51
|
Lee MY, Jung CH, Lee K, Choi YH, Hong S, Cheong J. Activating transcription factor-2 mediates transcriptional regulation of gluconeogenic gene PEPCK by retinoic acid. Diabetes 2002; 51:3400-7. [PMID: 12453892 DOI: 10.2337/diabetes.51.12.3400] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All-trans-retinoic acid (RA) is known to increase the rate of transcription of the PEPCK gene upon engagement of the RA receptor (RAR). RA also mediates induction of specific gene transcription via several signaling pathways as a nongenomic effect. Here we show that RA upregulation of PEPCK promoter activity requires the cAMP response element (CRE)-1 in addition to the RA-response element and that activating transcription factor-2 (ATF-2) binds the CRE element to mediate this effect. Furthermore, we show that RA treatment potentiates ATF-2-dependent transactivation by inducing specific phosphorylation of ATF-2 by p38beta kinase. ATF-2 activation by RA blocked the inhibitory intramolecular interaction of ATF-2 amino and carboxyl terminal domains in a p38beta kinase-dependent manner. Consistent with these results, RA treatment increased the DNA binding activity of ATF-2 on the PEPCK CRE-1 sequence. Taken together, the data suggest that RA activates the p38beta kinase pathway leading to phosphorylation and activation of ATF-2, thereby enhancing PEPCK gene transcription and glucose production.
Collapse
Affiliation(s)
- Min Young Lee
- Hormone Research Center, Chonnam National University, Kwangju, Korea
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
Since its discovery more than a decade ago, the Ser/Thr kinase Akt/PKB (protein kinase B) has been recognized as being remarkably well conserved across a broad range of species and involved in a diverse array of cellular processes. Among its many roles, Akt appears to be common to signaling pathways that mediate the metabolic effects of insulin in several physiologically important target tissues. Refining our understanding of those pivotal molecular components that normally coordinate insulin action throughout the body is essential for a full understanding of insulin resistance in diabetes mellitus and ultimately the successful treatment of this disease.
Collapse
Affiliation(s)
- Eileen L Whiteman
- Dept Medicine and Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, 415 Curie Blvd, 322 Clinical Research Building, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
53
|
Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277:34933-40. [PMID: 12118006 DOI: 10.1074/jbc.m204672200] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herbs have been used for medicinal purposes, including the treatment of diabetes, for centuries. Plants containing flavonoids are used to treat diabetes in Indian medicine and the green tea flavonoid, epigallocatechin gallate (EGCG), is reported to have glucose-lowering effects in animals. We show here that the regulation of hepatic glucose production is decreased by EGCG. Furthermore, like insulin, EGCG increases tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), and it reduces phosphoenolpyruvate carboxykinase gene expression in a phosphoinositide 3-kinase-dependent manner. EGCG also mimics insulin by increasing phosphoinositide 3-kinase, mitogen-activated protein kinase, and p70(s6k) activity. EGCG differs from insulin, however, in that it affects several insulin-activated kinases with slower kinetics. Furthermore, EGCG regulates genes that encode gluconeogenic enzymes and protein-tyrosine phosphorylation by modulating the redox state of the cell. These results demonstrate that changes in the redox state may have beneficial effects for the treatment of diabetes and suggest a potential role for EGCG, or derivatives, as an antidiabetic agent.
Collapse
Affiliation(s)
- Mary E Waltner-Law
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | |
Collapse
|
54
|
Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366:377-91. [PMID: 12061893 PMCID: PMC1222807 DOI: 10.1042/bj20020430] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Revised: 05/27/2002] [Accepted: 06/13/2002] [Indexed: 02/07/2023]
Abstract
The regulation of hepatic glucose metabolism has a key role in whole-body energy metabolism, since the liver is able to store (glycogen synthesis, lipogenesis) and to produce (glycogenolysis, gluconeogenesis) glucose. These pathways are regulated at several levels, including a transcriptional level, since many of the metabolism-related genes are expressed according to the quantity and quality of nutrients. Recent advances have been made in the understanding of the regulation of hepatic glycolytic, lipogenic and gluconeogenic gene expression by pancreatic hormones, insulin and glucagon and glucose. Here we review the role of the transcription factors forkhead and sterol regulatory element binding protein-1c in the inductive and repressive effects of insulin on hepatic gene expression, and the pathway that leads from glucose to gene regulation with the recently discovered carbohydrate response element binding protein. We discuss how these transcription factors are integrated in a regulatory network that allows a fine tuning of hepatic glucose storage or production, and their potential importance in metabolic diseases.
Collapse
Affiliation(s)
- Fabienne Foufelle
- INSERM Unit 465, Centre de Recherches Biomédicales des Cordeliers, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
55
|
Duong DT, Waltner-Law ME, Sears R, Sealy L, Granner DK. Insulin inhibits hepatocellular glucose production by utilizing liver-enriched transcriptional inhibitory protein to disrupt the association of CREB-binding protein and RNA polymerase II with the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2002; 277:32234-42. [PMID: 12070172 DOI: 10.1074/jbc.m204873200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hormones regulate glucose homeostasis, in part, by controlling the expression of gluconeogenic enzymes, such as phosphoenolpyruvate carboxykinase (PEPCK). Insulin and glucocorticoids reciprocally regulate PEPCK expression primarily at the level of gene transcription. We demonstrate here that glucocorticoids promote, whereas insulin disrupts, the association of CREB-binding protein (CBP) and RNA polymerase II with the hepatic PEPCK gene promoter in vivo. We also show that accessory factors, such as CCAAT/enhancer-binding protein beta (C/EBP beta), can recruit CBP to drive transcription. Insulin increases protein levels of liver-enriched transcriptional inhibitory protein (LIP), an inhibitory form of C/EBP beta, in a phosphatidylinositol 3-kinase-dependent manner. LIP concomitantly replaces liver-enriched transcriptional activator protein on the PEPCK gene promoter, which can abrogate the recruitment of CBP and polymerase II, culminating in the repression of PEPCK expression and the attenuation of hepatocellular glucose production.
Collapse
Affiliation(s)
- David T Duong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
56
|
Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF, Xie N, Wilcox D, Jacobson P, Frost L, Kroeger PE, Reilly RM, Koterski S, Opgenorth TJ, Ulrich RG, Crosby S, Butler M, Murray SF, McKay RA, Bhanot S, Monia BP, Jirousek MR. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002; 99:11357-62. [PMID: 12169659 PMCID: PMC123261 DOI: 10.1073/pnas.142298199] [Citation(s) in RCA: 331] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50alpha, were increased and PI3-kinase p85alpha expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes.
Collapse
Affiliation(s)
- Bradley A Zinker
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J Biol Chem 2002; 277:27975-81. [PMID: 12032158 DOI: 10.1074/jbc.m204152200] [Citation(s) in RCA: 412] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcription factor involved in normal mammalian development and in the pathogenesis of several disease states. It consists of two subunits, HIF-1alpha, which is degraded during normoxia, and HIF-1beta, which is constitutively expressed. Activated HIF-1 induces the expression of genes involved in angiogenesis, erythropoiesis, and glucose metabolism. We have previously reported that insulin stimulates vascular endothelial growth factor (VEGF) expression (). In this study, we show that insulin activates HIF-1, leading to VEGF expression in retinal epithelial cells. Insulin activates HIF-1alpha protein expression in a dose-dependent manner with a maximum reached within 6 h. The expression of HIF-1alpha is correlated with the activation of HIF-1 DNA binding activity and the transactivation of a HIF-1-dependent reporter gene. Insulin does not appear to affect HIF-1alpha mRNA transcription but regulates HIF-1alpha protein expression through a translation-dependent pathway. The expression of an active form of protein kinase B and treatment of cells with specific inhibitors of phosphatidylinositol 3-kinase (PI3K), MAPK, and target of rapamycin (TOR) show that mainly PI3K and to a lesser extent TOR are required for insulin-induced HIF-1alpha expression. HIF-1 activity and VEGF expression are also dependent on PI3K- and TOR-dependent signaling. In conclusion, we show here that insulin regulates HIF-1 action through a PI3K/TOR-dependent pathway, resulting in increased VEGF expression.
Collapse
Affiliation(s)
- Caroline Treins
- INSERM U145, Institut Fédératif de Recherche 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
58
|
Patel S, Van Der Kaay J, Sutherland C. Insulin regulation of hepatic insulin-like growth factor-binding protein-1 (IGFBP-1) gene expression and mammalian target of rapamycin (mTOR) signalling is impaired by the presence of hydrogen peroxide. Biochem J 2002; 365:537-45. [PMID: 11942857 PMCID: PMC1222689 DOI: 10.1042/bj20020266] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 03/27/2002] [Accepted: 04/10/2002] [Indexed: 11/17/2022]
Abstract
Hepatic expression of insulin-like growth factor-binding protein-1 (IGFBP-1) is rapidly and completely inhibited by insulin. The signalling pathway that mediates this effect of insulin requires the activation of phosphoinositide 3-kinase (PI 3-kinase). Many of the cellular actions of insulin, including activation of PI 3-kinase, can be 'mimicked' by oxidative stresses, such as H(2)O(2). In the present study, we demonstrate that H(2)O(2) does not 'mimic' but rather antagonizes insulin repression of IGFBP-1 gene expression in H4IIE cells. This effect is accompanied by a decrease in the insulin-induced activation of mammalian target of rapamycin (mTOR)-dependent signalling. However, insulin-induced phosphorylation and regulation of protein kinase B, glycogen synthase kinase-3 and FKHR (forkhead in rhabdomyosarcoma) are not affected by H(2)O(2) in the same cells. In addition, H(2)O(2) strongly activates the p42/p44 mitogen-activated protein kinases, but the presence of PD184352 (an inhibitor of this pathway) does not block the effect of H(2)O(2) on IGFBP-1 gene expression. Our results support the view that the insulin-mediated repression of IGFBP-1 gene expression is partly mTOR-dependent, and demonstrate that H(2)O(2) selectively antagonizes mTOR-dependent insulin action. The implications for the use of H(2)O(2)-generating agents as therapeutics for the treatment of insulin resistance, as well as the role of oxidative stress in the development of insulin resistance, are discussed.
Collapse
Affiliation(s)
- Satish Patel
- Department of Pharmacology and Neurosciences, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | | | | |
Collapse
|
59
|
Sun Y, Liu S, Ferguson S, Wang L, Klepcyk P, Yun JS, Friedman JE. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem 2002; 277:23301-7. [PMID: 11964395 DOI: 10.1074/jbc.m200964200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.
Collapse
Affiliation(s)
- Yang Sun
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Patel S, Lochhead PA, Rena G, Fumagalli S, Pende M, Kozma SC, Thomas G, Sutherland C. Insulin regulation of insulin-like growth factor-binding protein-1 gene expression is dependent on the mammalian target of rapamycin, but independent of ribosomal S6 kinase activity. J Biol Chem 2002; 277:9889-95. [PMID: 11784721 DOI: 10.1074/jbc.m109870200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin inhibits the expression of the hepatic insulin-like growth factor-binding protein-1 (IGFBP-1) and glucose-6-phosphatase (G6Pase) genes. The signaling pathway that mediates these events requires the activation of phosphatidylinositol 3-kinase, whereas transfection studies have suggested an involvement of Akt (protein kinase B) and FKHR, a transcription factor regulated by Akt. We now demonstrate that insulin repression of endogenous IGFBP-1 gene transcription was blocked by rapamycin or by amino acid starvation. Rapamycin inhibited the mammalian target of rapamycin (mTOR) and the subsequent activation of p70/p85 S6 protein kinase-1 (S6K1) by insulin, whereas amino acid depletion prevented insulin induction of these signaling molecules. Importantly, we demonstrate that insulin regulation of the thymine-rich insulin response element of the IGFBP-1 promoter was also inhibited by rapamycin. However, sustained activation of S6K1 did not repress this promoter. In addition, rapamycin did not affect insulin regulation of G6Pase expression or Akt activation. We propose that these observations indicate that an mTOR-dependent, but S6K-independent mechanism regulates the suppression of IGFBP-1 (but not G6Pase) gene expression by insulin. Therefore, although the insulin-responsive sequence of the G6Pase gene promoter is related to that of the IGFBP-1 promoter, the signaling pathways that mediate suppression of these genes are distinct.
Collapse
Affiliation(s)
- Satish Patel
- Division of Cellular Signalling, School of Life Sciences, Wellcome Trust Biocentre/Medical Sciences Institute Complex, Dow Street, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Murata M, Okimura Y, Iida K, Matsumoto M, Sowa H, Kaji H, Kojima M, Kangawa K, Chihara K. Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem 2002; 277:5667-74. [PMID: 11724768 DOI: 10.1074/jbc.m103898200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ghrelin was identified in the stomach as an endogenous ligand specific for the growth hormone secretagogue receptor (GHS-R). GHS-R is found in various tissues, but its function is unknown. Here we show that GHS-R is found in hepatoma cells. Exposure of these cells to ghrelin caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1), association of the adapter molecule growth factor receptor-bound protein 2 with IRS-1, mitogen-activated protein kinase activity, and cell proliferation. Unlike insulin, ghrelin inhibited Akt kinase activity as well as up-regulated gluconeogenesis. These findings raise the possibility that ghrelin modulates insulin activities in humans.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Hepatocellular/metabolism
- Cell Division
- Cell Line
- Cells, Cultured
- Culture Media, Serum-Free/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Ghrelin
- Humans
- Insulin/metabolism
- Insulin Receptor Substrate Proteins
- Ligands
- MAP Kinase Signaling System
- Models, Biological
- Peptide Hormones
- Peptides/metabolism
- Peptides/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Binding
- RNA, Messenger/metabolism
- Rats
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Ghrelin
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Time Factors
- Tumor Cells, Cultured
- Tyrosine/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Masahiro Murata
- Third Division and Second Division, Department of Medicine and the Department of Basic Allied Medicine, Kobe University School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Zeitouni N, Eubank DW, Lee AQ, Oxford MG, Freeman TL, Mailliard ME, Beale EG. Phosphoenolpyruvate carboxykinase is induced in growth-arrested hepatoma cells. Biochem Biophys Res Commun 2002; 290:1513-20. [PMID: 11820793 DOI: 10.1006/bbrc.2002.6374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) mRNA is elevated in H4IIEC3 rat hepatoma cells cultured at high density, suggesting that PEPCK expression and growth arrest may be coordinately regulated. Induction of growth arrest either by contact inhibition (high culture density) or by serum deprivation correlated with significant increases in PEPCK protein and its mRNA. The observation that PEPCK mRNA was induced by contact inhibition in the presence of serum indicates that the effect of high density is independent of insulin or any other serum component. The magnitudes of the changes in PEPCK expression during growth arrest were greatly enhanced in KRC-7 cells, an H4IIEC3 subclone that is much more sensitive to growth arrest than its parental cell line. Restimulation of proliferation in growth-arrested KRC-7 cells, either by addition of serum or insulin to serum-deprived cells or by replating contact-inhibited cells at low density, caused a rapid decrease in PEPCK expression. However, PEPCK mRNA is not always reduced in proliferating cells since treatment of serum-starved cells with epidermal growth factor stimulated entry into the cell cycle but did not affect PEPCK mRNA levels. Finally, dexamethasone induction of PEPCK mRNA was blunted in cells cultured at high density but was unaffected by the presence or absence of serum. Collectively, these data suggest the possibility of cross-talk between the control of PEPCK expression and growth arrest in KRC-7 cells.
Collapse
Affiliation(s)
- Nawal Zeitouni
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Woodcroft KJ, Hafner MS, Novak RF. Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression. Hepatology 2002; 35:263-73. [PMID: 11826398 DOI: 10.1053/jhep.2002.30691] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Diabetes has been reported to increase the expression of cytochrome P450 (CYP) 2E1 messenger RNA (mRNA) and protein several-fold, and enhanced expression has been associated with elevated ketone bodies. Primary cultured rat hepatocytes were used to explore ketone body and insulin regulation of CYP2E1 expression. Hydroxybutyrate and acetoacetate (AC), alone or in combination, either failed to affect or decreased CYP2E1 mRNA levels by up to 90% relative to untreated hepatocytes. Insulin produced a concentration-dependent decrease in CYP2E1 mRNA levels, and insulin receptor immunoprecipitation showed a correspondence between receptor phosphorylation and the decrease in CYP2E1 mRNA levels at physiologic levels of insulin. Phosphatase inhibitors decreased CYP2E1 mRNA levels by greater than 95%. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitors wortmannin or LY294002 and rapamycin, an inhibitor of p70 S6 kinase phosphorylation, ameliorated the insulin-mediated decrease in CYP2E1 mRNA levels. Geldanamycin, which inhibits Src kinase, also abrogated the insulin-mediated decrease in CYP2E1 mRNA levels. In contrast, the protein kinase C (PKC) inhibitor bisindolylmaleimide, the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, and the p38 mitogen-activated protein (MAP) kinase inhibitor SB202190 did not affect the insulin-mediated decrease in CYP2E1. CYP2E1 mRNA half-life decreased from approximately 48 hours in the absence of insulin to approximately 15 hours at 10 nmol/L insulin, and this decrease was prevented by wortmannin. The half-life of CYP2B mRNA was increased by insulin, whereas that of CYP3A was unaffected. Analysis of CYP2E1 gene transcription using heterogeneous nuclear RNA (hnRNA) showed that insulin suppressed CYP2E1 transcription. In conclusion, these data show involvement of transcriptional and posttranscriptional mechanisms in the insulin-mediated regulation of CYP2E1 and implicate PI3-kinase, p70 S6 kinase, and Src kinase in mediating these effects.
Collapse
Affiliation(s)
- Kimberley J Woodcroft
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
64
|
Scassa ME, Guberman AS, Varone CL, Cánepa ET. Phosphatidylinositol 3-kinase and Ras/mitogen-activated protein kinase signaling pathways are required for the regulation of 5-aminolevulinate synthase gene expression by insulin. Exp Cell Res 2001; 271:201-13. [PMID: 11716532 DOI: 10.1006/excr.2001.5386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin regulates the expression of several hepatic genes. Although the general definition of insulin signaling has progressed dramatically, the elucidation of the complete signaling pathway from insulin receptor to transcription factors involved in the regulation of a specific gene remains to be established. In fact, recent works suggest that multiple divergent insulin signaling pathways regulate the expression of distinct genes. 5-Aminolevulinate synthase (ALAS) is a mitochondrial matrix enzyme that catalyzes the first and rate-limiting step of heme biosynthesis. It has been reported that insulin caused the rapid inhibition of housekeeping ALAS transcription, but the mechanism involved in this repression has not been explored. The present study investigates the role of phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinase pathways in insulin signaling relevant to ALAS inhibition. To explore this, we combined the transient overexpression of regulatory proteins involved in these pathways and the use of small cell permeant inhibitors in rat hepatocytes and HepG2 cells. Wortmannin and LY294002, PI3-kinase inhibitors, as well as lovastatin and PD152440, Ras farnesylation inhibitors, and MEK inhibitor PD98059 abolished the insulin repression of ALAS transcription. The inhibitor of mTOR/p70(S6K) rapamycin had no effect whatsoever upon hormone action. The overexpression of vectors encoding constitutively active Ras, MEK, or p90(RSK) mimicked the inhibitory action of insulin. Conversely, negative mutants of PKB, Ras, or MEK impaired insulin inhibition of ALAS promoter activity. Furthermore, inhibition of one of the pathways blocks the inhibitory effect produced by the activation of the other. Our findings suggest that factors involved in two signaling pathways that are often considered to be functionally separate during insulin action, the Ras/ERK/p90(RSK) pathway and the PI3K/PKB pathway, are jointly required for insulin-mediated inhibition of ALAS gene expression in rat hepatocytes and human hepatoma cells.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/genetics
- Androstadienes/pharmacology
- Animals
- Carcinoma, Hepatocellular
- Cells, Cultured
- Chromones/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic/physiology
- Genetic Vectors
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Humans
- Insulin/metabolism
- Insulin/pharmacology
- Liver/drug effects
- Liver/enzymology
- MAP Kinase Signaling System/genetics
- Male
- Morpholines/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/physiology
- Protein Prenylation/drug effects
- Protein Prenylation/physiology
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Ribosomal Protein S6 Kinases/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tubulin/genetics
- Tumor Cells, Cultured
- Wortmannin
- ras Proteins/metabolism
Collapse
Affiliation(s)
- M E Scassa
- Laboratorio de Biología Molecular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II Piso 4 Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | | | | | | |
Collapse
|
65
|
|
66
|
Lefai E, Roques M, Vega N, Laville M, Vidal H. Expression of the splice variants of the p85alpha regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients. Biochem J 2001; 360:117-26. [PMID: 11695998 PMCID: PMC1222208 DOI: 10.1042/0264-6021:3600117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulation by insulin of the expression of the p85alpha regulatory subunit of phosphoinositide 3-kinase (PI 3-kinase) is impaired in skeletal muscle and adipose tissue of type 2 diabetic patients. The gene encoding p85alpha (named grb-1) can generate several variants by alternative splicing, all being able to activate the p110 catalytic subunits of PI 3-kinase. Our aims were (i) to determine the mRNA expression profiles of these variants in human skeletal muscle and adipose tissue; (ii) to investigate the effect of insulin on their expression in vivo and in vitro in muscle and (iii) to verify whether this regulation is defective in type 2 diabetes. We determined the human genomic organization of grb-1 and set up reverse transcriptase competitive PCR assays for the quantification of each mRNA variant. In muscle, p85alpha and p50alpha mRNAs were the most abundant, and p55alpha represented less than 20% of all grb-1-derived mRNAs. In adipose tissue, p85alpha was expressed predominantly and p55alpha mRNA was not detectable. These expression profiles were not different in type 2 diabetics. During a 3 h hyperinsulinaemic clamp, insulin increased the mRNA expression of the three variants in muscle of control subjects. In diabetic patients, the effect of insulin on p85alpha and p50alpha mRNAs was blunted, and largely reduced on p55alpha transcripts. In cultured human myotubes, up-regulation of p85alpha, p55alpha and p50alpha mRNAs by insulin was abolished by LY294002 (10 microM) and by rapamycin (50 nM), suggesting that the PI 3-kinase/protein kinase B/p70 S6 kinase pathway could be involved in the stimulation of grb-1 gene expression by insulin in human muscle cells.
Collapse
Affiliation(s)
- E Lefai
- INSERM U.449 and Lyon Human Nutrition Research Centre, Faculty of Medicine R. Laennec, F-69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
67
|
Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001; 108:1359-67. [PMID: 11696581 PMCID: PMC209440 DOI: 10.1172/jci12876] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 2 diabetes is characterized by the inability of insulin to suppress glucose production in the liver and kidney. Insulin inhibits glucose production by indirect and direct mechanisms. The latter result in transcriptional suppression of key gluconeogenetic and glycogenolytic enzymes, phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6p). The transcription factors required for this effect are incompletely characterized. We report that in glucogenetic kidney epithelial cells, Pepck and G6p expression are induced by dexamethasone (dex) and cAMP, but fail to be inhibited by insulin. The inability to respond to insulin is associated with reduced expression of the forkhead transcription factor Foxo1, a substrate of the Akt kinase that is inhibited by insulin through phosphorylation. Transduction of kidney cells with recombinant adenovirus encoding Foxo1 results in insulin inhibition of dex/cAMP-induced G6p expression. Moreover, expression of dominant negative Foxo1 mutant results in partial inhibition of dex/cAMP-induced G6p and Pepck expression in primary cultures of mouse hepatocyes and kidney LLC-PK1-FBPase(+) cells. These findings are consistent with the possibility that Foxo1 is involved in insulin regulation of glucose production by mediating the ability of insulin to decrease the glucocorticoid/cAMP response of G6p.
Collapse
Affiliation(s)
- J Nakae
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
68
|
Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 2001; 108:1359-1367. [PMID: 11696581 DOI: 10.1172/jci200112876] [Citation(s) in RCA: 459] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Type 2 diabetes is characterized by the inability of insulin to suppress glucose production in the liver and kidney. Insulin inhibits glucose production by indirect and direct mechanisms. The latter result in transcriptional suppression of key gluconeogenetic and glycogenolytic enzymes, phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6p). The transcription factors required for this effect are incompletely characterized. We report that in glucogenetic kidney epithelial cells, Pepck and G6p expression are induced by dexamethasone (dex) and cAMP, but fail to be inhibited by insulin. The inability to respond to insulin is associated with reduced expression of the forkhead transcription factor Foxo1, a substrate of the Akt kinase that is inhibited by insulin through phosphorylation. Transduction of kidney cells with recombinant adenovirus encoding Foxo1 results in insulin inhibition of dex/cAMP-induced G6p expression. Moreover, expression of dominant negative Foxo1 mutant results in partial inhibition of dex/cAMP-induced G6p and Pepck expression in primary cultures of mouse hepatocyes and kidney LLC-PK1-FBPase(+) cells. These findings are consistent with the possibility that Foxo1 is involved in insulin regulation of glucose production by mediating the ability of insulin to decrease the glucocorticoid/cAMP response of G6p.
Collapse
Affiliation(s)
- J Nakae
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
69
|
Patel S, Lochhead PA, Rena G, Sutherland C. Antagonistic effects of phorbol esters on insulin regulation of insulin-like growth factor-binding protein-1 (IGFBP-1) but not glucose-6-phosphatase gene expression. Biochem J 2001; 359:611-9. [PMID: 11672436 PMCID: PMC1222183 DOI: 10.1042/0264-6021:3590611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glucose-6-phosphatase (G6Pase) and insulin-like growth factor-binding protein-1 (IGFBP-1) genes contain a homologous promoter sequence that is required for gene repression by insulin. Interestingly, this element interacts with members of the forkhead family of transcription factors [e.g. HNF3 (hepatic nuclear factor 3), FKHR (forkhead in rhabdomyosarcoma)] in vitro, while insulin promotes the phosphorylation and inactivation of FKHR in a phosphatidylinositol 3-kinase- and protein kinase B (PKB)-dependent manner. This mechanism has been proposed to underlie insulin action on G6Pase and IGFBP-1 gene transcription. However, we find that treatment of cells with phorbol esters mimics the effect of insulin on G6Pase, but not IGFBP-1, gene expression. Indeed, phorbol ester treatment actually blocks the ability of insulin to repress IGFBP-1 gene expression. In addition, the action of phorbol esters is significantly reduced by inhibition of the p42/p44 mitogen-activated protein (MAP) kinase pathway. However insulin-induced phosphorylation of PKB or FKHR is not affected by the presence of phorbol esters. Therefore we suggest that activation of p42/p44 MAP kinases will reduce the sensitivity of the IGFBP-1 gene promoter, but not the G6Pase gene promoter, to insulin. Importantly, the activation of PKB and phosphorylation of FKHR is not, in itself, sufficient to reduce IGFBP-1 gene expression in the presence of phorbol esters.
Collapse
Affiliation(s)
- S Patel
- Division of Cell Signalling, School of Life Sciences, WTB/MSI Complex, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
70
|
Chakravarty K, Leahy P, Becard D, Hakimi P, Foretz M, Ferre P, Foufelle F, Hanson RW. Sterol regulatory element-binding protein-1c mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription. J Biol Chem 2001; 276:34816-23. [PMID: 11443121 DOI: 10.1074/jbc.m103310200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have assessed the potential role of sterol regulatory element-binding protein-1c (SREBP-1c) on the transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC ) (PEPCK-C). SREBP-1c introduced into primary hepatocytes with an adenovirus vector caused a total loss of PEPCK-C mRNA and a marked induction of fatty acid synthase mRNA that directly coincided with the appearance of SREBP-1c in the hepatocytes. It also blocked the induction of PEPCK-C mRNA by cAMP and dexamethasone in these cells. In contrast, a dominant negative form of SREBP-1c (dnSREBP-1c) stimulated the accumulation of PEPCK-C mRNA in these cells. SREBP-1c completely blocked the induction of PEPCK-C gene transcription by the catalytic subunit of protein kinase A (PKA), and increasing concentrations of dnSREBP-1c reversed the negative effect of insulin on transcription from the PEPCK-C gene promoter in WT-IR cells. The more than 10-fold induction of PKA-stimulated PEPCK-C gene transcription caused by the co-activator CBP, was also blocked by SREBP-1c. In addition, dnSREBP-1c reversed the strong negative effect of E1A and NF1 on PKA-stimulated transcription from the PEPCK-C gene promoter. An analysis of the possible site of action of SREBP-1c using stepwise truncations of the PEPCK-C gene promoter indicated that the negative effect of SREBP-1c on transcription is exerted at a site between -355 and -277. We conclude that SREBP-1c is an intermediate in the action of insulin on PEPCK-C gene transcription in the liver and acts by blocking the stimulatory effect cAMP that is mediated via an interaction with cAMP-binding protein.
Collapse
Affiliation(s)
- K Chakravarty
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ, Gontijo JA. A high-fructose diet induces insulin resistance but not blood pressure changes in normotensive rats. Braz J Med Biol Res 2001; 34:1155-60. [PMID: 11514839 DOI: 10.1590/s0100-879x2001000900008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats fed a high-fructose diet represent an animal model for insulin resistance and hypertension. We recently showed that a high-fructose diet containing vegetable oil but a normal sodium/potassium ratio induced mild insulin resistance with decreased insulin receptor substrate-1 tyrosine phosphorylation in the liver and muscle of normal rats. In the present study, we examined the mean blood pressure, serum lipid levels and insulin sensitivity by estimating in vivo insulin activity using the 15-min intravenous insulin tolerance test (ITT, 0.5 ml of 6 microg insulin, iv) followed by calculation of the rate constant for plasma glucose disappearance (Kitt) in male Wistar-Hannover rats (110-130 g) randomly divided into four diet groups: control, 1:3 sodium/potassium ratio (R Na:K) diet (C 1:3 R Na:K); control, 1:1 sodium/potassium ratio diet (CNa 1:1 R Na:K); high-fructose, 1:3 sodium/potassium ratio diet (F 1:3 R Na:K), and high-fructose, 1:1 sodium/potassium ratio diet (FNa 1:1 R Na:K) for 28 days. The change in R Na:K for the control and high-fructose diets had no effect on insulin sensitivity measured by ITT. In contrast, the 1:1 R Na:K increased blood pressure in rats receiving the control and high-fructose diets from 117 +/- 3 and 118 +/- 3 mmHg to 141 +/- 4 and 132 +/- 4 mmHg (P < 0.05), respectively. Triacylglycerol levels were higher in both groups treated with a high-fructose diet when compared to controls (C 1:3 R Na:K: 1.2 +/- 0.1 mmol/l vs F 1:3 R Na:K: 2.3 +/- 0.4 mmol/l and CNa 1:1 R Na:K: 1.2 +/- 0.2 mmol/l vs FNa 1:1 R Na:K: 2.6 +/- 0.4 mmol/l, P < 0.05). These data suggest that fructose alone does not induce hyperinsulinemia or hypertension in rats fed a normal R Na:K diet, whereas an elevation of sodium in the diet may contribute to the elevated blood pressure in this animal model.
Collapse
Affiliation(s)
- R M Bezerra
- Departamento de Planejamento Alimentar e Nutrição, Faculdade de Economia e Administração, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
72
|
Banfi C, Eriksson P, Giandomenico G, Mussoni L, Sironi L, Hamsten A, Tremoli E. Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: insights into the signaling pathway. Diabetes 2001; 50:1522-30. [PMID: 11423472 DOI: 10.2337/diabetes.50.7.1522] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Impairment of the fibrinolytic system, caused primarily by increases in the plasma levels of plasminogen activator inhibitor (PAI) type 1, are frequently found in diabetes and the insulin-resistance syndrome. Among the factors responsible for the increases of PAI-1, insulin has recently attracted attention. In this study, we analyzed the effects of insulin on PAI-1 biosynthesis in HepG2 cells, paying particular attention to the signaling network evoked by this hormone. Experiments performed in CHO cells overexpressing the insulin receptor indicate that insulin increases PAI-1 gene transcription through interaction with its receptor. By using inhibitors of the different signaling pathways evoked by insulin-receptor binding, it has been shown that the biosynthesis of PAI-1 is due to phosphatidylinositol (PI) 3-kinase activation, followed by protein kinase C and ultimately by mitogen-activated protein (MAP) kinase activation and extracellular signal-regulated kinase 2 phosphorylation. We also showed that this pathway is Ras-independent. Transfection of HepG2 cells with several truncations of the PAI-1 promoter coupled to a CAT gene allowed us to recognize two major response elements located in the regions between -804 and -708 and between -211 and -54. Electrophoretic mobility shift assay identified three binding sites for insulin-induced factors, all colocalized with putative Sp1 binding sites. Using supershifting antibodies, the binding of Sp1 could only be confirmed at the binding site located just upstream from the transcription start site of the PAI-1 promoter. A construct comprising four tandem repeat copies of the -93/-62 region of the PAI-1 promoter linked to CAT was transcriptionally activated in HepG2 cells by insulin. These results outline the central role of MAP kinase activation in the regulation of PAI-1 induced by insulin.
Collapse
Affiliation(s)
- C Banfi
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
73
|
Lochhead PA, Coghlan M, Rice SQ, Sutherland C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes 2001; 50:937-46. [PMID: 11334436 DOI: 10.2337/diabetes.50.5.937] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A major action of insulin is to regulate the transcription rate of specific genes. The expression of these genes is dramatically altered in type 2 diabetes. For example, the expression of two hepatic genes, glucose-6-phosphatase and PEPCK, is normally inhibited by insulin, but in type 2 diabetes, their expression is insensitive to insulin. An agent that mimics the effect of insulin on the expression of these genes would reduce gluconeogenesis and hepatic glucose output, even in the presence of insulin resistance. The repressive actions of insulin on these genes are dependent on phosphatidylinositol (PI) 3-kinase. However, the molecules that lie between this lipid kinase and the two gene promoters are unknown. Glycogen synthase kinase-3 (GSK-3) is inhibited following activation of PI 3-kinase and protein kinase B. In hepatoma cells, we find that selectively reducing GSK-3 activity strongly reduces the expression of both gluconeogenic genes. The effect is at the level of transcription and is observed with induced or basal gene expression. In addition, GSK-3 inhibition does not result in the subsequent activation of protein kinase B or inhibition of the transcription factor FKHR, which are candidate regulatory molecules for these promoters. Thus, GSK-3 activity is required for basal activity of each promoter. Inhibitors of GSK-3 should therefore reduce hepatic glucose output, as well as increase the synthesis of glycogen from L-glucose. These findings indicate that GSK-3 inhibitors may have greater therapeutic potential for lowering blood glucose levels and treating type 2 diabetes than previously realized.
Collapse
Affiliation(s)
- P A Lochhead
- Division of Cell Signalling, School of Life Sciences, University of Dundee, UK
| | | | | | | |
Collapse
|
74
|
Guo S, Cichy SB, He X, Yang Q, Ragland M, Ghosh AK, Johnson PF, Unterman TG. Insulin suppresses transactivation by CAAT/enhancer-binding proteins beta (C/EBPbeta). Signaling to p300/CREB-binding protein by protein kinase B disrupts interaction with the major activation domain of C/EBPbeta. J Biol Chem 2001; 276:8516-23. [PMID: 11116148 DOI: 10.1074/jbc.m008542200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAAT/enhancer-binding proteins (C/EBPs) play an important role in the regulation of gene expression in insulin-responsive tissues. We have found that a complex containing C/EBPbeta interacts with an insulin response sequence in the insulin-like growth factor-binding protein-1 (IGFBP-1) gene and that a C/EBP-binding site can mediate effects of insulin on promoter activity. Here, we examined mechanisms mediating this effect of insulin. The ability of insulin to suppress promoter activity via a C/EBP-binding site is blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor, but not by rapamycin, which blocks activation of p70(S6 kinase). Dominant negative phosphatidylinositol 3-kinase and protein kinase B (PKB) block the effect of insulin, while activated PKB suppresses promoter function via a C/EBP-binding site, mimicking the effect of insulin. Coexpression studies indicate that insulin and PKB suppress transactivation by C/EBPbeta, but not C/EBPalpha, and that N-terminal transactivation domains in C/EBPbeta are required. Studies with Gal4 fusion proteins reveal that insulin and PKB suppress transactivation by the major activation domain in C/EBPbeta (AD II), located between amino acids 31 and 83. Studies with E1A protein indicate that interaction with p300/CBP is required for transactivation by AD II and the effect of insulin and PKB. Based on a consensus sequence, we identified a PKB phosphorylation site (Ser(1834)) within the region of p300/CBP known to bind C/EBPbeta. Mammalian two-hybrid studies indicate that insulin and PKB disrupt interactions between this region of p300 and AD II and that Ser(1834) is critical for this effect. Signaling by PKB and phosphorylation of Ser(1834) may play an important role in modulating interactions between p300/CBP and transcription factors and mediate effects of insulin and related growth factors on gene expression.
Collapse
Affiliation(s)
- S Guo
- University of Illinois at Chicago College of Medicine and Veterans Affairs Chicago Health Care System, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Ghosh AK, Lacson R, Liu P, Cichy SB, Danilkovich A, Guo S, Unterman TG. A nucleoprotein complex containing CCAAT/enhancer-binding protein beta interacts with an insulin response sequence in the insulin-like growth factor-binding protein-1 gene and contributes to insulin-regulated gene expression. J Biol Chem 2001; 276:8507-15. [PMID: 11116147 DOI: 10.1074/jbc.m008541200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Highly related insulin response sequences (IRSs) mediate effects of insulin on the expression of multiple genes in the liver, including insulin-like growth factor binding protein-1 (IGFBP-1) and phosphoenolpyruvate carboxykinase (PEPCK). Gel shift studies reveal that oligonucleotide probes containing an IRS from the IGFBP-1 or PEPCK gene form a similar complex with hepatic nuclear proteins. Unlabeled competitors containing the IGFBP-1 or PEPCK IRS or a binding site for C/EBP proteins inhibit the formation of this complex. Antibody against C/EBPbeta (but not other C/EBP proteins) supershifts this complex, and Western blotting of affinity purified proteins confirms that C/EBPbeta is present in this complex. Studies with affinity purified and recombinant protein indicate that C/EBPbeta does not interact directly with the IRS, but that other factors are required. Gel shift assays and reporter gene studies with constructs containing point mutations within the IRS reveal that the ability to interact with factors required for the formation of this complex correlates well with the ability of insulin to regulate promoter activity via this IRS (r = 0.849, p < 0.01). Replacing the IRS in reporter gene constructs with a C/EBP-binding site (but not an HNF-3/forkhead site or cAMP response element) maintains the effect of insulin on promoter activity. Together, these findings indicate that a nucleoprotein complex containing C/EBPbeta interacts with IRSs from the IGFBP-1 and PEPCK genes in a sequence-specific fashion and may contribute to the ability of insulin to regulate gene expression.
Collapse
Affiliation(s)
- A K Ghosh
- Departments of Medicine, and Physiology and Biophysics, University of Illinois at Chicago College of Medicine and Veterans Affairs Chicago Health Care System (West Side Division), Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Mounier C, Lavoie L, Dumas V, Mohammad-Ali K, Wu J, Nantel A, Bergeron JJ, Thomas DY, Posner BI. Specific inhibition by hGRB10zeta of insulin-induced glycogen synthase activation: evidence for a novel signaling pathway. Mol Cell Endocrinol 2001; 173:15-27. [PMID: 11223174 DOI: 10.1016/s0303-7207(00)00439-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Grb10 is a member of a family of adapter proteins that binds to tyrosine-phosphorylated receptors including the insulin receptor kinase (IRK). In this study recombinant adenovirus was used to over-express hGrb10zeta, a new Grb10 isoform, in primary rat hepatocytes and the consequences for insulin signaling were evaluated. Over-expression of hGrb10zeta resulted in 50% inhibition of insulin-stimulated IRK autophosphorylation and activation. Analysis of downstream events showed that hGrb10zeta over-expression specifically inhibits insulin-stimulated glycogen synthase (GS) activity and glycogen synthesis without affecting insulin-induced IRS1/2 phosphorylation, PI3-kinase activation, insulin like growth factor binding protein-1 (IGFBP-1) mRNA expression, and ERK1/2 MAP kinase activity. The classical pathway from PI3-kinase through Akt-PKB/GSK-3 leading to GS activation by insulin was also not affected by hGrb10zeta over-expression. These results indicate that hGrb10zeta inhibits a novel and presently unidentified insulin signaling pathway leading to GS activation in liver.
Collapse
Affiliation(s)
- C Mounier
- The Polypeptide Hormone Laboratory, McGill University, Strathcona Building, 3640 University Street, Quebec, H3A 2B2, Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Joaquin M, Tauler A. Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway. Biochem J 2001; 353:267-73. [PMID: 11139390 PMCID: PMC1221568 DOI: 10.1042/0264-6021:3530267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hepatic isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PF2K/Fru-2,6-BPase) is transcriptionally stimulated by glucocorticoids, whereas insulin blocks this stimulatory effect. Although this inhibitory effect has been extensively reported, nothing is known about the signalling pathway responsible. We have used well-characterized inhibitors for proteins involved in different signalling cascades to assess the involvement of these pathways on the transcriptional regulation of glucocorticoid-stimulated PF2K/Fru-2,6-BPase by insulin. Our results demonstrate that the phosphoinositide 3-kinase, p70/p85 ribosomal S6 kinase, extracellular signal-regulated protein kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinase pathways are not involved in the inhibitory effect of insulin on glucocorticoid-stimulated PF2K/Fru-2,6-BPase. To evaluate the implication of the MAP kinase/ERK kinase (MEK)-4-stress-activated protein kinase-c-Jun-N-terminal protein kinase ('JNK-SAPK') pathway we overexpressed the N-terminal JNK-binding domain of the JNK-interacting protein 1 ('JIP-1'), demonstrating that activation of JNK is necessary for the insulin inhibitory effect. Moreover, overexpression of MEK kinase 1 and JNK-haemagglutinin resulted in the inhibition of the glucocorticoid-stimulated PF2K/Fru-2,6-BPase. These results provide clear and specific evidence for the role of JNK in the insulin inhibition of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. In addition, we performed experiments with a mutant of the glucocorticoid receptor in which the JNK phosphorylation target Ser-246 had been mutated to Ala. Our results demonstrate that the phosphorylation of the glucocorticoid receptor on Ser-246 is not responsible for the JNK repression of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression.
Collapse
|
78
|
The Regulation of Enzymatic Activity and Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
79
|
Ueno M, Bezerra RM, Silva MS, Tavares DQ, Carvalho CR, Saad MJ. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats. Braz J Med Biol Res 2000; 33:1421-7. [PMID: 11105093 DOI: 10.1590/s0100-879x2000001200004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-(1/2)) in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days) induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05). There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 +/- 4% (P<0.05) in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-(1/2)) phosphorylation, to 83 +/- 5% (P<0.05) in liver and to 77 +/- 4% (P<0.05) in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.
Collapse
Affiliation(s)
- M Ueno
- Departamento de Planejamento Alimentar e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | |
Collapse
|
80
|
Waltner-Law M, Daniels MC, Sutherland C, Granner DK. NF-kappa B inhibits glucocorticoid and cAMP-mediated expression of the phosphoenolpyruvate carboxykinase gene. J Biol Chem 2000; 275:31847-56. [PMID: 10913132 DOI: 10.1074/jbc.m003656200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the phosphoenolpyruvate carboxykinase (PEPCK) gene is regulated by a variety of agents. Glucocorticoids, retinoic acid, and glucagon (via its second messenger, cAMP) stimulate PEPCK gene transcription, whereas insulin, phorbol esters, cytokines, and oxidative stress have an opposing effect. Stimulation of PEPCK gene expression has been extensively studied, and a number of important DNA elements and binding proteins that regulate the transcription of this gene have been identified. However, the mechanisms utilized to turn off expression of this gene are not well-defined. Many of the negative regulators of PEPCK gene transcription also stimulate the nuclear localization and activation of the transcription factor NF-kappaB, so we hypothesized that this factor could be involved in the repression of PEPCK gene expression. We find that the p65 subunit of NF-kappaB represses the increase of PEPCK gene transcription mediated by glucocorticoids and cAMP in a concentration-dependent manner. The mutation of an NF-kappaB binding element identified in the PEPCK gene promoter fails to abrogate this repression. Further analysis suggests that p65 represses PEPCK gene transcription through a protein.protein interaction with the coactivator, CREB binding protein.
Collapse
Affiliation(s)
- M Waltner-Law
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
81
|
Yeagley D, Moll J, Vinson CA, Quinn PG. Characterization of elements mediating regulation of phosphoenolpyruvate carboxykinase gene transcription by protein kinase A and insulin. Identification of a distinct complex formed in cells that mediate insulin inhibition. J Biol Chem 2000; 275:17814-20. [PMID: 10748164 DOI: 10.1074/jbc.m909842199] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo pattern of induction of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription by cAMP and its inhibition by insulin is reproduced in H4IIe cells and is mediated by a bipartite cAMP/insulin response unit (C/IRU) consisting of a cAMP response element (-95/-87) and an upstream enhancer, AC (-271/-225). Studies in HepG2 cells showed that binding of AP-1 and CAAT/enhancer-binding protein (C/EBP) to AC is required for induction by cAMP, but insulin did not inhibit cAMP-induced PEPCK expression in HepG2 cells. Binding of H4IIe nuclear proteins to an AC element probe was inhibited by antibodies or a consensus site for C/EBP, but not AP-1. Transfection with dominant negative bZIP factors, which prevent endogenous factors from binding to DNA, showed that elimination of cAMP regulatory element-binding protein CREB or C/EBP activity blocked induction by protein kinase A (PKA), whereas elimination of AP-1 activity had no effect. In addition, promoters with multiple CREB sites, or a single CREB site and multiple C/EBP sites, mediated PKA induction, but this was inhibited to no greater extent than basal activity was by insulin. These results indicate that an AC factor other than C/EBP must mediate insulin inhibition. An A-site probe (-265/-247) or a probe across the middle of the AC element (-256/-237) competed for complexes formed by factors other than AP-1 or C/EBP. However, analysis of competitor oligonucleotides and antibodies for candidate factors failed to identify other factors. Scanning mutations throughout the AC element interfered with induction but allowed us to define five overlapping sites for regulatory factors in AC and to design probes binding just one or two factors. Comparison of the protein-DNA complexes formed on these smaller probes revealed that a specific complex present in rat liver and H4IIe cell nuclear extracts differed from those formed by HepG2 cell nuclear extracts. Our results suggest that multiple factors binding the AC element of the C/IRU interact with each other and CREB to regulate PEPCK induction by cAMP and inhibition by insulin and that the unique factor expressed in H4IIe cells is a candidate for involvement in insulin regulation of PKA-induced PEPCK gene transcription.
Collapse
Affiliation(s)
- D Yeagley
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
82
|
Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ. A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J Nutr 2000; 130:1531-5. [PMID: 10827205 DOI: 10.1093/jn/130.6.1531] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A high fructose diet induces insulin resistance in rats, although the exact molecular mechanism involved is unknown. In this study, we used immunoprecipitation and immunoblotting to examine the levels and phosphorylation status of the insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), as well as the association of the IRS-1 with phosphatidylinositol 3-kinase (PI 3-kinase), and phosphotyrosine phosphatase (SHP2) in the liver and muscle of rats fed a control or high fructose diet for 28 d. There were no differences in IR and the IRS-1 protein levels in the liver and muscle of rats fed the control and high fructose diets. However, tyrosine-phosphorylation of the insulin receptor after insulin stimulation was reduced to 71 +/- 2% (P < 0.05) of control in the liver of the fructose-fed rats. In samples previously immunoprecipitated with anti-IRS-1 antibody and blotted with antiphosphotyrosine antibody, the insulin-stimulated IRS-1 phosphorylation levels in the liver and muscle of the fructose-fed group were only 70 +/- 6% (P < 0.05) and 76 +/- 5% (P < 0.05) of those of control rats, respectively. The insulin-stimulated IRS-1 association with PI 3-kinase was reduced to 84 +/- 3% (P < 0.05) in the liver and to 84 +/- 4% (P < 0.05) in the muscle of the fructose-fed group compared with control rats. Insulin-stimulated IRS-1 association with SHP2 was reduced to 79 +/- 5% (P < 0.05) in liver of the fructose-fed rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance observed in these rats.
Collapse
Affiliation(s)
- R M Bezerra
- Departamento de Planejamento Alimentar e Nutrição, Faculdade de Engenharia de Alimentos and Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | |
Collapse
|
83
|
Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM, Kobayashi M. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 2000; 14:783-94. [PMID: 10847581 DOI: 10.1210/mend.14.6.0446] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) is a major substrate of the insulin receptor and acts as a docking protein for Src homology 2 domain containing signaling molecules that mediate many of the pleiotropic actions of insulin. Insulin stimulation elicits serine/threonine phosphorylation of IRS-1, which produces a mobility shift on SDS-PAGE, followed by degradation of IRS-1 after prolonged stimulation. We investigated the molecular mechanisms and the functional consequences of these phenomena in 3T3-L1 adipocytes. PI 3-kinase inhibitors or rapamycin, but not the MEK inhibitor, blocked both the insulin-induced electrophoretic mobility shift and degradation of IRS-1. Adenovirus-mediated expression of a membrane-targeted form of the p110 subunit of phosphatidylinositol (PI) 3-kinase (p110CAAX) induced a mobility shift and degradation of IRS-1, both of which were inhibited by rapamycin. Lactacystin, a specific proteasome inhibitor, inhibited insulin-induced degradation of IRS-1 without any effect on its electrophoretic mobility. Inhibition of the mobility shift did not significantly affect tyrosine phosphorylation of IRS-1 or downstream insulin signaling. In contrast, blockade of IRS-1 degradation resulted in sustained activation of Akt, p70 S6 kinase, and mitogen-activated protein (MAP) kinase during prolonged insulin treatment. These results indicate that insulin-induced serine/threonine phosphorylation and degradation of IRS-1 are mediated by a rapamycin-sensitive pathway, which is downstream of PI 3-kinase and independent of ras/MAP kinase. The pathway leads to degradation of IRS-1 by the proteasome, which plays a major role in down-regulation of certain insulin actions during prolonged stimulation.
Collapse
Affiliation(s)
- T Haruta
- First Department of Medicine, Toyama Medical and Pharmaceutical University Japan.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Mel�ndez PA, Longo N, Jimenez BD, Cadilla CL. Insulin-induced gene 33 mRNA expression in Chinese hamster ovary cells is insulin receptor dependent. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000601)77:3<432::aid-jcb8>3.0.co;2-b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
85
|
Ueki K, Yamauchi T, Tamemoto H, Tobe K, Yamamoto-Honda R, Kaburagi Y, Akanuma Y, Yazaki Y, Aizawa S, Nagai R, Kadowaki T. Restored insulin-sensitivity in IRS-1-deficient mice treated by adenovirus-mediated gene therapy. J Clin Invest 2000; 105:1437-45. [PMID: 10811851 PMCID: PMC315460 DOI: 10.1172/jci7656] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin resistance is commonly observed both in overt diabetes and in individuals prone to, but not yet manifesting, diabetes. Hence the maintenance or restoration of insulin sensitivity may prevent the onset of this disease. We previously showed that homozygous disruption of insulin receptor substrate-1 (IRS-1) in mice resulted in insulin resistance but not diabetes. Here, we have explored the mechanism of systemic insulin resistance in these mice and used adenovirus-mediated gene therapy to restore their insulin sensitivity. Mice expressing the IRS-1transgene showed almost normal insulin sensitivity. Expression of an IRS-1 mutant (IRS-1Deltap85) lacking the binding site for the p85 subunit of phosphatidylinositol 3-kinase (PI3K) also restored insulin sensitivity, although PI3K is known to play a crucial role in insulin's metabolic responses. Protein kinase B (PKB) activity in liver was decreased in null mice compared with the wild-type and the null mice expressing IRS-1 or IRS-1Deltap85. In primary hepatocytes isolated from null mice, expression of IRS-1 enhanced both PI3K and PKB activities, but expression of IRS-1Deltap85 enhanced only PKB. These data suggest that PKB in liver plays a pivotal role in systemic glucose homeostasis and that PKB activation might be sufficient for reducing insulin resistance even without full activation of PI3K.
Collapse
Affiliation(s)
- K Ueki
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Xie Z, Li H, Liu L, Kahn BB, Najjar SM, Shah W. Metabolic regulation of Na(+)/P(i)-cotransporter-1 gene expression in H4IIE cells. Am J Physiol Endocrinol Metab 2000; 278:E648-55. [PMID: 10751198 DOI: 10.1152/ajpendo.2000.278.4.e648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed that the rat Na(+)/P(i) cotransporter-1 (RNaPi-1) gene was regulated by insulin and glucose in rat hepatocytes. The aim of this work was to elucidate signaling pathways of insulin-mediated metabolic regulation of the RNaPi-1 gene in H4IIE cells. Insulin increased RNaPi-1 mRNA abundance in the presence of glucose and decreased RNaPi-1 mRNA in the absence of glucose, clearly establishing an involvement of metabolic signals for insulin-induced upregulation of the RNaPi-1 gene. Pyruvate and insulin increased RNaPi-1 expression but downregulated L-pyruvate kinase, indicating the existence of gene-specific metabolic signals. Although fructose, glycerol, and lactate could support insulin-induced upregulation of the RNaPi-1 gene, compounds entering metabolism beyond pyruvate oxidation, such as acetate and citrate, could not, suggesting that RNaPi-1-specific metabolic signals are generated at or above pyruvate oxidation. Wortmannin, LY-294002, and rapamycin abolished the insulin effect on the RNaPi-1 gene, whereas expression of dominant negative Asn(17) Ras and mitogen-activating protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 exhibited no effect. Thus we herein propose that metabolic regulation of RNaPi-1 expression by insulin is mediated through the phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase pathways, but not the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Z Xie
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Christ B, Yazici E, Nath A. Phosphatidylinositol 3-kinase and protein kinase C contribute to the inhibition by interleukin 6 of phosphoenolpyruvate carboxykinase gene expression in cultured rat hepatocytes. Hepatology 2000; 31:461-8. [PMID: 10655271 DOI: 10.1002/hep.510310228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The participation of phosphatidylinositol 3-kinase (PI3-kinase), protein kinase C, and mitogen-activated protein kinase (MAP-kinase) in the inhibition by interleukin 6 (IL-6) and insulin of phosphoenolpyruvate carboxykinase (PCK) gene expression was investigated in cultured rat hepatocytes. IL-6 or insulin inhibited the glucagon-stimulated increase in PCK messenger RNA (mRNA) by about 70%. In the presence of either the PI3-kinase inhibitor, wortmannin, or the protein kinase C inhibitor, GF109203x, the inhibition by IL-6 was only about 40%, although it was abolished with both inhibitors in combination. Wortmannin alone but not GF109203x prevented the inhibition by insulin of glucagon-stimulated PCK gene expression. The MAP-kinase pathway inhibitor, PD98059, did not affect IL-6 or insulin inhibition of PCK mRNA increase. When chlorophenylthio-cyclic 3',5' adenosine monophosphate (CPT-cAMP) was used instead of glucagon, IL-6 or insulin inhibited the increase in PCK mRNA by 75% and 85%, respectively. The inhibition by IL-6 was only about 50% in the presence of either wortmannin or GF109203x alone but was abolished with the combination of both inhibitors. The inhibition by insulin was only about 50% in the presence of GF109203x and was abolished by wortmannin. The inhibitors did not affect the inhibition by IL-6 or insulin of the glucagon-stimulated increase in cAMP. It is concluded that the inhibition by IL-6 of PCK gene expression involved both PI3-kinase and protein kinase C, whereas the inhibition by insulin required only PI3-kinase. The inhibition occurred downstream from cAMP formation. Hence, IL-6 and insulin may share, in part, common signal transduction pathways in the inhibition of PCK gene expression.
Collapse
Affiliation(s)
- B Christ
- Institute of Biochemistry and Molecular Cell Biology, Georg-August University, Göttingen, Germany.
| | | | | |
Collapse
|
88
|
Abstract
Expression of critical enzymes in fatty acid and fat biosynthesis is tightly controlled by nutritional and hormonal stimuli. The expression of fatty acid synthase, which catalyzes all reactions for synthesis of palmitate from acetyl-CoA and malonyl-CoA, and of mitochondrial glycerol-3-phosphate acyltransferase, which catalyzes the first acylation step in glycerophospholipid synthesis, is decreased to an undetectable level during fasting. Food intake, especially a high carbohydrate, fat-free diet after fasting, causes a dramatic increase in the transcription of these genes. Insulin secretion is increased during feeding and has a positive effect on expression. By using adipocytes in culture and transgenic mice that express the reporter gene driven by the fatty acid synthase promoter, the cis-acting sequence that mediates insulin regulation of the fatty acid synthase promoter was defined. Upstream stimulatory factors (USF) that bind to the -65 E-box are required for insulin-mediated transcriptional activation of the fatty acid symthase gene. Sterol regulatory element binding protein (SREBP)-1 may be also involved in induction of these genes during feeding. Using specific inhibitors and expressing various signaling molecules, we found that insulin regulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol (PI)3-kinase signaling pathway and that protein kinase B/akt is a downstream effector.
Collapse
Affiliation(s)
- H S Sul
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
89
|
Roques M, Vidal H. A phosphatidylinositol 3-Kinase/p70 ribosomal S6 protein kinase pathway is required for the regulation by insulin of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase gene expression in human muscle cells. J Biol Chem 1999; 274:34005-10. [PMID: 10567366 DOI: 10.1074/jbc.274.48.34005] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insulin acutely up-regulates p85alpha phosphatidylinositol 3-kinase (p85alphaPI 3-K) mRNA levels in human skeletal muscle (Laville, M., Auboeuf, D., Khalfallah, Y., Vega, N., Riou, J. P., and Vidal, H. (1996) J. Clin. Invest. 98, 43-49). In the present work, we attempted to elucidate the mechanism of action of insulin in primary cultures of human muscle cells. Insulin (10(-7) M, 6 h of incubation) induced a 2-fold increase in p85alphaPI 3-K mRNA abundances (118 +/- 12 versus 233 +/- 35 amol/microgram total RNA, n = 5, p < 0.01) without changing the expression levels of insulin receptor, IRS-1, glycogen synthase, and Glut 4 mRNAs in differentiated myotubes from healthy subjects. The effect is most probably due to a transcriptional activation of the p85alphaPI 3-K gene because the half-life of the mRNA was not affected by insulin treatment (4.0 +/- 0.8 versus 3.1 +/- 0.4 h). PD98059 (50 microM) did not modify the insulin response but increased p85alphaPI 3-K mRNA levels in the absence of insulin, suggesting that the mitogen-activated protein kinase pathway exerts a negative effect on p85alphaPI 3-K mRNA expression in the absence of the hormone. On the other hand, the insulin effect was totally abolished by LY294002 (10 microM) and rapamycin (50 nM). In addition, overexpression of a constitutively active protein kinase B increased p85alphaPI 3-K mRNA levels. These results indicate that the phosphatidylinositol 3-kinase/PKB/p70S6 kinase pathway is required for the stimulation by insulin of p85alphaPI 3-K gene expression in human muscle cells.
Collapse
MESH Headings
- Adult
- Cells, Cultured
- Chromones/pharmacology
- Dactinomycin/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glycogen Synthase/genetics
- Humans
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins
- Middle Aged
- Morpholines/pharmacology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/genetics
- Protein Serine-Threonine Kinases
- Protein Synthesis Inhibitors/pharmacology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Insulin/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomal Protein S6 Kinases/genetics
- Ribosomal Protein S6 Kinases/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- M Roques
- INSERM U449, Faculté de Médecine René Laënnec, Université Claude Bernard Lyon-1, F-69372, Lyon, France.
| | | |
Collapse
|
90
|
Hall RK, Granner DK. Insulin regulates expression of metabolic genes through divergent signaling pathways. J Basic Clin Physiol Pharmacol 1999; 10:119-33. [PMID: 10444714 DOI: 10.1515/jbcpp.1999.10.2.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The regulation of metabolic gene expression is a major mechanism by which insulin modulates glucose homeostasis. Defective transcription factors or signal transduction molecules that are required for insulin regulated gene expression could contribute to insulin resistance. The phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase II (HKII) genes are involved in metabolic processes that represent opposing facets of glucose homeostasis, namely gluconeogenesis and glucose utilization. The regulation of the PEPCK and HKII genes by insulin has been studied in great detail at the level of both transcription and signal transduction. Recent work on the insulin signaling pathways that lead to down-regulation of PEPCK gene expression and upregulation of HKII gene expression has shown that they both require activation of phosphatidylinositol 3-kinase (PI3K) for the transmission of the insulin signal. However, the pathways diverge after PI3K and lead to activation of different downstream effectors. In this paper we review the results of studies on the transcriptional regulation of these genes by insulin and the signal transduction pathways that mediate these responses.
Collapse
Affiliation(s)
- R K Hall
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
91
|
Davies GF, Khandelwal RL, Roesler WJ. Troglitazone inhibits expression of the phosphoenolpyruvate carboxykinase gene by an insulin-independent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:122-31. [PMID: 10446394 DOI: 10.1016/s0167-4889(99)00080-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Troglitazone is an oral insulin-sensitizing drug used to treat patients with type 2 diabetes. A major feature of this hyperglycemic state is the presence of increased rates of hepatic gluconeogenesis, which troglitazone is able to ameliorate. In this study, we examined the molecular basis for this property of troglitazone by exploring the effects of this compound on the expression of the two genes encoding the major regulatory enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary cultures of rat hepatocytes. Insulin is able to inhibit expression of both of these genes, which was verified in our model system. Troglitazone significantly reduced mRNA levels of PEPCK and G6Pase in rat hepatocytes isolated from normal and Zucker-diabetic rats, but to a lesser extent than that observed with insulin. Interestingly, troglitazone was unable to reduce cAMP-induced levels of PEPCK mRNA, suggesting that the molecular mechanism whereby troglitazone exerted its effects on gene expression differed from that of insulin. This was further supported by the observation that troglitazone was able to reduce PEPCK mRNA levels in the presence of the insulin signaling pathway inhibitors wortmannin, rapamycin, and PD98059. These results indicate that troglitazone can regulate the expression of specific genes in an insulin-independent manner, and that genes encoding gluconeogenic enzymes are targets for the inhibitory effects of this drug.
Collapse
Affiliation(s)
- G F Davies
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon Sask., S7N 5E5, Canada
| | | | | |
Collapse
|
92
|
Kotani K, Ogawa W, Hino Y, Kitamura T, Ueno H, Sano W, Sutherland C, Granner DK, Kasuga M. Dominant negative forms of Akt (protein kinase B) and atypical protein kinase Clambda do not prevent insulin inhibition of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 1999; 274:21305-21312. [PMID: 10409689 DOI: 10.1074/jbc.274.30.21305] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcriptional regulation of phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in hepatic gluconeogenesis, by insulin was investigated with the use of adenovirus vectors encoding various mutant signaling proteins. Insulin inhibited transcription induced by dexamethasone and cAMP of a chloramphenicol acetyltransferase (CAT) reporter gene fused with the PEPCK promoter sequence in HL1C cells stably transfected with this construct. A dominant negative mutant of phosphoinositide (PI) 3-kinase blocked insulin inhibition of transcription of the PEPCK-CAT fusion gene, whereas a constitutively active mutant of PI 3-kinase mimicked the effect of insulin. Although a constitutively active mutant of Akt (protein kinase B) inhibited PEPCK-CAT gene transcription induced by dexamethasone and cAMP, a mutant Akt (Akt-AA) in which the phosphorylation sites targeted by insulin are replaced by alanine did not affect the ability of insulin to inhibit transcription of the fusion gene. Akt-AA almost completely inhibited insulin-induced activation of both endogenous and recombinant Akt in HL1C cells. Furthermore, neither a kinase-defective mutant protein kinase Clambda (PKClambda), which blocked insulin-induced activation of endogenous PKClambda, nor a dominant negative mutant of the small GTPase Rac prevented inhibition of PEPCK-CAT gene transcription by insulin. These data suggest that phosphoinositide 3-kinase is important for insulin-induced inhibition of PEPCK gene transcription and that a downstream effector of phosphoinositide 3-kinase distinct from Akt, PKClambda, and Rac may exist for mediating the effect of insulin.
Collapse
Affiliation(s)
- K Kotani
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kaneko K, Shirotani T, Araki E, Matsumoto K, Taguchi T, Motoshima H, Yoshizato K, Kishikawa H, Shichiri M. Insulin inhibits glucagon secretion by the activation of PI3-kinase in In-R1-G9 cells. Diabetes Res Clin Pract 1999; 44:83-92. [PMID: 10414926 DOI: 10.1016/s0168-8227(99)00021-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intracellular mechanisms through which insulin inhibits glucagon secretion remain to be elucidated in glucagon secreting cells. In this study, we confirmed that, in In-R1-G9 cells, a pancreatic alpha cell line, insulin stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) and activated phosphatidylinositol 3-kinase (PI3-kinase). We further studied, using wortmannin, an inhibitor of PI3-kinase, whether the inhibitory effect of insulin on glucagon secretion was mediated through PI3-kinase pathway in these cells. In static incubation studies, insulin significantly inhibited glucagon secretion at 2, 6 and 12 h, which was completely abolished by pretreatment with wortmannin. In perifusion studies, insulin significantly suppressed glucagon secretion after 10 min, which was also blocked by wortmannin. Insulin also reduced glucagon mRNA at 6 and 12 h but not at 2 h. Wortmannin also abolished insulin-induced reduction of glucagon mRNA. Insulin increased the amount of 85 kDa subunit of PI3-kinase in plasma membrane fraction (PM), with a reciprocal decrease of the kinase in cytosol fraction (CY). Insulin also increased PI3-kinase activity in PM, but not in CY. Our results suggest that insulin suppressed glucagon secretion by inhibiting glucagon release and gene expression. Both actions were mediated by activation of PI3-kinase. Recruitment and activation of PI3-kinase in plasma membrane might be relevant at least in part to insulin-induced inhibition of glucagon release.
Collapse
Affiliation(s)
- K Kaneko
- Department of Metabolic Medicine, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Pickering CS, Watkins RH, Dickson AJ. Rat primary hepatocytes and H4 hepatoma cells display differential sensitivity to cyclic AMP at the level of expression of tyrosine aminotransferase. Biochem Biophys Res Commun 1998; 252:764-9. [PMID: 9837781 DOI: 10.1006/bbrc.1998.9735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that the sensitivity of isolated hepatocytes and H4 hepatoma cells to cyclic AMP is different. In terms of activation of tyrosine aminotransferase at mRNA and activity level in response to cyclic AMP, isolated hepatocytes are 10-fold more sensitive. Hepatocytes and H4 hepatoma cells show similar sensitivities to cyclic AMP at the level of protein kinase A activation and phosphorylation of cyclic AMP response element binding protein (CREB) and the differential sensitivity must reside at other sites. The consequences of these findings to studies of control phenomena at the transcriptional level is discussed.
Collapse
Affiliation(s)
- C S Pickering
- 2.205 School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
95
|
Scassa ME, Varone CL, Montero L, Cánepa ET. Insulin inhibits delta-aminolevulinate synthase gene expression in rat hepatocytes and human hepatoma cells. Exp Cell Res 1998; 244:460-9. [PMID: 9806796 DOI: 10.1006/excr.1998.4206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin has been known to regulate intracellular metabolism by modifying the activity or location of many enzymes but it is only in the past few years that the regulation of gene expression is recognized to be a major action of this hormone. The present work provides evidences that insulin inhibits delta-aminolevulinate synthase (ALA-S) gene expression, the enzyme which governs the rate-limiting step in heme biosynthesis. The addition of 5 nM insulin to hepatocytes culture led to a significant decrease of both basal and phenobarbital-induced ALA-S mRNA in a dose-dependent manner, as measured by Northern and slot-blot analysis. Several clues as to how insulin regulates ALA-S transcription were determined. The inhibitory effect is achieved at physiological concentrations but much higher proinsulin doses are needed. Insulin's effect is rapid, quite specific, and protein synthesis is not required. Moreover, ALA-S mRNA half-life is not modified by the presence of the peptidic hormone. Our results demonstrate that the insulin effect is dominant; it overrides 8-CPT-cAMP plus phenobarbital-mediated induction. Also, insulin requires the activation of protein kinase C to exert its full effect. On the other hand, a 870-bp fragment of the ALA-S promoter region is able to sustain the inhibition of CAT expression in plasmid-transfected HepG2 cells. Thus, these results indicate that insulin plays an important role in regulating ALA-S expression by inhibiting its transcription.
Collapse
Affiliation(s)
- M E Scassa
- Regulación de la Expresión Génica, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | | | | | | |
Collapse
|
96
|
Liao J, Barthel A, Nakatani K, Roth RA. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J Biol Chem 1998; 273:27320-4. [PMID: 9765258 DOI: 10.1074/jbc.273.42.27320] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A rat hepatoma cell line, H4IIE, was stably transfected with a tamoxifen regulatable Akt-1 construct. Treatment of these cells with tamoxifen caused a rapid stimulation of Akt enzymatic activity that was comparable with the activity observed with the endogenous Akt after insulin stimulation. Prior studies have extensively documented that insulin can repress the glucocorticoid and cAMP-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) gene transcription. Activation of this regulatable Akt with tamoxifen was found to mimic the dominant inhibitory effect of insulin on PEPCK gene transcription. Dose response curves to insulin and tamoxifen demonstrated that this response was very sensitive to Akt activation although the maximal response observed with tamoxifen activation was slightly less than that observed with insulin, indicating that the response to insulin may also involve other signaling cascades. The regulation of PEPCK transcription via Akt was, like that previously described for insulin, not dependent upon 70 kDa S6 kinase activity in that it was not inhibited by rapamycin. Finally, the expression of a kinase dead Akt was able to partially inhibit the ability of insulin to stimulate this response. In summary, the present results indicate that activation of Akt alone is sufficient to repress the glucocorticoid and cAMP-stimulated increase in PEPCK gene transcription.
Collapse
Affiliation(s)
- J Liao
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
97
|
Griffiths MR, Black EJ, Culbert AA, Dickens M, Shaw PE, Gillespie DA, Tavaré JM. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochem J 1998; 335 ( Pt 1):19-26. [PMID: 9742208 PMCID: PMC1219747 DOI: 10.1042/bj3350019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation.
Collapse
Affiliation(s)
- M R Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | |
Collapse
|
98
|
Wang D, Sul HS. Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt. J Biol Chem 1998; 273:25420-6. [PMID: 9738010 DOI: 10.1074/jbc.273.39.25420] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid synthase (FAS) is a critical enzyme in de novo lipogenesis. It catalyzes the seven steps in the conversion of malonyl-CoA and acetyl-CoA to palmitate. We have shown that the rate of FAS transcription is induced dramatically when fasted animals are refed with a high carbohydrate, fat-free diet or when streptozotocin-diabetic mice are given insulin. The FAS promoter was up-regulated by insulin through the proximal insulin response sequence containing an E-box motif at the -65-base pair position. Binding of upstream stimulatory factors to the -65 E-box is functionally required for insulin regulation of the FAS promoter. In the present study, we characterized signaling pathways in the insulin stimulation of FAS transcription using specific inhibitors for various signaling molecules and transfecting engineered phosphatidylinositol (PI) 3-kinase subunits and protein kinase B (PKB)/Akt. PD98059 and rapamycin, which inhibit MAP kinase and P70 S6 kinase, respectively, had little effect on the insulin-stimulated FAS promoter activity in 3T3-L1 adipocytes. On the other hand, wortmannin and LY294002, which specifically inactivate PI 3-kinase, strongly inhibited the insulin-stimulated FAS promoter activity. As shown in RNase protection assays, LY294002 also inhibited insulin stimulation of the endogenous FAS mRNA levels in 3T3-L1 adipocytes. Cotransfection of expression vectors for the constitutively active P110 subunit of PI 3-kinase resulted in an elevated FAS promoter activity in the absence of insulin and a loss of further insulin stimulation. Transfecting a dominant negative P85 subunit of PI 3-kinase decreased FAS promoter activity and blocked insulin stimulation. Furthermore, cotransfected wild-type PKB/Akt increased FAS promoter activity in the absence of insulin and a loss of insulin responsiveness of the FAS promoter. On the other hand, kinase-dead PKB/Akt acted in a dominant negative manner to decrease the FAS promoter activity and abolished its insulin responsiveness. These results demonstrate that insulin stimulation of fatty acid synthase promoter is mediated by the PI 3-kinase pathway and that PKB/Akt is involved as a downstream effector.
Collapse
Affiliation(s)
- D Wang
- Department of Nutritional Sciences, University of California, Berkeley, California 94720-3104, USA
| | | |
Collapse
|
99
|
Scott DK, O'Doherty RM, Stafford JM, Newgard CB, Granner DK. The repression of hormone-activated PEPCK gene expression by glucose is insulin-independent but requires glucose metabolism. J Biol Chem 1998; 273:24145-51. [PMID: 9727036 DOI: 10.1074/jbc.273.37.24145] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a rate-controlling enzyme in hepatic gluconeogenesis, and it therefore plays a central role in glucose homeostasis. The rate of transcription of the PEPCK gene is increased by glucagon (via cAMP) and glucocorticoids and is inhibited by insulin. Under certain circumstances glucose also decreases PEPCK gene expression, but the mechanism of this effect is poorly understood. The glucose-mediated stimulation of a number of glycolytic and lipogenic genes requires the expression of glucokinase (GK) and increased glucose metabolism. HL1C rat hepatoma cells are a stably transfected line of H4IIE rat hepatoma cells that express a PEPCK promoter-chloramphenicol acetyltransferase fusion gene that is regulated in the same manner as the endogenous PEPCK gene. These cells do not express GK and do not normally exhibit a response of either the endogenous PEPCK gene, or of the trans-gene, to glucose. A recombinant adenovirus that directs the expression of glucokinase (AdCMV-GK) was used to increase glucose metabolism in HL1C cells to test whether increased glucose flux is also required for the repression of PEPCK gene expression. In AdCMV-GK-treated cells glucose strongly inhibits hormone-activated transcription of the endogenous PEPCK gene and of the expressed fusion gene. The glucose effect on PEPCK gene promoter activity is blocked by 5 mM mannoheptulose, a specific inhibitor of GK activity. The glucose analog, 2-deoxyglucose mimics the glucose response, but this effect does not require GK expression. 3-O-methylglucose is ineffective. Glucose exerts its effect on the PEPCK gene within 4 h, at physiologic concentrations, and with an EC50 of 6.5 mM, which approximates the Km of glucokinase. The effects of glucose and insulin on PEPCK gene expression are additive, but only at suboptimal concentrations of both agents. The results of these studies demonstrate that, by inhibiting PEPCK gene transcription, glucose participates in a feedback control loop that governs its production from gluconeogenesis.
Collapse
Affiliation(s)
- D K Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
100
|
Pierreux CE, Ursø B, De Meyts P, Rousseau GG, Lemaigre FP. Inhibition by insulin of glucocorticoid-induced gene transcription: involvement of the ligand-binding domain of the glucocorticoid receptor and independence from the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. Mol Endocrinol 1998; 12:1343-54. [PMID: 9731703 DOI: 10.1210/mend.12.9.0172] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin can inhibit the stimulatory effect of glucocorticoid hormones on the transcription of genes coding for enzymes involved in glucose metabolism. We reported earlier that insulin inhibits the glucocorticoid-stimulated transcription of the gene coding for liver 6-phosphofructo-2-kinase (PFK-2). To elucidate the mechanism of these hormonal effects, we have studied the regulatory regions of the PFK-2 gene in transfection experiments. We found that both glucocorticoids and insulin act via the glucocorticoid response unit (GRU) located in the first intron. Footprinting experiments showed that the GRU binds not only the glucocorticoid receptor (GR), but also ubiquitous [nuclear factor I (NF-I)] and liver-enriched [hepatocyte nuclear factor (HNF)-3, HNF-6, CAAT/enhancer binding protein (C/EBP)] transcription factors. Site-directed mutational analysis of the GRU revealed that these factors modulate glucocorticoid action but that none of them seems to be individually involved in the inhibitory effect of insulin. We did not find an insulin response element in the GRU, but we showed that insulin targets the GR. Insulin-induced inhibition of the glucocorticoid stimulation required the ligand-binding domain of the GR. Finally, the insulin-signaling cascade involved was independent of the phosphatidylinositol-3-kinase and mitogen-activated protein kinase pathways. Together, these results suggest that insulin acts on the PFK-2 gene via another pathway and targets either the GR in its ligand-binding domain or a cofactor interacting with this domain.
Collapse
Affiliation(s)
- C E Pierreux
- Hormone and Metabolic Research Unit, Louvain University Medical School, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|