51
|
Miotto B, Struhl K. Differential gene regulation by selective association of transcriptional coactivators and bZIP DNA-binding domains. Mol Cell Biol 2006; 26:5969-82. [PMID: 16880509 PMCID: PMC1592802 DOI: 10.1128/mcb.00696-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
bZIP DNA-binding domains are targets for viral and cellular proteins that function as transcriptional coactivators. Here, we show that MBF1 and the related Chameau and HBO1 histone acetylases interact with distinct subgroups of bZIP proteins, whereas pX does not discriminate. Selectivity of Chameau and MBF1 for bZIP proteins is mediated by residues in the basic region that lie on the opposite surface from residues that contact DNA. Chameau functions as a specific coactivator for the AP-1 class of bZIP proteins via two arginine residues. A conserved glutamic acid/glutamine in the linker region underlies MBF1 specificity for a subgroup of bZIP factors. Chameau and MBF1 cannot synergistically coactivate transcription due to competitive interactions with the basic region, but either protein can synergistically coactivate with pX. Analysis of Jun derivatives that selectively interact with these coactivators reveals that MBF1 is crucial for the response to oxidative stress, whereas Chameau is important for the response to chemical and osmotic stress. Thus, the bZIP domain mediates selective interactions with coactivators and hence differential regulation of gene expression.
Collapse
Affiliation(s)
- Benoit Miotto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
52
|
Arce DP, Tonón C, Zanetti ME, Godoy AV, Hirose S, Casalongué CA. The potato transcriptional co-activator StMBF1 is up-regulated in response to oxidative stress and interacts with the TATA-box binding protein. BMB Rep 2006; 39:355-60. [PMID: 16889677 DOI: 10.5483/bmbrep.2006.39.4.355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain a better understanding on the function of the potato Solanum tuberosum Multiprotein Bridging Factor 1 protein (StMBF1) its interaction with the TATA box binding protein (TBP) was demonstrated. In addition we reported that StMBF1 rescues the yeast mbf1 mutant phenotype, indicating its role as a plant co-activator. These data reinforce the hypothesis that MBF1 function is also conserved among non closely related plant species. In addition, measurement of StMBF1 protein level by Western blot using anti-StMBF1 antibodies indicated that the protein level increased upon H(2)O(2) and heat shock treatments. However, the potato beta-1,3-glucanase protein level was not changed under the same experimental conditions. These data indicate that StMBF1 participates in the cell stress response against oxidative stress allowing us to suggest that MBF1 genes from different plant groups may share similar functions.
Collapse
Affiliation(s)
- Débora Pamela Arce
- Instituto de Investigaciones Biologicas, FCEyN, UNMDP, CP 7600 Mar del Plata, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
53
|
Arcà B, Lombardo F, Valenzuela JG, Francischetti IMB, Marinotti O, Coluzzi M, Ribeiro JMC. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. ACTA ACUST UNITED AC 2006; 208:3971-86. [PMID: 16215223 DOI: 10.1242/jeb.01849] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Salivary glands of blood-sucking arthropods contain a variety of compounds that prevent platelet and clotting functions and modify inflammatory and immunological reactions in the vertebrate host. In mosquitoes, only the adult female takes blood meals, while both sexes take sugar meals. With the recent description of the Anopheles gambiae genome, and with a set of approximately 3000 expressed sequence tags from a salivary gland cDNA library from adult female mosquitoes, we attempted a comprehensive description of the salivary transcriptome of this most important vector of malaria transmission. In addition to many transcripts associated with housekeeping functions, we found an active transposable element, a set of Wolbachia-like proteins, several transcription factors, including Forkhead, Hairy and doublesex, extracellular matrix components and 71 genes coding for putative secreted proteins. Fourteen of these 71 proteins had matching Edman degradation sequences obtained from SDS-PAGE experiments. Overall, 33 transcripts are reported for the first time as coding for salivary proteins. The tissue and sex specificity of these protein-coding transcripts were analyzed by RT-PCR and microarray experiments for insight into their possible function. Notably, two gene products appeared to be differentially spliced in the adult female salivary glands, whereas 13 contigs matched predicted intronic regions and may include additional alternatively spliced transcripts. Most An. gambiae salivary proteins represent novel protein families of unknown function, potentially coding for pharmacologically or microbiologically active substances. Supplemental data to this work can be found at http://www.ncbi.nlm.nih.gov/projects/omes/index.html#Ag2.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Structural and Functional Biology, University "Federico II", 80126 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
54
|
Pick L, Anderson WR, Shultz J, Woodard CT. The Ftz‐F1 family: Orphan nuclear receptors regulated by novel protein–protein interactions. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16008-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
55
|
Little TH, Zhang Y, Matulis CK, Weck J, Zhang Z, Ramachandran A, Mayo KE, Radhakrishnan I. Sequence-specific deoxyribonucleic acid (DNA) recognition by steroidogenic factor 1: a helix at the carboxy terminus of the DNA binding domain is necessary for complex stability. Mol Endocrinol 2005; 20:831-43. [PMID: 16339274 DOI: 10.1210/me.2005-0384] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic factor 1 (SF1) is a member of the NR5A subfamily of nuclear hormone receptors and is considered a master regulator of reproduction because it regulates a number of genes encoding reproductive hormones and enzymes involved in steroid hormone biosynthesis. Like other NR5A members, SF1 harbors a highly conserved approximately 30-residue segment called the FTZ-F1 box C-terminal to the core DNA binding domain (DBD) common to all nuclear receptors and binds to 9-bp DNA sequences as a monomer. Here we describe the solution structure of the SF1 DBD in complex with an atypical sequence in the proximal promoter region of the inhibin-alpha gene that encodes a subunit of a reproductive hormone. SF1 forms a specific complex with the DNA through a bipartite motif binding to the major and minor grooves through the core DBD and the N-terminal segment of the FTZ-F1 box, respectively, in a manner previously described for two other monomeric receptors, nerve growth factor-induced-B and estrogen-related receptor 2. However, unlike these receptors, SF1 harbors a helix in the C-terminal segment of the FTZ-F1 box that interacts with both the core DBD and DNA and serves as an important determinant of stability of the complex. We propose that the FTZ-F1 helix along with the core DBD serves as a platform for interactions with coactivators and other DNA-bound factors in the vicinity.
Collapse
Affiliation(s)
- Tanya H Little
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Guo TQ, Wang JY, Wang SP, Guo XY, Huang KW, Huang JT, Lu CD. Loss of posterior silk gland transcription specificity of fibroin light chain promoter due to absence of 41 bp sequence containing possible inhibitor binding sites. Acta Biochim Biophys Sin (Shanghai) 2005; 37:819-25. [PMID: 16331326 DOI: 10.1111/j.1745-7270.2005.00117.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The gene encoding fibroin light chain protein (FibL) is specifically expressed in the posterior silk gland of silkworm and repressed in other tissues. The binding sites of several transcription factors involved in the silk gland transcription specificity of fibl promoter have been recognized, including SGFB, PSGF and BMFA. Here we report the leak expression of the enhanced green fluorescent protein (EGFP) reporter gene in tissues other than the posterior silk gland in vivo when under the control of a shortened fibl promoter with deletion of the 5' terminal 41 bp sequence, which is located at -650 nt to -610 nt upstream of the fibl transcription starting site. Assay of silk gland specificity of the promoters was performed by observation of green fluorescence in tissues of silkworm larvae following inter-haemocoelic injection of recombinant Autographa californica multiple nuclear polyhedrosis virus carrying the EGFP reporter gene controlled by different lengths of fibl promoters. Our results indicated that availability of the binding sites of several known factors, including SGFB, PSGF and BMFA, is not sufficient for intact silk gland transcription specificity of fibl promoter, and there are possible inhibitor binding sites in the 41 bp sequence (-650 nt to -610 nt) upstream of the transcription starting site which may be required to repress the activity of fibl promoter in other tissues.
Collapse
Affiliation(s)
- Ting-Qing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Sugikawa Y, Ebihara S, Tsuda K, Niwa Y, Yamazaki KI. Transcriptional coactivator MBF1s from Arabidopsis predominantly localize in nucleolus. JOURNAL OF PLANT RESEARCH 2005; 118:431-7. [PMID: 16283071 DOI: 10.1007/s10265-005-0238-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 09/08/2005] [Indexed: 05/05/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator. It has been reported that MBF1 changed its subcellular localization from cytoplasm into nuclei with a transcriptional activator for activation of a target gene expression in animals. We found that Arabidopsis MBF1s (AtMBF1s) predominantly localize in nucleolus. We previously reported that plant MBF1s were rapidly induced by several stresses, whereas animal MBF1s were not induced. Therefore, we suggest that MBF1-function in plants is controlled on the level of transcriptional induction but not by nuclear translocation, dissimilar from the case of MBF1s from animals.
Collapse
Affiliation(s)
- Yoichi Sugikawa
- Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
58
|
Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. PLANT PHYSIOLOGY 2005; 139:1313-22. [PMID: 16244138 PMCID: PMC1283768 DOI: 10.1104/pp.105.070110] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Abiotic stresses cause extensive losses to agricultural production worldwide. Acclimation of plants to abiotic conditions such as drought, salinity, or heat is mediated by a complex network of transcription factors and other regulatory genes that control multiple defense enzymes, proteins, and pathways. Associated with the activity of different transcription factors are transcriptional coactivators that enhance their binding to the basal transcription machinery. Although the importance of stress-response transcription factors was demonstrated in transgenic plants, little is known about the function of transcriptional coactivators associated with abiotic stresses. Here, we report that constitutive expression of the stress-response transcriptional coactivator multiprotein bridging factor 1c (MBF1c) in Arabidopsis (Arabidopsis thaliana) enhances the tolerance of transgenic plants to bacterial infection, heat, and osmotic stress. Moreover, the enhanced tolerance of transgenic plants to osmotic and heat stress was maintained even when these two stresses were combined. The expression of MBF1c in transgenic plants augmented the accumulation of a number of defense transcripts in response to heat stress. Transcriptome profiling and inhibitor studies suggest that MBF1c expression enhances the tolerance of transgenic plants to heat and osmotic stress by partially activating, or perturbing, the ethylene-response signal transduction pathway. Present findings suggest that MBF1 proteins could be used to enhance the tolerance of plants to different abiotic stresses.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NE 89557, USA
| | | | | | | | | | | |
Collapse
|
59
|
Solomon IH, Hager JM, Safi R, McDonnell DP, Redinbo MR, Ortlund EA. Crystal structure of the human LRH-1 DBD-DNA complex reveals Ftz-F1 domain positioning is required for receptor activity. J Mol Biol 2005; 354:1091-102. [PMID: 16289203 DOI: 10.1016/j.jmb.2005.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/23/2005] [Accepted: 10/06/2005] [Indexed: 12/22/2022]
Abstract
The DNA-binding and ligand-binding functions of nuclear receptors are localized to independent domains separated by a flexible hinge. The DNA-binding domain (DBD) of the human liver receptor homologue-1 (hLRH-1), which controls genes central to development and metabolic homeostasis, interacts with monomeric DNA response elements and contains an Ftz-F1 motif that is unique to the NR5A nuclear receptor subfamily. Here, we present the 2.2A resolution crystal structure of the hLRH-1 DBD in complex with duplex DNA, and elucidate the sequence-specific DNA contacts essential for the ability of LRH-1 to bind to DNA as a monomer. We show that the unique Ftz-F1 domain folds into a novel helix that packs against the DBD but does not contact DNA. Mutations expected to disrupt the positioning of the Ftz-F1 helix do not eliminate DNA binding but reduce the transcriptional activity of full-length LRH-1 significantly. Moreover, we find that altering the Ftz-F1 helix positioning eliminates the enhancement of LRH-1-mediated transcription by the coactivator GRIP1, an action that is associated primarily with the distantly located ligand-binding domain (LBD). Taken together, these results indicate that subtle structural changes in a nuclear receptor DBD can exert long-range functional effects on the LBD of a receptor, and significantly impact transcriptional regulation.
Collapse
MESH Headings
- Alanine/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Arginine/chemistry
- Base Sequence
- Binding Sites
- Carrier Proteins/metabolism
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Fluorescence Polarization
- Fushi Tarazu Transcription Factors/chemistry
- Fushi Tarazu Transcription Factors/genetics
- Fushi Tarazu Transcription Factors/metabolism
- Genes, Reporter
- Glutamic Acid/metabolism
- Glycine/chemistry
- Glycine/metabolism
- HeLa Cells
- Humans
- Hydrogen Bonding
- Ligands
- Luciferases/metabolism
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Nerve Tissue Proteins/metabolism
- Oxygen/chemistry
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/isolation & purification
- Receptors, Cytoplasmic and Nuclear/metabolism
- Response Elements
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription, Genetic
- Water/chemistry
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
60
|
Bernardini D, Ballabio E, Mariotti M, Maier JAM. Differential expression of EDF-1 and endothelial nitric oxide synthase by proliferating, quiescent and senescent microvascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:265-72. [PMID: 16055206 DOI: 10.1016/j.bbamcr.2005.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 06/16/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Endothelial Differentiation-related Factor (EDF)-1 is a low molecular weight polypeptide downregulated in endothelial cells exposed to HIV-1-Tat or the phorbol ester TPA. EDF-1 acts in the cytosol as a calmodulin binding protein, and in the nucleus as a transcriptional coactivator. Here, we show that EDF-1 is downregulated in non-proliferating microvascular endothelial cells. Indeed, both quiescence and senescence reduce the levels of EDF-1 and this is due to protein degradation through the proteasome. We also describe a different subcellular localization of EDF-1 which is mainly nuclear in senescent 1G11 cells. Since (i) endothelial nitric oxide (NO) seems to play a role in endothelial proliferation and (ii) NO is an important mediator involved in the control of vascular tone, inflammatory responses and angiogenesis, it is noteworthy that senescence downregulates the expression and the activity of endothelial nitric oxide synthase (eNOS) in microvascular endothelial cells. On the contrary, quiescence does not affect NOS expression and activity. The modulation of EDF-1 in microvascular endothelial cells might offer new insights into the molecular events involved in angiogenesis and in microvascular dysfunctions in the elderly.
Collapse
Affiliation(s)
- Daniela Bernardini
- University of Milan, Department of Preclinical Sciences LITA Vialba, Via GB Grassi, 74 20157 Milan, Italy
| | | | | | | |
Collapse
|
61
|
Walton FJ, Idnurm A, Heitman J. Novel gene functions required for melanization of the human pathogenCryptococcus neoformans. Mol Microbiol 2005; 57:1381-96. [PMID: 16102007 DOI: 10.1111/j.1365-2958.2005.04779.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to produce melanin is a key virulence factor in many fungal pathogens including the human basidiomycete pathogen Cryptococcus neoformans, a major cause of life-threatening infections among immunocompromised persons. Despite the significance of melanin biosynthesis in virulence of C. neoformans, the cellular and molecular processes involved in this pathway have not yet been fully elucidated. Here, we used Agrobacterium to isolate insertional mutants and screened 12 000 mutants to uncover genes involved in melanin production in C. neoformans. Four new mutant alleles of the well-known melanin biosynthesis gene, LAC1, which encodes laccase were identified, and the T-DNA was shown to have a possible predisposition for insertion into the promoters of genes, in particular LAC1. Melanization in C. neoformans is dependent on five additional genes identified in this screen encoding homologues of the copper transporter Ccc2, the copper chaperone Atx1, the chitin synthase Chs3, the transcriptional coactivator Mbf1 and the chromatin-remodelling enzyme Snf5. Illumination of the molecular and genetic components of this virulence pathway reveals potential novel targets for drug development against C. neoformans and provides further insight into the intimate relationship between metal ion homeostasis and melanin biosynthesis.
Collapse
Affiliation(s)
- Felicia J Walton
- Howard Hughes Medical Institute, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
62
|
Birch-Machin I, Gao S, Huen D, McGirr R, White RAH, Russell S. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol 2005; 6:R63. [PMID: 15998452 PMCID: PMC1175994 DOI: 10.1186/gb-2005-6-7-r63] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/07/2005] [Accepted: 05/10/2005] [Indexed: 11/10/2022] Open
Abstract
We have used a chromatin immunoprecipitation-microarray (ChIP-array) approach to investigate the in vivo targets of heat-shock factor (Hsf) in Drosophila embryos. We show that this method identifies Hsf target sites with high fidelity and resolution. Using cDNA arrays in a genomic search for Hsf targets, we identified 141 genes with highly significant ChIP enrichment. This study firmly establishes the potential of ChIP-array for whole-genome transcription factor target mapping in vivo using intact whole organisms.
Collapse
Affiliation(s)
- Ian Birch-Machin
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Shan Gao
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - David Huen
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Richard McGirr
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Robert AH White
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
63
|
Tsuda K, Yamazaki KI. Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. ACTA ACUST UNITED AC 2004; 1680:1-10. [PMID: 15451167 DOI: 10.1016/j.bbaexp.2004.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/05/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcriptional co-activator that mediates transcriptional activation by bridging between an activator and a TATA-box binding protein (TBP). Recently, we have reported that three Arabidopsis MBF1s play roles as transcriptional co-activators. This study shows that AtMBF1c is totally different from the other two in its structure and expression pattern, and that MBF1c genes also occur in other plant species, including monocots. We performed histochemical analysis of these genes using beta-glucuronidase (GUS) assays to characterize the expression profile of each AtMBF1 gene extensively. In pAtMBF1a Colon, two colons GUS transformants, GUS staining was observed only in anthers and seeds, whereas strong GUS activity in pAtMBF1b Colon, two colons GUS transformants was detected in leaf veins, stems, anthers, and seeds. In mature pAtMBF1c Colon, two colons GUS transformants, GUS staining was observed in almost all tissues. It is noteworthy that intense GUS staining was observed in anthers of all transformants. We also found that AtMBF1c expression was up-regulated upon diverse stress treatments including exposure to heat, hydrogen peroxide, dehydration, and high concentrations of salt. These findings suggest that AtMBF1c may be involved in stress response pathway.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo 060-0810, Japan. mailto:
| | | |
Collapse
|
64
|
Zanetti ME, Chan RL, Godoy AV, González DH, Casalongué CA. Homeodomain-leucine zipper proteins interact with a plant homologue of the transcriptional co-activator multiprotein bridging factor 1. BMB Rep 2004; 37:320-4. [PMID: 15469713 DOI: 10.5483/bmbrep.2004.37.3.320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
StMBF1 (Solanum tuberosum multiprotein bridging factor 1) is a plant member of the MBF1 family of transcriptional co-activators. In an attempt to understand the role of StMBF1, we analyzed its interaction with plant transcription factors of the homeodomain-leucine zipper (Hd-Zip) family, a group of proteins with a typical leucine zipper motif adjacent to a homeodomain. StMBF1 is able to interact in vitro with the Hd-Zip protein Hahb-4 both in the presence and absence of DNA. Upon binding, StMBF1 increases the DNA binding affinity of Hahb-4, and of another plant homeodomain containing protein from the GL2/Hd-Zip IV family, HAHR-1. The biological role of interactions is discussed in this paper.
Collapse
Affiliation(s)
- María Eugenia Zanetti
- Instituto de Investigaciones Biológicas, Departamento de Biología, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
65
|
Jindra M, Gaziova I, Uhlirova M, Okabe M, Hiromi Y, Hirose S. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J 2004; 23:3538-47. [PMID: 15306851 PMCID: PMC516628 DOI: 10.1038/sj.emboj.7600356] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 07/16/2004] [Indexed: 11/09/2022] Open
Abstract
Basic leucine zipper proteins Jun and Fos form the dimeric transcription factor AP-1, essential for cell differentiation and immune and antioxidant defenses. AP-1 activity is controlled, in part, by the redox state of critical cysteine residues within the basic regions of Jun and Fos. Mutation of these cysteines contributes to oncogenic potential of Jun and Fos. How cells maintain the redox-dependent AP-1 activity at favorable levels is not known. We show that the conserved coactivator MBF1 is a positive modulator of AP-1. Via a direct interaction with the basic region of Drosophila Jun (D-Jun), MBF1 prevents an oxidative modification (S-cystenyl cystenylation) of the critical cysteine and stimulates AP-1 binding to DNA. Cytoplasmic MBF1 translocates to the nucleus together with a transfected D-Jun protein, suggesting that MBF1 protects nascent D-Jun also in Drosophila cells. mbf1-null mutants live shorter than mbf1+ controls in the presence of hydrogen peroxide (H2O2). An AP-1-dependent epithelial closure becomes sensitive to H2O2 in flies lacking MBF1. We conclude that by preserving the redox-sensitive AP-1 activity, MBF1 provides an advantage during oxidative stress.
Collapse
Affiliation(s)
- Marek Jindra
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
| | - Ivana Gaziova
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
| | - Mirka Uhlirova
- Department of Molecular Biology, University of South Bohemia and Institute of Entomology ASCR, Ceske Budejovice, Czech Republic
| | - Masataka Okabe
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
| | - Yasushi Hiromi
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
- Department of Developmental Genetics, National Institute of Genetics, 1111, Yata, Mishima, Shizuoka-ken 411-8540, Japan. Tel.: +81 559 816771; Fax: +81 559 816776; E-mail:
| |
Collapse
|
66
|
Millership JJ, Waghela P, Cai X, Cockerham A, Zhu G. Differential expression and interaction of transcription co-activator MBF1 with TATA-binding protein (TBP) in the apicomplexan Cryptosporidium parvum. MICROBIOLOGY-SGM 2004; 150:1207-1213. [PMID: 15133082 DOI: 10.1099/mic.0.26891-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
All gene-specific transcriptional activators initiate gene transcriptions by binding to promoter sequences and recruiting general transcription factors including TATA-binding protein (TBP) to upstream of targeted genes. Some of them require multiprotein bridging factors (MBFs); for example, the type 1 MBF (MBF1) which interconnects the gene activator with TBP. In this study, the properties of a previously cloned type 1 multiprotein bridging factor (CpMBF1) and a newly identified TBP (CpTBP1) from the apicomplexan Cryptosporidium parvum were investigated. Genes encoding both proteins were differentially expressed as determined by semi-quantitative RT-PCRs during the parasite life cycle, but in different patterns. The highest level of expression of CpMBF1 was in the well-developed intracellular parasites, whereas that of CpTBP1 was found in intact oocysts and late intracellular stages, possibly correlated with the formation of oocysts. Both CpMBF1 and CpTBP1 were expressed as maltose-binding protein fusion proteins. The function of CpTBP1 was confirmed by its ability to bind a biotinylated DNA oligonucleotide containing TATA consensus sequence. The interaction between CpMBF1 and CpTBP1 was also observed by an electrophoretic mobility shift assay. Since little is known about the regulation and control of gene activity in C. parvum, this study may point to a new direction for the study of gene activation associated with the development of the complex life cycle of this parasite.
Collapse
Affiliation(s)
- Jason J Millership
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Palvi Waghela
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Xiaomin Cai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Amy Cockerham
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| | - Guan Zhu
- Faculty of Genetics Program, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, TX 77843, USA
| |
Collapse
|
67
|
Curtin D, Ferris HA, Häkli M, Gibson M, Jänne OA, Palvimo JJ, Shupnik MA. Small nuclear RING finger protein stimulates the rat luteinizing hormone-beta promoter by interacting with Sp1 and steroidogenic factor-1 and protects from androgen suppression. Mol Endocrinol 2004; 18:1263-76. [PMID: 14988433 DOI: 10.1210/me.2003-0221] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH controls expression of the LH subunit genes, alpha and LHbeta, with the LHbeta subunit regulated most dramatically. Two enhancer regions, distal and proximal, on the rat LHbeta gene promoter cooperate for full basal expression and GnRH stimulation. It has been hypothesized that the transcription factors binding to these regions, Sp1, Egr-1, and steroidogenic factor 1 (SF-1), may interact directly or indirectly via a coactivator. One such coactivator may be small nuclear RING finger protein (SNURF), which is expressed in pituitary tissue and the LbetaT2 gonadotrope cell line. In transfection experiments in LbetaT2 cells, SNURF stimulated basal expression of LHbeta and increased overall GnRH stimulation. SNURF specifically stimulated LHbeta, with no effect on the alpha-subunit promoter. SNURF interacts with Sp1 and SF-1, but not Egr-1, in pull-down experiments. Point mutations or deletions of SNURF functional domains demonstrated that Sp1 and SF-1 interactions with SNURF are required for SNURF stimulatory effects on the LHbeta promoter. Endogenous SNURF is associated with the LHbeta promoter on native chromatin, suggesting that it plays a physiological role in LHbeta gene expression. SNURF also binds the androgen receptor, and SNURF overexpression overcomes androgen suppression of GnRH-stimulated LHbeta but not alphasubunit promoter activity. SNURF mutations that disrupt Sp1 or SF-1 binding eliminate rescue by SNURF. We conclude that SNURF may mediate interactions between the distal and proximal GnRH response regions of the LHbeta promoter to stimulate transcription and can also protect the promoter from androgen suppression.
Collapse
Affiliation(s)
- Denis Curtin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Tsuda K, Tsuji T, Hirose S, Yamazaki KI. Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. PLANT & CELL PHYSIOLOGY 2004; 45:225-31. [PMID: 14988493 DOI: 10.1093/pcp/pch017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is known to be a transcriptional co-activator that mediates transcriptional activation by bridging between an activator and a TATA-box binding protein (TBP). We demonstrated that expression of every three MBF1 from Arabidopsis partially rescues the yeast mbf1 mutant phenotype, indicating that all of them function as co-activators for GCN4-dependent transcriptional activation. We also report that each of their subtypes shows distinct tissue-specific expression patterns and responses to phytohormones. These observations suggest that even though they share a similar biochemical function, each MBF1 has distinct roles in various tissues and conditions.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Laboratory of Environmental Molecular Biology, Graduate School of Environmental Earth Science, Hokkaido University, Kita 10, Nishi 5, Kita-ku, Sapporo, 060-0810 Japan
| | | | | | | |
Collapse
|
69
|
Gates J, Lam G, Ortiz JA, Losson R, Thummel CS. rigor mortis encodes a novel nuclear receptor interacting protein required for ecdysone signaling during Drosophila larval development. Development 2003; 131:25-36. [PMID: 14645129 DOI: 10.1242/dev.00920] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulses of the steroid hormone ecdysone trigger the major developmental transitions in Drosophila, including molting and puparium formation. The ecdysone signal is transduced by the EcR/USP nuclear receptor heterodimer that binds to specific response elements in the genome and directly regulates target gene transcription. We describe a novel nuclear receptor interacting protein encoded by rigor mortis (rig) that is required for ecdysone responses during larval development. rig mutants display defects in molting, delayed larval development, larval lethality, duplicated mouth parts, and defects in puparium formation--phenotypes that resemble those seen in EcR, usp, E75A and betaFTZ-F1 mutants. Although the expression of these nuclear receptor genes is essentially normal in rig mutant larvae, the ecdysone-triggered switch in E74 isoform expression is defective. rig encodes a protein with multiple WD-40 repeats and an LXXLL motif, sequences that act as specific protein-protein interaction domains. Consistent with the presence of these elements and the lethal phenotypes of rig mutants, Rig protein interacts with several Drosophila nuclear receptors in GST pull-down experiments, including EcR, USP, DHR3, SVP and betaFTZ-F1. The ligand binding domain of betaFTZ-F1 is sufficient for this interaction, which can occur in an AF-2-independent manner. Antibody stains reveal that Rig protein is present in the brain and imaginal discs of second and third instar larvae, where it is restricted to the cytoplasm. In larval salivary gland and midgut cells, however, Rig shuttles between the cytoplasm and nucleus in a spatially and temporally regulated manner, at times that correlate with the major lethal phase of rig mutants and major switches in ecdysone-regulated gene expression. Taken together, these data indicate that rig exerts essential functions during larval development through gene-specific effects on ecdysone-regulated transcription, most likely as a cofactor for one or more nuclear receptors. Furthermore, the dynamic intracellular redistribution of Rig protein suggests that it may act to refine spatial and temporal responses to ecdysone during development.
Collapse
Affiliation(s)
- Julie Gates
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5331, USA
| | | | | | | | | |
Collapse
|
70
|
Busk PK, Wulf-Andersen L, Strøm CC, Enevoldsen M, Thirstrup K, Haunsø S, Sheikh SP. Multiprotein bridging factor 1 cooperates with c-Jun and is necessary for cardiac hypertrophy in vitro. Exp Cell Res 2003; 286:102-14. [PMID: 12729799 DOI: 10.1016/s0014-4827(03)00091-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cardiac hypertrophy is induced by a number of stimuli and can lead to cardiomyopathy and heart failure. Cardiomyocyte hypertrophy is characterized by increased cell size and altered gene expression. By differential-display polymerase chain reaction and Western blotting we found that the transcriptional coactivator MBF1 was upregulated during hypertrophy in cardiomyocyte cultures. Furthermore, MBF1 protein level increased in two animal models of hypertrophy, angiotensin II treatment and aortic banding. MBF1 antisense oligodeoxynuclotides blocked phenylephrine-induced hypertrophy, suggesting MBF1 plays a key role in hypertrophic growth. In contrast, overexpression of MBF1 potentiated the hormone-induced response of the atrial natriuretic peptide promoter. MBF1 overexpressed by transient transfection cooperated with the transcription factor c-Jun in activation of transcription but not with GATA4. MBF1 and c-Jun induced the activity of a transiently transfected atrial natriuretic peptide promoter, whereas neither MBF1 nor c-Jun could induce the promoter alone. Moreover, MBF1 bound to c-Jun in vitro. These data suggest that MBF1 is a transcriptional coactivator of c-Jun regulating hypertrophic gene expression. Inhibitor studies suggested that MBF1 activates the atrial natriuretic peptide promoter independently of the calcineurin and CaMK signaling pathways. Our results indicate that MBF1 participates in hormone-induced cardiomyocyte hypertrophy and activates hypertrophic gene expression as a coactivator of c-Jun.
Collapse
Affiliation(s)
- Peter K Busk
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Juliane Mariesvej 20, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Archaea contain a variety of sequence-independent DNA binding proteins consistent with the evolution of several different, sometimes overlapping and exchangeable solutions to the problem of genome compaction. Some of these proteins undergo residue-specific post-translational lysine acetylation or methylation, hinting at analogues of the histone modifications that regulate eukaryotic chromatin structure and transcription. Archaeal transcription initiation most closely resembles the eukaryotic RNA polymerase II (RNAPII) system, but Archaea do not appear to have homologues of the multisubunit complexes that remodel eukaryotic chromatin and activate RNAPII initiation. In contrast, they have sequence-specific regulators that repress and perhaps activate archaeal transcription by mechanisms superficially similar to the bacterial paradigm of regulating promoter binding by RNAP. Repressors compete with archaeal TATA-box binding protein (TBP) and TFB for the TATA-box and TFB-recognition elements (BRE) of the archaeal promoter, or with archaeal RNAP for the site of transcription initiation. Transcript-specific regulation by repressors binding to sites of transcript initiation is consistent with such sites having very little sequence conservation. However, most Archaea have only one TBP and/or TFB that presumably must therefore bind to similar TATA-box and BRE sequences upstream of most genes. Repressors that function by competing with TBP and/or TFB binding must therefore also make additional contacts with transcript-specific regulatory sites adjacent or remote from the TATA-box/BRE region. The fate of the archaeal TBP and TFB following transcription initiation remains to be determined. Based on functional homology with their eukaryotic RNAPII-system counterparts, archaeal TBP and possibly also TFB should remain bound to the TATA-box/BRE region after transcription initiation. However, this seems unlikely as it might limit repressor competition at this site to only the first round of transcription initiation.
Collapse
Affiliation(s)
- John N Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
72
|
Francischetti IMB, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JMC. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vectorAnopheles gambiae. J Exp Biol 2002; 205:2429-51. [PMID: 12124367 DOI: 10.1242/jeb.205.16.2429] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYHundreds of Anopheles gambiae salivary gland cDNA library clones have been sequenced. A cluster analysis based on sequence similarity at e-60 grouped the 691 sequences into 251 different clusters that code for proteins with putative secretory, housekeeping, or unknown functions. Among the housekeeping cDNAs, we found sequences predicted to code for novel thioredoxin, tetraspanin, hemopexin, heat shock protein, and TRIO and MBF proteins. Among secreted cDNAs, we found 21 novel A. gambiaesalivary sequences including those predicted to encode amylase, calreticulin,selenoprotein, mucin-like protein and 30-kDa allergen, in addition to antigen 5- and D7-related proteins, three novel salivary gland (SG)-like proteins and eight unique putative secreted proteins (Hypothetical Proteins, HP). The electronic version of this paper contains hyperlinks to FASTA-formatted files for each cluster with the best match to the nonredundant (NR) and conserved domain databases (CDD) in addition to CLUSTAL alignments of each cluster. The N terminus of 12 proteins (SG-1, SG-1-like 2, SG-6, HP 8, HP 9-like, 5′nucleotidase, 30-kDa protein, antigen 5- and four D7-related proteins) has been identified by Edman degradation of PVDF-transferred, SDS/PAGE-separated salivary gland proteins. Therefore, we contribute to the generation of a catalog of A. gambiae salivary transcripts and proteins. These data are freely available and will eventually become an invaluable tool to study the role of salivary molecules in parasite-host/vector interactions.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Medical Entomology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | | | |
Collapse
|
73
|
Brendel C, Gelman L, Auwerx J. Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol 2002; 16:1367-77. [PMID: 12040021 DOI: 10.1210/mend.16.6.0843] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiprotein bridging factor (MBF-1) is a cofactor that was first described for its capacity to modulate the activity of fushi tarazu factor 1, a nuclear receptor originally implicated in Drosophila development. Recently, it has been shown that human MBF-1 stimulates the transcriptional activity of steroidogenic factor 1, a human homolog of fushi tarazu factor 1, which is implicated in steroidogenesis. Here we show that this cofactor enhances the transcriptional activity of several nonsteroid nuclear receptors that are implicated in lipid metabolism, i.e. the liver receptor homolog 1, the liver X receptor alpha, and PPARgamma. MBF-1 interacts with distinct domains in these receptors, depending on whether the receptor binds DNA as a monomer or as a heterodimer with RXR. MBF-1 does not possess any of the classical histone modifying activities such as histone acetyl- or methyl transferase activities, linked to chromatin remodeling, but interacts in vitro with the transcription factor IID complex. MBF-1 seems therefore to act as a bridging factor enabling interactions of nuclear receptors with the transcription machinery.
Collapse
Affiliation(s)
- Carole Brendel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre Nationale de la Recherche Scientifique/INSERM/Université Louis Pasteur, BP 163, 67404 Illkirch, France
| | | | | |
Collapse
|
74
|
Abstract
Murine endothelial differentiation-related factor (mEDF-1) encodes a basic intracellular protein of 148 amino acids which is highly homologous to the human and rat polypeptides. mEDF-1 is expressed in most murine tissues tested and is evolutionary conserved. mEDF-1 expression is modulated in mouse development, since its expression is high early in development and decreases thereafter. Because EDF-1 has been isolated as a gene differentially expressed by exposure of endothelial cells to the Tat protein of HIV, we evaluated mEDF-1 expression in different cell lines derived from tumors which spontaneously develop in Tat transgenic mice. Cells isolated from adenocarcinomas and leiomyosarcomas express very high amounts of EDF-1, independently from their capability to secrete Tat. Tat transgenic mice also develop skin lesions which closely resemble human Kaposi's sarcoma. Since Kaposi spindle cells, which are the proliferative component of the sarcoma, differentiate from an endothelial precursor, it is noteworthy that spindle cells derived from Kaposi-like lesions of the Tat transgenic mice downregulate EDF-1 when compared to microvascular endothelial cells isolated from the same tissue.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Calmodulin-Binding Proteins/genetics
- Cell Line
- Cloning, Molecular
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Evolution, Molecular
- Exons
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Humans
- Introns
- Male
- Mice
- Molecular Sequence Data
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L De Benedictis
- Dipartimento di Scienze Precliniche LITA-Vialba, Università di Milano, Via G.B. Grassi, 74 20157 Milan, Italy
| | | | | | | |
Collapse
|
75
|
Chan SW, Hong W. Retinoblastoma-binding Protein 2 (Rbp2) Potentiates Nuclear Hormone Receptor-mediated Transcription. J Biol Chem 2001; 276:28402-12. [PMID: 11358960 DOI: 10.1074/jbc.m100313200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma-binding protein 2 (Rbp2) was originally identified as a retinoblastoma protein (RB) pocket domain-binding protein. Although Rbp2 has been shown to interact with RB, p107, TATA-binding protein, and T-cell oncogene rhombotin-2, the physiological function of Rbp2 remains unclear. Here we demonstrate that Rbp2 not only binds to nuclear receptors (NRs) but also enhances the transcription mediated by them. Rbp2 interacts with the DNA-binding domains of NRs and potentiates NR-mediated transcription in an AF-2-dependent manner. Both the N-terminal and C-terminal domains of Rbp2 are critical for the transactivation activity of Rbp2 on NRs. The C terminus is the NR-interacting region. In addition, RB functions in maximizing the effect of Rbp2 on the transcription by NRs. These results suggest that Rbp2 is a coregulator of NRs and define a potential role for Rbp2 in NR-mediated transcription.
Collapse
Affiliation(s)
- S W Chan
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | |
Collapse
|
76
|
Godoy AV, Zanetti ME, San Segundo B, Casalongué CA. Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. PHYSIOLOGIA PLANTARUM 2001; 112:217-222. [PMID: 11454227 DOI: 10.1034/j.1399-3054.2001.1120210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Coadaptors or coactivators are a new class of transcription factors capable of interconnecting a regulator DNA-binding protein with a component of the basal transcription machinery allowing transcriptional activation to proceed. We report the identification of a novel Solanum tuberosum ssp. tuberosum putative transcription coactivator, named StMBF1 (Solanum tuberosum multiprotein bridging factor 1). The StMBF1 cDNA was isolated from a Fusarium solani f. sp. eumartii-infected potato tuber cDNA library, using a differential screening approach. StMBF1 is up-regulated during fungal attack as well as on wounding. A Fusarium elicitor source and ethylene precursor and salicylic acid also regulate StMBF1 expression. The precise role of StMBF1 during the plant response against environmental stresses remains to be elucidated.
Collapse
Affiliation(s)
- Andrea V. Godoy
- Instituto de Investigaciones Biológicas-Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, CC 1245, 7600 Mar del Plata, Argentina Instituto de Biología Molecular de Barcelona, Centro de Investigación y Desarrollo (CSIC), Jordi Girona 18-24, 08034 Barcelona, España
| | | | | | | |
Collapse
|
77
|
Hendrick JL, Wilson PG, Edelman II, Sandbaken MG, Ursic D, Culbertson MR. Yeast frameshift suppressor mutations in the genes coding for transcription factor Mbf1p and ribosomal protein S3: evidence for autoregulation of S3 synthesis. Genetics 2001; 157:1141-58. [PMID: 11238400 PMCID: PMC1461560 DOI: 10.1093/genetics/157.3.1141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The SUF13 and SUF14 genes were identified among extragenic suppressors of +1 frameshift mutations. SUF13 is synonymous with MBF1, a single-copy nonessential gene coding for a POLII transcription factor. The suf13-1 mutation is a two-nucleotide deletion in the SUF13/MBF1 coding region. A suf13::TRP1 null mutant suppresses +1 frameshift mutations, indicating that suppression is caused by loss of SUF13 function. The suf13-1 suppressor alters sensitivity to aminoglycoside antibiotics and reduces the accumulation of his4-713 mRNA, suggesting that suppression is mediated at the translational level. The SUF14 gene is synonymous with RPS3, a single-copy essential gene that codes for the ribosomal protein S3. The suf14-1 mutation is a missense substitution in the coding region. Increased expression of S3 limits the accumulation of SUF14 mRNA, suggesting that expression is autoregulated. A frameshift mutation in SUF14 that prevents full-length translation eliminated regulation, indicating that S3 is required for regulation. Using CUP1-SUF14 and SUF14-lacZ fusions, run-on transcription assays, and estimates of mRNA half-life, our results show that transcription plays a minor role if any in regulation and that the 5'-UTR is necessary but not sufficient for regulation. A change in mRNA decay rate may be the primary mechanism for regulation.
Collapse
Affiliation(s)
- J L Hendrick
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
78
|
Zhu G, LaGier MJ, Hirose S, Keithly JS. Cryptosporidium parvum: functional complementation of a parasite transcriptional coactivator CpMBF1 in yeast. Exp Parasitol 2000; 96:195-201. [PMID: 11162372 DOI: 10.1006/expr.2000.4574] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report here the identification of a novel multiprotein bridging factor type 1 from the apicomplexan Cryptosporidium parvum (CpMBF1), one of the opportunistic pathogens in AIDS patients. In slime molds, insects, and humans, MBF1-regulated systems have been associated with cell differentiation, which indicates that CpMBF1 could be responsible for the activation of similar systems in C. parvum during its complex life cycle. Because of the difficulties and high cost in obtaining sufficient and purified C. parvum material for molecular and biochemical analyses, well-characterized yeast genetic systems may be useful for investigating the functions of C. parvum genes. In this study, the function of CpMBF1 as an interconnecting element between a DNA-binding regulator and TATA-box-binding protein (TBP) was confirmed using a yeast complementation assay. Under conditions of histidine starvation, an MBF1-deficient strain of Saccharomyces cerevisiae was unable to activate the HIS3 gene, which encodes imidazoleglycerol-phosphate dehydratase (IGPDH), and thus became sensitive to 3-amino triazole, an inhibitor of this enzyme. Upon introduction of parasite CpMBF1 into S. cerevisiae, 3-amino triazole resistance of the MBF1-deficient strain was restored to wild-type levels, and Northern blot analysis revealed that CpMBF1 was able to activate HIS3 transcription in response to histidine starvation.
Collapse
Affiliation(s)
- G Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | | | |
Collapse
|
79
|
Liu QX, Ueda H, Hirose S. MBF2 is a tissue- and stage-specific coactivator that Is regulated at the step of nuclear transport in the silkworm Bombyx mori. Dev Biol 2000; 225:437-46. [PMID: 10985861 DOI: 10.1006/dbio.2000.9836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coactivators MBF1 and MBF2 mediate BmFTZ-F1-dependent transcriptional activation in vitro by interconnecting BmFTZ-F1, TATA binding protein TBP, and TFIIA. Here, we analyzed temporal and spatial expression patterns of MBF2 during embryonic and larval development of the silkworm Bombyx mori. MBF2 was detected in unfertilized eggs and embryos until stage 26. In stage 22 embryos, MBF1, MBF2, and BmFTZ-F1 colocalize in neural cells. During the larval stage, MBF2 was not expressed in the fat body and trachea. In the silk gland, MBF2 mRNA was constitutively expressed, but MBF2 protein appeared in the period between the second day and the molting D3 stage in both the third and the fourth instars and then disappeared. MBF2 was also detected on the second and third days of the fifth instar. Immunostaining during the fourth molt showed that MBF1, MBF2, and BmFTZ-F1 localize in the nucleus only at the D3 stage, while the two cofactors are present in the cytoplasm at other stages. Immunoprecipitation experiments suggested that MBF1, MBF2, and BmFTZ-F1 form a complex at the D3 stage. Transient expression of these factors in Schneider cell line 2 revealed that MBF1 and MBF2 localize to the nucleus and enhance BmFTZ-F1-dependent transcription only when all three factors are present. These data illustrate the functional regulation of MBF1 and MBF2 at the step of nuclear transport and implicate MBF2 in tissue- and stage-specific transcription.
Collapse
Affiliation(s)
- Q X Liu
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka-ken, 411-8540, Japan
| | | | | |
Collapse
|
80
|
Mariotti M, De Benedictis L, Avon E, Maier JA. Interaction between endothelial differentiation-related factor-1 and calmodulin in vitro and in vivo. J Biol Chem 2000; 275:24047-51. [PMID: 10816571 DOI: 10.1074/jbc.m001928200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca(2+) receptor protein inside the cell. When activated by Ca(2+), CaM binds and activates target proteins, thus altering the metabolism and physiology of the cell. Under basal conditions, calcium-free CaM binds to other proteins termed CaM-binding proteins. Recently, we described endothelial differentiation-related factor (EDF)-1 as a protein involved in the repression of endothelial cell differentiation (Dragoni, I., Mariotti, M., Consalez, G. G., Soria, M., and Maier, J. A. M. (1998) J. Biol. Chem. 273, 31119-31124). Here we report that (i) EDF-1 binds CaM in vitro and in vivo; (ii) EDF-1 is phosphorylated in vitro and in vivo by protein kinase C; and (iii) EDF-1-CaM interaction is modulated by the concentrations of Ca(2+) and by the phosphorylation of EDF-1 by protein kinase C both in vitro and in vivo. In addition, 12-O-tetradecanoylphorbol-13-acetate treatment of human umbilical vein endothelial cell stimulates the nuclear translocation of EDF-1. On the basis of the high homology of EDF-1 with multiprotein bridging factor-1, a transcriptional coactivator that binds TATA-binding protein (TBP), we also demonstrate that EDF-1 interacts with TBP in vitro and in human endothelial cells. We hypothesize that EDF-1 serves two main functions in endothelial cells as follows: (i) to bind CaM in the cytosol at physiologic concentrations of Ca(2+) and (ii) to act in the nucleus as a transcriptional coactivator through its binding to TBP.
Collapse
Affiliation(s)
- M Mariotti
- Department of Biomedical Sciences and Technologies, University of Milan, Italy
| | | | | | | |
Collapse
|
81
|
Slemmon JR, Feng B, Erhardt JA. Small proteins that modulate calmodulin-dependent signal transduction: effects of PEP-19, neuromodulin, and neurogranin on enzyme activation and cellular homeostasis. Mol Neurobiol 2000; 22:99-113. [PMID: 11414283 DOI: 10.1385/mn:22:1-3:099] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuromodulin (GAP-43), neurogranin (RC3), and PEP-19 are small acid-stable proteins that bind calcium-poor calmodulin through a loosely conserved IQ-motif. Even though these proteins have been known for many years, much about their function in cells is not understood. It has recently become appreciated that calmodulin activity in cells is tightly controlled and that pools of otherwise free calmodulin are sequestered so as to restrict its availability for activating calcium/calmodulin-dependent enzymes. Neuromodulin, neurogranin, and PEP-19 appear to be major participants in this type of regulation. One way in which they do this is by providing localized increases in the concentration of calmodulin in cells so that the maximal level of target activation is increased. Additionally, they can function as calmodulin antagonists by directly inhibiting the association of calcium/calmodulin with enzymes and other proteins. Although neuromodulin, neurogranin, and PEP-19 were early representatives of the small IQ-motif-containing protein family, newer examples have come to light that expand the number of cellular systems through which the IQ-peptide/calmodulin interaction could regulate biological processes including gene transcription. It is the purpose of this review to examine the behavior of neuromodulin, neurogranin, and PEP-19 in paradigms that include both in vitro and in situ systems in order to summarize possible biological consequences that are linked to the expression of this type of protein. The use of protein:protein interaction chromatography is also examined in the recovery of a new calmodulin-binding peptide, CAP-19 (ratMBF1). Consistent with earlier predictions, at least one function of small IQ-motif proteins appears to be that they lessen the extent to which calcium-calmodulin-dependent enzymes become or stay activated. It also appears that these polypeptides can function to selectively inhibit activation of intracellular targets by some agonists while simultaneously permitting activation of these same targets by other agonists. Much of the mechanism for how this occurs is unknown, and possible explanations are examined. One of the biological consequences for a cell that expresses a calmodulin-regulatory protein could be an increased resistance to calcium-mediated toxicity. This possibility is examined for cells expressing PEP-19 and both anatomical and cell-biological data is described. The study of IQ-motif-containing small proteins has stimulated considerable thought as to how calcium signaling is refined in neurons. Current evidence suggests that signaling through calmodulin is not a fulminating and homogenous process but a spatially limited and highly regulated one. Data from studies on neuromodulin, neurogranin, and PEP-19 suggest that they play an important role in establishing some of the processes by which this regulation is accomplished.
Collapse
Affiliation(s)
- J R Slemmon
- Department of Protein Biochemistry, SmithKline Beecham Pharmaceuticals Research and Development, King of Prussia, PA 19406, USA.
| | | | | |
Collapse
|
82
|
Inoue S, Sano H, Ohta M. Growth suppression of Escherichia coli by induction of expression of mammalian genes with transmembrane or ATPase domains. Biochem Biophys Res Commun 2000; 268:553-61. [PMID: 10679242 DOI: 10.1006/bbrc.2000.2170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth inhibition of Escherichia coli host cells is frequently observed when some mammalian genes are induced to express exogenously. To find common features of these mammalian genes, an assay was designed for the isolation of these genes which show growth-inhibitory effect on E. coli by induction of expression. Of 38,000 clones derived from a mouse brain cDNA library, 64 cDNA clones were systematically selected out by this method, of which 45 clones had putative open reading frames encoding proteins with putative membrane-associated regions or ATP-binding/ATPase activities. These results show that a fraction of membrane-associated proteins or ATP-binding/ATPase genes can be isolated from cDNA libraries by our simple method.
Collapse
Affiliation(s)
- S Inoue
- Banyu Tsukuba Research Institute (in collaboration with Merck Research Laboratories), Okubo 3, Tsukuba, 300-26, Japan
| | | | | |
Collapse
|
83
|
Kabe Y, Goto M, Shima D, Imai T, Wada T, Morohashi KI, Shirakawa M, Hirose S, Handa H. The role of human MBF1 as a transcriptional coactivator. J Biol Chem 1999; 274:34196-202. [PMID: 10567391 DOI: 10.1074/jbc.274.48.34196] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiprotein bridging factor 1 (MBF1) is a coactivator which mediates transcriptional activation by interconnecting the general transcription factor TATA element-binding protein and gene-specific activators such as the Drosophila nuclear receptor FTZ-F1 or the yeast basic leucine zipper protein GCN4. The human homolog of MBF1 (hMBF1) has been identified but its function, especially in transcription, remains unclear. Here we report the cDNA cloning and functional analysis of hMBF1. Two isoforms, which we term hMBF1alpha and hMBF1beta, have been identified. hMBF1alpha mRNA was detected in a number of tissues, whereas hMBF1beta exhibited tissue-specific expression. Both isoforms bound to TBP and Ad4BP/SF-1, a mammalian counterpart of FTZ-F1, and mediated Ad4BP/SF-1-dependent transcriptional activation. While hMBF1 was detected in the cytoplasm by immunostaining, coexpression of the nuclear protein Ad4BP/SF-1 with hMBF1 induced accumulation of hMBF1 in the nucleus, suggesting that hMBF1 is localized in the nucleus through its binding to Ad4BP/SF-1. hMBF1 also bound to ATF1, a member of the basic leucine zipper protein family, and mediated its activity as a transcriptional activator. These data establish that the coactivator MBF1 is functionally conserved in eukaryotes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- COS Cells
- Calmodulin-Binding Proteins
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Female
- Fluorescent Antibody Technique
- Fushi Tarazu Transcription Factors
- Gene Expression
- HeLa Cells
- Homeodomain Proteins
- Humans
- Leucine Zippers
- Male
- Molecular Sequence Data
- Protein Binding
- Protein Isoforms/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Steroidogenic Factor 1
- TATA-Box Binding Protein
- Tissue Distribution
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Kabe
- Faculty of Bioscience, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Mishima M, Ozaki J, Ikegami T, Kabe Y, Goto M, Ueda H, Hirose S, Handa H, Shirakawa M. Resonance assignments, secondary structure and 15N relaxation data of the human transcriptional coactivator hMBF1 (57-148). JOURNAL OF BIOMOLECULAR NMR 1999; 14:373-376. [PMID: 10526409 DOI: 10.1023/a:1008347729176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator that is thought to bridge between the TATA box-binding protein (TBP) and DNA binding regulatory factors, and is conserved from yeast to human. Human MBF1 (hMBF1) can bind to TBP and to the nuclear receptor Ad4BP, and is suggested to mediate Ad4BP-dependent transcriptional activation. Here we report the resonance assignments and secondary structure of hMBF1 (57-148) that contains both TBP binding and activator binding residues. 15N relaxation data were also obtained. As a result, hMBF1 (57-148) was shown to consist of flexible N-terminal residues and a C-terminal domain. The C-terminal domain contains four helices and a conserved C-terminal region.
Collapse
Affiliation(s)
- M Mishima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ozaki J, Takemaru KI, Ikegami T, Mishima M, Ueda H, Hirose S, Kabe Y, Handa H, Shirakawa M. Identification of the core domain and the secondary structure of the transcriptional coactivator MBF1. Genes Cells 1999; 4:415-24. [PMID: 10469174 DOI: 10.1046/j.1365-2443.1999.00267.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator necessary for transcriptional activation caused by DNA binding activators, such as FTZ-F1 and GCN4. MBF1 bridges the DNA-binding regions of these activators and the TATA-box binding protein (TBP), suggesting that MBF1 functions by recruiting TBP to promoters where the activators are bound. In addition, MBF1 stimulates DNA binding activities of the activators to their recognition sites. To date, little is known about structures of coactivators that bind to TBP. RESULTS The two-dimensional (2D) 1H-15N correlation spectrum of 15N labeled MBF1 indicated that MBF1 consists of both flexible and well structured parts. Limited digestion of MBF1 by alpha-chymotrypsin yielded a approximately 9 kDa fragment. N-terminal sequence analysis and NMR measurements revealed that this fragment originates from the C-terminal 80 residues of MBF1 and form a well structured C-terminal domain of MBF1, MBF1CTD. As previous deletion analyses have shown that MBF1CTD is capable of binding to TBP, it is suggested that MBF1CTD is the TBP binding domain of MBF1. Sequential assignments have been obtained by means of three-dimensional (3D) and four dimensional (4D) heteronuclear correlation spectroscopies, and then the secondary structure of MBF1CTD was determined. As a result, MBF1CTD was shown to contain four amphipathic helices and a conserved C-terminal region. Asp106 which is assumed to be responsible for the binding to TBP is located at the hydrophilic side of the third helix. CONCLUSIONS Structural analyses revealed that MBF1 consists of two structurally different domains. A N-terminal region is indispensable for the binding to activators, and does not form a well defined structure. In contrast, the C-terminal 80 residues, which is capable of binding to TBP by itself, form a well-structured domain, MBF1CTD. MBF1CTD is made up of four amphipathic helices and a conserved C-terminal tail. A putative TBP binding residue is located on the hydrophilic surface of the third helix.
Collapse
Affiliation(s)
- J Ozaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latch A, Pech JC, Bouzayen M. Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-responsive and ripening-related genes isolated by differential display. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:589-600. [PMID: 10417710 DOI: 10.1046/j.1365-313x.1999.00483.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Differential display was used to isolate early ethylene-regulated genes from late immature green tomato fruit in order to obtain a broader understanding of the molecular basis by which ethylene coordinates the ripening process. Nineteen novel ethylene-responsive (ER) cDNA clones were isolated that fell into three classes: (i) ethylene up-regulated (ii) ethylene down-regulated, and (iii) transiently induced. Expression analysis revealed that ethylene-dependent changes in mRNA accumulation occurred rapidly (15 min) for most of the ER clones. The predicted proteins encoded by the ER genes are putatively involved in processes as diverse as primary metabolism, hormone signalling and stress responses. Although a number of the isolated ER clones correspond to genes already documented in other species, their responsiveness to ethylene is described here for the first time. Among the ER clones sharing high homology with regulatory genes, ER43, a putative GTP-binding protein, and ER50, a CTR1-like clone, are potentially involved in signal transduction. ER24 is homologous to the multi-protein bridging factor MBF1 involved in transcriptional activation, and finally, two clones are homologous to genes involved in post-transcriptional regulation: ER49, a putative translational elongation factor, and ER68, a mRNA helicase-like gene. Six ER clones correspond to as yet unidentified genes. The expression studies indicated that all the ER genes are ripening-regulated, and, depending on the clone, show changes in transcript accumulation either at the breaker, turning, or red stage. Analysis of transcript accumulation in different organs indicated a strong bias towards expression in the fruit for many of the clones. The potential roles for some of the ER clones in propagating the ethylene response and regulating fruit ripening are discussed.
Collapse
|
87
|
Dragoni I, Mariotti M, Consalez GG, Soria MR, Maier JA. EDF-1, a novel gene product down-regulated in human endothelial cell differentiation. J Biol Chem 1998; 273:31119-24. [PMID: 9813014 DOI: 10.1074/jbc.273.47.31119] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cell differentiation is a crucial step in angiogenesis. Here we report the identification of EDF-1, a novel gene product that is down-regulated when endothelial cells are induced to differentiate in vitro. The cDNA encoding EDF-1 was isolated by RNA fingerprinting from human endothelial cells exposed to human immunodeficiency virus type 1 Tat, a viral protein known to be angiogenic. The deduced amino acid sequence of EDF-1 encodes a basic intracellular protein of 148 amino acids that is homologous to MBF1 (multiprotein-bridging factor 1) of the silkworm Bombyx mori and to H7, which is implicated in the early developmental events of Dictyostelium discoideum. Interestingly, human immunodeficiency virus type 1 Tat, which affects endothelial functions, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and culture on fibrin gels, which promote endothelial differentiation in vitro, all down-regulate EDF-1 expression both at the RNA and protein levels. In addition, the inhibition of EDF-1 translation by an antisense anti-EDF-1 construct results in the inhibition of endothelial cell growth and in the transition from a nonpolar cobblestone phenotype to a polar fibroblast-like phenotype. These data suggest that EDF-1 may play a role in the regulation of human endothelial cell differentiation.
Collapse
Affiliation(s)
- I Dragoni
- Dipartimento di Scienze e Tecnologie Biomediche-Ospedale San Raffaele, Università di Milano, I-20132 Milano, Italy
| | | | | | | | | |
Collapse
|
88
|
Smith ML, Johanson RA, Rogers KE, Coleman PD, Slemmon JR. Identification of a neuronal calmodulin-binding peptide, CAP-19, containing an IQ motif. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 62:12-24. [PMID: 9795107 DOI: 10.1016/s0169-328x(98)00207-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neurons produce polypeptides which can bind the calcium-poor or pre-activated form of calmodulin. It is expected that this class of peptide will serve an important role in maintaining cellular homeostasis since it would modulate calcium-dependent target regulation and redirect intracellular signaling. The lack of conserved sequence has made the identification of these peptides difficult, consequently leading us to exploit their property of binding calcium-poor calmodulin as a means of finding new species. A new peptide termed Calmodulin-Associated Peptide-19 (CAP-19) was purified and characterized. The protein-sequence information was employed in order to recover a cDNA clone from rat which included the entire reading frame for the peptide. Like its counterparts, neuromodulin (GAP-43), neurogranin (RC3) and PEP-19, it contains an IQ motif although the remainder of the peptide is quite different. Northern blot analysis of ribonucleic acid (RNA) from animals of differing ages indicated that the message appears at birth and then persists into adulthood. Antibodies to synthetic peptide were employed for localizing CAP-19. The results indicated that the peptide was localized to neurons in several brain regions. CAP-19 is similar to other calmodulin-binding proteins in that the domain spanning the IQ motif was demonstrated to participate in binding to calmodulin. Database searching showed CAP-19 to be homologous to the silkworm protein, multiprotein bridging factor 1 (MBF1). This homology suggests a potential new role for calmodulin-associated proteins in cellular homeostasis.
Collapse
Affiliation(s)
- M L Smith
- Department of Biochemistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
89
|
Liu QX, Ueda H, Hirose S. Comparison of sequences of a transcriptional coactivator MBF2 from three Lepidopteran species Bombyx mori, Bombyx mandarina and Samia cynthia. Gene X 1998; 220:55-9. [PMID: 9767108 DOI: 10.1016/s0378-1119(98)00428-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MBF2 was first isolated from the silkworm Bombyx mori as a positive cofactor that activates transcription through its interaction with TFIIA. To identify conserved domain(s) within the MBF2 molecule, we isolated cDNAs encoding MBF2 homologues from other silkworms Bombyx mandarina and Samia cynthia. Bacterially expressed and purified MBF2 of B. mandarina and S. cynthia activated transcription in vitro. The predicted amino acid sequences of MBF2 from two Bombyx species share 97% homology. When we compared between B. mori and S. cynthia factors, the homology reduced to 50%. Four regions in MBF2 are conserved among these three species. Two of them are present in the middle region of MBF2 that is essential for the transcriptional activation.
Collapse
Affiliation(s)
- Q X Liu
- Department of Developmental Genetics, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | |
Collapse
|
90
|
Moilanen AM, Poukka H, Karvonen U, Häkli M, Jänne OA, Palvimo JJ. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol Cell Biol 1998; 18:5128-39. [PMID: 9710597 PMCID: PMC109098 DOI: 10.1128/mcb.18.9.5128] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1997] [Accepted: 06/02/1998] [Indexed: 11/20/2022] Open
Abstract
Using the DNA-binding domain of androgen receptor (AR) as a bait in a yeast two-hybrid screening, we have identified a small nuclear RING finger protein, termed SNURF, that interacts with AR in a hormone-dependent fashion in both yeast and mammalian cells. Physical interaction between AR and SNURF was demonstrated by coimmunoprecipitation from cell extracts and by protein-protein affinity chromatography. Rat SNURF is a highly hydrophilic protein consisting of 194 amino acid residues and comprising a consensus C3HC4 zinc finger (RING) structure in the C-terminal region and a bipartite nuclear localization signal near the N terminus. Immunohistochemical experiments indicated that SNURF is a nuclear protein. SNURF mRNA is expressed in a variety of human and rat tissues. Overexpression of SNURF in cultured mammalian cells enhanced not only androgen, glucocorticoid, and progesterone receptor-dependent transactivation but also basal transcription from steroid-regulated promoters. Mutation of two of the potential Zn2+ coordinating cysteines to serines in the RING finger completely abolished the ability of SNURF to enhance basal transcription, whereas its ability to activate steroid receptor-dependent transcription was maintained, suggesting that there are separate domains in SNURF that mediate interactions with different regulatory factors. SNURF is capable of interacting in vitro with the TATA-binding protein, and the RING finger domain is needed for this interaction. Collectively, we have identified and characterized a ubiquitously expressed RING finger protein, SNURF, that may function as a bridging factor and regulate steroid receptor-dependent transcription by a mechanism different from those of previously identified coactivator or integrator proteins.
Collapse
Affiliation(s)
- A M Moilanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
91
|
Takemaru K, Harashima S, Ueda H, Hirose S. Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol Cell Biol 1998; 18:4971-6. [PMID: 9710580 PMCID: PMC109081 DOI: 10.1128/mcb.18.9.4971] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional coactivators play a crucial role in gene expression by communicating between regulatory factors and the basal transcription machinery. The coactivator multiprotein bridging factor 1 (MBF1) was originally identified as a bridging molecule that connects the Drosophila nuclear receptor FTZ-F1 and TATA-binding protein (TBP). The MBF1 sequence is highly conserved across species from Saccharomyces cerevisiae to human. Here we provide evidence acquired in vitro and in vivo that yeast MBF1 mediates GCN4-dependent transcriptional activation by bridging the DNA-binding region of GCN4 and TBP. These findings indicate that the coactivator MBF1 functions by recruiting TBP to promoters where DNA-binding regulators are bound.
Collapse
Affiliation(s)
- K Takemaru
- Department of Developmental Genetics, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | |
Collapse
|
92
|
Okada M, Hirose S. Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell Biol 1998; 18:2455-61. [PMID: 9566866 PMCID: PMC110625 DOI: 10.1128/mcb.18.5.2455] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
GAGA factor is known to remodel the chromatin structure in concert with nucleosome-remodeling factor NURF in a Drosophila embryonic S150 extract. The promoter region of the Drosophila fushi tarazu (ftz) gene carries several binding sites for GAGA factor. Both the GAGA factor-binding sites and GAGA factor per se are necessary for the proper expression of ftz in vivo. We observed transcriptional activation of the ftz gene when a preassembled chromatin template was incubated with GAGA factor and the S150 extract. The chromatin structure within the ftz promoter was specifically disrupted by incubation of the preassembled chromatin with GAGA factor and the S150 extract. Both transcriptional activation and chromatin disruption were blocked by an antiserum raised against ISWI or by base substitutions in the GAGA factor-binding sites in the ftz promoter region. These results demonstrate that GAGA factor- and ISWI-mediated disruption of the chromatin structure within the promoter region of ftz activates transcription on the chromatin template.
Collapse
Affiliation(s)
- M Okada
- Department of Genetics, The Graduate University for Advanced Studies, National Institute of Genetics, Mishima, Shizuoka-ken, Japan
| | | |
Collapse
|