51
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
52
|
Shi F, Simandi Z, Nagy L, Collins S. Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers. J Biol Chem 2021; 297:100941. [PMID: 34245781 PMCID: PMC8326739 DOI: 10.1016/j.jbc.2021.100941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
The cardiac natriuretic peptides (NPs) are well established as regulators of blood pressure and fluid volume, but they also stimulate adipocyte lipolysis and control the gene program of nonshivering thermogenesis in brown adipose tissue. The NP "clearance" receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well known that the Nprc gene is highly expressed in adipose tissue and dynamically regulated upon nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here, we identified the nuclear receptor transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, whereas siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. By using chromosome conformation capture and luciferase reporter assays, we demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is found to be associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.
Collapse
Affiliation(s)
- Fubiao Shi
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Zoltan Simandi
- Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA; Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, Saint Petersburg, Florida, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA; Integrative Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.
| |
Collapse
|
53
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
54
|
Egom EEA. Natriuretic Peptide Clearance Receptor (NPR-C) Pathway as a Novel Therapeutic Target in Obesity-Related Heart Failure With Preserved Ejection Fraction (HFpEF). Front Physiol 2021; 12:674254. [PMID: 34093235 PMCID: PMC8176210 DOI: 10.3389/fphys.2021.674254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a major public health problem with cases projected to double over the next two decades. There are currently no US Food and Drug Administration–approved therapies for the health-related outcomes of HFpEF. However, considering the high prevalence of this heterogeneous syndrome, a directed therapy for HFpEF is one the greatest unmet needs in cardiovascular medicine. Additionally, there is currently a lack of mechanistic understanding about the pathobiology of HFpEF. The phenotyping of HFpEF patients into pathobiological homogenous groups may not only be the first step in understanding the molecular mechanism but may also enable the development of novel targeted therapies. As obesity is one of the most common comorbidities found in HFpEF patients and is associated with many cardiovascular effects, it is a viable candidate for phenotyping. Large outcome trials and registries reveal that being obese is one of the strongest independent risk factors for developing HFpEF and that this excess risk may not be explained by traditional cardiovascular risk factors. Recently, there has been increased interest in the intertissue communication between adipose tissue and the heart. Evidence suggests that the natriuretic peptide clearance receptor (NPR-C) pathway may play a role in the development and pathobiology of obesity-related HFpEF. Therefore, therapeutic manipulations of the NPR-C pathway may represent a new pharmacological strategy in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Emmanuel Eroume A Egom
- Institut du Savoir Montfort, Hôpital Montfort, University of Ottawa, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| |
Collapse
|
55
|
Lukowski R, Cruz Santos M, Kuret A, Ruth P. cGMP and mitochondrial K + channels-Compartmentalized but closely connected in cardioprotection. Br J Pharmacol 2021; 179:2344-2360. [PMID: 33991427 DOI: 10.1111/bph.15536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023] Open
Abstract
The 3',5'-cGMP pathway triggers cytoprotective responses and improves cardiomyocyte survival during myocardial ischaemia and reperfusion (I/R) injury. These beneficial effects were attributed to NO-sensitive GC induced cGMP production leading to activation of cGMP-dependent protein kinase I (cGKI). cGKI in turn phosphorylates many substrates, which eventually facilitate opening of mitochondrial ATP-sensitive potassium channels (mitoKATP ) and Ca2+ -activated potassium channels of the BK type (mitoBK). Accordingly, agents activating mitoKATP or mitoBK provide protection against I/R-induced damages. Here, we provide an up-to-date summary of the infarct-limiting actions exhibited by the GC/cGMP axis and discuss how mitoKATP and mitoBK, which are present at the inner mitochondrial membrane, confer mito- and cytoprotective effects on cardiomyocytes exposed to I/R injury. In view of this, we believe that the functional connection between the cGMP cascade and mitoK+ channels should be exploited further as adjunct to reperfusion therapy in myocardial infarction.
Collapse
Affiliation(s)
- Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
56
|
Wagner BM, Robinson JW, Lin YW, Lee YC, Kaci N, Legeai-Mallet L, Potter LR. Prevention of guanylyl cyclase-B dephosphorylation rescues achondroplastic dwarfism. JCI Insight 2021; 6:147832. [PMID: 33784257 PMCID: PMC8262296 DOI: 10.1172/jci.insight.147832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) or inactivating mutations in guanylyl cyclase-B (GC-B), also known as NPR-B or Npr2, cause short-limbed dwarfism. FGFR3 activation causes dephosphorylation and inactivation of GC-B, but the contribution of GC-B dephosphorylation to achondroplasia (ACH) is unknown. GC-B7E/7E mice that express a glutamate-substituted version of GC-B that cannot be inactivated by dephosphorylation were bred with mice expressing FGFR3-G380R, the most common human ACH mutation, to determine if GC-B dephosphorylation is required for ACH. Crossing GC-B7E/7E mice with FGFR3G380R/G380R mice increased naso-anal and long (tibia and femur), but not cranial, bone length twice as much as crossing GC-B7E/7E mice with FGFR3WT/WT mice from 4 to 16 weeks of age. Consistent with increased GC-B activity rescuing ACH, long bones from the GC-B7E/7E/FGFR3G380R/G380R mice were not shorter than those from GC-BWT/WT/FGFR3WT/WT mice. At 2 weeks of age, male but not female FGFR3G380R/G380R mice had shorter long bones and smaller growth plate hypertrophic zones, whereas female but not male GC-B7E/7E mice had longer bones and larger hypertrophic zones. In 2-week-old males, crossing FGFR3G380R/G380R mice with GC-B7E/7E mice increased long bone length and hypertrophic zone area to levels observed in mice expressing WT versions of both receptors. We conclude that preventing GC-B dephosphorylation rescues reduced axial and appendicular skeleton growth in a mouse model of achondroplasia.
Collapse
Affiliation(s)
| | - Jerid W Robinson
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yun-Wen Lin
- Institute for Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Lee
- Institute for Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Nabil Kaci
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of OsteochonDrodysplasia, INSERM UMR 1163, F-75015, Paris, France
| | - Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of OsteochonDrodysplasia, INSERM UMR 1163, F-75015, Paris, France
| | - Lincoln R Potter
- Departments of Integrative Biology and Physiology and.,Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
57
|
Brignone J, Assersen KB, Jensen M, Jensen BL, Kloster B, Jønler M, Lund L. Protection of kidney function and tissue integrity by pharmacologic use of natriuretic peptides and neprilysin inhibitors. Pflugers Arch 2021; 473:595-610. [PMID: 33844072 DOI: 10.1007/s00424-021-02555-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
With variable potencies atrial-, brain-type and c-type natriuretic peptides (NP)s, best documented for ANP and its analogues, promote sodium and water excretion, renal blood flow, lipolysis, lower blood pressure, and suppress renin and aldosterone secretion through interaction predominantly with cGMP-coupled NPR-A receptor. Infusion of especially ANP and its analogues up to 50 ng/kg/min in patients with high risk of acute kidney injury (cardiac vascular bypass surgery, intraabdominal surgery, direct kidney surgery) protects kidney function (GFR, plasma flow, medullary flow, albuminuria, renal replacement therapy, tissue injury) at short term and also long term and likely additively with the diuretic furosemide. This documents a pharmacologic potential for the pathway. Neprilysin (NEP, neutral endopeptidase) degrades NPs, in particular ANP, and angiotensin II. The drug LCZ696, a mixture of the neprilysin inhibitor sacubitril and the ANGII-AT1 receptor blocker valsartan, was FDA approved in 2015 and marketed as Entresto®. In preclinical studies of kidney injury, LCZ696 and NPs lowered plasma creatinine, countered hypoxia and oxidative stress, suppressed proinflammatory cytokines, and inhibited fibrosis. Few randomized clinical studies exist and were designed with primary cardiac outcomes. The studies showed that LCZ696/entresto stabilized and improved glomerular filtration rate in patients with chronic kidney disease. LCZ696 is safe to use concerning kidney function and stabilizes or increases GFR. In perspective, combined AT1 and neprilysin inhibition is a promising approach for long-term renal protection in addition to AT1 receptor blockers in acute kidney injury and chronic kidney disease.
Collapse
Affiliation(s)
- Juan Brignone
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Kasper Bostlund Assersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mia Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Brian Kloster
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Jønler
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Lund
- Department of Urology, Aalborg University Hospital, Aalborg, Denmark.,Department of Urology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
58
|
Zhang X, Deng HW, Shen H, Ehrlich M. Prioritization of Osteoporosis-Associated Genome-wide Association Study (GWAS) Single-Nucleotide Polymorphisms (SNPs) Using Epigenomics and Transcriptomics. JBMR Plus 2021; 5:e10481. [PMID: 33977200 PMCID: PMC8101624 DOI: 10.1002/jbm4.10481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/10/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Genetic risk factors for osteoporosis, a prevalent disease associated with aging, have been examined in many genome-wide association studies (GWASs). A major challenge is to prioritize transcription-regulatory GWAS-derived variants that are likely to be functional. Given the critical role of epigenetics in gene regulation, we have used an unusual epigenetics-based and transcription-based approach to identify some of the credible regulatory single-nucleotide polymorphisms (SNPs) relevant to osteoporosis from 38 reported bone mineral density (BMD) GWASs. Using Roadmap databases, we prioritized SNPs based upon their overlap with strong enhancer or promoter chromatin preferentially in osteoblasts relative to 12 heterologous cell culture types. We also required that these SNPs overlap open chromatin (Deoxyribonuclease I [DNaseI]-hypersensitive sites) and DNA sequences predicted to bind to osteoblast-relevant transcription factors in an allele-specific manner. From >50,000 GWAS-derived SNPs, we identified 14 novel and credible regulatory SNPs (Tier-1 SNPs) for osteoporosis risk. Their associated genes, BICC1, LGR4, DAAM2, NPR3, or HMGA2, are involved in osteoblastogenesis or bone homeostasis and regulate cell signaling or enhancer function. Four of these genes are preferentially expressed in osteoblasts. BICC1, LGR4, and DAAM2 play important roles in canonical Wnt signaling, a pathway critical for bone formation and repair. The transcription factors predicted to bind to the Tier-1 SNP-containing DNA sequences also have bone-related functions. We present evidence that some of the Tier-1 SNPs exert their effects on BMD risk indirectly through little-studied long noncoding RNA (lncRNA) genes, which may, in turn, control the nearby bone-related protein-encoding gene. Our study illustrates a method to identify novel BMD-related causal regulatory SNPs for future study and to prioritize candidate regulatory GWAS-derived SNPs, in general. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine Tulane University New Orleans LA USA.,Tulane Cancer Center and Hayward Genetics Center Tulane University New Orleans LA USA
| |
Collapse
|
59
|
Egom EEA, Moyou-Somo R, Essame Oyono JL, Kamgang R. Identifying Potential Mutations Responsible for Cases of Pulmonary Arterial Hypertension. APPLICATION OF CLINICAL GENETICS 2021; 14:113-124. [PMID: 33732008 PMCID: PMC7958998 DOI: 10.2147/tacg.s260755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Pulmonary Arterial Hypertension (PAH) is a progressive and devastating disease for which there is an escalating body of genetic and related pathophysiological information on disease pathobiology. Nevertheless, the success to date in identifying susceptibility genes, genetic variants and epigenetic processes has been limited due to PAH clinical multi-faceted variations. A number of germline gene candidates have been proposed but demonstrating consistently the association with PAH has been problematic, at least partly due to the reduced penetrance and variable expressivity. Although the data for bone morphogenetic protein receptor type 2 (BMPR2) and related genes remains undoubtedly the most extensive, recent advanced gene sequencing technologies have facilitated the discovery of further gene candidates with mutations among those with and without familial forms of PAH. An in depth understanding of the multitude of biologic variations associated with PAH may provide novel opportunities for therapeutic intervention in the coming years. This knowledge will irrevocably provide the opportunity for improved patient and family counseling as well as improved PAH diagnosis, risk assessment, and personalized treatment.
Collapse
Affiliation(s)
- Emmanuel Eroume-A Egom
- Institut du Savoir Montfort (ISM), Hôpital Montfort, Ottawa, ON, Canada.,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon.,Reflex Medical Centre Cardiac Diagnostics, Reflex Medical Centre, Mississauga, ON, Canada
| | - Roger Moyou-Somo
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Jean Louis Essame Oyono
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| | - Rene Kamgang
- Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon
| |
Collapse
|
60
|
Shao S, Li XD, Lu YY, Li SJ, Chen XH, Zhou HD, He S, Guo YT, Lu X, Gao PJ, Wang JG. Renal Natriuretic Peptide Receptor-C Deficiency Attenuates NaCl Cotransporter Activity in Angiotensin II-Induced Hypertension. Hypertension 2021; 77:868-881. [PMID: 33486984 DOI: 10.1161/hypertensionaha.120.15636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified that NPR-C (natriuretic peptide receptor-C) variants are associated with elevation of blood pressure. However, the mechanism underlying the relationship between NPR-C and blood pressure regulation remains elusive. Here, we investigate whether NPR-C regulates Ang II (angiotensin II)-induced hypertension through sodium transporters activity. Wild-type mice responded to continuous Ang II infusion with an increased renal NPR-C expression. Global NPR-C deficiency attenuated Ang II-induced increased blood pressure both in male and female mice associated with more diuretic and natriuretic responses to a saline challenge. Interestingly, Ang II increased both total and phosphorylation of NCC (NaCl cotransporter) abundance involving in activation of WNK4 (with-no-lysine kinase 4)/SPAK (Ste20-related proline/alanine-rich kinase) which was blunted by NPR-C deletion. NCC inhibitor, hydrochlorothiazide, failed to induce natriuresis in NPR-C knockout mice. Moreover, low-salt and high-salt diets-induced changes of total and phosphorylation of NCC expression were normalized by NPR-C deletion. Importantly, tubule-specific deletion of NPR-C also attenuated Ang II-induced elevated blood pressure, total and phosphorylation of NCC expression. Mechanistically, in distal convoluted tubule cells, Ang II dose and time-dependently upregulated WNK4/SPAK/NCC kinase pathway and NPR-C/Gi/PLC/PKC signaling pathway mediated NCC activation. These results demonstrate that NPR-C signaling regulates NCC function contributing to sodium retention-mediated elevated blood pressure, which suggests that NPR-C is a promising candidate for the treatment of sodium retention-related hypertension.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Cells, Cultured
- Female
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney Tubules, Distal/cytology
- Kidney Tubules, Distal/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Atrial Natriuretic Factor/deficiency
- Receptors, Atrial Natriuretic Factor/genetics
- Renin-Angiotensin System/genetics
- Renin-Angiotensin System/physiology
- Signal Transduction/genetics
- Sodium/blood
- Sodium/urine
- Solute Carrier Family 12, Member 3/genetics
- Solute Carrier Family 12, Member 3/metabolism
- Mice
Collapse
Affiliation(s)
- Shuai Shao
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao-Dong Li
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Yuan-Yuan Lu
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Shi-Jin Li
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao-Hui Chen
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Han-Dan Zhou
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Shun He
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Yue-Tong Guo
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Xiao Lu
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Ping-Jin Gao
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| | - Ji-Guang Wang
- From the Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
61
|
Adachi K, Kato D, Kahyo T, Konishi T, Sato T, Madokoro Y, Mizuno M, Akatsu H, Setou M, Matsukawa N. Possible correlated variation of GABA A receptor α3 expression with hippocampal cholinergic neurostimulating peptide precursor protein in the hippocampus. Biochem Biophys Res Commun 2021; 542:80-86. [PMID: 33503541 DOI: 10.1016/j.bbrc.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/23/2022]
Abstract
Cholinergic neural activation from the medial septal nucleus to hippocampus plays a crucial role in episodic memory as a regulating system for glutamatergic neural activation in the hippocampus. As a candidate regulating factor for acetylcholine synthesis in the medial septal nucleus, hippocampal cholinergic neurostimulating peptide (HCNP) was purified from the soluble fraction of young adult rat hippocampus. HCNP is released from its precursor protein (HCNP-pp), also referred to as phosphatidylethanolamine-binding protein 1. We recently reported that HCNP-pp conditional knockout (KO) mice, in which the HCNP-pp gene was knocked out at 3 months of age by tamoxifen injection, display no significant behavioral abnormalities, whereas HCNP-pp KO mice have a diminished cholinergic projection to CA1 and a decreased of theta activity in CA1. In this study, to address whether HCNP-pp reduction in early life is associated with behavioral changes, we evaluated the behavior of HCNP-pp KO mice in which HCNP-pp was downregulated from an early phase (postnatal days 14-28). As unexpected, HCNP-pp KO mice had no behavioral deficits. However, a significant positive correlation between HCNP-pp and gamma-aminobutyric acid A (GABAA) receptor α3 subunit mRNA expression was found in individuals. This finding suggests involvement of HCNP-pp in regulating GABAA receptor α3 gene expression.
Collapse
Affiliation(s)
- Kenichi Adachi
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Toyohiro Sato
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuta Madokoro
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Masayuki Mizuno
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hiroyasu Akatsu
- Department of Community-based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
62
|
Abstract
Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment-derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC-derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration.
Collapse
|
63
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
64
|
Abstract
The phenotypic trait of high bone mass (HBM) is an excellent example of the nexus between common and rare disease genetics. HBM may arise from carriage of many 'high bone mineral density [BMD]'-associated alleles, and certainly the genetic architecture of individuals with HBM is enriched with high BMD variants identified through genome-wide association studies of BMD. HBM may also arise as a monogenic skeletal disorder, due to abnormalities in bone formation, bone resorption, and/or bone turnover. Individuals with monogenic disorders of HBM usually, though not invariably, have other skeletal abnormalities (such as mandible enlargement) and thus are best regarded as having a skeletal dysplasia rather than just isolated high BMD. A binary etiological division of HBM into polygenic vs. monogenic, however, would be excessively simplistic: the phenotype of individuals carrying rare variants of large effect can still be modified by their common variant polygenic background, and by the environment. HBM disorders-whether predominantly polygenic or monogenic in origin-are not only interesting clinically and genetically: they provide insights into bone processes that can be exploited therapeutically, with benefits both for individuals with these rare bone disorders and importantly for the many people affected by the commonest bone disease worldwide-i.e., osteoporosis. In this review we detail the genetic architecture of HBM; we provide a conceptual framework for considering HBM in the clinical context; and we discuss monogenic and polygenic causes of HBM with particular emphasis on anabolic causes of HBM.
Collapse
Affiliation(s)
- Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Emma L. Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
65
|
Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases. Curr Top Med Chem 2020; 20:2904-2921. [PMID: 33050863 DOI: 10.2174/1568026620666201013154326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.
Collapse
Affiliation(s)
- Yana Lerner
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Wessal Hanout
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Samar Gani
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Michal Pellach Leshem
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| |
Collapse
|
66
|
Kato J. Natriuretic peptides and neprilysin inhibition in hypertension and hypertensive organ damage. Peptides 2020; 132:170352. [PMID: 32610060 DOI: 10.1016/j.peptides.2020.170352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
The family of natriuretic peptides (NPs) discovered in mammalian tissues including cardiac atrium and brain consists of three members, namely, atrial, B- and C-type natriuretic peptides (ANP, BNP, CNP). Since the discovery, basic and clinical studies have been vigorously performed to explore the biological functions and pathophysiological roles of NPs in a wide range of diseases including hypertension and heart failure. These studies revealed that ANP and BNP are hormones secreted from the heart into the blood stream in response to pre- or after-load, counteracting blood pressure (BP) elevation and fluid retention through specific receptors. Meanwhile, CNP was found to be produced by the vascular endothelium, acting as a local mediator potentially serving protective functions for the blood vessels. Because NPs not only exert blood pressure lowering actions but also alleviate hypertensive organ damage, attempts have been made to develop therapeutic agents for hypertension by utilizing this family of NPs. One strategy is to inhibit neprilysin, an enzyme degrading NPs, thereby enhancing the actions of endogenous peptides. Recently, a dual inhibitor of angiotensin receptor-neprilysin was approved for heart failure, and neprilysin inhibition has also been shown to be beneficial in treating patients with hypertension. This review summarizes the roles of NPs in regulating BP, with special references to hypertension and hypertensive organ damage, and discusses the therapeutic implications of neprilysin inhibition.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, University of Miyazaki Faculty of Medicine, Cardiovascular Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
67
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
68
|
Robinson JW, Blixt NC, Norton A, Mansky KC, Ye Z, Aparicio C, Wagner BM, Benton AM, Warren GL, Khosla S, Gaddy D, Suva LJ, Potter LR. Male mice with elevated C-type natriuretic peptide-dependent guanylyl cyclase-B activity have increased osteoblasts, bone mass and bone strength. Bone 2020; 135:115320. [PMID: 32179168 DOI: 10.1016/j.bone.2020.115320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
C-type natriuretic peptide (CNP) activation of guanylyl cyclase (GC)-B, also known as NPR2, stimulates cGMP synthesis and bone elongation. CNP activation requires the phosphorylation of multiple GC-B residues and dephosphorylation inactivates the receptor. GC-B7E/7E knockin mice, expressing a glutamate-substituted, "pseudophosphorylated," form of GC-B, exhibit increased CNP-dependent GC activity. Since mutations that constitutively activate GC-B in the absence of CNP result in low bone mineral density in humans, we determined the skeletal phenotype of 9-week old male GC-B7E/7E mice. Unexpectedly, GC-B7E/7E mice have significantly greater tibial and L5 vertebral trabecular bone volume fraction, tibial trabecular number, and tibial bone mineral density. Cortical cross-sectional area, cortical thickness, periosteal diameter and cortical cross-sectional moment of inertia were also significantly increased in GC-B7E/7E tibiae. Three-point bending measurements demonstrated that the mutant tibias and femurs had greater ultimate load, stiffness, energy to ultimate load, and energy to failure. No differences in microhardness indicated similar bone quality at the tissue level between the mutant and wildtype bones. Procollagen 1 N-terminal propeptide and osteocalcin were elevated in serum, and osteoblast number per bone perimeter and osteoid width per bone perimeter were elevated in tibias from the mutant mice. In contrast to mutations that constitutively activate GC-B, we report that mutations that enhance GC-B activity only in the presence of its natural ligand, increase bone mass, bone strength, and the number of active osteoblasts at the bone surface.
Collapse
Affiliation(s)
- Jerid W Robinson
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas C Blixt
- Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Andrew Norton
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kim C Mansky
- Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Zhou Ye
- Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Conrado Aparicio
- Restorative Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Brandon M Wagner
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew M Benton
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging and Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Lincoln R Potter
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
69
|
Abstract
Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.
Collapse
|
70
|
Agrawal V, Hemnes AR. Authors' reply: role of natriuretic peptide receptor C signalling in obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. Pulm Circ 2020; 10:2045894020910979. [PMID: 32206307 PMCID: PMC7074514 DOI: 10.1177/2045894020910979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vineet Agrawal, Division of Cardiology, Department of Medicine, Vanderbilt University School of Medicine, T1218 Medical Center, North 1161, 21st Avenue, South Nashville, TN 37232, USA.
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
71
|
Rahmutula D, Zhang H, Wilson EE, Olgin JE. Absence of natriuretic peptide clearance receptor attenuates TGF-β1-induced selective atrial fibrosis and atrial fibrillation. Cardiovasc Res 2020; 115:357-372. [PMID: 30239604 DOI: 10.1093/cvr/cvy224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 09/14/2018] [Indexed: 01/04/2023] Open
Abstract
Aims TGF-β1 plays an important role in atrial fibrosis and atrial fibrillation (AF); previous studies have shown that the atria are more susceptible to TGF-β1 mediated fibrosis than the ventricles. Natriuretic peptides (NPs) play an important role in cardiac remodelling and fibrosis, but the role of natriuretic peptide clearance (NPR-C) receptor is largely unknown. We investigated the role of NPR-C in modulating TGF-β1 signalling in the atria. Methods and results MHC-TGF-β1 transgenic (TGF-β1-Tx) mice, which develop isolated atrial fibrosis and AF, were cross-bred with NPR-C knock-out mice (NPR-C-KO). Transverse aortic constriction (TAC) was performed in wild type (Wt) and NPR-C knockout mice to study. Atrial fibrosis and AF inducibility in a pathophysiologic model. Electrophysiology, molecular, and histologic studies were performed in adult mice. siRNA was used to interrogate the interaction between TGF-β1 and NP signalling pathways in isolated atrial and ventricular fibroblasts/myofibroblasts. NPR-C expression level was 17 ± 5.8-fold higher in the atria compared with the ventricle in Wt mice (P = 0.009). Cross-bred mice demonstrated markedly decreased pSmad2 and collagen expression, atrial fibrosis, and AF compared with TGF-β1-Tx mice with intact NPR-C. There was a marked reduction in atrial fibrosis gene expression and AF inducibility in the NPR-C-KO-TAC mice compared with Wt-TAC. In isolated fibroblasts, knockdown of NPR-C resulted in a marked reduction of pSmad2 (56 ± 4% and 24 ± 14% reduction in atrial and ventricular fibroblasts, respectively) and collagen (76 ± 15% and 35 ± 23% reduction in atrial and ventricular fibroblasts/myofibroblasts, respectively) in response to TGF-β1 stimulation. This effect was reversed by simultaneously knocking down NPR-A but not with simultaneous knock down of PKG-1. Conclusion The differential response to TGF-β1 stimulated fibrosis between the atria and ventricle are in part mediated by the abundance of NPR-C receptors in the atria.
Collapse
Affiliation(s)
- Dolkun Rahmutula
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Hao Zhang
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Emily E Wilson
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| | - Jeffrey E Olgin
- Division of Cardiology, Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Avenue, M1182, Box 0124, San Francisco, CA, USA
| |
Collapse
|
72
|
Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, Hodivala-Dilke K, Baliga RS, Hobbs AJ. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J 2020; 41:1006-1020. [PMID: 30903134 PMCID: PMC7068173 DOI: 10.1093/eurheartj/ehz093] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sandy M Chu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew S Dukinfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kenneth B Margulies
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
73
|
Meng J, Chen W, Wang J. Interventions in the B-type natriuretic peptide signalling pathway as a means of controlling chronic itch. Br J Pharmacol 2020; 177:1025-1040. [PMID: 31877230 DOI: 10.1111/bph.14952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic itch poses major health care and economic burdens worldwide. In 2013, B-type natriuretic peptide (BNP) was identified as an itch-selective neuropeptide and shown to be both necessary and sufficient to produce itch behaviour in mice. Since then, mechanistic studies of itch have increased, not only at central levels of the spinal relay of itch signalling but also in the periphery and skin. In this review, we have critically analysed recent findings from complementary pharmacological and physiological approaches, combined with genetic strategies to examine the role of BNP in itch transduction and modulation of other pruritic proteins. Additionally, potential targets and possible strategies against BNP signalling are discussed for developing novel therapeutics in itch. Overall, we aim to provide insights into drug development by altering BNP signalling to modulate disease symptoms in chronic itch, including conditions for which no approved treatment exists.
Collapse
Affiliation(s)
- Jianghui Meng
- School of Life Sciences, Henan University, Henan, China.,National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Weiwei Chen
- School of Life Sciences, Henan University, Henan, China
| | - Jiafu Wang
- School of Life Sciences, Henan University, Henan, China.,School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
74
|
D'Marco L, Cortez M, Salazar M, Lima-Martínez M, Bermúdez V. Epicardial adipose tissue: A cardiovascular risk marker to evaluate in chronic kidney disease. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:129-134. [PMID: 31980198 DOI: 10.1016/j.arteri.2019.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease represents a true inflammatory state, and is related to multiple cardiovascular risk factors. Coronary artery disease is the major complication, and has usually been associated with non-classical or uraemic related factors that include the disturbance of calcium and phosphorus metabolism, among others. Recent clinical evidence shows that specific body fat deposition like epicardial adipose tissue is an additional factor to consider when evaluating cardiovascular risk in the general population and kidney patients. Direct interaction of this tissue and coronary vessels with consequent mediation of pro-atherogenic substances have a local process ending in endothelial damage. Although the population of renal patients has been poorly evaluated, future studies should determine precisely whether an increase in epicardial fat is truly associated with cardiovascular morbidity and mortality in this risk group.
Collapse
Affiliation(s)
- Luis D'Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia , España.
| | - Marie Cortez
- Unidad Avanzada de Investigación y Diagnóstico Ecográfico y Renal, Clínica Puerto Ordaz, Venezuela
| | - María Salazar
- Unidad Avanzada de Investigación y Diagnóstico Ecográfico y Renal, Clínica Puerto Ordaz, Venezuela
| | - Marcos Lima-Martínez
- Unidad Avanzada de Investigación y Diagnóstico Ecográfico y Renal, Clínica Puerto Ordaz, Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
75
|
Agrawal V, Fortune N, Yu S, Fuentes J, Shi F, Nichols D, Gleaves L, Poovey E, Wang TJ, Brittain EL, Collins S, West JD, Hemnes AR. Natriuretic peptide receptor C contributes to disproportionate right ventricular hypertrophy in a rodent model of obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. Pulm Circ 2019; 9:2045894019878599. [PMID: 31903184 PMCID: PMC6923530 DOI: 10.1177/2045894019895452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently has no therapies that improve mortality. Right ventricular dysfunction and pulmonary hypertension are common in HFpEF, and thought to be driven by obesity and metabolic syndrome. Thus, we hypothesized that an animal model of obesity-induced HFpEF with pulmonary hypertension would provide insight into the pathogenesis of right ventricular failure in HFpEF. Two strains of mice, one susceptible (AKR) and one resistant (C3H) to obesity-induced HFpEF, were fed high fat (60% fat) or control diet for 0, 2, or 20 weeks and evaluated by cardiac catheterization and echocardiography for development of right ventricular dysfunction, pulmonary hypertension, and HFpEF. AKR, but not C3H, mice developed right ventricular dysfunction, pulmonary hypertension, and HFpEF. NPRC, which antagonizes beneficial natriuretic peptide signaling, was found in RNA sequencing to be the most differentially upregulated gene in the right ventricle, but not left ventricle or lung, of AKR mice that developed pulmonary hypertension and HFpEF. Overexpression of NPRC in H9C2 cells increased basal cell size and increased expression of hypertrophic genes, MYH7 and NPPA. In conclusion, we have shown that NPRC contributes to right ventricular modeling in obesity-induced pulmonary hypertension-HFpEF by increasing cardiomyocyte hypertrophy. NPRC may represent a promising therapeutic target for right ventricular dysfunction in pulmonary hypertension-HFpEF.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Niki Fortune
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Sheeline Yu
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Julio Fuentes
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Fubiao Shi
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - David Nichols
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Linda Gleaves
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Emily Poovey
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Thomas J. Wang
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Evan L. Brittain
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Sheila Collins
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - James D. West
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| |
Collapse
|
76
|
Špiranec K, Chen W, Werner F, Nikolaev VO, Naruke T, Koch F, Werner A, Eder-Negrin P, Diéguez-Hurtado R, Adams RH, Baba HA, Schmidt H, Schuh K, Skryabin BV, Movahedi K, Schweda F, Kuhn M. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation 2019; 138:494-508. [PMID: 29626067 DOI: 10.1161/circulationaha.117.033383] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in vascular SMCs have unaltered blood pressure. METHODS We analyzed whether the vasodilating response to CNP changes along the vascular tree, ie, whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMCs and capillary pericytes. Intravital microscopy, invasive and noninvasive hemodynamics, fluorescence energy transfer studies of pericyte cAMP levels in situ, and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. RESULTS Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases toward small-diameter arterioles and capillaries. CNP consistently did not prevent endothelin-1-induced acute constrictions of proximal arterioles, but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, ie, in pericytes. It is notable that the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion, but abolished in mice lacking GC-B in microcirculatory SMCs and pericytes. CNP, via GC-B/cGMP signaling, modulates 2 signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator-activated phosphoprotein, and it inhibits phosphodiesterase 3A, thereby enhancing pericyte cAMP levels. These pathways ultimately prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMCs and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. CONCLUSIONS Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMCs and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.
Collapse
Affiliation(s)
- Katarina Špiranec
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Wen Chen
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Werner
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Takashi Naruke
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Koch
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Andrea Werner
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Petra Eder-Negrin
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Rodrigo Diéguez-Hurtado
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Hideo A Baba
- Faculty of Medicine, University of Münster, Germany. Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany (H.A.B.)
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany (H.S.)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Boris V Skryabin
- Core Facility Transgenic Animal and genetic engineering Models (B.V.S.)
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, Vesalius Research Center, Center for Inflammation Research, and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium (K.M.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| |
Collapse
|
77
|
Dugbartey GJ, Quinn B, Luo L, Mickelsen DM, Ture SK, Morrell CN, Czyzyk J, Doyley MM, Yan C, Berk BC, Korshunov VA. The Protective Role of Natriuretic Peptide Receptor 2 against High Salt Injury in the Renal Papilla. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1721-1731. [PMID: 31220449 PMCID: PMC6724224 DOI: 10.1016/j.ajpath.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Sara K Ture
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Jan Czyzyk
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Chen Yan
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York; Department of Medicine, Neurorestoration Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| | - Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| |
Collapse
|
78
|
Ishikawa K, Hara T, Mizukawa M, Fukano Y, Shimomura T. Natriuretic peptide signaling is involved in the expression of oxidative metabolism-related and muscle fiber constitutive genes in the gastrocnemius muscle. Mol Cell Endocrinol 2019; 494:110493. [PMID: 31255729 DOI: 10.1016/j.mce.2019.110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Natriuretic peptides regulate cyclic guanosine monophosphate (cGMP) levels via their receptors and have various physiological effects. Natriuretic peptide receptor C (NPR-C) increases cGMP signaling by functioning as a clearance receptor. We analyzed the role of natriuretic peptides in the skeletal muscle, which increases in mass with bone elongation, of NPR-C- mice. High-fat diet (HFD)-fed NPR-C- mice exhibited obesity resistance and higher oxygen consumption. PGC1α gene expression was upregulated in the gastrocnemius muscle of HFD-fed NPR-C- mice compared with HFD-fed NPR-C+ (wild-type) mice. Gene expression of proliferator-activated receptor delta and estrogen-related receptor α, which upregulate oxidative metabolism, was increased in the gastrocnemius muscle of NPR-C- mice, irrespective of diet. Expression of myosin heavy chain 7, a component of type I slow-twitch fiber, was enhanced. Natriuretic peptide signaling may influence oxidative metabolism-related and slow-twitch fiber constitutive gene expression in the fast-twitch gastrocnemius muscle but not in slow-twitch muscles such as the soleus.
Collapse
Affiliation(s)
- Kiyoshi Ishikawa
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Toda, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.
| | - Taiki Hara
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Toda, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Mao Mizukawa
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Toda, Japan
| | - Yasufumi Fukano
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Toda, Japan
| | - Takeshi Shimomura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
79
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
80
|
Oh A, Okazaki R, Sam F, Valero-Muñoz M. Heart Failure With Preserved Ejection Fraction and Adipose Tissue: A Story of Two Tales. Front Cardiovasc Med 2019; 6:110. [PMID: 31428620 PMCID: PMC6687767 DOI: 10.3389/fcvm.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Although it accounts for up to 50% of all clinical presentations of heart failure, there are no evidence-based therapies for HFpEF to reduce morbidity and mortality. Additionally there is a lack of mechanistic understanding about the pathogenesis of HFpEF. HFpEF is associated with many comorbidities (such as obesity, hypertension, type 2 diabetes, atrial fibrillation, etc.) and is coupled with both cardiac and extra-cardiac abnormalities. Large outcome trials and registries reveal that being obese is a major risk factor for HFpEF. There is increasing focus on investigating the link between obesity and HFpEF, and the role that the adipose tissue and the heart, and the circulating milieu play in development and pathogenesis of HFpEF. This review discusses features of the obese-HFpEF phenotype and highlights proposed mechanisms implicated in the inter-tissue communication between adipose tissue and the heart in obesity-associated HFpEF.
Collapse
Affiliation(s)
- Albin Oh
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Ross Okazaki
- Boston University School of Medicine, Boston, MA, United States
| | - Flora Sam
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
- Boston University School of Medicine, Boston, MA, United States
- Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Maria Valero-Muñoz
- Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
81
|
Role of epicardial adipose tissue NPR-C in acute coronary syndrome. Atherosclerosis 2019; 286:79-87. [DOI: 10.1016/j.atherosclerosis.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
|
82
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
83
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
84
|
Involvement of natriuretic peptide system in C2C12 myocytes. Mol Cell Biochem 2018; 456:15-27. [PMID: 30519782 DOI: 10.1007/s11010-018-3486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
Abstract
The natriuretic peptide system, a key regulator of cGMP signaling, comprises three types of natriuretic peptides, osteocrin/musclin (OSTN), and their natriuretic peptide receptors. Although this system plays important roles in many organs, its physiological roles in skeletal muscle have not been clearly described. In the present study, we investigated the role of the natriuretic peptide system in C2C12 myocytes. All three natriuretic peptide receptors were expressed by cells differentiating from myoblasts to myotubes, and natriuretic peptide receptor B (NPR-B) transcripts were detected at the highest levels. Further, higher levels of cGMP were generated in response to stimulation with C-type natriuretic peptide (CNP) versus atrial natriuretic peptide (ANP), which reflected receptor expression levels. A cGMP analog downregulated the expression of a few ER stress-related genes. Furthermore, OSTN gene expression was strongly upregulated after 20 days of differentiation. Augmented gene expression was found to correlate closely with endoplasmic reticulum (ER) stress, and C/EBP [CCAAT-enhancer-binding protein] homologous protein (CHOP), which is known to be activated by ER stress, affected the expression of OSTN. Together, these results suggest a role for natriuretic peptide signaling in the ER stress response of myocytes.
Collapse
|
85
|
Tan R, Ahn YM, Kim HY, Lee YJ, Cho KW, Kang DG, Lee HS. Atrial secretion of ANP is suppressed in renovascular hypertension: shifting of ANP secretion from atria to the left ventricle. Am J Physiol Heart Circ Physiol 2018; 315:H590-H601. [PMID: 29979625 DOI: 10.1152/ajpheart.00612.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the change in secretion of atrial natriuretic peptide (ANP) from the atria was defined in hypertension accompanied by ventricular hypertrophy and increased synthesis of ANP. To identify the change of the secretion and mechanisms involved, experiments were performed in isolated perfused beating atria from sham-operated normotensive and renovascular hypertensive rats. Expression of ANP, natriuretic peptide receptor (NPR)-C, components of the renin-angiotensin system, and muscarinic signaling pathway was measured in cardiac tissues. Basal levels of ANP secretion and acetylcholine (ACh)- and stretch-induced activation of ANP secretion were suppressed in the atria from hypertensive compared with normotensive rats. ACh increased ANP secretion via M2 muscarinic ACh receptor-ACh-sensitive K+ channel signaling. In hypertensive rats, ANP concentration increased in the left ventricle but decreased in the right ventricle. The atrial concentration of ANP was not changed in hypertensive compared with normotensive rats. ANP mRNA expression was accentuated in the left ventricle but suppressed in the other cardiac chambers in the hearts of hypertensive rats. NPR-C expression was inversely related to ANP mRNA levels. Angiotensin II type 1 receptor (AT1R) expression was accentuated in the cardiac chambers from hypertensive rats compared with normotensive rats, whereas angiotensin II type 2 receptor, M2 muscarinic receptor, and Kir3.4 channels were suppressed. AT1R blockade with losartan reversed the change observed in hypertensive rats. The present findings indicate that renovascular hypertension shifts the major site of ANP secretion and synthesis from the atria to the left ventricle through modulation of the expression of ANP, NPR-C, AT1R, and the M2 muscarinic signaling pathway. NEW & NOTEWORTHY Renovascular hypertension suppresses the atrial secretion of ANP and shifts the major site of the regulation of ANP secretion and synthesis from atria to the hypertrophied left ventricle possibly via modulation of the expression of ANP, natriuretic peptide receptor-C, angiotensin II subtype 1 receptor, and M2 muscarinic signaling pathway.
Collapse
Affiliation(s)
- Rui Tan
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| |
Collapse
|
86
|
Gregson CL, Newell F, Leo PJ, Clark GR, Paternoster L, Marshall M, Forgetta V, Morris JA, Ge B, Bao X, Duncan Bassett JH, Williams GR, Youlten SE, Croucher PI, Davey Smith G, Evans DM, Kemp JP, Brown MA, Tobias JH, Duncan EL. Genome-wide association study of extreme high bone mass: Contribution of common genetic variation to extreme BMD phenotypes and potential novel BMD-associated genes. Bone 2018; 114:62-71. [PMID: 29883787 PMCID: PMC6086337 DOI: 10.1016/j.bone.2018.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Generalised high bone mass (HBM), associated with features of a mild skeletal dysplasia, has a prevalence of 0.18% in a UK DXA-scanned adult population. We hypothesized that the genetic component of extreme HBM includes contributions from common variants of small effect and rarer variants of large effect, both enriched in an extreme phenotype cohort. METHODS We performed a genome-wide association study (GWAS) of adults with either extreme high or low BMD. Adults included individuals with unexplained extreme HBM (n = 240) from the UK with BMD Z-scores ≥+3.2, high BMD females from the Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) (n = 1055) with Z-scores +1.5 to +4.0 and low BMD females also part of AOGC (n = 900), with Z-scores -1.5 to -4.0. Following imputation, we tested association between 6,379,332 SNPs and total hip and lumbar spine BMD Z-scores. For potential target genes, we assessed expression in human osteoblasts and murine osteocytes. RESULTS We observed significant enrichment for associations with established BMD-associated loci, particularly those known to regulate endochondral ossification and Wnt signalling, suggesting that part of the genetic contribution to unexplained HBM is polygenic. Further, we identified associations exceeding genome-wide significance between BMD and four loci: two established BMD-associated loci (5q14.3 containing MEF2C and 1p36.12 containing WNT4) and two novel loci: 5p13.3 containing NPR3 (rs9292469; minor allele frequency [MAF] = 0.33%) associated with lumbar spine BMD and 11p15.2 containing SPON1 (rs2697825; MAF = 0.17%) associated with total hip BMD. Mouse models with mutations in either Npr3 or Spon1 have been reported, both have altered skeletal phenotypes, providing in vivo validation that these genes are physiologically important in bone. NRP3 regulates endochondral ossification and skeletal growth, whilst SPON1 modulates TGF-β regulated BMP-driven osteoblast differentiation. Rs9292469 (downstream of NPR3) also showed some evidence for association with forearm BMD in the independent GEFOS sample (n = 32,965). We found Spon1 was highly expressed in murine osteocytes from the tibiae, femora, humeri and calvaria, whereas Npr3 expression was more variable. CONCLUSION We report the most extreme-truncate GWAS of BMD performed to date. Our findings, suggest potentially new anabolic bone regulatory pathways that warrant further study.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Felicity Newell
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Paul J Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Graeme R Clark
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | | | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Vincenzo Forgetta
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - John A Morris
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Xiao Bao
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Peter I Croucher
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - John P Kemp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Duncan
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
87
|
Gong J, Chai L, Xu G, Ni Y, Liu D. The expression of natriuretic peptide receptors in developing zebrafish embryos. Gene Expr Patterns 2018; 29:65-71. [DOI: 10.1016/j.gep.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/17/2018] [Accepted: 07/04/2018] [Indexed: 01/14/2023]
|
88
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
89
|
Öztop M, Cinar K, Turk S. Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 2018; 93:389-404. [PMID: 30124338 DOI: 10.1080/10520295.2018.1425911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.
Collapse
Affiliation(s)
- M Öztop
- a Department of Biology , Mehmet Akif Ersoy University , Burdur
| | - K Cinar
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| | - S Turk
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| |
Collapse
|
90
|
Boudin E, de Jong TR, Prickett TCR, Lapauw B, Toye K, Van Hoof V, Luyckx I, Verstraeten A, Heymans HSA, Dulfer E, Van Laer L, Berry IR, Dobbie A, Blair E, Loeys B, Espiner EA, Wit JM, Van Hul W, Houpt P, Mortier GR. Bi-allelic Loss-of-Function Mutations in the NPR-C Receptor Result in Enhanced Growth and Connective Tissue Abnormalities. Am J Hum Genet 2018; 103:288-295. [PMID: 30032985 DOI: 10.1016/j.ajhg.2018.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
The natriuretic peptide signaling pathway has been implicated in many cellular processes, including endochondral ossification and bone growth. More precisely, different mutations in the NPR-B receptor and the CNP ligand have been identified in individuals with either short or tall stature. In this study we show that the NPR-C receptor (encoded by NPR3) is also important for the regulation of linear bone growth. We report four individuals, originating from three different families, with a phenotype characterized by tall stature, long digits, and extra epiphyses in the hands and feet. In addition, aortic dilatation was observed in two of these families. In each affected individual, we identified a bi-allelic loss-of-function mutation in NPR3. The missense mutations (c.442T>C [p.Ser148Pro] and c.1088A>T [p.Asp363Val]) resulted in intracellular retention of the NPR-C receptor and absent localization on the plasma membrane, whereas the nonsense mutation (c.1524delC [p.Tyr508∗]) resulted in nonsense-mediated mRNA decay. Biochemical analysis of plasma from two affected and unrelated individuals revealed a reduced NTproNP/NP ratio for all ligands and also high cGMP levels. These data strongly suggest a reduced clearance of natriuretic peptides by the defective NPR-C receptor and consequently increased activity of the NPR-A/B receptors. In conclusion, this study demonstrates that loss-of-function mutations in NPR3 result in increased NPR-A/B signaling activity and cause a phenotype marked by enhanced bone growth and cardiovascular abnormalities.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Tjeerd R de Jong
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Isala Clinics, 8025 AB Zwolle, the Netherlands
| | - Tim C R Prickett
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Bruno Lapauw
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kaatje Toye
- Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - Viviane Van Hoof
- Department of Clinical Chemistry, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ilse Luyckx
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Hugo S A Heymans
- Department of Pediatrics, Emma's Children's Hospital - Academic Medical Centre, 1105 AZ Amsterdam, the Netherlands
| | - Eelco Dulfer
- Department of Medical Genetics, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ian R Berry
- Leeds Genetics Laboratory, St James's University Hospital, Leeds LS7 4SA, UK
| | - Angus Dobbie
- Yorkshire Clinical Genetics Service, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Ed Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Eric A Espiner
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium
| | - Peter Houpt
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Isala Clinics, 8025 AB Zwolle, the Netherlands
| | - Geert R Mortier
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Edegem, Belgium.
| |
Collapse
|
91
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
92
|
Egom EE, Maher V, El Hiani Y. Evolving use of natriuretic peptide receptor type-C as part of strategies for the treatment of pulmonary hypertension due to left ventricle heart failure. Int J Cardiol 2018; 281:172-178. [PMID: 29885823 DOI: 10.1016/j.ijcard.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/27/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
Abstract
Pulmonary hypertension (PH) due to left ventricular heart failure (LV-HF) is a disabling and life-threatening disease for which there is currently no single marketed pharmacological agent approved. Despite recent advances in the pathophysiological understanding, there is as yet no prospect of cure, and the majority of patients continue to progress to right ventricular failure and die. There is, therefore an urgent unmet need to identify novel pharmacological agents that will prevent or reverse the increase in pulmonary artery pressures while enhancing cardiac performance in PH due to LV-HF. In the present article, we first focused on the Natriuretic Peptide Receptor type C (NPR-C) based therapeutic strategies aimed at lowering pulmonary artery pressure. Second, we reviewed potential NPR-C therapeutic strategies to reverse or least halt the detrimental effects of diastolic dysfunction and impaired nitic oxide signalling pathways, as well as possibilities for neurohumoral modulation.
Collapse
Affiliation(s)
- Emmanuel E Egom
- St. Martha's Regional Hospital, Antigonish, Nova Scotia, Canada.
| | - Vincent Maher
- Cardiology Department, The Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
93
|
Spannella F, Giulietti F, Cocci G, Landi L, Borioni E, Lombardi FE, Rosettani G, Bernardi B, Bordoni V, Giordano P, Bordicchia M, Sarzani R. N-terminal pro B-Type natriuretic peptide is inversely correlated with low density lipoprotein cholesterol in the very elderly. Nutr Metab Cardiovasc Dis 2018; 28:629-635. [PMID: 29650297 DOI: 10.1016/j.numecd.2018.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Laboratory studies on human adipose tissue and differentiated adipocytes indicate that natriuretic peptides (NPs) affect lipid metabolism and plasma cholesterol. Few previous clinical studies in non-elderly populations found associations between NPs in the physiological range and cholesterol. AIM evaluate the association between NT-proBNP and lipid profile in very elderly hospitalized patients characterized by a wide range of NT-proBNP levels. METHODS AND RESULTS Cross-sectional study on 288 very elderly patients hospitalized for medical conditions, in which increased NT-proBNP levels are very common. NT-proBNP, total cholesterol (TC), HDL cholesterol (HDLc) and triglycerides were collected just few days before discharge. Patients taking lipid-lowering drugs and patients with an admission diagnosis of acute heart failure were excluded. Calculated LDL-cholesterol (LDLc) was used for the analyses. Mean age: 87.7 ± 6.2 years; female prevalence (57.3%). Median NT-proBNP: 2949 (1005-7335) pg/ml; mean TC: 145.1 ± 40.3 mg/dl; mean HDLc: 38.4 ± 18.6 mg/dl; median triglycerides: 100 (75-129) mg/dl; mean LDLc: 84.0 ± 29.5 mg/dl. We found negative correlations between NT-proBNP and both TC and LDLc (Rho = -0.157; p = 0.008 and Rho = -0.166; p = 0.005, respectively), while no correlations emerged between NT-proBNP and HDLc (Rho = -0.065; p = 0.275) or triglycerides (Rho = -0.009; p = 0.874). These associations were confirmed considering NT-proBNP tertiles. The inverse association between NT-proBNP and LDLc was maintained even after adjusting for confounding factors. CONCLUSION Our real-life clinical study supports the hypothesis that NPs play a role on cholesterol metabolism, given the association found between LDLc and NT-proBNP even in very elderly patients where NT-proBNP values are often in the pathological range.
Collapse
Affiliation(s)
- F Spannella
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - F Giulietti
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - G Cocci
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - L Landi
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - E Borioni
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - F E Lombardi
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - G Rosettani
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - B Bernardi
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - V Bordoni
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - P Giordano
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy
| | - M Bordicchia
- Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy
| | - R Sarzani
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS-INRCA "U.Sestilli", Ancona, Italy; Department of Clinical and Molecular Sciences, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
94
|
MicroRNA-143 modulates the expression of Natriuretic Peptide Receptor 3 in cardiac cells. Sci Rep 2018; 8:7055. [PMID: 29728596 PMCID: PMC5935707 DOI: 10.1038/s41598-018-25489-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
Natriuretic Peptide Receptor 3 (NPR3), the clearance receptor for extracellular bio-active natriuretic peptides (NPs), plays important roles in the homeostasis of body fluid volume and vascular tone. Using luciferase reporter and antagomir-based silencing assays, we demonstrated that the expression of NPR3 could be modulated by microRNA-143 (miR-143-3p), a microRNA species with up-regulated circulating concentrations in clinical heart failure. The regulatory effect of miR-143 on NPR3 expression was further evidenced by the reciprocal relationship between miR-143 and NPR3 levels observed in hypoxia-treated human cardiac cells and in left ventricular tissue from rats undergoing experimental myocardial infarction. Further analysis indicated elevation of miR-143 in response to hypoxic challenge reflects transcriptional activation of the miR-143 host gene (MIR143HG). This was corroborated by demonstration of the induction of host gene promoter activity upon hypoxic challenge. Moreover, miR-143 was shown to enhance its own expression by increasing MIR143HG promoter activity, as well as targeting the expressions of NPPA, NPPC, NR3C2, and CRHR2 in cardiac cells. Taken together, these findings suggest that the elevation of miR-143 upon hypoxic insult may be part of a microRNA-based feed forward loop that results in fine tuning the levels of NPs and neurohormonal receptors in cardiac cell lineages.
Collapse
|
95
|
Dumoulin A, Ter-Avetisyan G, Schmidt H, Rathjen FG. Molecular Analysis of Sensory Axon Branching Unraveled a cGMP-Dependent Signaling Cascade. Int J Mol Sci 2018; 19:E1266. [PMID: 29695045 PMCID: PMC5983660 DOI: 10.3390/ijms19051266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 01/11/2023] Open
Abstract
Axonal branching is a key process in the establishment of circuit connectivity within the nervous system. Molecular-genetic studies have shown that a specific form of axonal branching—the bifurcation of sensory neurons at the transition zone between the peripheral and the central nervous system—is regulated by a cyclic guanosine monophosphate (cGMP)-dependent signaling cascade which is composed of C-type natriuretic peptide (CNP), the receptor guanylyl cyclase Npr2, and cGMP-dependent protein kinase Iα (cGKIα). In the absence of any one of these components, neurons in dorsal root ganglia (DRG) and cranial sensory ganglia no longer bifurcate, and instead turn in either an ascending or a descending direction. In contrast, collateral axonal branch formation which represents a second type of axonal branch formation is not affected by inactivation of CNP, Npr2, or cGKI. Whereas axon bifurcation was lost in mouse mutants deficient for components of CNP-induced cGMP formation; the absence of the cGMP-degrading enzyme phosphodiesterase 2A had no effect on axon bifurcation. Adult mice that lack sensory axon bifurcation due to the conditional inactivation of Npr2-mediated cGMP signaling in DRG neurons demonstrated an altered shape of sensory axon terminal fields in the spinal cord, indicating that elaborate compensatory mechanisms reorganize neuronal circuits in the absence of bifurcation. On a functional level, these mice showed impaired heat sensation and nociception induced by chemical irritants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are normal. These data point to a critical role of axon bifurcation for the processing of acute pain perception.
Collapse
Affiliation(s)
| | | | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Fritz G Rathjen
- Max-Delbrück-Center, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
96
|
Wang L, Liu W, Yu Y, Jiang L, Yang J. Increased circulating bioactive C-type natriuretic peptide is associated with reduced heart rate variability in patients with chronic kidney disease. BMC Nephrol 2018; 19:50. [PMID: 29506482 PMCID: PMC5839007 DOI: 10.1186/s12882-018-0843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family and have been implicated to be involved in maintaining vascular homeostasis and acting as a cardiac chronotropic agent in experimental studies. However, clinical evidence of its participation in cardiovascular regulation is lacking, especially in patients with chronic kidney disease (CKD). We aimed to explore the association of circulating CNP with cardiovascular alterations in CKD. METHODS Seventy-six subjects with CKD were recruited. Plasma CNP-22, the bioactive form of CNP in the circulation, was measured by an enzyme immunoassay. The patients also underwent several cardiovascular evaluations including measurement of blood pressure, endothelial function, heart rate variability (HRV) and pulse wave velocity. RESULTS Mean (±standard deviation) age of the patients were 59.9 (±14.9) years and 56.6% were male. Average plasma CNP level was 790.8 ± 309.1 pg/ml. Plasma CNP level was not increased as estimated glomerular filtration rate declined. There was no significant difference of CNP between patients with or without endothelial dysfunction (with vs. without endothelial dysfunction: 844.6 ± 365.5 pg/ml vs. 738.3 ± 231.8 pg/ml, p = 0.14). Plasma CNP showed no association with blood pressure or pulse wave velocity, but was negatively associated with time-domain HRV parameters (SDNN, RMSSD, Triangular Index). The association of CNP with HRV persisted after adjustment for potential covariates. CONCLUSIONS Our data highlights a possible link between circulating CNP and autonomic dysfunction in CKD patients. Further studies are warranted to explore the mechanisms underlying this association, as well as evaluate the ability of circulating CNP in predicting adverse cardiovascular event in CKD patients.
Collapse
Affiliation(s)
- Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China
| | - Wenjin Liu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China
| | - Yanting Yu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.,Departments of nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.
| |
Collapse
|
97
|
New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol 2018; 141:1677-1689.e8. [PMID: 29427643 DOI: 10.1016/j.jaci.2017.12.1002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/18/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND TH2 cell-released IL-31 is a critical mediator in patients with atopic dermatitis (AD), a prevalent and debilitating chronic skin disorder. Brain-derived natriuretic peptide (BNP) has been described as a central itch mediator. The importance of BNP in peripheral (skin-derived) itch and its functional link to IL-31 within the neuroimmune axis of the skin is unknown. OBJECTIVE We sought to investigate the function of BNP in the peripheral sensory system and skin in IL-31-induced itch and neuroepidermal communication in patients with AD. METHODS Ca2+ imaging, immunohistochemistry, quantitative real-time PCR, RNA sequencing, knockdown, cytokine/phosphokinase arrays, enzyme immune assay, and pharmacologic inhibition were performed to examine the cellular basis of the IL-31-stimulated, BNP-related itch signaling in dorsal root ganglionic neurons (DRGs) and skin cells, transgenic AD-like mouse models, and human skin of patients with AD and healthy subjects. RESULTS In human DRGs we confirmed expression and co-occurrence of oncostatin M receptor β subunit and IL-31 receptor A in a small subset of the neuronal population. Furthermore, IL-31 activated approximately 50% of endothelin-1-responsive neurons, and half of the latter also responded to histamine. In murine DRGs IL-31 upregulated Nppb and induced soluble N-ethylmaleimide-sensitive factor activating protein receptor-dependent BNP release. In Grhl3PAR2/+ mice house dust mite-induced severe AD-like dermatitis was associated with Nppb upregulation. Lesional IL-31 transgenic mice also exhibited increased Nppb transcripts in DRGs and the skin; accordingly, skin BNP receptor levels were increased. Importantly, expression of BNP and its receptor were increased in the skin of patients with AD. In human skin cells BNP stimulated a proinflammatory and itch-promoting phenotype. CONCLUSION For the first time, our findings show that BNP is implicated in AD and that IL-31 regulates BNP in both DRGs and the skin. IL-31 enhances BNP release and synthesis and orchestrates cytokine and chemokine release from skin cells, thereby coordinating the signaling pathways involved in itch. Inhibiting peripheral BNP function might be a novel therapeutic strategy for AD and pruritic conditions.
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Heart failure (HF) continues to be a public health burden despite advances in therapy, and the natriuretic peptide (NP) system is clearly of critical importance in this setting, spawning valuable diagnostic and prognostic testing, such as B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP), as well as current and future therapeutics, including recombinant natriuretic peptides (e.g., carperitide, nesiritide) and recently sacubitril, which inhibits the key clearance mechanism for NPs. This article intends to summarize the existing evidence for the role of NP system genetic variation on cardiovascular phenotypes relevant to HF with particular focus on the potential impact on pharmacologic therapies. RECENT FINDINGS Several genes in NP system have been interrogated, in many cases genetic variation impacting protein quantity and function or related disease states. Recent data supports genetic variants potentially impacting pharmacokinetics or dynamics of medications targeting the pathway. Growing evidence indicates the importance of genetic variation to the functioning of the NP system and its pharmacologic manipulation.
Collapse
Affiliation(s)
- Ahmed Abuzaanona
- Department of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI, 48202, USA
| | - David Lanfear
- Heart and Vascular Institute, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
99
|
Rahali S, Li Y, Anand-Srivastava MB. Contribution of oxidative stress and growth factor receptor transactivation in natriuretic peptide receptor C-mediated attenuation of hyperproliferation of vascular smooth muscle cells from SHR. PLoS One 2018; 13:e0191743. [PMID: 29364969 PMCID: PMC5783392 DOI: 10.1371/journal.pone.0191743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/10/2018] [Indexed: 12/04/2022] Open
Abstract
Earlier studies have shown the implication of growth factor receptor activation in angiotensin II (Ang II)-induced hyperproliferation of aortic VSMC as well as in hyperproliferation of VSMC from spontaneously hypertensive rats (SHR). We previously showed that NPR-C specific agonist C-ANP4-23 attenuates the hyperproliferation of VSMC from SHR through the inhibition of MAP kinase, Giα protein signaling and overexpression of cell cycle proteins. The aim of the present study was to investigate if C-ANP4-23- mediated attenuation of hyperproliferation of VSMC from SHR also involves growth factor receptor activation and upstream signaling molecules. For this study, C-ANP 4–23 (10 nmole/kg body weight) was injected intraperitoneally into 2 week-old prehypertensive SHR and Wistar Kyoto (WKY) rats twice per week for 6 weeks. The blood pressure in SHR was significantly attenuated by C-ANP4-23 treatment. In addition, C-ANP4-23 treatment also attenuated the hyperproliferation of VSMC from SHR as well as the enhanced phosphorylation of EGF-R, PDGF-R, IGF-R and c-Src. Furthermore, the enhanced levels of superoxide anion, NADPH oxidase activity, and enhanced expression of Nox4,Nox1,Nox2 and P47phox in SHR compared to WKY rats was also significantly attenuated by C-ANP4-23 treatment. In addition, N-acetyl cysteine (NAC), a scavenger of O2-, inhibitors of growth factor receptors and of c-Src, all inhibited the overexpression of cell cycle proteins cyclin D1 and cdk4 in VSMC from SHR. These results suggest that in vivo treatment of SHR with C-ANP4-23 inhibits the enhanced oxidative stress, c-Src and EGF-R, PDGF-R, IGF-R activation which through the inhibition of overexpression of cell cycle proteins result in the attenuation of hyperproliferation of VSMC.
Collapse
Affiliation(s)
- Sofiane Rahali
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
100
|
Ren M, Ng FL, Warren HR, Witkowska K, Baron M, Jia Z, Cabrera C, Zhang R, Mifsud B, Munroe PB, Xiao Q, Townsend-Nicholson A, Hobbs AJ, Ye S, Caulfield MJ. The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle. Hum Mol Genet 2018; 27:199-210. [PMID: 29040610 PMCID: PMC5886068 DOI: 10.1093/hmg/ddx375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 02/05/2023] Open
Abstract
Elevated blood pressure (BP) is a major global risk factor for cardiovascular disease. Genome-wide association studies have identified several genetic variants at the NPR3 locus associated with BP, but the functional impact of these variants remains to be determined. Here we confirmed, by a genome-wide association study within UK Biobank, the existence of two independent BP-related signals within NPR3 locus. Using human primary vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) from different individuals, we found that the BP-elevating alleles within one linkage disequilibrium block identified by the sentinel variant rs1173771 was associated with lower endogenous NPR3 mRNA and protein levels in VSMCs, together with reduced levels in open chromatin and nuclear protein binding. The BP-elevating alleles also increased VSMC proliferation, angiotensin II-induced calcium flux and cell contraction. However, an analogous genotype-dependent association was not observed in vascular ECs. Our study identifies novel, putative mechanisms for BP-associated variants at the NPR3 locus to elevate BP, further strengthening the case for targeting NPR-C as a therapeutic approach for hypertension and cardiovascular disease prevention.
Collapse
MESH Headings
- Blood Pressure/genetics
- Databases, Nucleic Acid
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Gene Frequency
- Genetic Variation
- Genome-Wide Association Study
- Genotype
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Linkage Disequilibrium
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Fu Liang Ng
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Kate Witkowska
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Michael Baron
- Structural & Molecular Biology, University College London, London, UK
| | - Zhilong Jia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Claudia Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Ruoxin Zhang
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Shantou University Medical College, Shantou, China
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| |
Collapse
|