites. When bound to a CldAMP-substituted TATA box, however, the TBP complex was more resistant to polyanions, suggesting enhanced stability. Limited exposure of the TBP:DNA complex to proteases indicated that TBP conformation was altered on CldAMP-substituted DNA compared to control. Further, binding of transcription factor IIB to TBP was diminished on analog-containing TATA sequences. These results suggest normal TBP-binding interactions--specifically recognition, stability, and conformation-are disrupted by CldAMP insertion into eukaryotic promoter sequences.
Collapse
Affiliation(s)
- William R Hartman
- Department of Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
98
|
Liu GB, Jiang YF, Yan H, Zhao KN. Computational analysis of base composition pattern and promoter elements in the putative promoter regions in relation to expression profiles of 682 human genes on chromosome 22. ACTA ACUST UNITED AC 2007; 17:270-81. [PMID: 17312946 DOI: 10.1080/10425170600886136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract The base composition pattern (BCP) in the putative promoter region (PPRs) up to 5 Kb lengths of 682 human genes on Chromosome 22 (Chr22) was examined. Two-dimensional (2D) and three-dimensional (3D) functions were designed to delineate the DNA base composition, with four major patterns identified. It is found that 17.6% genes include TATA box, 28.0% GC box, 18.9% CAAT box and 38.4% CpG islands, and approximately 10% genes have one of four putative initiator (Inr) motifs. The occurrence of the promoter elements is tightly associated with the base composition features in the promoter regions, and the associations of the base composition features with occurrence of the promoter elements in the promoter regions mediate tissue-wide expression of the genes in human. The occurrence of two or more promoter elements in the promoter regions is required for the medium- and wide-range expression profiles of the human genes on Chr22. Thus, the reported data shed light on the characteristics of the PPRs of the human genes on Chr22, which may improve our understanding of regulatory roles of the PPRs with occurrence of the promoter elements in gene expression.
Collapse
Affiliation(s)
- Guang Bin Liu
- Department of Biological and Physical Sciences, Faculty of Science, Centre for Systems Biology, The University of Southern Queensland, Toowoomba, Qld 4350, Australia.
| | | | | | | |
Collapse
|
99
|
Abstract
Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets. The program Promoter Divider is described in more detail as a representative component of the package.
Collapse
Affiliation(s)
- Naum I Gershenzon
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
100
|
Stevens M, De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 2006; 26:595-625. [PMID: 16838299 PMCID: PMC7168390 DOI: 10.1002/med.20081] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|