51
|
Abstract
For the past several years, we have been engaged in developing a therapeutically effective strategy for disrupting gene function with reverse complementary, or so called 'antisense', oligodeoxynucleotides (ODN). This pursuit has focused on finding appropriate diseases in which to apply this approach, and suitable gene targets. Of the genes that we have targeted for disruption using the antisense ODN strategy (Clevenger et al., 1995; Gewirtz and Calabretta, 1988; Ratajczak et al., 1992c; Small et al., 1994) one that has been of particular interest, and one where therapeutically motivated disruptions are now in clinical trial, is the myb gene (reviewed in Lyon et al., 1994). These trials involve treatment of human leukemias. These diseases are a logical choice for developing oncogene targeted therapies because of easy access to tissues, and the abundance of knowledge about the cell and molecular biology of these diseases. Nevertheless, as will be touched on below, other malignancies have also been examined as models for Myb targeted therapy with some surprisingly encouraging results. Finally, while we have focused our efforts on the ODN strategy, I will allude briefly to other strategies for disrupting Myb function with therapeutic intent.
Collapse
Affiliation(s)
- A M Gewirtz
- Department of Internal Medicine, Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| |
Collapse
|
52
|
Germani A, Romero F, Houlard M, Camonis J, Gisselbrecht S, Fischer S, Varin-Blank N. hSiah2 is a new Vav binding protein which inhibits Vav-mediated signaling pathways. Mol Cell Biol 1999; 19:3798-807. [PMID: 10207103 PMCID: PMC84217 DOI: 10.1128/mcb.19.5.3798] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic proto-oncogene vav has been characterized as a Rac1-GDP/GTP exchanger protein which regulates cytoskeletal reorganization as well as signaling pathways leading to the activation of stress-activated protein kinases (SAPK/JNKs). Furthermore, vav overexpression enhances basal and T-cell receptor (TCR)-mediated stimulation of the nuclear factor of activated T cells (NFAT). We report here the interaction between Vav and hSiah2, a mammalian homolog of Drosophila Seven in absentia (Sina) that has been implicated in R7 photoreceptor cell formation during Drosophila eye development via the proteasome degradation pathway. Vav and hSiah2 interact in vitro and in vivo and colocalize in the cytoplasm of hematopoietic cells. The Src homology domain of Vav and the C-terminal region of hSiah2 are required for this interaction. We provide evidence for a negative regulation by hSiah2 of Vav-induced basal and TCR-mediated NFAT-dependent transcription. Overexpression of hSiah2 also inhibits the onco-Vav-induced JNK activation. Although the Vav-interacting domain is located in the C-terminal portion of hSiah2, the N-terminal region of hSiah2 is necessary for the inhibitory role that seems to be independent of the proteasome degradation.
Collapse
Affiliation(s)
- A Germani
- Institut Cochin de Génétique Moléculaire, U363 INSERM, Hôpital Cochin, Université Paris V, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
53
|
Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S. Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-gamma1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett 1998; 441:480-4. [PMID: 9891995 DOI: 10.1016/s0014-5793(98)01593-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The granulocytic differentiation of HL-60 cells induced by all-trans retinoic acid was accompanied by a progressive tyrosine phosphorylation of specific proteins in either cells or isolated nuclei. Among these phosphoproteins, we identified the Vav adaptor in whole cells as well as in the inner nuclear compartment, where the increase in its tyrosine phosphorylation level was more conspicuous. We also demonstrated the differentiation-dependent association of nuclear phosphorylated Vav to phospholipase C-gamma1 and to the p85 regulatory subunit of phosphoinositide 3-kinase. The role of the Vav/phospholipase C-gamma1/phosphoinositide 3-kinase phosphoprotein complexes in the nuclei of HL-60 induced to differentiate along the granulocytic lineage is discussed.
Collapse
Affiliation(s)
- V Bertagnolo
- Department of Morphology and Embryology, University of Ferrara, Italy
| | | | | | | | | |
Collapse
|
54
|
Sokol DL, Zhang X, Lu P, Gewirtz AM. Real time detection of DNA.RNA hybridization in living cells. Proc Natl Acad Sci U S A 1998; 95:11538-43. [PMID: 9751701 PMCID: PMC21676 DOI: 10.1073/pnas.95.20.11538] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Demonstrating hybridization between an antisense oligodeoxynucleotide and its mRNA target has proven to be extremely difficult in living cells. To address this fundamental problem in antisense research, we synthesized "molecular beacon" (MB) reporter oligodeoxynucleotides with matched fluorescent donor and acceptor chromophores on their 5' and 3' ends. In the absence of a complementary nucleic acid strand, the MB remains in a stem-loop conformation where fluorescence resonance energy transfer prevents signal emission. On hybridization with a complementary sequence, the stem-loop structure opens increasing the physical distance between the donor and acceptor moieties thereby reducing fluorescence resonance energy transfer and allowing a detectable signal to be emitted when the beacon is excited by light of the appropriate wavelength. Solution hybridization studies revealed that in the presence of a complementary strand targeted MB could yield up to a 60-fold increase in fluorescence intensity in comparison to control MB. By using a fluorescence microscope fitted with UV fluoride lenses, the detection limit of preformed MB/target sequence duplexes microinjected into cells was found to be >/=1 x 10(-1) ag of MB, or approximately 10 molecules of mRNA. On the basis of this exquisite sensitivity, real-time detection of MB/target mRNA hybridization in living cells was attempted by microinjecting MB targeted to the vav protooncogene, or control MB, into K562 human leukemia cells. Within 15 min, confocal microscopy revealed fluorescence in cells injected with targeted, but not control, MB. These studies suggest that real-time visualization and localization of oligonucleotide/mRNA interactions is now possible. MB could find utility in studying RNA processing, trafficking, and folding in living cells. We hypothesize that MB may also prove useful for finding targetable mRNA sequence under physiologic conditions.
Collapse
Affiliation(s)
- D L Sokol
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
55
|
Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998; 19:225-68. [PMID: 9626554 DOI: 10.1210/edrv.19.3.0334] [Citation(s) in RCA: 1063] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Bole-Feysot
- INSERM Unité 344-Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France
| | | | | | | | | |
Collapse
|
56
|
Goffin V, Bouchard B, Ormandy CJ, Weimann E, Ferrag F, Touraine P, Bole-Feysot C, Maaskant RA, Clement-Lacroix P, Edery M, Binart N, Kelly PA. Prolactin: a hormone at the crossroads of neuroimmunoendocrinology. Ann N Y Acad Sci 1998; 840:498-509. [PMID: 9629276 DOI: 10.1111/j.1749-6632.1998.tb09588.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prolactin (PRL), secreted by the pituitary, decidua, and lymphoid cells, has been shown to have a regulatory role in reproduction, immune function, and cell growth in mammals. The effects of PRL are mediated by a membrane-bound receptor that is a member of the superfamily of cytokine receptors. Formation of a trimer, consisting of one molecule of ligand and two molecules of receptor, appears to be a necessary prerequisite for biological activity. The function of these receptors is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). To study these receptors, we have used two approaches: mutational analysis of their cytoplasmic domains coupled with functional tests and inactivation (knockout) of the receptor gene by homologous recombination in mice. We have produced mice by gene targeting in embryonic stem cells carrying a germline null mutation of the prolactin receptor gene. Heterozygous (+/-) females show almost complete failure to lactate, following their first, but not subsequent pregnancies. Homozygous (-/-) females are infertile as a result of multiple reproductive abnormalities, including ovulation of premiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Half of the homozygous males are infertile or show reduced fertility. In view of the wide-spread distribution of PRL receptors, other phenotypes including those on the immune system, are currently being evaluated in -/- animals. This study establishes the prolactin receptor as a key regulator of mammalian reproduction and provides the first total ablation model to further study the role of the prolactin receptor and its ligands.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unit 344, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Too CK. Rapid induction of Jak2 and Sp1 in T cells by phosphorothioate oligonucleotides. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:87-94. [PMID: 9593046 DOI: 10.1089/oli.1.1998.8.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phosphorothioate-modified ODNs ([S]ODNs) are known to exert a variety of sequence-independent effects that are mediated in part by rapid induction of the Sp1 transcription factor. An unidentified tyrosine kinase was implicated in this Sp1 induction. In the present study, antisense [S]ODNs, initially designed to target three signaling molecules in the prolactin (PRL)-responsive rat Nb2 T cell line rapidly elevated Jak2 tyrosine kinase and Sp1 protein levels. The [S]ODN-mediated elevation of Jak2 peaked (3-fold to 6.5-fold above controls) at 15 minutes and returned to basal levels by 1 hour, whereas elevation of Sp1 (about 2-fold above controls) peaked at 1 hour. The [S]ODN-mediated induction of Sp1, but not Jak2, was abrogated by AG 490, a Jak2-specific inhibitor. In the presence of submaximal doses of PRL (0.18-0.36 ng/ml), [S]ODN-mediated induction of Jak2 and Sp1 was sustained for 72 hours. Furthermore, the [S]ODNs alone significantly increased Nb2 cell growth and enhanced the growth stimulatory effects of PRL on these cells. In contrast, unmodified ODNs had no effect on Jak2 or Sp1 protein levels and did not stimulate Nb2 cell growth. In conclusion, [S]ODNs stimulate the coordinate induction of Jak2 and Sp1 and stimulate Nb2 T cell proliferation in a sequence-independent manner. The abrogation of Sp1 induction by AG 490 indicates that Jak2 tyrosine kinase is required for [S]ODN-mediated induction of Sp1 in these cells. These results may help to explain some of the nonspecific effects of [S]ODNs, particularly in cytokine-dependent immune cells.
Collapse
Affiliation(s)
- C K Too
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
58
|
Romero F, Germani A, Puvion E, Camonis J, Varin-Blank N, Gisselbrecht S, Fischer S. Vav binding to heterogeneous nuclear ribonucleoprotein (hnRNP) C. Evidence for Vav-hnRNP interactions in an RNA-dependent manner. J Biol Chem 1998; 273:5923-31. [PMID: 9488731 DOI: 10.1074/jbc.273.10.5923] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vav proto-oncogene is exclusively expressed in hematopoietic cells and encodes a 95-kDa protein that contains multiple structural domains. Vav is involved in the expansion of T and B cells, in antigen-mediated proliferative responses, and in the induction of intrathymic T cell maturation. It becomes rapidly and transiently tyrosine-phosphorylated upon triggering of a large number of surface receptors and catalyzes GDP/GTP exchange on Rac-1. We now provide evidence for the specific interaction of Vav with heterogeneous nuclear ribonucleoprotein (hnRNP) C. Vav and hnRNP C interact both in vivo and in vitro mediated through the carboxyl Src homology 3 domain of Vav and the proline-rich motif located in the nuclear retention sequence of hnRNP C. More importantly, Vav-hnRNP C complexes are present in living hematopoietic cells and both proteins localize in the nuclei, mainly on perichromatic fibrils but also on clusters of interchromatin granules. The Vav-hnRNP C interaction is regulated by poly(U) RNA, although a basal association is still detected in the absence of RNA. Furthermore, RNA homopolymers differentially alter the binding affinity of Vav to hnRNP C and hnRNP K. We propose that Vav-hnRNP interactions may be established in an RNA-dependent manner.
Collapse
Affiliation(s)
- F Romero
- Institut Cochin de Genetique Moleculaire, U363 INSERM, Hopital Cochin, 27 rue du Faubourg Saint Jacques, 75014 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
59
|
Chang WP, Ye Y, Clevenger CV. Stoichiometric structure-function analysis of the prolactin receptor signaling domain by receptor chimeras. Mol Cell Biol 1998; 18:896-905. [PMID: 9447986 PMCID: PMC108801 DOI: 10.1128/mcb.18.2.896] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 11/19/1997] [Indexed: 02/06/2023] Open
Abstract
The intracellular domain of the prolactin (PRL) receptor (PRLr) is required for PRL-induced signaling and proliferation. To identify and test the functional stoichiometry of those PRLr motifs required for transduction and growth, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of the rat PRLr were synthesized. Because the high-affinity binding of GM-CSF results from the specific pairing of one alpha- and one beta-GM-CSFr, use of GM-CSFr/PRLr chimera enabled targeted dimerization of the PRLr intracellular domain. To that end, the extracellular domains of the alpha- and beta-GM-CSFr were conjugated to one of the following mutations: (i) PRLr C-terminal truncations, termed alpha278, alpha294, alpha300, alpha322, or beta322; (ii) PRLr tyrosine replacements, termed Y309F, Y382F, or Y309+382F; or, (iii) PRLr wild-type short, intermediate, or long isoforms. These chimeras were cotransfected into the cytokine-responsive Ba/F3 line, and their expression was confirmed by ligand binding and Northern and Western blot analyses. Data from these studies revealed that heterodimeric complexes of the wild type with C-terminal truncation mutants of the PRLr intracellular domain were incapable of ligand-induced signaling or proliferation. Replacement of any single tyrosine residue (Y309F or Y382F) in the dimerized PRLr complex resulted in a moderate reduction of receptor-associated Jak2 activation and proliferation. In contrast, trans replacement of these residues (i.e., alphaY309F and betaY382F) markedly reduced ligand-driven Jak2 activation and proliferation, while cis replacement of both tyrosine residues in a single intracellular domain (i.e., alphaY309+382F) produced an inactive signaling complex. Analysis of these GM-CSFr-PRLr complexes revealed equivalent levels of Jak2 in association with the mutant receptor chains, suggesting that the tyrosine residues at 309 and 382 do not contribute to Jak association, but instead to its activation. Heterodimeric pairings of the intracellular domains from the known PRLr receptor isoforms (short-intermediate, short-long, and intermediate-long) also yielded inactive receptor complexes. These data demonstrate that the tyrosine residues at 309 and 382, as well as additional residues within the C terminus of the dimerized PRLr complex, contribute to PRL-driven signaling and proliferation. Furthermore, these findings indicate a functional requirement for the pairing of Y309 and Y382 in trans within the dimerized receptor complex.
Collapse
Affiliation(s)
- W P Chang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
60
|
Ogawa M, Hiraoka Y, Taniguchi K, Aiso S. Cloning and expression of a human/mouse Polycomb group gene, ENX-2/Enx-2. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1395:151-8. [PMID: 9473645 DOI: 10.1016/s0167-4781(97)00156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Drosophila Polycomb group (Pc-G) genes encode transcriptional factors involved in development. Little is known about members of the vertebrate Pc-G genes. In this study, we have isolated a cDNA encoding a human Pc-G protein and the mouse equivalent. The human and mouse genes, which were named ENX-2 and Enx-2, encode 702 and 750 amino acids, respectively. ENX-2/Enx-2 protein exhibits a high homology (53-55% identity) to Drosophila Enhancer of zeste [E(z)] protein belonging to the Pc-G. The expression of Enx-2 was observed in mouse kidney, adrenal gland, testis and brain at high levels by Northern blot analysis. A cell line of mouse neuroblastoma, Neuro-2a, also expresses Enx-2 mRNA and its level is elevated by induction of neuronal differentiation of the cell.
Collapse
Affiliation(s)
- M Ogawa
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
61
|
Shigematsu H, Iwasaki H, Otsuka T, Ohno Y, Arima F, Niho Y. Role of the vav proto-oncogene product (Vav) in erythropoietin-mediated cell proliferation and phosphatidylinositol 3-kinase activity. J Biol Chem 1997; 272:14334-40. [PMID: 9162069 DOI: 10.1074/jbc.272.22.14334] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The vav proto-oncogene product (Vav), which is specifically expressed in hematopoietic cells, contains multiple structural motifs commonly used by intracellular signaling molecules. Although a variety of stimuli including erythropoietin (Epo) have been shown to tyrosine phosphorylate Vav, little is known about the Vav signal transduction pathway. Here, we have investigated the role of Vav in the Epo signaling pathway by characterizing its interaction with other proteins, using the human Epo-responsive cell line, F-36P. Immunoprecipitation and immunoblot analyses have demonstrated that Vav was associated with the Epo receptor (EpoR) in an Epo-independent manner and was tyrosine-phosphorylated after Epo stimulation. Furthermore, two phosphotyrosine proteins (pp70 and pp100) co-immunoprecipitated with the regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase) (p85) were identified as EpoR and Vav, respectively. The interaction between Vav and p85 was shown to be mediated through the SH2 domains of p85 by an in vitro binding assay and confirmed by the presence of in vitro PI3-kinase activity associated with Vav. Treatment of the cells with antisense-vav and -p85 abrogated Epo-induced cell proliferation and PI3-kinase activity. Finally, we found that JAK2 was associated with Vav in vivo and that Vav could be tyrosine-phosphorylated by activated JAK2 in vitro. These results suggest the possible role of JAK2 for tyrosine phosphorylation of Vav and involvement of Vav and PI3-kinase in Epo-induced proliferative signals.
Collapse
Affiliation(s)
- H Shigematsu
- Cancer Center and First Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka 812, Japan
| | | | | | | | | | | |
Collapse
|
62
|
Clevenger CV, Thickman K, Ngo W, Chang WP, Takayama S, Reed JC. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol Endocrinol 1997; 11:608-18. [PMID: 9139804 DOI: 10.1210/mend.11.5.9925] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression and function of the newly identified Bcl-2- and Raf-1- binding protein, Bag-1, during the cytokine-regulated growth of B and T cell lines was examined. Immunoblot analysis of lysates from the interleukin-3 (IL-3)-dependent B cell line Ba/F3, and the PRL-dependent T cell line Nb2, revealed that variations in Bag-1 levels paralleled alterations in cellular proliferation, viability, and apoptosis induced by the presence or absence of growth factor. To test whether up-regulation of Bag-1 levels altered cellular survival and proliferation, Ba/F3 cells were transfected with a Bag-1 expression construct. The overexpression of Bag-1 in transfected Ba/F3 cells induced an IL-3-independent state. Such transfectants demonstrated sustained viability and proliferation, with minimal apoptosis, in the complete absence of exogenous IL-3. Bag-1 expression was also compared in glucocorticoid-sensitive Nb2 cells and a PRL-independent, glucocorticoid-resistant subline, SFJCD1, during culture of these lines in dexamethasone (Dex). Bag-1 levels were profoundly decreased by the addition of Dex to Nb2 cells, precedent to the onset of apoptotic cell death. In contrast, Dex treatment or PRL withdrawal had no effect on levels of Bag-1 within the SFJCD1 line. These findings establish that the overexpression of Bag-1 in the appropriate cellular context promotes cellular survival and growth, events that may result from the juxtaposition of this protein with mitogenic and antiapoptotic signaling pathways.
Collapse
Affiliation(s)
- C V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
63
|
Abstract
The vav oncogene is expressed primarily in tissues of hematopoietic origin. While much effort has been focused on determining the role of vav in various signal transduction pathways, little is known about the mechanism by which vav is regulated in a tissue-selective manner. This issue was examined by developing somatic cell hybrids between human U937 cells, which express vav, and mouse Balb/c 3T3 cells, which do not. If vav is primarily regulated by the presence of positive acting transcription factors, then vav expression should be maintained in hybrid cells. In contrast, if the regulation of vav is primarily negative in nature, then vav expression should be extinguished in most of the somatic cell hybrids. Of the hybrid cells that were obtained, 64% were positive by reverse transcriptase-polymerase chain reaction for the expression of the vav oncogene. Differences in the pattern of restriction enzyme cleavage sites between the mouse and human PCR products were used to determine that 6 of 11 of the positive clones expressed the normally dormant mouse gene. The other positive clones were found to express the human vav gene. In all cases, the hybrid cells preferentially retained the chromosomes and the cellular morphological appearance of the mouse Balb/c 3T3 fusion partner, which does not express the vav oncogene. Since vav is able to be transiently expressed by hybrid cells with a predominately mouse phenotype, these results support the hypothesis that vav is regulated primarily by the presence of transactivating factors which stimulate transcription, rather than by a gene silencing mechanism.
Collapse
Affiliation(s)
- D J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260, USA
| | | |
Collapse
|
64
|
|
65
|
Too CK. Induction of Sp1 activity by prolactin and interleukin-2 in Nb2 T-cells: differential association of Sp1-DNA complexes with Stats. Mol Cell Endocrinol 1997; 129:7-16. [PMID: 9175624 DOI: 10.1016/s0303-7207(97)04019-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The induction of the transcription factor Sp1 by prolactin (PRL) and interleukin-2 (IL-2) was investigated in the PRL- and IL-2 responsive rat Nb2 T-cell line. Western analysis showed a rapid increase in Sp1 synthesis in Nb2 cells in response to PRL or IL-2. Elevation of Sp1 protein levels occurred within 15 min following PRL or IL-2 stimulation, reached a maximum by 1 h and was inhibited by cycloheximide, indicating de novo protein synthesis. Interestingly, dilution of confluent, growth-arrested Nb2 cells to low density also caused a rapid elevation in Sp1 suggesting that growth arrest may down-regulate Sp1 synthesis. Electrophoretic mobility shift assays using an Sp1 consensus oligonucleotide as probe showed a rapid but transient formation of a single PRL-inducible complex at 30 min. In contrast, three IL-2-inducible complexes were formed at 30 min and persisted to at least 60 min. Mobility shift interference assays using specific Stat antibodies failed to detect Stat1alpha, Stat3 or Stat5 in the 30 min PRL-inducible complex. In contrast, the IL-2 induced complexes contained Stat3 alone at 30 min and both Stat3 and Stat5 at 60 min. The PRL- and IL-2-inducible complexes did not contain the tumor suppressor protein, p53. The time dependent association of the Stat proteins with the IL-2-inducible complexes, but not with the PRL-inducible complex, suggests that the two mitogens may selectively utilize specific promoter elements for transcriptional activation of PRL- and IL-2-responsive genes. Alternatively, the two mitogens may be activating different genes with Sp1-binding promoter elements for their mitogenic action in Nb2 cells.
Collapse
Affiliation(s)
- C K Too
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
66
|
Abstract
AbstractThrombopoietin has an essential role in megakaryopoiesis and thrombopoiesis. To investigate the signaling processes induced by thrombopoietin, we have employed human platelets and recently demonstrated that thrombopoietin induces rapid tyrosine phosphorylation of Jak-2, Tyk2, Shc, Stat3, Stat5, p120c-cbl and other proteins in human platelets. Because the apparent molecular weight of a major tyrosine phosphorylated protein in platelets stimulated by thrombopoietin is approximately 85 to 95 kD, we examined the possibility that this could be Vav, a 95-kD proto-oncogene product. Specific antisera against Vav recognized the same 95 kD protein in lysates of Jurkat cells, which are known to express Vav, and platelets, indicating that platelets have Vav. Thrombopoietin induced rapid tyrosine phosphorylation of Vav in platelets without an elevation in cytosolic free calcium concentration or activation of protein kinase C. Vav was also tyrosine phosphorylated upon treatment of platelets with thrombin, collagen, or U46619, which activate phospholipase C, leading to an increased ionized calcium concentration and activation of protein kinase C. Ionomycin or phorbol 12-myristate 13-acetate (PMA) also induces tyrosine phosphorylation of Vav, suggesting that an increase in ionized calcium concentration or activation of protein kinase C may lead to phosphorylation of Vav. Thrombopoietin also induced tyrosine phosphorylation of Vav in FDCP-2 cells, genetically engineered to express human c-Mpl (FDCP-hMpl5). However, neither ionomycin nor PMA induced an increase in tyrosine phosphorylation of Vav in FDCP-hMpl5 cells, suggesting that the calcium and protein kinase C pathways of Vav phosphorylation may be unique to platelets. Further, Vav became incorporated into the Triton X-100 insoluble 10,000g sedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes. Vav was constitutively associated with a 28-kD adapter protein, Grb2, which is also incorporated into the cytoskeleton in an aggregation-dependent fashion. Lastly, we found that Vav is cleaved when there is activation of calpain, a protease that may have a role in postaggregation signaling processes. Our data suggest that thrombopoietin and other agonists may induce tyrosine phosphorylation of Vav by different mechanisms and Vav may also be involved in signaling during platelet aggregation by its redistribution to the cytoskeleton.
Collapse
|
67
|
Uddin S, Sweet M, Colamonici OR, Krolewski JJ, Platanias LC. The vav proto-oncogene product (p95vav) interacts with the Tyk-2 protein tyrosine kinase. FEBS Lett 1997; 403:31-34. [PMID: 9038355 DOI: 10.1016/s0014-5793(97)00023-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The vav proto-oncogene product participates in the signaling pathways activated by various cell-surface receptors, including the type I IFN receptor. During engagement of the type I IFN receptor, p95vav is phosphorylated on tyrosine residues, but the kinase regulating its phosphorylation has not been identified to date. Our studies demonstrate that p95vav forms a stable complex with the IFN-receptor-associated Tyk-2 kinase in vivo, and strongly suggest that this kinase regulates its phosphorylation on tyrosine. Thus, p95vav is engaged in IFN-signaling by a direct interaction with the functional type I IFN receptor complex to transduce downstream signals.
Collapse
Affiliation(s)
- S Uddin
- Department of Medicine, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
68
|
Abstract
Prolactin (PRL) acts as both a mitogen and a differentiating agent in the breast. The decision to respond to PRL as a mitogen by breast cells depends on the hormonal milieu in which the epithelial cell resides. In addition, PRL's action on the breast is regulated (1) at the level of the hormone itself; (2) at the receptor level; (3) at the level of selection of signaling pathway; and, (4) by combinations of these aspects. The development of cell lines containing only one class of the PRL receptors and showing qualitative differences in response and signaling pathways will help in understanding the pleiotropic nature of PRL action.
Collapse
Affiliation(s)
- R Das
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
69
|
Abstract
The proto-oncogene vav is expressed solely in cells of hematopoietic origin regardless of their differentiation lineage. However, recently an homologue of vav, which is widely expressed (vav2) has been identified. Vav is a complicated and interesting molecule that contains a number of structural features found in proteins involved in cell signaling. Vav has a leucine-rich region, a leucine-zipper, a calponin homology domain, an acidic domain, a Dbl-homology domain, a pleckstrin homology domain, a cysteine-rich domain, two Src homology 3 domains, with a proline-rich region in the amino-SH3 domain, and finally an Src homology 2 domain. These domains have been implicated in protein protein interactions and strongly suggest that vav is involved in signaling events. vav is also rapidly and transiently tyrosine phosphorylated through the activation of multiple receptors on hematopoietic cells. Furthermore, vav is tyrosine phosphorylated upon the activation of several cytokines and growths factors. Recently, the generation of nice vav-/- showed that vav has an essential role in proliferation/activation of T and B cells. The purpose of this review is to summarize the current knowledge on vav and to evaluate the roles of vav in cellular functions.
Collapse
Affiliation(s)
- F Romero
- Institut Cochin de Génétique Moléculaire, U363 INSERM, Hôpital Cochin, Paris, France
| | | |
Collapse
|
70
|
Olson MF, Pasteris NG, Gorski JL, Hall A. Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases. Curr Biol 1996; 6:1628-33. [PMID: 8994827 DOI: 10.1016/s0960-9822(02)70786-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dbl, a guanine nucleotide exchange factor (GEF) for members of the Rho family of small GTPases, is the prototype of a family of 15 related proteins. The majority of proteins that contain a DH (Dbl homology) domain were isolated as oncogenes in transfection assays, but two members of the DH family, FGD1 (the product of the faciogenital dysplasia or Aarskog-Scott syndrome locus) and Vav, have been shown to be essential for normal embryonic development. Mutations to the FGD1 gene result in a human developmental disorder affecting specific skeletal structures, including elements of the face, cervical vertebrae and distal extremities. Homozygous Vav-/- knockout mice embryos are not viable past the blastocyst stage, indicating an essential role of Vav in embryonic implantation. RESULTS Here, we show that the microinjection of FGD1 and Vav into Swiss 3T3 fibroblasts induces the polymerization of actin and the assembly of clustered integrin complexes. FGD1 activates Cdc42, whereas Vav activates Rho, Rac and Cdc42. In addition, FGD1 and Vav stimulate the mitogen activated protein kinase cascade that leads to activation of the c-Jun kinase SAPK/JNK1. CONCLUSIONS We conclude that FGD1 and Vav are regulators of the Rho GTPase family. Along with their target proteins Cdc42, Rac and Rho, FGD1 and Vav control essential signals required during embryonic development.
Collapse
Affiliation(s)
- M F Olson
- CRC Oncogene and Signal Transduction Group, MRC Laboratory for Molecular Cell Biology, London, UK
| | | | | | | |
Collapse
|
71
|
Song JS, Gomez J, Stancato LF, Rivera J. Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex. J Biol Chem 1996; 271:26962-70. [PMID: 8900182 DOI: 10.1074/jbc.271.43.26962] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aggregation of the high affinity receptor for IgE (FcepsilonRI) on the mucosal mast cell line, RBL-2H3, results in the rapid and persistent tyrosine phosphorylation of Vav. Immunoprecipitation of Vav from activated cells revealed co-immunoprecipitated phosphoproteins of molecular weights identical to the FcepsilonRI beta and gamma chains, and the former was reactive with antibody to the FcepsilonRI beta chain. Conversely, Western blots revealed the presence of p95 Vav in FcepsilonRI immunoprecipitates. The association of Vav and of Grb2 with the receptor was found to be regulated by aggregation of the receptor, and the interaction of Vav with the FcepsilonRI was localized to the gamma chain. To gain insight on the signaling pathway in which Vav participates, we investigated the in vivo associations of Vav with other molecules. A reducible chemical cross-linking agent was used to covalently maintain protein interactions under nonreducing conditions. A fraction of Vav increased in mass to form a complex of >300 kDa in molecular mass. Under reducing conditions the cross-linked Vav immunoprecipitates showed the presence of Grb2, Raf-1, and p42(mapk) (ERK2). In vitro kinase assays of Raf-1 activity associated with Vav revealed that this complex had an activity greater than that of Raf-1 derived from nonactivated cells, and aggregation of the FcepsilonRI did not modulate this activity. In contrast, aggregation of the FcepsilonRI increased the total Raf-1 activity by 2-5-fold. These results demonstrate that Vav associates constitutively with components of the mitogen-activated protein kinase pathway to form an active multimeric signaling complex whose in vivo activity and associations may be directed by aggregation of the FcepsilonRI. The findings of this study may also be relevant to other members of the immune recognition receptor family that share the T-cell antigen receptor zeta/gamma chains.
Collapse
Affiliation(s)
- J S Song
- Section on Chemical Immunology, NIAMSD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
72
|
Duan WR, Linzer DI, Gibori G. Cloning and characterization of an ovarian-specific protein that associates with the short form of the prolactin receptor. J Biol Chem 1996; 271:15602-7. [PMID: 8663045 DOI: 10.1074/jbc.271.26.15602] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Prolactin (PRL) is essential for progesterone biosynthesis and luteal cell hypertrophy of the rat corpus luteum during pregnancy. Both the long and short form of the PRL receptor have been identified in the corpus luteum of pregnant rat. The long form has been shown to transduce PRL signal in other cells, whereas no information is available on the role of the short form, especially in the corpus luteum. In the present study, we have cloned a rat ovarian-specific phosphoprotein, PRAP (PRL Receptor Associated Protein), which has no significant homology to other known proteins. We have demonstrated that this protein is immunoprecipitated by anti-PRL receptor and anti-phosphotyrosine antibodies. To determine whether PRAP associates with either the long or the short form of the PRL receptor, fusion proteins with glutathione S-transferase containing the cytoplasmic domain of the long or short form of the PRL receptor were produced, purified, and incubated with luteal proteins. Our results indicate that PRAP preferentially binds to the short form of the PRL receptor. Thus, the long form and short forms of the PRL receptor may signal through distinct pathways. These data provide evidence for the involvement of a novel protein in PRL signal transduction and suggest that PRAP may contribute to the luteotropic effects of PRL on the corpus luteum during pregnancy.
Collapse
Affiliation(s)
- W R Duan
- Department of Physiology & Biophysics, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
73
|
Hobert O, Jallal B, Ullrich A. Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression. Mol Cell Biol 1996; 16:3066-73. [PMID: 8649418 PMCID: PMC231301 DOI: 10.1128/mcb.16.6.3066] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The proto-oncogene product Vav plays a critical role in hematopoietic signal transduction. By using the yeast two-hybrid system, we identified a novel human protein, ENX-1, which interacts specifically with Vav both in vitro and in vivo. ENX-1 represents the human homolog of the Drosophila Enhancer of zeste gene, a member of the Polycomb group of genes, which are transcriptional regulators of homeobox gene expression. Interaction with ENX-1 suggests that Vav functions as an upstream element in the transcriptional regulation of homeobox genes, known to be important effectors in the hematopoietic system.
Collapse
Affiliation(s)
- O Hobert
- Department of Molecular Biology, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
74
|
Bonnefoy-Bérard N, Munshi A, Yron I, Wu S, Collins TL, Deckert M, Shalom-Barak T, Giampa L, Herbert E, Hernandez J, Meller N, Couture C, Altman A. Vav: function and regulation in hematopoietic cell signaling. Stem Cells 1996; 14:250-68. [PMID: 8724692 DOI: 10.1002/stem.140250] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vav, a 95 kDa proto-oncogene product expressed specifically in hematopoietic cells, was originally isolated as a transforming human oncogene. Vav contains an array of functional domains that are involved in interactions with other proteins and, possibly, with lipids. These include, among others, a putative guanine nucleotide exchange domain, a cysteine-rich region similar to the phorbol ester/diacylglycerol-binding domain of protein kinase C, a pleckstrin-homology domain, and Src-homology 2 and 3 (SH2 and SH3, respectively) domains. The presence of these domains, the transforming activity of the vav oncogene, and the rapid increase in tyrosine phosphorylation of Vav induced by triggering of diverse receptors indicate that it plays an important role in hematopoietic cell signaling pathways. Such a role is supported by recent studies using "knockout" mice and transiently transfected T cells, in which Vav deletion or overexpression, respectively, had marked effects on lymphocyte development or activation. The presence of a putative guanine nucleotide exchange domain, the prototype of which is found in the dbl oncogene product, implies that Vav functions as a guanine nucleotide exchange factor (GEF) for one (or more) members of the Ras-like family of small GTP-binding proteins. In support of such a role, Vav preparations were found in some (but not other) studies to mediate in vitro-specific GEF activity for Ras. Additional studies are required to identify the physiological regulators and targets of Vav, and its exact role in hematopoietic cell development and signaling.
Collapse
|
75
|
Elberg G, Rapoport MJ, Vashdi-Elberg D, Gertler A, Shechter Y. Lactogenic hormones rapidly activate p21( ras )/mitogen-activated protein kinase in Nb2-11C rat lymphoma cells. Endocrine 1996; 4:65-71. [PMID: 21153293 DOI: 10.1007/bf02738876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/1995] [Revised: 11/02/1995] [Accepted: 11/20/1995] [Indexed: 10/22/2022]
Abstract
Lactogenic hormone-dependent Nb2-11C cells proliferate in response to prolactin (PRL) or human growth hormone (hGH). We have investigated the activation of p21( ras ) and mitogen-activated protein kinase (MAP-kinase) by hGH in lactogen-dependent Nb2-11C and in autonomous hormone-independent Nb2-SP rat lymphoma cells. Exposure of Nb2-11C cells to hGH resulted in a dose-dependent activation of p21( ras ) and of MAP-kinase. Activation occurs at physiological hGH concentration and with a rapid onset (∼1 min) reaching maximal level at 10-20 min. In contrast, in Nb2-SP autonomous lactogen-independent cells, p21( ras ) and MAP-kinase are constitutively activated and a challenge with lactogenic hormone had a modest additional activating effect. TPA, an activator of protein kinase C, enhanced p21( ras ) and MAP-kinase activity in Nb2-11C cells but failed to induce proliferation. The mechanism of activation of p21( ras ) in Nb2-11C cells by lactogenic hormones involves both an increased binding of guanine nucleotides to p21( ras ) as well as an increase in GTP/GDP+GTP ratio. In summary, we have demonstrated here that activation of the p21( ras )/MAP-kinase pathway follows PRL receptor activation but is not sufficient for the lactogenic hormone-dependent mitogenesis.
Collapse
Affiliation(s)
- G Elberg
- Department of Hormone Research, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | | | | | |
Collapse
|
76
|
Romero F, Dargemont C, Pozo F, Reeves WH, Camonis J, Gisselbrecht S, Fischer S. p95vav associates with the nuclear protein Ku-70. Mol Cell Biol 1996; 16:37-44. [PMID: 8524317 PMCID: PMC230976 DOI: 10.1128/mcb.16.1.37] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The proto-oncogene vav is expressed solely in hematopoietic cells and plays an important role in cell signaling, although little is known about the proteins involved in these pathways. To gain further information, the Src homology 2 (SH2) and 3 (SH3) domains of Vav were used to screen a lymphoid cell cDNA library by the yeast two-hybrid system. Among the positive clones, we detected a nuclear protein, Ku-70, which is the DNA-binding element of the DNA-dependent protein kinase. In Jurkat and UT7 cells, Vav is partially localized in the nuclei, as judged from immunofluorescence and confocal microscopy studies. By using glutathione S-transferase fusion proteins derived from Ku-70 and coimmunoprecipitation experiments with lysates prepared from human thymocytes and Jurkat and UT7 cells, we show that Vav associates with Ku-70. The interaction of Vav with Ku-70 requires only the 150-residue carboxy-terminal portion of Ku-70, which binds to the 25 carboxy-terminal residues of the carboxy SH3 domain of Vav. A proline-to-leucine mutation in the carboxy SH3 of Vav that blocks interaction with proline-rich sequences does not modify the binding of Ku-70, which lacks this motif. Therefore, the interaction of Vav with Ku-70 may be a novel form of protein-protein interaction. The potential role of Vav/Ku-70 complexes is discussed.
Collapse
Affiliation(s)
- F Romero
- Institut Cochin de Génétique Moléculaire, U363 Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Cochin, Paris, France
| | | | | | | | | | | | | |
Collapse
|