51
|
Panitsas KE, Boyd CAR, Meredith D. Evidence that the rabbit proton-peptide co-transporter PepT1 is a multimer when expressed in Xenopus laevis oocytes. Pflugers Arch 2006; 452:53-63. [PMID: 16465547 DOI: 10.1007/s00424-005-0002-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/03/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
To test whether the rabbit proton-coupled peptide transporter PepT1 is a multimer, we have employed a combination of transport assays, luminometry and site-directed mutagenesis. A functional epitope-tagged PepT1 construct (PepT1-FLAG) was co-expressed in Xenopus laevis oocytes with a non-functional but normally trafficked mutant form of the same transporter (W294F-PepT1). The amount of PepT1-FLAG cRNA injected into the oocytes was kept constant, while the amount of W294F-PepT1 cRNA was increased over the mole fraction range of 0 to 1. The uptake of [(3)H]-D: -Phe-L: -Gln into the oocytes was measured at pH(out) 5.5, and the surface expression of PepT1-FLAG was quantified by luminometry. As the mole fraction of injected W294F-PepT1 increased, the uptake of D: -Phe-L: -Gln decreased. This occurred despite the surface expression of PepT1-FLAG remaining constant, and so we can conclude that PepT1 must be a multimer. Assuming that PepT1 acts as a homomultimer, the best fit for the modelling suggests that PepT1 could be a tetramer, with a minimum requirement of two functional subunits in each protein complex. Western blotting also showed the presence of higher-order complexes of PepT1-FLAG in oocyte membranes. It should be noted that we cannot formally exclude the possibility that PepT1 interacts with unidentified Xenopus protein(s). The finding that PepT1 is a multimer has important implications for the molecular modelling of this protein.
Collapse
Affiliation(s)
- Konstantinos-E Panitsas
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX, Oxford, UK
| | | | | |
Collapse
|
52
|
Atomic Force Microscopy in Nanomedicine. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/3-540-26910-x_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
53
|
O'Connell RJ, Panstruga R. Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. THE NEW PHYTOLOGIST 2006; 171:699-718. [PMID: 16918543 DOI: 10.1111/j.1469-8137.2006.01829.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
'Compatibility' describes the complementary relationship between a plant species and an adapted pathogen species that underlies susceptibility and which ultimately results in disease. Owing to elaborate surveillance systems and defence mechanisms on the plant side and a common lack of adaptation of many microbial pathogens, resistance is the rule and compatibility the exception for most plant-microbe combinations. While there has been major scientific interest in 'resistance' in the past decade, which has revealed many of its underlying molecular components, the analysis of 'compatibility', although intimately intertwined with 'resistance', has not been pursued with a similar intensity. Various recent studies, however, provide a first glimpse of the pivotal players and potential molecular mechanisms essential for compatibility in both the plant and parasite partners. In this review we highlight these findings with a particular emphasis on obligate biotrophic and hemibiotrophic fungal and oomycete pathogens and discuss novel strategies that might help to uncover further the molecular principles underlying compatibility to these highly specialized pathogens.
Collapse
Affiliation(s)
- Richard J O'Connell
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | |
Collapse
|
54
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
55
|
Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther 2005; 108:208-223. [PMID: 15936089 DOI: 10.1016/j.pharmthera.2005.04.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 01/12/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is the product of the gene mutated in patients with cystic fibrosis (CF). CFTR is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells lining the airway, gut, exocrine glands, etc., where it is responsible for transepithelial salt and water transport. CFTR chloride channel belongs to the superfamily of the ATP-binding cassette (ABC) transporters, which bind ATP and use the energy to drive the transport of a wide variety of substrates across extra- and intracellular membranes. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might regulate the activities of other ion channels, receptors, or transporters, in addition to its role as a chloride conductor. The molecular assembly of CFTR with these interacting proteins is of great interest and importance because several human diseases are attributed to altered regulation of CFTR, among which cystic fibrosis is the most serious one. Most interactions primarily occur between the opposing terminal tails (N- or C-) of CFTR and its binding partners, either directly or mediated through various PDZ domain-containing proteins. These dynamic interactions impact the channel function as well as the localization and processing of CFTR protein within cells. This review focuses on the recent developments in defining the assembly of CFTR-containing complexes in the plasma membrane and its interacting proteins.
Collapse
Affiliation(s)
- Chunying Li
- Department of Physiology, University of Tennessee Health Science Center, 420 Nash, 894 Union Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
56
|
Li J, Dai Z, Jana D, Callaway DJE, Bu Z. Ezrin Controls the Macromolecular Complexes Formed between an Adapter Protein Na+/H+ Exchanger Regulatory Factor and the Cystic Fibrosis Transmembrane Conductance Regulator. J Biol Chem 2005; 280:37634-43. [PMID: 16129695 DOI: 10.1074/jbc.m502305200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)/H(+) exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR)(2).NHERF.ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR.NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.
Collapse
Affiliation(s)
- Jianquan Li
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | |
Collapse
|
57
|
Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, Nussdorfer GG, Leo G, Guidolin D. New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 2005; 53:941-53. [PMID: 16055748 DOI: 10.1369/jhc.4a6355.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An important aspect of the image analysis of immunocytochemical preparations is the evaluation of colocalization of different molecules. The aim of the present study is to introduce image analysis methods to identify double-labeled locations exhibiting the highest association of two fluorophores and to characterize their pattern of distribution. These methods will be applied to the analysis of the cotrafficking of adenosine A2A and dopamine D2 receptors belonging to the G protein-coupled receptor family and visualized by means of fluorescence immunocytochemistry in Chinese hamster ovary cells after agonist treatment. The present procedures for colocalization have the great advantage that they are, to a large extent, insensitive to the need for a balanced staining with the two fluorophores. Thus, these procedures involve image processing, visualization, and analysis of colocalized events, using a covariance method and a multiply method and the evaluation of the identified colocalization patterns. Moreover, the covariance method offers the possibility of detecting and quantitatively characterizing anticorrelated patterns of intensities, whereas the immediate detection of colocalized clusters with a high concentration of labeling is a possibility offered by the multiply method. The present methods offer a new and sensitive approach to detecting and quantitatively characterizing strongly associated fluorescence events, such as those generated by receptor-receptor interaction, and their distribution patterns in dual-color confocal laser microscopy.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, Section of Physiology, University of Modena, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Rash JE, Davidson KGV, Yasumura T, Furman CS. Freeze-fracture and immunogold analysis of aquaporin-4 (AQP4) square arrays, with models of AQP4 lattice assembly. Neuroscience 2005; 129:915-34. [PMID: 15561408 PMCID: PMC1817903 DOI: 10.1016/j.neuroscience.2004.06.076] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2004] [Indexed: 02/02/2023]
Abstract
Each day, approximately 0.5-0.9 l of water diffuses through (primarily) aquaporin-1 (AQP1) channels in the human choroid plexus, into the cerebrospinal fluid of the brain ventricles and spinal cord central canal, through the ependymal cell lining, and into the parenchyma of the CNS. Additional water is also derived from metabolism of glucose within the CNS parenchyma. To maintain osmotic homeostasis, an equivalent amount of water exits the CNS parenchyma by diffusion into interstitial capillaries and into the subarachnoid space that surrounds the brain and spinal cord. Most of that efflux is through AQP4 water channels concentrated in astrocyte endfeet that surround capillaries and form the glia limitans. This report extends the ultrastructural and immunocytochemical characterizations of the crystalline aggregates of intramembrane proteins that comprise the AQP4 "square arrays" of astrocyte and ependymocyte plasma membranes. We elaborate on recent demonstrations in Chinese hamster ovary cells of the effects on AQP4 array assembly resulting from separate vs. combined expression of M1 and M23 AQP4, which are two alternatively spliced variants of the AQP4 gene. Using improved shadowing methods, we demonstrate sub-molecular cross-bridges that link the constituent intramembrane particles (IMPs) into regular square lattices of AQP4 arrays. We show that the AQP4 core particle is 4.5 nm in diameter, which appears to be too small to accommodate four monomeric proteins in a tetrameric IMP. Several structural models are considered that incorporate freeze-fracture data for submolecular "cross-bridges" linking IMPs into the classical square lattices that characterize, in particular, naturally occurring AQP4.
Collapse
Affiliation(s)
- J E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA.
| | | | | | | |
Collapse
|
59
|
Abstract
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- John R Riordan
- Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259, USA.
| |
Collapse
|
60
|
Vervoort EB, Bultema JB, Schuurman-Wolters GK, Geertsma ER, Broos J, Poolman B. The First Cytoplasmic Loop of the Mannitol Permease from Escherichia coli is Accessible for Sulfhydryl Reagents from the Periplasmic Side of the Membrane. J Mol Biol 2005; 346:733-43. [PMID: 15713459 DOI: 10.1016/j.jmb.2004.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/03/2004] [Accepted: 12/07/2004] [Indexed: 11/23/2022]
Abstract
The mannitol permease (EII(Mtl)) from Escherichia coli couples mannitol transport to phosphorylation of the substrate. Renewed topology prediction of the membrane-embedded C domain suggested that EII(Mtl) contains more membrane-embedded segments than the six proposed previously on the basis of a PhoA fusion study. Cysteine accessibility was used to confirm this notion. Since cysteine 384 in the cytoplasmic B domain is crucial for the phosphorylation activity of EII(Mtl), all cysteine mutants contained this activity-linked cysteine residue in addition to those introduced for probing the membrane topology of the protein. To distinguish between the activity-linked cysteine and the probed cysteine, either trypsin was used to specifically digest the two cytoplasmic domains (A and B), thereby removing Cys384, or Cys384 was protected by phosphorylation from alkylation by N-ethylmaleimide (NEM). Our data show that upon phosphorylation EII(Mtl) undergoes major conformational changes, whereby residues in the putative first cytoplasmic loop become accessible to NEM. Other residues in this loop were accessible to NEM in intact cells and inside-out membrane vesicles, but cysteine residues at these positions only reacted with the membrane-impermeable sulfhydryl reagent from the periplasmic side of the protein. These and other results suggest that the predicted loop between TM2 and TM3 may fold back into the membrane and form part of the translocation path.
Collapse
Affiliation(s)
- Elisa B Vervoort
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
61
|
Zhang ZR, Cui G, Liu X, Song B, Dawson DC, McCarty NA. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J Biol Chem 2004; 280:458-68. [PMID: 15504728 DOI: 10.1074/jbc.m409626200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnitudes and distributions of subconductance states were studied in chloride channels formed by the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and in CFTRs bearing amino acid substitutions in transmembrane segment 6. Within an open burst, it was possible to distinguish three distinct conductance states referred to as the full conductance, subconductance 1, and subconductance 2 states. Amino acid substitutions in transmembrane segment 6 altered the duration and probability of occurrence of these subconductance states but did not greatly alter their relative amplitudes. Results from real time measurements indicated that covalent modification of single R334C-CFTR channels by [2-(trimethylammonium)ethyl]methanethiosulfonate resulted in the simultaneous modification of all three conductance levels in what appeared to be a single step, without changing the proportion of time spent in each state. This behavior suggests that at least a portion of the conduction path is common to all three conducting states. The time course for the modification of R334C-CFTR, measured in outside-out macropatches using a rapid perfusion system, was also consistent with a single modification step as if each pore contained only a single copy of the cysteine at position 334. These results are consistent with a model for the CFTR conduction pathway in which a single anion-conducting pore is formed by a single CFTR polypeptide.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
62
|
Butler PJG, Ubarretxena-Belandia I, Warne T, Tate CG. The Escherichia coli multidrug transporter EmrE is a dimer in the detergent-solubilised state. J Mol Biol 2004; 340:797-808. [PMID: 15223321 DOI: 10.1016/j.jmb.2004.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 05/06/2004] [Accepted: 05/06/2004] [Indexed: 11/30/2022]
Abstract
EmrE is a multidrug transporter that utilises the proton gradient across bacterial cell membranes to pump hydrophobic cationic toxins out of the cell. The structure of EmrE is very unusual, because it is an asymmetric homodimer containing eight alpha-helices, six of which form the substrate-binding chamber and translocation pathway. Despite this structural information, the precise oligomeric order of EmrE in both the detergent-solubilised state and in vivo is unclear, although it must contain an even number of subunits to satisfy substrate-binding data. We have studied the oligomeric state of EmrE, purified in a functional form in dodecylmaltoside, by high-resolution size-exclusion chromatography (hrSEC) and by analytical ultracentrifugation. The data from equilibrium analytical ultracentrifugation were analysed using a measured density increment for the EmrE-lipid-detergent complex, which showed that the purified EmrE was predominantly a dimer. This value was consistent with the apparent mass for the EmrE-lipid-detergent complex (137 kDa) determined by hrSEC. EmrE was purified under different conditions using minimal concentrations of dodecylmaltoside, which would have maintained the structure of any putative higher oligomeric states: this EmrE preparation had an apparent mass of 206 kDa by hrSEC and equilibrium analytical ultracentrifugation showed unequivocally that EmrE was a dimer, although it was associated with a much larger mass of phospholipid. In addition, the effect of the substrate tetraphenylphosphonium on the oligomeric state was also analysed for both preparations of EmrE; velocity analytical ultracentrifugation showed that the substrate had no effect on the oligomeric state. Therefore, in the detergent dodecylmaltoside and under conditions where the protein is fully competent for substrate binding, EmrE is dimeric and there is no evidence from our data to suggest higher oligomeric states. These observations are discussed in relation to the recently published structures of EmrE from two- and three-dimensional crystals.
Collapse
Affiliation(s)
- P J G Butler
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
63
|
Gendreau S, Voswinkel S, Torres-Salazar D, Lang N, Heidtmann H, Detro-Dassen S, Schmalzing G, Hidalgo P, Fahlke C. A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J Biol Chem 2004; 279:39505-12. [PMID: 15265858 DOI: 10.1074/jbc.m408038200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neuronal and glial glutamate transporters play a central role in the termination of synaptic transmission and in extracellular glutamate homeostasis in the mammalian central nervous system. They are known to be multimers; however, the number of subunits forming a functional transporter is controversial. We studied the subunit stoichiometry of two distantly related glutamate transporters, the human glial glutamate transporter hEAAT2 and a bacterial glutamate transporter from Escherichia coli, ecgltP. Using blue native polyacrylamide gel electrophoresis, analysis of concatenated transporters, and chemical cross-linking, we demonstrated that human and prokaryotic glutamate transporters expressed in Xenopus laevis oocytes or in mammalian cells are assembled as trimers composed of three identical subunits. In an inducible mammalian cell line expressing hEAAT2 the glutamate uptake currents correlate to the amount of trimeric transporters. Overexpression and purification of ecgltP in E. coli resulted in a homogenous population of trimeric transporters that were functional after reconstitution in lipid vesicles. Our results indicate that an evolutionarily conserved trimeric quaternary structure represents the sole native and functional state of glutamate transporters.
Collapse
Affiliation(s)
- Sandra Gendreau
- Department of Molecular Pharmacology, Rheinisch-Westfälische Technische Hochschule Aachen, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Na+-Cl--dependent neurotransmitter transporters (or neurotransmitter:Na+ symporters, NSS) share many structural and functional features, e.g. a conserved topology of 12 transmembrane spanning alpha-helices, the capacity to operate in two directions and in an electrogenic manner. Biochemical and biophysical experiments indicate that these transporters interact in oligomeric quaternary structures. Fluorescence resonance energy transfer (FRET) microscopy has provided evidence for a constitutive physical interaction of NSS at the cell surface and throughout the biosynthetic pathway. Two interfaces for protein-protein interaction have been shown to be important in NSS; these comprise a glycophorin-like motif and a leucine heptad repeat. Upon mutational modification of the latter, surface targeting is considerably impaired without concomitant loss in uptake activity. This supports a role of oligomer formation in the passage of the quality control mechanisms of the endoplasmic reticulum and/or Golgi. In contrast, oligomerisation is dispensable for substrate binding and translocation.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, University of Vienna, Währinger Str 13a, A-1090 Vienna, Austria.
| | | |
Collapse
|
65
|
Ortegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P, Strålfors P. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. ACTA ACUST UNITED AC 2004; 271:2028-36. [PMID: 15128312 DOI: 10.1111/j.1432-1033.2004.04117.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.
Collapse
Affiliation(s)
- Unn Ortegren
- Department of Cell Biology and Diabetes Research Centre, Linköping University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Morel N, Dedieu JC, Philippe JM. Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 2004; 116:4751-62. [PMID: 14600261 DOI: 10.1242/jcs.00791] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vacuolar H+ATPase (V-ATPase) accumulates protons inside various intracellular organelles, generating the electrochemical proton gradient required for many vital cellular processes. V-ATPase is a complex enzyme with many subunits that are organized into two domains. The membrane domain that translocates protons contains a proteolipid oligomer of several c subunits and a 100 kDa a subunit. Several a-subunit isoforms have been described that are important for tissue specificity and targeting to different membrane compartments, and could also result in the generation of V-ATPases with different functional properties. In the present report, we have cloned the Torpedo marmorata a1 isoform. This isoform was found to be addressed specifically to nerve endings, whereas VATPases in the neuron cell bodies contain a different a-subunit isoform. In nerve terminals, the V-ATPase membrane domain is present not only in synaptic vesicles but also in the presynaptic plasma membrane, where its density could reach 200 molecules microm(-2). This V-ATPase interacts with VAMP-2 and with the SNARE complexes involved in synaptic vesicle docking and exocytosis.
Collapse
Affiliation(s)
- Nicolas Morel
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, 91198 Gif sur Yvette, France.
| | | | | |
Collapse
|
67
|
Li C, Roy K, Dandridge K, Naren AP. Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. J Biol Chem 2004; 279:24673-24684. [PMID: 15060073 DOI: 10.1074/jbc.m400688200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on electrophysiological measurements, it has been argued that the active form of cystic fibrosis trans-membrane conductance regulator (CFTR) Cl(-) channel is a multimer. It has also been demonstrated that this multimerization is likely due to PDZ domain-interacting partners. Here we demonstrate that although CFTR in vitro can self-associate into multimers, which depends on PDZ-based interactions, this may not be the case in cell membrane. Using chemical cross-linking, we demonstrated that CFTR exists as a higher order complex in cell membrane. However, this higher order complex is predominantly CFTR dimers, and the PDZ-interacting partners (Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) and NHERF2) constitute approximately 2% of this complex. Interestingly solubilizing membrane expressing CFTR in detergents such as Triton X-100, Nonidet P-40, deoxycholate, and SDS tended to destabilize the CFTR dimers and dissociate them into monomeric form. The dimerization of CFTR was tightly regulated by cAMP-dependent protein kinase-dependent phosphorylation and did not depend on the active form of the channel. In addition, the dimerization was not influenced by either the PDZ motif or its interacting partners (NHERF1 and NHERF2). We also demonstrated that other signaling-related proteins such as Gbeta and syntaxin 1A can be in this higher order complex of CFTR as well. Our studies provide a deeper understanding of how the CFTR assembly takes place in native cell membrane.
Collapse
Affiliation(s)
- Chunying Li
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
68
|
Howell LD, Borchardt R, Kole J, Kaz AM, Randak C, Cohn JA. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Biochem J 2004; 378:151-9. [PMID: 14602047 PMCID: PMC1223935 DOI: 10.1042/bj20021428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/02/2003] [Accepted: 11/06/2003] [Indexed: 11/17/2022]
Abstract
Gating of the CFTR Cl- channel is associated with ATP hydrolysis at the nucleotide-binding domains (NBD1, NBD2) and requires PKA (protein kinase A) phosphorylation of the R domain. The manner in which the NBD1, NBD2 and R domains of CFTR (cystic fibrosis transmembrane conductance regulator) interact to achieve a properly regulated ion channel is largely unknown. In this study we used bacterially expressed recombinant proteins to examine interactions between these soluble domains of CFTR in vitro. PKA phosphorylated a fusion protein containing NBD1 and R (NBD1-R-GST) on CFTR residues Ser-660, Ser-700, Ser-712, Ser-737, Ser-768, Ser-795 and Ser-813. Phosphorylation of these serine residues regulated ATP hydrolysis by NBD1-R-GST by increasing the apparent K(m) for ATP (from 70 to 250 microM) and the Hill coefficient (from 1 to 1.7) without changing the V(max). When fusion proteins were photolabelled with 8-azido-[alpha-32P]ATP, PKA phosphorylation increased the apparent k(d) for nucleotide binding and it caused binding to become co-operative. PKA phosphorylation also resulted in dimerization of NBD1-R-GST but not of R-GST, a related fusion protein lacking the NBD1 domain. Finally, an MBP (maltose-binding protein) fusion protein containing the NBD2 domain (NBD2-MBP) associated with and regulated the ATPase activity of PKA-phosphorylated NBD1-R-GST. Thus when the R domain in NBD1-R-GST is phosphorylated by PKA, ATP binding and hydrolysis becomes co-operative and NBD dimerization occurs. These findings suggest that during the activation of native CFTR, phosphorylation of the R domain by PKA can control the ability of the NBD1 domain to hydrolyse ATP and to interact with other NBD domains.
Collapse
Affiliation(s)
- L Daniel Howell
- Department of Medicine, Duke University and VA Medical Centers, Durham, NC 27710-3378, USA
| | | | | | | | | | | |
Collapse
|
69
|
Santer R, Kinner M, Lassen CL, Schneppenheim R, Eggert P, Bald M, Brodehl J, Daschner M, Ehrich JHH, Kemper M, Li Volti S, Neuhaus T, Skovby F, Swift PGF, Schaub J, Klaerke D. Molecular analysis of the SGLT2 gene in patients with renal glucosuria. J Am Soc Nephrol 2004; 14:2873-82. [PMID: 14569097 DOI: 10.1097/01.asn.0000092790.89332.d2] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of SGLT2 (the gene for a renal sodium-dependent glucose transporter) in renal glucosuria was evaluated. Therefore, its genomic sequence and its intron-exon organization were determined, and 23 families with index cases were analyzed for mutations. In 21 families, 21 different SGLT2 mutations were detected. Most of them were private; only a splice mutation was found in 5 families of different ethnic backgrounds, and a 12-bp deletion was found in two German families. Fourteen individuals (including the original patient with 'renal glucosuria type 0') were homozygous or compound heterozygous for an SGLT2 mutation resulting in glucosuria in the range of 14.6 to 202 g/1.73 m(2)/d (81 - 1120 mmol/1.73 m(2)/d). Some, but not all, of their heterozygous family members had an increased glucose excretion of up to 4.4 g/1.73 m(2)/d (24 mmol/1.73 m(2)/d). Likewise, in index cases with glucosuria below 10 g/1.73 m(2)/d (55 mmol/1.73 m(2)/d) an SGLT2 mutation, if present, was always detected in the heterozygous state. We conclude that SGLT2 plays an important role in renal tubular glucose reabsorption. Inheritance of renal glucosuria shows characteristics of a codominant trait with variable penetrance.
Collapse
Affiliation(s)
- René Santer
- Department of Pediatrics, University of Kiel, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch 2004; 447:510-8. [PMID: 12748858 DOI: 10.1007/s00424-003-1063-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Accepted: 03/28/2003] [Indexed: 01/10/2023]
Abstract
The sodium/glucose cotransporter family (SLCA5) has 220 or more members in animal and bacterial cells. There are 11 human genes expressed in tissues ranging from epithelia to the central nervous system. The functions of nine have been revealed by studies using heterologous expression systems: six are tightly coupled plasma membrane Na(+)/substrate cotransporters for solutes such as glucose, myo-inositol and iodide; one is a Na(+)/Cl(-)/choline cotransporter; one is an anion transporter; and another is a glucose-activated ion channel. The exon organization of eight genes is similar in that each comprises 14-15 exons. The choline transporter (CHT) is encoded in eight exons and the Na(+)-dependent myo-inositol transporter (SMIT) in one exon. Mutations in three genes produce genetic diseases (glucose-galactose malabsorption, renal glycosuria and hypothyroidism). Members of this family are multifunctional membrane proteins in that they also behave as uniporters, urea and water channels, and urea and water cotransporters. Consequently it is a challenge to determine the role(s) of these genes in human physiology and pathology.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
71
|
Abstract
Carbohydrates are mostly digested to glucose, fructose and galactose before absorption by the small intestine. Absorption across the brush border and basolateral membranes of enterocytes is mediated by sodium-dependent and -independent membrane proteins. Glucose and galactose transport across the brush border occurs by a Na(+)/glucose (galactose) co-transporter (SGLT1), whereas passive fructose transport is mediated by a uniporter (GLUT5). The passive exit of all three sugars out of the cell across the basolateral membrane occurs through two uniporters (GLUT2 and GLUT5). Mutations in SGLT1 cause a major defect in glucose and galactose absorption (glucose-galactose Malabsorption), but mutations in GLUT2 do not appear to disrupt glucose and galactose absorption. Studies on GLUT1 null mice and Fanconi-Bickel patients suggest that there is another exit pathway for glucose and galactose that may involve exocytosis. There are no known defects of fructose absorption.
Collapse
Affiliation(s)
- Ernest M Wright
- Departments of Physiology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | | | |
Collapse
|
72
|
BLINDER KARENJ, PUMPLIN DAVIDW, PAUL D, KELLER ASAF. Intercellular interactions in the mammalian olfactory nerve. J Comp Neurol 2003; 466:230-9. [PMID: 14528450 PMCID: PMC2800131 DOI: 10.1002/cne.10872] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small, unmyelinated axons of olfactory sensory neurons project to the olfactory bulb in densely packed fascicles, an arrangement conducive to axo-axonal interactions. We recently demonstrated ephaptic interactions between these axons in the olfactory nerve layer, the layer of the olfactory bulb in which the axon fascicles interweave and rearrange extensively. In the present study, we hypothesized that the axons, which express connexins, may have another mode of communication: gap junctions. Previous transmission electron microscopy (TEM) studies have failed to demonstrate such junctions. However, the definitive method for detecting gap junctions, freeze fracture, has not been used to examine the interaxonal connections of the olfactory nerve layer. Here, we apply a combined approach of TEM and freeze fracture to determine if gap junctions are present between the olfactory axons. Gap junctions involving olfactory axons were not found. However, by freeze fracture, P faces of both the axons and ensheathing cells (glia that surround the axon fascicles) contained distinctive linear arrays of particles, aligned along the small columns of extracellular space. In axons, few intramembranous particles were present outside of these arrays. Multi-helix proteins, including ion channels and connexin hemichannels, have been shown to be visible as particles by freeze fracture. This suggests that the proteins important for signal transmission are confined to the linear arrays. Such an arrangement would facilitate ephaptic transmission, calcium waves, current oscillations, and paracrine communication and may be important for olfactory neural code processing.
Collapse
Affiliation(s)
- KAREN J. BLINDER
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059
| | - DAVID W. PUMPLIN
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - D.L. PAUL
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - ASAF KELLER
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
73
|
Ramjeesingh M, Kidd JF, Huan LJ, Wang Y, Bear CE. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane. Biochem J 2003; 374:793-7. [PMID: 12820897 PMCID: PMC1223644 DOI: 10.1042/bj20030683] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 06/23/2003] [Accepted: 06/24/2003] [Indexed: 11/17/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) mediates chloride conduction across the apical membrane of epithelia, and mutations in CFTR lead to defective epithelial fluid transport. Recently, there has been considerable interest in determining the quaternary structure of CFTR at the cell surface, as such information is a key to understand the molecular basis for pathogenesis in patients harbouring disease-causing mutations. In our previous work [Ramjeesingh, Li, Kogan, Wang, Huan and Bear (2001) Biochemistry 40, 10700-10706], we showed that monomeric CFTR is the minimal functional form of the protein, yet when expressed in Sf 9 cells using the baculovirus system, it also exists as dimers. The purpose of the present study was to determine if dimeric CFTR exists at the surface of mammalian cells, and particularly in epithelial cells. CFTR solubilized from membranes prepared from Chinese-hamster ovary cells stably expressing CFTR and from T84 epithelial cells migrates as predicted for monomeric, dimeric and larger complexes when subjected to sizing by gel filtration and analysis by non-dissociative electrophoresis. Purification of plasma membranes led to the enrichment of CFTR dimers and this structure exists as the complex glycosylated form of the protein, supporting the concept that dimeric CFTR is physiologically relevant. Consistent with its localization in plasma membranes, dimeric CFTR was labelled by surface biotinylation. Furthermore, dimeric CFTR was captured at the apical surface of intact epithelial cells by application of a membrane-impermeable chemical cross-linker. Therefore it follows from the present study that CFTR dimers exist at the surface of epithelial cells. Further studies are necessary to understand the impact of dimerization on the cell biology of wild-type and mutant CFTR proteins.
Collapse
Affiliation(s)
- Mohabir Ramjeesingh
- Programme in Structural Biology and Biochemistry, Physiology Department, Faculty of Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
74
|
Plattner H, Kissmehl R. Dense-core secretory vesicle docking and exocytotic membrane fusion in Paramecium cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:183-93. [PMID: 12914959 DOI: 10.1016/s0167-4889(03)00092-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Work with Paramecium has contributed to the actual understanding of certain aspects of exocytosis regulation, including membrane fusion. The system is faster and more synchronous than any other dense-core vesicle system described and its highly regular design facilitates correlation of functional and ultrastructural (freeze-fracture) features. From early times on, several crucial aspects of exocytosis regulation have been found in Paramecium cells, e.g. genetically controlled microdomains (with distinct ultrastructure) for organelle docking and membrane fusion, involvement of calmodulin in establishing such microdomains, priming by ATP, occurrence of focal fusion with active participation of integral and peripheral proteins, decay of a population of integral proteins ("rosettes", mandatory for fusion capacity) into subunits and their lateral dispersal during fusion, etc. The size of rosette particles and their dispersal upon focal fusion would be directly compatible with proteolipid V(0) subunits of a V-ATPase, much better than the size predicted for oligomeric SNARE pins (SCAMPs are unknown from Paramecium at this time). However, there are some restrictions for a straightforward interpretation of ultrastructural results. The rather pointed, nipple-like tip of the trichocyst membrane could accommodate only one (or very few) potential V(0) counterpart(s), while the overlaying domain of the cell membrane contains numerous rosette particles. Particle size is compatible with V(0), but larger than that assumed for the SNARE complexes. When membrane fusion is induced in the presence of antibodies against cell surface components, focal fusion is seen to occur with dispersing rosette particles but without dispersal of their subunits and without pore expansion. Clearly, this is required for completing fusion and pore expansion. After cloning SNARE and V(0) components in Paramecium (with increasing details becoming rapidly available), we may soon be able to address the question more directly, whether any of these components or some new ones to be detected, serve exocytotic and/or any other membrane fusions in Paramecium.
Collapse
Affiliation(s)
- Helmut Plattner
- Fachbereich Biologie, Universität Konstanz, P.O. Box 5560, 78457, Konstanz, Germany.
| | | |
Collapse
|
75
|
Abstract
The sodium/glucose cotransporter family (SLCA5) has 220 or more members in animal and bacterial cells. There are 11 human genes expressed in tissues ranging from epithelia to the central nervous system. The functions of nine have been revealed by studies using heterologous expression systems: six are tightly coupled plasma membrane Na(+)/substrate cotransporters for solutes such as glucose, myo-inositol and iodide; one is a Na(+)/Cl(-)/choline cotransporter; one is an anion transporter; and another is a glucose-activated ion channel. The exon organization of eight genes is similar in that each comprises 14-15 exons. The choline transporter (CHT) is encoded in eight exons and the Na(+)-dependent myo-inositol transporter (SMIT) in one exon. Mutations in three genes produce genetic diseases (glucose-galactose malabsorption, renal glycosuria and hypothyroidism). Members of this family are multifunctional membrane proteins in that they also behave as uniporters, urea and water channels, and urea and water cotransporters. Consequently it is a challenge to determine the role(s) of these genes in human physiology and pathology.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
76
|
Zampighi GA, Kreman M, Lanzavecchia S, Turk E, Eskandari S, Zampighi L, Wright EM. Structure of functional single AQP0 channels in phospholipid membranes. J Mol Biol 2003; 325:201-10. [PMID: 12473462 DOI: 10.1016/s0022-2836(02)01200-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aquaporin-0 (AQP0) is the most prevalent intrinsic protein in the plasma membrane of lens fiber cells where it functions as a water selective channel and also participates in fiber-fiber adhesion. We report the 3D envelope of purified AQP0 reconstituted with random orientation in phospholipid bilayers as single particles. The envelope was obtained by combining freeze-fracture, shadowing and random conical tilt electron microscopy followed by single particle image processing. Two-dimensional analysis of 2547 untilted images produced eight class averages exhibiting "square" and "octagonal" shapes with a continuum of variation. We reconstructed in 3D five class averages that best described the data set. The reconstructions ("molds") appeared as metal cups exhibiting external and internal surfaces. We used the internal surface of the mold to calculate the "imprints" that represent the AQP0 particles protruding from the hydrophobic core of the phospholipid bilayer. The complete envelope of the channel, formed by joining the square and octagonal imprints, described accurately the size, shape, oligomeric state, orientation, and molecular weight of the AQP0 channel inserted in the phospholipid bilayer. Rigid body docking of the atomic model of the aquaporin-1 (AQP1) tetramer showed that the freeze-fracture envelope accounted for the conserved transmembrane domain (approximately 73% similarity between AQP0 and AQP1) but not for the amino and carboxyl termini. We suggest that the discrepancy might reflect differences in the location of the amino and carboxyl termini in the crystal and in the phospholipid bilayer.
Collapse
Affiliation(s)
- Guido A Zampighi
- Department of Neurobiology, UCLA School of Medicine, Los Angeles, CA 90095-1763, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Forster IC, Köhler K, Biber J, Murer H. Forging the link between structure and function of electrogenic cotransporters: the renal type IIa Na+/Pi cotransporter as a case study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 80:69-108. [PMID: 12379267 DOI: 10.1016/s0079-6107(02)00015-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Electrogenic cotransporters are membrane proteins that use the electrochemical gradient across the cell membrane of a cosubstrate ion, for example Na(+) or H(+), to mediate uphill cotransport of a substrate specific to the transport protein. The cotransport process involves recognition of both cosubstrate and substrate and translocation of each species according to a defined stoichiometry. Electrogenicity implies net movement of charges across the membrane in response to the transmembrane voltage and therefore, in addition to isotope flux assays, the cotransport kinetics can be studied in real-time using electrophysiological methods. As well as the cotransport mode, many cotransporters also display a uniport or slippage mode, whereby the cosubstrate ions translocate in the absence of substrate. The current challenge is to define structure-function relationships by identifying functionally important elements in the protein that confer the transport properties and thus contribute to the ultimate goal of having a 3-D model of the protein that conveys both structural and functional information. In this review we focus on a functional approach to meet this challenge, based on a combination of real-time electrophysiological assays, together with molecular biological and biochemical methods. This is illustrated, by way of example, using data obtained by heterologous expression of the renal Na(+)-coupled inorganic phosphate cotransporter (NaP(i)-IIa) for which structure-function relationships are beginning to emerge.
Collapse
Affiliation(s)
- Ian C Forster
- Physiologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | | | |
Collapse
|
78
|
Kahya N, Wiersma DA, Poolman B, Hoekstra D. Spatial organization of bacteriorhodopsin in model membranes. Light-induced mobility changes. J Biol Chem 2002; 277:39304-11. [PMID: 12167614 DOI: 10.1074/jbc.m202635200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin is a proton-transporting membrane protein in Halophilic archaea, and it is considered a prototype of membrane transporters and a model for G-protein-coupled receptors. Oligomerization of the protein has been reported, but it is unknown whether this feature is correlated with, for instance, light activation. Here, we have addressed this issue by reconstituting bacteriorhodopsin into giant unilamellar vesicles. The dynamics of the fully active protein was investigated using fluorescence correlation spectroscopy and freeze fracture electron microscopy. At low protein-to-lipid ratios (<1:10 w/w), a decrease in mobility was observed upon protein photoactivation. This process occurred on a second time scale and was fully reversible, i.e. when the dark-adapted state was reestablished the lateral diffusion rate of the protein was returned to that prior to activation. A similar decrease in lateral mobility as observed upon photoactivation was obtained when bacteriorhodopsin was reconstituted at high protein-to-lipid ratios (>1:10 w/w). We interpret the shifts in mobility during light adaptation as being caused by transient photoinduced oligomerization of bacteriorhodopsin. These observations are fully supported by freeze-fracture electron microscopy, and the size of the clusters during photoactivation was estimated to consist of two or three trimers.
Collapse
Affiliation(s)
- Nicoletta Kahya
- Ultrafast Laser and Spectroscopy Laboratory, Optical Sciences, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | |
Collapse
|
79
|
Bugnard E, Taulier N, Bloc A, Corrèges P, Falk-Vairant J, Sors P, Loctin F, Dunant Y. Quantal transmitter release by glioma cells: quantification of intramembrane particle changes. Neuroscience 2002; 113:125-35. [PMID: 12123691 DOI: 10.1016/s0306-4522(02)00145-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glial cells in situ are able to release neurotransmitters such as glutamate or acetylcholine (ACh). Glioma C6BU-1 cells were used to determine whether the mechanisms of ACh release by a glial cell line are similar or not to quantal release from neurones. Individual C6BU-1 cells, pre-filled with ACh, were moved into contact with a Xenopus myocyte that was used as a real-time ACh detector. Upon electrical stimulation, C6BU-1 cells generated evoked ACh impulses which were Ca(2+)-dependent and quantal (quantal steps of ca. 100 pA). Changes in plasma membrane ultrastructure were investigated by using a freeze-fracture technique designed for obtaining large and flat replicas from monolayer cell cultures. A transient increase in the density of medium and large size intramembrane particles--and a corresponding decrease of small particles--occurred in the plasma membrane of C6BU-1 cells stimulated for ACh release. Changes in interaction forces between adjacent medium and large particles were investigated by computing the radial distribution function and the interaction potential. In resting cells, the radial distribution function revealed a significant increase in the probability to find two particles separated by an interval of 24 nm; the interaction potential suggested repulsive forces for intervals shorter than 24 nm and attractive forces between 24 and 26 nm. In stimulated cells, this interaction was displaced to 21 nm and made weaker, despite of the fact that the overall particle density increased. The nature of this transient change in intramembrane particles is discussed, particularly with regard to the mediatophore proteolipid which is abundant in the membranes C6-BU-1 like in those of cholinergic neurones. In conclusion, evoked ACh release from pre-filled C6-BU-1 glioma cells is quantal and Ca(2+)-dependent. It is accompanied by a transient changes in the size distribution and the organisation of intramembrane particles in the plasma membrane. Thus, for the release characteristics, glioma cells do not differ fundamentally from neurones.
Collapse
Affiliation(s)
- E Bugnard
- Département de Pharmacologie, Centre Médical Universitaire, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Members of the sodium/substrate symporter family (SSSF, TC 2.A.21) catalyze the uptake of a wide variety of solutes including sugars, proline, pantothenate, and iodide into cells of pro- and eukaryotic origin. Extensive analyses of the topology of different SSSF proteins suggest an arrangement of 13 transmembrane domains as a common topological motif. Regions involved in sodium and/or substrate binding were identified. Furthermore, protein chemical and spectroscopic studies reveal ligand-induced structural alterations which are consistent with close interactions between the sites of sodium and substrate binding, thereby supporting an ordered binding mechanism for transport.
Collapse
Affiliation(s)
- Heinrich Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069, Osnabrück, Germany.
| |
Collapse
|
81
|
Thomas D, Bron P, Ranchy G, Duchesne L, Cavalier A, Rolland JP, Raguénès-Nicol C, Hubert JF, Haase W, Delamarche C. Aquaglyceroporins, one channel for two molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:181-6. [PMID: 12206912 DOI: 10.1016/s0005-2728(02)00275-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the light of the recently published structure of GlpF and AQP1, we have analysed the nature of the residues which could be involved in the formation of the selectivity filter of aquaporins, glycerol facilitators and aquaglyceroporins. We demonstrate that the functional specificity for major intrinsic protein (MIP) channels can be explained on one side by analysing the polar environment of the residues that form the selective filter. On the other side, we show that the channel selectivity could be associated with the oligomeric state of the membrane protein. We conclude that a non-polar environment in the vicinity of the top of helix 5 could allow aquaglyceroporins and GlpF to exist as monomers within the hydrophobic environment of the membrane.
Collapse
Affiliation(s)
- Daniel Thomas
- UMR CNRS 6026, Interactions Cellulaires et Moléculaires, Equipe Canaux et Récepteurs Membranaires, Université de Rennes 1, Rennes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mischel PS, Umbach JA, Eskandari S, Smith SG, Gundersen CB, Zampighi GA. Nerve growth factor signals via preexisting TrkA receptor oligomers. Biophys J 2002; 83:968-76. [PMID: 12124278 PMCID: PMC1302200 DOI: 10.1016/s0006-3495(02)75222-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nerve growth factor (NGF) promotes neuronal survival and differentiation by activating TrkA receptors. Similar to other receptor tyrosine kinases, ligand-induced dimerization is thought to be required for TrkA receptor activation. To study this process, we expressed TrkA receptors in Xenopus laevis oocytes and analyzed their response to NGF by using a combination of functional, biochemical, and structural approaches. TrkA receptor protein was detected in the membrane fraction of oocytes injected with TrkA receptor cRNA, but not in uninjected or mock-injected oocytes. Application of NGF to TrkA receptor-expressing oocytes promoted tyrosine phosphorylation and activated an oscillating transmembrane inward current, indicating that the TrkA receptors were functional. Freeze-fracture electron microscopic analysis demonstrated novel transmembrane particles in the P-face (protoplasmic face) of oocytes injected with TrkA cRNA, but not in uninjected or mock injected oocytes. Incubating TrkA cRNA-injected oocytes with the transcriptional inhibitor actinomycin D did not prevent the appearance of these P-face particles or electrophysiological responses to NGF, demonstrating that they did not arise from de novo transcription of an endogenous Xenopus oocyte gene. The appearance of these particles in the plasma membrane correlated with responsiveness to NGF as detected by electrophysiological analysis and receptor phosphorylation, indicating that these novel P-face particles were TrkA receptors. The dimensions of these particles (8.6 x 10 nm) were too large to be accounted for by TrkA monomers, suggesting the formation of TrkA receptor oligomers. Application of NGF did not lead to a discernible change in the size or shape of these TrkA receptor particles during an active response. These results indicate that in Xenopus oocytes, NGF activates signaling via pre-formed TrkA receptor oligomers.
Collapse
Affiliation(s)
- Paul S Mischel
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, California 90095-1732 USA.
| | | | | | | | | | | |
Collapse
|
83
|
Norgaard-Nielsen K, Norregaard L, Hastrup H, Javitch JA, Gether U. Zn(2+) site engineering at the oligomeric interface of the dopamine transporter. FEBS Lett 2002; 524:87-91. [PMID: 12135746 DOI: 10.1016/s0014-5793(02)03008-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increasing evidence suggests that Na(+)/Cl(-)-dependent neurotransmitter transporters exist as homo-oligomeric proteins. However, the functional implication of this oligomerization remains unclear. Here we demonstrate the engineering of a Zn(2+) binding site at the predicted dimeric interface of the dopamine transporter (DAT) corresponding to the external end of transmembrane segment 6. Upon binding to this site, which involves a histidine inserted in position 310 (V310H) and the endogenous Cys306 within the same DAT molecule, Zn(2+) potently inhibits [(3)H]dopamine uptake. These data provide indirect evidence that conformational changes critical for the translocation process may occur at the interface between two transporter molecules in the oligomeric structure.
Collapse
Affiliation(s)
- Kristine Norgaard-Nielsen
- Molecular Neuropharmacology Group, Department of Pharmacology 12-5-22, The Panum Institute, University of Copenhagen, DK-2200 N Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
84
|
Haan GJ, Faber KN, Baerends RJS, Koek A, Krikken A, Kiel JAKW, van der Klei IJ, Veenhuis M. Hansenula polymorpha Pex3p is a peripheral component of the peroxisomal membrane. J Biol Chem 2002; 277:26609-17. [PMID: 12011037 DOI: 10.1074/jbc.m108569200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hansenula polymorpha Pex3p plays an essential role in the biogenesis and maintenance of the peroxisomal membrane. In the initial report, bakers' yeast Pex3p was suggested to represent an integral component of the peroxisomal membrane, containing one membrane-spanning region that exposes the N terminus of the protein into the organellar matrix. Biochemically, HpPex3p behaved like an integral membrane protein as it was resistant toward high salt and carbonate treatment. However, urea fully removed Pex3p from the membrane under conditions in which the integral membrane protein Pex10p was resistant to this treatment. Additional experiments, including protease protection assays and pre-embedding labeling experiments on purified organellar fractions from cells that produced Pex3ps carrying Myc epitopes at various selected locations in the protein, revealed that invariably all Myc tags were accessible for externally added proteases and antibodies, independent of the presence of detergents. Also, overproduction of Pex3p failed to demonstrate the typical integral membrane protein structures in fracture faces of freeze-fractured peroxisomes. Taken together, our data suggest that HpPex3p does not span the peroxisomal membrane but instead is tightly associated to the cytosolic face of the organelle where it may be present in focal protein clusters.
Collapse
Affiliation(s)
- Gert Jan Haan
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Wang W, He Z, O'Shaughnessy TJ, Rux J, Reenstra WW. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol 2002; 282:C1170-80. [PMID: 11940532 DOI: 10.1152/ajpcell.00337.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR is a chloride channel whose activity requires protein kinase A-dependent phosphorylation of an intracellular regulatory domain (R-domain) and ATP hydrolysis at the nucleotide-binding domains (NBDs). To identify potential sites of domain-domain interaction within CFTR, we expressed, purified, and refolded histidine (His)- and glutathione-S-transferase (GST)-tagged cytoplasmic domains of CFTR. ATP-binding to his-NBD1 and his-NBD2 was demonstrated by measuring tryptophan fluorescence quenching. Tryptic digestion of in vitro phosphorylated his-NBD1-R and in situ phosphorylated CFTR generated the same phosphopeptides. An interaction between NBD1-R and NBD2 was assayed by tryptophan fluorescence quenching. Binding among all pairwise combinations of R-domain, NBD1, and NBD2 was demonstrated with an overlay assay. To identify specific sites of interaction between domains of CFTR, an overlay assay was used to probe an overlapping peptide library spanning all intracellular regions of CFTR with his-NBD1, his-NBD2, and GST-R-domain. By mapping peptides from NBD1 and NBD2 that bound to other intracellular domains onto crystal structures for HisP, MalK, and Rad50, probable sites of interaction between NBD1 and NBD2 were identified. Our data support a model where NBDs form dimers with the ATP-binding sites at the domain-domain interface.
Collapse
Affiliation(s)
- Wenlan Wang
- Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Membranes are important sites for the regulation of metabolic functions because they contain transport molecules, which often catalyze the first step in a pathway, and signal-transduction components, which allow the cell to communicate with the environment. Given the catalytic importance of transport proteins and their role in membrane stability, it is possible that oligomerization is used to regulate their function. This review evaluates knowledge of the functions that are associated with the oligomeric organization of secondary transport proteins, which are a major class of solute-translocation systems in all living species.
Collapse
Affiliation(s)
- Liesbeth M Veenhoff
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
87
|
Heuberger EHML, Veenhoff LM, Duurkens RH, Friesen RHE, Poolman B. Oligomeric state of membrane transport proteins analyzed with blue native electrophoresis and analytical ultracentrifugation. J Mol Biol 2002; 317:591-600. [PMID: 11955011 DOI: 10.1006/jmbi.2002.5416] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blue native electrophoresis is used widely for the analysis of non-dissociated protein complexes with respect to composition, oligomeric state and molecular mass. However, the effects of detergent or dye binding on the mass and stability of the integral membrane proteins have not been studied. By comparison with analytical ultracentrifugation, we have evaluated whether the oligomeric state of membrane transport proteins is reflected reliably with blue native electrophoresis. For the analysis we have used two well-characterized transporters, that is, the major facilitator superfamily protein LacS and the phosphotransferase system EII(Mtl). For another member of the major facilitator superfamily, the xyloside transporter XylP from Lactobacillus pentosus, the complete analysis of the quaternary structure determined by analytical ultracentrifugation and freeze-fracture electron microscopy is presented. Our experiments show that during blue native electrophoresis the detergent bound to the proteins is replaced by the amphipathic Coomassie brilliant blue (CBB) dye. The mass of the bound CBB dye was quantified. Provided this additional mass of bound CBB dye is accounted for and care is taken in the choice and concentration of the detergent used, the mass of LacS, XylP and EII(Mtl) and four other membrane (transport) proteins could be deduced within 10 % error. Our data underscore the fact that the oligomeric state of many membrane transport proteins is dimeric.
Collapse
Affiliation(s)
- Esther H M L Heuberger
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
88
|
Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels. Physiol Rev 2002; 82:503-68. [PMID: 11917096 DOI: 10.1152/physrev.00029.2001] [Citation(s) in RCA: 950] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cl- channels reside both in the plasma membrane and in intracellular organelles. Their functions range from ion homeostasis to cell volume regulation, transepithelial transport, and regulation of electrical excitability. Their physiological roles are impressively illustrated by various inherited diseases and knock-out mouse models. Thus the loss of distinct Cl- channels leads to an impairment of transepithelial transport in cystic fibrosis and Bartter's syndrome, to increased muscle excitability in myotonia congenita, to reduced endosomal acidification and impaired endocytosis in Dent's disease, and to impaired extracellular acidification by osteoclasts and osteopetrosis. The disruption of several Cl- channels in mice results in blindness. Several classes of Cl- channels have not yet been identified at the molecular level. Three molecularly distinct Cl- channel families (CLC, CFTR, and ligand-gated GABA and glycine receptors) are well established. Mutagenesis and functional studies have yielded considerable insights into their structure and function. Recently, the detailed structure of bacterial CLC proteins was determined by X-ray analysis of three-dimensional crystals. Nonetheless, they are less well understood than cation channels and show remarkably different biophysical and structural properties. Other gene families (CLIC or CLCA) were also reported to encode Cl- channels but are less well characterized. This review focuses on molecularly identified Cl- channels and their physiological roles.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
89
|
Roudier N, Bailly P, Gane P, Lucien N, Gobin R, Cartron JP, Ripoche P. Erythroid expression and oligomeric state of the AQP3 protein. J Biol Chem 2002; 277:7664-9. [PMID: 11751877 DOI: 10.1074/jbc.m105411200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biochemical and biophysical studies have shown that the strictly water-permeable aquaporins have a tetrameric structure, whereas results concerning the oligomeric state of GlpF, the glycerol facilitator of Escherichia coli, are dependent upon the analytical technique used. Here, we analyzed the oligomerization of the AQP3 aquaglyceroporin, which presents a mixed selectivity for water, glycerol, and urea. At first, based on transcript detection by reverse transcription-PCR from human erythroid tissues and membrane expression detected by flow cytometry analysis, we demonstrated that AQP3 is expressed on human and rat but not on mouse red blood cells. Then, the quaternary structure of AQP3 was determined using as models human red blood cell membranes, which carry both AQP1 and AQP3, and two heterologous expression systems: Xenopus laevis oocyte, for density and size estimation of aquaporins, and Saccharomyces cerevisiae yeast, which expressed a non-glycosylated form of AQP3. By velocity sedimentation in sucrose gradient after non-denaturing detergent solubilization, AQP3 was essentially found as mono- and dimeric species in conditions under which AQP1 preserved its tetrameric structure. Freeze-fracture studies on oocyte plasma membranes gave a size of AQP3 particles in favor of a dimeric or trimeric structure. Finally, by cross-linking experiments with red blood cell membranes, AQP3 is visible as different oligomeric structures, including a tetrameric one.
Collapse
Affiliation(s)
- Nathalie Roudier
- Département de Biologie Cellulaire et Moléculaire, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | |
Collapse
|
90
|
deCarvalho ACV, Ndi CP, Tsopmo A, Tane P, Ayafor J, Connolly JD, Teem JL. A Novel Natural Product Compound Enhances cAMP-Regulated Chloride Conductance of Cells Expressing CFTRΔF508. Mol Med 2002. [DOI: 10.1007/bf03402077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
91
|
Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol 2002; 3:RESEARCH0001. [PMID: 11806824 PMCID: PMC150448 DOI: 10.1186/gb-2001-3-1-research0001] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Revised: 09/03/2001] [Accepted: 10/08/2001] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well. RESULTS The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo. CONCLUSIONS Our preliminary data indicate a strongly transcellular component for the flux of water in roots.
Collapse
Affiliation(s)
- Francoise Quigley
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
92
|
McCarty NA, Zhang ZR. Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol Lung Cell Mol Physiol 2001; 281:L852-67. [PMID: 11557589 DOI: 10.1152/ajplung.2001.281.4.l852] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The variety of methods used to identify the structural determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator Cl(-) channel has made it difficult to assemble the data into a coherent framework that describes the three-dimensional structure of the pore. Here, we compare the relative importance of sites previously studied and identify new sites that contribute strongly to anion selectivity. We studied Cl(-) and substitute anions in oocytes expressing wild-type cystic fibrosis transmembrane conductance regulator or 12-pore-domain mutants to determine relative permeability and relative conductance for 9 monovalent anions and 1 divalent anion. The data indicate that the region of strong discrimination resides between T338 and S341 in transmembrane 6, where mutations affected selectivity between Cl(-) and both large and small anions. Mutations further toward the extracellular end of the pore only strongly affected selectivity between Cl(-) and larger anions. Only mutations at S341 affected selectivity between monovalent and divalent anions. The data are consistent with a narrowing of the pore between the extracellular end and a constriction near the middle of the pore.
Collapse
Affiliation(s)
- N A McCarty
- Department of Physiology and Pediatrics, Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
93
|
Hirayama BA, Díez-Sampedro A, Wright EM. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Br J Pharmacol 2001; 134:484-95. [PMID: 11588102 PMCID: PMC1572974 DOI: 10.1038/sj.bjp.0704274] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Electrophysiological methods were used to investigate the interaction of inhibitors with the human Na(+)/glucose (hSGLT1) and Na(+)/Cl(-)/GABA (hGAT1) cotransporters. Inhibitor constants were estimated from both inhibition of substrate-dependent current and inhibitor-induced changes in cotransporter conformation. 2. The competitive, non-transported inhibitors are substrate derivatives with inhibition constants from 200 nM (phlorizin) to 17 mM (esculin) for hSGLT1, and 300 nM (SKF89976A) to 10 mM (baclofen) for hGAT1. At least for hSGLT1, values determined using either method were proportional over 5-orders of magnitude. 3. Correlation of inhibition to structure of the inhibitors resulted in a pharmacophore for glycoside binding to hSGLT1: the aglycone is coplanar with the pyranose ring, and binds to a hydrophobic/aromatic surface of at least 7x12A. Important hydrogen bond interactions occur at five positions bordering this surface. 4. In both hSGLT1 and hGAT1 the data suggests that there is a large, hydrophobic inhibitor binding site approximately 8A from the substrate binding site. This suggests an architectural similarity between hSGLT1 and hGAT1. There is also structural similarity between non-competitive and competitive inhibitors, e.g., phloretin is the aglycone of phlorizin (hSGLT1) and nortriptyline resembles SKF89976A without nipecotic acid (hGAT1). 5. Our studies establish that measurement of the effect of inhibitors on presteady state currents is a valid non-radioactive method for the determination of inhibitor binding constants. Furthermore, analysis of the presteady state currents provide novel insights into partial reactions of the transport cycle and mode of action of the inhibitors.
Collapse
Affiliation(s)
- B A Hirayama
- UCLA School of Medicine, Department of Physiology, 53-231CHS, Los Angeles, California, CA 90095-1751, USA.
| | | | | |
Collapse
|
94
|
Duchesne L, Deschamps S, Pellerin I, Lagree V, Froger A, Thomas D, Bron P, Delamarche C, Hubert JF. Oligomerization of water and solute channels of the major intrinsic protein (MIP) family. Kidney Int 2001; 60:422-6. [PMID: 11473620 DOI: 10.1046/j.1523-1755.2001.060002422.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Water and small solute fluxes through cell membranes are ensured in many tissues by selective pores that belong to the major intrinsic protein family (MIP). This family includes the water channels or aquaporins (AQP) and the neutral solute facilitators such as the glycerol facilitator (GlpF). We have compared the characteristics of representatives of each subfamily. Following solubilization in the nondenaturing detergents n-octyl-glucoside (OG) and Triton X-100 (T-X100), AQPs remain in their native homotetrameric state, while GlpF always behaves as a monomer. Solute facilitators are fully solubilized by the detergent N-lauroyl sarcosine (NLS), while AQPs are not. Analyses of mutants and chimeras demonstrate a close correlation between the water transport function and the resistance to NLS solubilization. Thus, AQPs and solute facilitators exhibit different behaviors in mild detergents; this could reflect differences in quaternary organization within the membranes. We propose that the oligomerization state or the strength of self-association is part of the mechanisms used by MIP proteins to ensure solute selectivity.
Collapse
Affiliation(s)
- L Duchesne
- Université de Rennes 1, UMR CNRS 6026, Campus de Beaulieu, Rennes, Bretagne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Veenhoff LM, Heuberger EH, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J 2001; 20:3056-62. [PMID: 11406582 PMCID: PMC150208 DOI: 10.1093/emboj/20.12.3056] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Major Facilitator Superfamily lactose transport protein (LacS) undergoes reversible self-association in the detergent-solubilized state, and is present in the membrane as a dimer. We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl. From the quadratic relationship between the uptake activity and the ratio of LacS-C67/LacS-cl, we conclude that the dimeric state of LacS is required for Deltap-driven uptake. N-ethylmaleimide (NEM) treatment of proteoliposomes abolished the LacS-C67 exchange activity but left the LacS-cl unaffected. After NEM treatment, the exchange activity decreased linearly with increasing ratios of LacS-C67/LacS-cl, suggesting that the monomeric state of LacS is sufficient for this mode of transport. We propose that the two subunits of LacS are functionally coupled in the step associated with conformational reorientation of the empty binding site, a step unique for Deltap-driven uptake.
Collapse
Affiliation(s)
| | | | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
96
|
Rosenberg MF, Mao Q, Holzenburg A, Ford RC, Deeley RG, Cole SP. The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis. J Biol Chem 2001; 276:16076-82. [PMID: 11279022 DOI: 10.1074/jbc.m100176200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.
Collapse
Affiliation(s)
- M F Rosenberg
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|
97
|
Kube D, Adams L, Perez A, Davis PB. Terminal sialylation is altered in airway cells with impaired CFTR-mediated chloride transport. Am J Physiol Lung Cell Mol Physiol 2001; 280:L482-92. [PMID: 11159032 DOI: 10.1152/ajplung.2001.280.3.l482] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reduced terminal sialylation at the surface of airway epithelial cells from patients with cystic fibrosis may predispose them to bacterial infection. To determine whether a lack of chloride transport or misprocessing of mutant cystic fibrosis transmembrane conductance regulator (CFTR) is critical for the alterations in glycosylation, we studied a normal human tracheal epithelial cell line (9/HTEo(-)) transfected with the regulatory (R) domain of CFTR, which blocks CFTR-mediated chloride transport; DeltaF508 CFTR, which is misprocessed, wild-type CFTR; or empty vector. Reduced cAMP-stimulated chloride transport is seen in the R domain and DeltaF508 transfectants. These two cell lines had consistent, significantly reduced binding of elderberry bark lectin, which recognizes terminal sialic acid in the alpha-2,6 configuration. Binding of other lectins, including Maakia amurensis lectin, which recognizes sialic acid in the alpha-2,3 configuration, was comparable in all cell lines. Because the cell surface change occurred in R domain-transfected cells, which continue to express wild-type CFTR, it cannot be related entirely to misprocessed or overexpressed CFTR. It is associated most closely with reduced CFTR activity.
Collapse
Affiliation(s)
- D Kube
- Department of Pediatrics, Case Western Reserve University at Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
98
|
Surface-localized glycine transporters 1 and 2 function as monomeric proteins in Xenopus oocytes. Proc Natl Acad Sci U S A 2001. [PMID: 11171971 PMCID: PMC29277 DOI: 10.1073/pnas.041329498] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Na(+)/Cl(-)-dependent neurotransmitter transporters form a superfamily of transmembrane proteins that share 12 membrane-spanning regions. To gain information about the quaternary structure of these transporter proteins, we heterologously expressed the glial glycine transporter GlyT1 and its neuronal homolog GlyT2 in Xenopus oocytes. By using metabolic labeling with [(35)S]methionine or surface labeling with a plasma membrane impermeable reagent followed by affinity purification, we separately analyzed the total cellular pools of newly synthesized GlyTs and its functional plasma membrane-bound fractions. Upon blue native gel electrophoresis, the surface-localized transporter proteins were found to exist exclusively in complex-glycosylated monomeric form, whereas a significant fraction of the intracellular GlyT1 and GlyT2 was core-glycosylated and oligomeric. In contrast, even after treatment with the crosslinker glutaraldehyde, surface GlyTs failed to migrate as oligomeric proteins. These results indicate that plasma membrane-bound GlyT1 and GlyT2 are monomeric proteins. Thus, Na(+)/Cl(-)-dependent neurotransmitter transporters do not require oligomerization for substrate translocation.
Collapse
|
99
|
Horiuchi M, Nicke A, Gomeza J, Aschrafi A, Schmalzing G, Betz H. Surface-localized glycine transporters 1 and 2 function as monomeric proteins in Xenopus oocytes. Proc Natl Acad Sci U S A 2001; 98:1448-53. [PMID: 11171971 PMCID: PMC29277 DOI: 10.1073/pnas.98.4.1448] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Na(+)/Cl(-)-dependent neurotransmitter transporters form a superfamily of transmembrane proteins that share 12 membrane-spanning regions. To gain information about the quaternary structure of these transporter proteins, we heterologously expressed the glial glycine transporter GlyT1 and its neuronal homolog GlyT2 in Xenopus oocytes. By using metabolic labeling with [(35)S]methionine or surface labeling with a plasma membrane impermeable reagent followed by affinity purification, we separately analyzed the total cellular pools of newly synthesized GlyTs and its functional plasma membrane-bound fractions. Upon blue native gel electrophoresis, the surface-localized transporter proteins were found to exist exclusively in complex-glycosylated monomeric form, whereas a significant fraction of the intracellular GlyT1 and GlyT2 was core-glycosylated and oligomeric. In contrast, even after treatment with the crosslinker glutaraldehyde, surface GlyTs failed to migrate as oligomeric proteins. These results indicate that plasma membrane-bound GlyT1 and GlyT2 are monomeric proteins. Thus, Na(+)/Cl(-)-dependent neurotransmitter transporters do not require oligomerization for substrate translocation.
Collapse
Affiliation(s)
- M Horiuchi
- Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Raghuram V, Mak DO, Foskett JK. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Proc Natl Acad Sci U S A 2001; 98:1300-5. [PMID: 11158634 PMCID: PMC14749 DOI: 10.1073/pnas.98.3.1300] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase- and ATP-regulated chloride channel, the activity of which determines the rate of electrolyte and fluid transport in a variety of epithelial tissues. Here we describe a mechanism that regulates CFTR channel activity, which is mediated by PDZ domains, a family of conserved protein-interaction modules. The Na(+)/H(+) exchanger regulatory factor (NHERF) binds to the cytoplasmic tail of CFTR through either of its two PDZ (PDZ1 and PDZ2) domains. A recombinant fragment of NHERF (PDZ1-2) containing the two PDZ domains increases the open probability (P(o)) of single CFTR channels in excised membrane patches from a lung submucosal gland cell line. Both PDZ domains are required for this functional effect, because peptides containing mutations in either domain are unable to increase channel P(o). The concentration dependence of the regulation by the bivalent PDZ1-2 domain is biphasic, i.e., activating at lower concentrations and inhibiting at higher concentrations. Furthermore, either PDZ domain alone or together is without effect on P(o), but either domain can competitively inhibit the PDZ1-2-mediated stimulation of CFTR. Our results support a molecular model in which bivalent NHERF PDZ domains regulate channel gating by crosslinking the C-terminal tails in a single dimeric CFTR channel, and the magnitude of this regulation is coupled to the stoichiometry of these interactions.
Collapse
Affiliation(s)
- V Raghuram
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | |
Collapse
|