51
|
Anflous-Pharayra K, Cai ZJ, Craigen WJ. VDAC1 serves as a mitochondrial binding site for hexokinase in oxidative muscles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:136-42. [PMID: 17207767 DOI: 10.1016/j.bbabio.2006.11.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/22/2006] [Accepted: 11/20/2006] [Indexed: 11/25/2022]
Abstract
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1(-/-) mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1(-/-) mice exhibit impaired glucose tolerance whereas vdac3(-/-) mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1(-/-)/vdac3(-/-)) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance.
Collapse
|
52
|
Wilding JR, Joubert F, de Araujo C, Fortin D, Novotova M, Veksler V, Ventura-Clapier R. Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 2006; 575:191-200. [PMID: 16740607 PMCID: PMC1819422 DOI: 10.1113/jphysiol.2006.114116] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sarcoplasmic reticulum (SR) calcium pump function requires a high local ATP/ADP ratio, which can be maintained by direct nucleotide channelling from mitochondria, and by SR-bound creatine kinase (CK)-catalysed phosphate-transfer from phosphocreatine. We hypothesized that SR calcium uptake supported by mitochondrial direct nucleotide channelling, but not bound CK, depends on the juxtaposition of these organelles. To test this, we studied a well-described model of cytoarchitectural disorganization, the muscle LIM protein (MLP)-null mouse heart. Subcellular organization was characterized using electron microscopy, and mitochondrial, SR and myofibrillar function were assessed in saponin-permeabilized fibres by measuring respiration rates and caffeine-induced tension transients. MLP-null hearts had fewer, less-tightly packed intermyofibrillar mitochondria, and more subsarcolemmal mitochondria. The apparent mitochondrial Km for ADP was significantly lower in the MLP-null heart than in control (175 +/- 15 and 270 +/- 33 microM, respectively), indicating greater ADP accessibility, although maximal respiration rate, mitochondrial content and total CK activity were unaltered. Active tension in the myofibres of MLP-null mice was 54% lower than in controls (39 +/- 3 and 18 +/- 1 mN mm(-2), respectively), consistent with cytoarchitectural disorganization. SR calcium loading in the myofibres of MLP-null mice was similar to that in control myofibres when energy support was provided via Bound CK, but approximately 36% lower than controls when energy support was provided by mitochondrial (P < 0.05). Mitochondrial support for SR calcium uptake was also specifically decreased in the desmin-null heart, which is another model of cytoarchitectural perturbation. Thus, despite normal oxidative capacity, direct nucleotide channelling to the SR was impaired in MLP deficiency, concomitant with looser mitochondrial packing and increased nucleotide accessibility to this organelle. Changes in cytoarchitecture may therefore impair subcellular energy transfer and contribute to energetic and contractile dysfunction.
Collapse
|
53
|
Ovide-Bordeaux S, Bescond-Jacquet A, Grynberg A. Cardiac mitochondrial alterations induced by insulin deficiency and hyperinsulinaemia in rats: targeting membrane homeostasis with trimetazidine. Clin Exp Pharmacol Physiol 2006; 32:1061-70. [PMID: 16445572 DOI: 10.1111/j.1440-1681.2005.04293.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study investigated the ability of trimetazidine (TMZ) to maintain cardiac mitochondrial function during the development of insulin deficiency and hyperinsulinaemia. The anti-ischaemic drug TMZ is known to increase phospholipid synthesis in cardiac membranes and to have a cardioprotective effect. Insulin deficiency was obtained by streptozotocin injection and hyperinsulinaemia was achieved via a fructose diet. Trimetazidine was incorporated into the diet (7.8 mg/day) and mitochondrial function was evaluated in skinned cardiac fibres. Insulin deficiency decreased mitochondrial affinity for ADP and the index of creatine kinase functional activity. This last alteration was partially prevented by TMZ treatment. Insulin deficiency strongly decreased n-3 polyunsaturated fatty acids, especially the docosahexaenoic acid (DHA) content, in cardiac and mitochondrial membranes, inducing a strong increase in the n-6/n-3 ratio. Trimetazidine treatment limited the increase in the n-6/n-3 ratio and prevented the decrease in DHA content in mitochondrial membranes. Insulin deficiency decreased glutamate- and palmitoylcarnitine-supported respiration. Hyperinsulinaemia affected neither mitochondrial affinity for ADP nor the index of creatine kinase functional activity. Hyperinsulinaemia slightly and significantly affected mitochondrial fatty acid composition, by a small increase the n-6/n-3 ratio. Trimetazidine did not modify membrane-bound mitochondrial function but increased the n-6/n-3 ratio. Moreover, hyperinsulinaemia decreased glutamate-supported respiration. In conclusion, modification of membrane homeostasis with TMZ partially prevented the alterations in fatty acid composition and function in cardiac mitochondria induced by insulin deficiency. Three months of hyperinsulinaemia did not modify membrane-bound mitochondrial function and had only slight effects on fatty acid composition.
Collapse
Affiliation(s)
- Stéphanie Ovide-Bordeaux
- Nutrition Lipidique et Régulation Fonctionnelle du Coeur et des Vaisseaux, UMR 1154 INRA-Paris 11, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | | | | |
Collapse
|
54
|
ter Veld F, Nicolay K, Jeneson JAL. Increased resistance to fatigue in creatine kinase deficient muscle is not due to improved contractile economy. Pflugers Arch 2006; 452:342-8. [PMID: 16491397 DOI: 10.1007/s00424-005-0041-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 10/11/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
There has been speculation on the origin of the increased endurance of skeletal muscles in creatine kinase (CK)-deficient mice. Important factors that have been raised include the documented increased mitochondrial capacity and alterations in myosin heavy chain (MyHC) isoform composition in CK-deficient muscle. More recently, the absence of inorganic phosphate release from phosphocreatine hydrolysis in exercising CK-deficient muscle has been postulated to contribute to the lower fatigueability in skeletal muscle. In this study, we tested the hypothesis that the reported shift in MyHC composition to slower isoforms in CK-deficient muscle leads to a decrease in oxygen cost of twitch performance. To that aim, extensor digitorum longus (EDL) and soleus (SOL) muscles were isolated from wild-type (WT) and knock-out mice deficient in the cytoplasmic muscle-type and sarcomeric mitochondrial isoenzymes of CK, and oxygen consumption per twitch time-tension-integral (TTI) was measured. The results show that the adaptive response to loss of CK function does not involve any major change to contractile economy of skeletal muscle.
Collapse
Affiliation(s)
- Frank ter Veld
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
55
|
Racay P, Gregory P, Schwaller B. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. FEBS J 2006; 273:96-108. [PMID: 16367751 DOI: 10.1111/j.1742-4658.2005.05046.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Parvalbumin (PV), a small cytosolic protein belonging to the family of EF-hand calcium-binding proteins, is highly expressed in mammalian fast-twitch muscle fibers. By acting as a 'slow-onset' Ca2+ buffer, PV does not affect the rapid contraction phase, but significantly contributes to increase the rate of relaxation, as demonstrated in PV-/- mice. Unexpectedly, PV-/- fast-twitch muscles were considerably more resistant to fatigue than the wild-type fast-twitch muscles. This effect was attributed mainly to the increased fractional volume of mitochondria in PV-/- fast-twitch muscle, extensor digitorum longus, similar to levels observed in the slow-twitch muscle, soleus. Quantitative analysis of selected mitochondrial proteins, mitochondrial DNA-encoded cytochrome oxidase c subunit I and nuclear DNA-encoded cytochrome oxidase c subunit Vb and F1-ATPase subunit beta revealed the PV-/- tibialis anterior mitochondria composition to be almost identical to that in wild-type soleus, but not in wild-type fast-twitch muscles. Northern and western blot analyses of the same proteins in different muscle types and in liver are indicative of a complex regulation, probably also at the post-transcriptional level. Besides the function in energy metabolism, mitochondria in both fast- and slow-twitch muscles act as temporary Ca2+ stores and are thus involved in the shaping of Ca2+ transients in these cells. Previously observed altered spatio-temporal aspects of Ca2+ transients in PV-/- muscles are sufficient to up-regulate mitochondria biogenesis through the probable involvement of both calcineurin- and Ca2+/calmodulin-dependent kinase II-dependent pathways. We propose that 'slow-twitch type' mitochondria in PV-/- fast muscles are aimed to functionally replace the slow-onset buffer PV based on similar kinetic properties of Ca2+ removal.
Collapse
Affiliation(s)
- Peter Racay
- Department of Medicine, Division of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
56
|
Tarnopolsky MA. What can metabolic myopathies teach us about exercise physiology? Appl Physiol Nutr Metab 2006; 31:21-30. [PMID: 16604138 DOI: 10.1139/h05-008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise physiologists are interested in metabolic myopathies because they demonstrate how knocking out a component of a specific biochemical pathway can alter cellular metabolism. McArdle's disease (myophosphorylase deficiency) has often been studied in exercise physiology to demonstrate the influence of removing the major anaerobic energy supply to skeletal muscle. Studies of patients with McArdle's disease have shown the increased reliance on blood-borne fuels, the importance of glycogen to maximal aerobic capacity, and the use of nutritional strategies to bypass metabolic defects. Myoadenylate deaminase deficiency is the most common metabolic enzyme deficiency in human skeletal muscle. It is usually compensated for endogenously and does not have a major influence on high-energy power output. Nutritional interventions such as carbohydrate loading and carbohydrate supplementation during exercise are essential components of therapy for patients with fatty acid oxidation defects. Cases of mitochondrial myopathies illustrate the importance of peripheral oxygen extraction for maximal aerobic capacity and show how both exercise and nutritional interventions can partially compensate for these mutations. In summary, metabolic myopathies provide important insights into regulatory and nutritional aspects of the major biochemical pathways of intermediary metabolism in human skeletal muscle. Key words: myoadenylate deaminase deficiency, MELAS syndrome, McArdle's disease, mitochondrial disease, inborn errors of metabolism.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine, Division of Neurology, McMaster University Medical Centre, Hamilton, ON, Canada.
| |
Collapse
|
57
|
Gueguen N, Lefaucheur L, Fillaut M, Herpin P. Muscle fiber contractile type influences the regulation of mitochondrial function. Mol Cell Biochem 2006; 276:15-20. [PMID: 16132680 DOI: 10.1007/s11010-005-2464-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 02/17/2005] [Indexed: 11/29/2022]
Abstract
Mitochondrial respiratory rates and regulation by phosphate acceptors were studied on permeabilized fiber bundles differing in their myosin heavy chain profiles. The acceptor control ratio, an indicator of oxidation to phosphorylation coupling, and mitochondrial K(m) for ADP were the highest in type I, intermediate in mixed IIa/IIx and the lowest in IIx and predominantly IIb fiber bundles. A functional coupling between mitochondrial creatine kinase and oxidative phosphorylation occurred in type I and IIa/IIx fiber bundles, exclusively. Our study suggests that mitochondrial functioning in fast IIa fibers is closer to that of the slow/I than fast IIx or IIb fibers.
Collapse
Affiliation(s)
- Naig Gueguen
- INRA, Unité Mixte de Recherche Systèmes d'Elevage et Nutrition Animale et Humaine, Domaine de la Prise, Saint-Gilles, France
| | | | | | | |
Collapse
|
58
|
Eimre M, Puhke R, Alev K, Seppet E, Sikkut A, Peet N, Kadaja L, Lenzner A, Haviko T, Seene T, Saks VA, Seppet EK. Altered mitochondrial apparent affinity for ADP and impaired function of mitochondrial creatine kinase in gluteus medius of patients with hip osteoarthritis. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1271-5. [PMID: 16357098 DOI: 10.1152/ajpregu.00651.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cellular energy metabolism in human musculus gluteus medius (MGM) under normal conditions and hip osteoarthritis (OA) was explored. The functions of oxidative phosphorylation and energy transport systems were analyzed in permeabilized (skinned) muscle fibers by oxygraphy, in relation to myosin heavy chain (MHC) isoform distribution profile analyzed by SDS-PAGE, and to creatine kinase (CK) and adenylate kinase (AK) activities measured spectrophotometrically in the intact muscle. The results revealed high apparent Km for ADP in regulation of respiration that decreased after addition of creatine in MGM of traumatic patients (controls). OA was associated with increased sensitivity of mitochondrial respiration to ADP, decreased total activities of AK and CK with major reduction in mi-CK fraction, and attenuated effect of creatine on apparent Km for ADP compared with control group. It also included a complete loss of type II fibers in a subgroup of patients with the severest disease grade. It is concluded that energy metabolism in MGM cells is organized into functional complexes of mitochondria and ATPases. It is suggested that because of degenerative remodeling occurring during development of OA, these complexes become structurally and functionally impaired, which results in increased access of exogenous ADP to mitochondria and dysfunction of CK-phosphotransfer system.
Collapse
Affiliation(s)
- Margus Eimre
- Dept. of Pathophysiology, Centre of Molecular and Clinical Medicine, Faculty of Medicine, Univ. of Tartu, 19 Ravila St., 50411 Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ponsot E, Dufour SP, Zoll J, Doutrelau S, N'Guessan B, Geny B, Hoppeler H, Lampert E, Mettauer B, Ventura-Clapier R, Richard R. Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle. J Appl Physiol (1985) 2005; 100:1249-57. [PMID: 16339351 DOI: 10.1152/japplphysiol.00361.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.
Collapse
Affiliation(s)
- Elodie Ponsot
- Service de Physiologie Clinique et des Explorations Fonctionnelles Respiratoires et de l'Exercice, Département de Physiologie, Equipe d'Accueil 3072, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ponsot E, Zoll J, N'guessan B, Ribera F, Lampert E, Richard R, Veksler V, Ventura-Clapier R, Mettauer B. Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles. J Cell Physiol 2005; 203:479-86. [PMID: 15521069 DOI: 10.1002/jcp.20245] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As energetic metabolism is crucial for muscles, they develop different adaptations to respond to fluctuating demand among muscle types. Whereas quantitative characteristics are known, no study described simultaneously quantitative and qualitative differences among muscle types in terms of substrates utilization patterns. This study thus defined the pattern of substrates preferential utilization by mitochondria from glycolytic gastrocnemius (GAS) and oxidative soleus (SOL) skeletal muscles and from heart left ventrical (LV) in rats. We measured in situ, ADP (2 mM)-stimulated, mitochondrial respiration rates from skinned fibers in presence of increasing concentrations of pyruvate (Pyr) + malate (Mal), palmitoyl-carnitine (Palm-C) + Mal, glutamate (Glut) + Mal, glycerol-3-phosphate (G3-P), lactate (Lact) + Mal. Because the fibers oxygen uptake (Vs) followed Michaelis-Menten kinetics in function of substrates level we determined the Vs and Km, representing maximal oxidative capacity and the mitochondrial sensibility for each substrate, respectively. Vs were in the order GAS < SOL < LV for Pyr, Glu, and Palm-C substrates, whereas in the order SOL = LV < GAS with G3-P. Moreover, the relative capacity to oxidize Palm-C is extremely higher in LV than in SOL. Vs was not stimulated by the Lact substrate. The Km was equal for Pyr among muscles, but much lower for G3-P in GAS and lower for Palm-C in LV. These results demonstrate qualitative mitochondrial tissue specificity for metabolic pathways. Mitochondria of glycolytic muscle fibers are well adapted to play a central role for maintaining a satisfactory cytosolic redox state in these fibers, whereas mitochondria of LV developed important capacities to use fatty acids.
Collapse
Affiliation(s)
- E Ponsot
- Service des Explorations Fonctionnelles Respiratoires et de l'Exercice, Département de Physiologie, Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Bahi L, Garnier A, Fortin D, Serrurier B, Veksler V, Bigard AX, Ventura-Clapier R. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles. J Cell Physiol 2005; 203:589-98. [PMID: 15605382 DOI: 10.1002/jcp.20273] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thyroid hormone (TH) is an important regulator of mitochondrial content and activity. As mitochondrial content and properties differ depending on muscle-type, we compared mitochondrial regulation and biogenesis by T3 in slow-twitch oxidative (soleus) and fast-twitch mixed muscle (plantaris). Male Wistar rats were treated for 21 to 27 days with T3 (200 microg/kg/day). Oxidative capacity, regulation of mitochondrial respiration by substrates and phosphate acceptors, and transcription factors were studied. In soleus, T3 treatment increased maximal oxygen consumption (Vmax) and the activities of citrate synthase (CS) and cytochrome oxidase (COX) by 100%, 45%, and 71%, respectively (P < 0.001), whereas in plantaris only Vmax increased, by 39% (P < 0.01). ADP-independent respiration rate was increased in soleus muscle by 216% suggesting mitochondrial uncoupling. Mitochondrial substrate utilization in soleus was also influenced by T3, as were mitochondrial enzymes. Lactate dehydrogenase (LDH) activity was elevated in soleus and plantaris by 63% and 11%, respectively (P < 0.01), and soleus creatine kinase was increased by 48% (P < 0.001). T3 increased the mRNA content of the transcriptional co-activator of mitochondrial genes, PGC-1alpha, and the I and IV COX subunits in soleus. The muscle specific response to thyroid hormones could be explained by a lower content of TH receptors in plantaris than soleus. Moreover, TRalpha mRNA level decreased further after T3 treatment. These results demonstrate that TH has a major effect on mitochondrial content, regulation and coupling in slow oxidative muscle, but to a lesser extent in fast muscle, due to the high expression of TH receptors and PGC-1alpha transcription factor.
Collapse
Affiliation(s)
- L Bahi
- INSERM U-446, Laboratoire de Cardiologie Cellulaire et Moléculaire, Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | |
Collapse
|
62
|
Seppet E, Eimre M, Peet N, Paju K, Orlova E, Ress M, Kõvask S, Piirsoo A, Saks VA, Gellerich FN, Zierz S, Seppet EK. Compartmentation of energy metabolism in atrial myocardium of patients undergoing cardiac surgery. Mol Cell Biochem 2005; 270:49-61. [PMID: 15792353 DOI: 10.1007/s11010-005-3780-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Evelin Seppet
- Department of Pathophysiology, Human Genetics and Biology and Cardiovascular and Thoracic Surgery, Centre of Molecular and Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Saks VA, Wallimann T, Schlattner U. Calcium and energy transfer. J Physiol 2005; 565:703; author reply 704. [PMID: 15932897 PMCID: PMC1464512 DOI: 10.1113/jphysiol.2005.565101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
64
|
Gueguen N, Lefaucheur L, Ecolan P, Fillaut M, Herpin P. Ca2+-activated myosin-ATPases, creatine and adenylate kinases regulate mitochondrial function according to myofibre type in rabbit. J Physiol 2005; 564:723-35. [PMID: 15731190 PMCID: PMC1464461 DOI: 10.1113/jphysiol.2005.083030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/11/2005] [Accepted: 02/18/2005] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial respiration rates and their regulation by ADP, AMP and creatine, were studied at different free Ca(2+) concentrations (0.1 versus 0.4 microm) on permeabilized fibre bundles of rabbit skeletal muscles differing in their myosin heavy chain profiles. Four fibre bundle types were obtained: pure types I and IIx, and mixed types IIax (approximately 50% IIa and 50% IIx fibres) and IIb+ (60% IIb fibres, plus IIx and IIa). At rest, pure type I fibres displayed a much higher apparent K(m) for ADP (212 microm) than IIx fibres (8 microm). Within the IIax and IIb+ mixed fibre bundle types, two K(ADP)(m) values were observed (70 microm and 5 microm). Comparison between pure IIx and mixed types indicates that the intermediate K(m) of 70 microm most probably corresponds to the mitochondrial affinity for ADP in IIa fibres, the lowest K(m) for ADP (5 microm) corresponding to IIx and IIb types. Activation of mitochondrial creatine and adenylate kinase reactions stimulated mitochondrial respiration only in type I and IIax fibre bundles, indicating an efficient coupling between both kinases and ADP rephosphorylation in type I and, likely, IIa fibres, since no effect was observed in pure IIx fibres. Following Ca(2+)-induced activation of myosin-ATPase, an increase in mitochondrial sensitivity to ADP of 45% and 250% was observed in type IIax and I bundles, respectively, an effect mostly prevented by addition of vanadate, an inhibitor of myosin-ATPase. Ca(2+)-induced activation of myosin-ATPase also prevented the stimulation of respiration rates by creatine and AMP in I and IIax bundles. In addition to differential regulation of mitochondrial respiration and energy transfer systems at rest in I and IIa versus IIx and IIb muscle fibres, our results indicate a regulation of phosphotransfer systems by Ca(2+) via the stimulation of myosin-ATPases in type I and IIa fibres of rabbit muscles.
Collapse
Affiliation(s)
- N Gueguen
- INRA, Unité Mixte de Recherche Système d'Elevage Nutrition Animale et Humaine, Domaine de la Prise, 35590 Saint-Gilles, France
| | | | | | | | | |
Collapse
|
65
|
Momken I, Lechêne P, Koulmann N, Fortin D, Mateo P, Doan BT, Hoerter J, Bigard X, Veksler V, Ventura-Clapier R. Impaired voluntary running capacity of creatine kinase-deficient mice. J Physiol 2005; 565:951-64. [PMID: 15831533 PMCID: PMC1464549 DOI: 10.1113/jphysiol.2005.086397] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The creatine kinase system (CK) is important for energy delivery in skeletal and cardiac muscles. The two main isoforms of this enzyme, cytosolic MM-CK and mitochondrial mi-CK, are expressed in a developmental and muscle-type specific manner. Mice deficient in one or both of these isoforms are viable and fertile but exhibit profound functional, metabolic and structural muscle remodelling that primarily affects fast skeletal muscles, which show an increased contribution of oxidative metabolism to contractile function. However, the consequences of these alterations in terms of physical capabilities have not yet been characterized. Consequently, we compared the voluntary exercise capacity of 9-month-old male wild-type (WT), M-CK knockout (M-CK(-/-)), and M-CK and mi-CK double knockout (CK(-/-)) mice, using cages equipped with running wheels. Exercise performance, calculated by total distance covered and by work done during the training period, was more than 10-fold lower in CK(-/-) mice than controls, with M-CK(-/-) mice exhibiting intermediate performance. Similarly, the mean distance run per activation was lower in M-CK(-/-) and even lower in CK(-/-) mice. However, the maximal running speed (V(max)) was lower only for CK(-/-) mice. This was accompanied by severe skeletal muscle mass decrease in CK(-/-) mice, with signs of histological damage that included enlarged interstitial areas, aggregations of mononuclear cells in the interstitium, heterogeneity of myofibre size and the presence of very small fibres. No overt sign of cardiac dysfunction was observed by magnetic resonance imaging during dobutamine stimulation. These results show that metabolic failure induced by CK deficiency profoundly affects the ability of mice to engage in chronic bouts of endurance running exercise and that this decrease in performance is also associated with muscle wasting.
Collapse
Affiliation(s)
- Iman Momken
- Cellular and Molecular Cardiology, INSERM U-446, Pharmacy Faculty, Paris South University, Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
ter Veld F, Jeneson JAL, Nicolay K. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis. FEBS J 2005; 272:956-65. [PMID: 15691329 DOI: 10.1111/j.1742-4658.2004.04529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-), respectively). Maximal ADP-stimulated oxygen consumption flux (State3 Vmax; nmol O2 x mg mitochondrial protein(-1) x min(-1)) and ADP affinity (K50ADP; microM) were determined by respirometry. State 3 Vmax and of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes.
Collapse
Affiliation(s)
- Frank ter Veld
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center, Utrecht, the Netherlands.
| | | | | |
Collapse
|
67
|
Ingwall JS. Transgenesis and cardiac energetics: new insights into cardiac metabolism. J Mol Cell Cardiol 2005; 37:613-23. [PMID: 15350834 DOI: 10.1016/j.yjmcc.2004.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 05/14/2004] [Accepted: 05/24/2004] [Indexed: 01/01/2023]
Abstract
Transgenesis in the mouse heart has provided new and important insights into many aspects of ATP synthesis, supply and utilization. Cardiac energetics has also been useful in assessing the consequences of manipulating proteins in the mouse heart. Here, four topics are reviewed. Part 1 presents a description of the role of "energy circuits" in addressing these questions: how is ATP made in the mitochondria supplied to spatially separated ATPases rapidly enough to support variable and abrupt increases in work? Given the barriers to rapid diffusion of ADP, how is a high chemical driving force maintained at the various sites of ATP hydrolysis; i.e. how is [ADP] maintained low throughout the cell? What are the metabolic sensors matching ATP synthesis and utilization? How are they monitored, delivered to the appropriate sensors and translated to accomplish a constant ATP supply? In Part 2, the consequences of manipulating glucose supply to the heart and regulation of the synthesis of enzymes in glycolysis and fatty acid oxidation are discussed. The questions are: what are the signals that lead to long-term molecular reprogramming of metabolic pathways for ATP synthesis and utilization? How is this accomplished? In Part 3, the focus is on sarcomeric proteins addressing the question: what changes in sarcomeric proteins determine the cost of contraction? Finally, in Part 4, examples are given of how energetics has been used to define the consequences of transgenic manipulations.
Collapse
Affiliation(s)
- Joanne S Ingwall
- NMR Laboratory for Physiological Chemistry, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI 247, Boston, MA 02115, USA.
| |
Collapse
|
68
|
Seppet EK, Eimre M, Andrienko T, Kaambre T, Sikk P, Kuznetsov AV, Saks V. Studies of mitochondrial respiration in muscle cells in situ: use and misuse of experimental evidence in mathematical modelling. Mol Cell Biochem 2004; 256-257:219-27. [PMID: 14977183 DOI: 10.1023/b:mcbi.0000009870.24814.1c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Applications of permeabilized cell and skinned fiber techniques in combination with methods of mathematical modelling for studies of mitochondrial function in the cell are critically evaluated. Mathematical models may be useful tools for explaining biological phenomena, but only if they are selected by fitting the computing results with real experimental data. Confocal microscopy has been used in experiments with permeabilized cardiomyocytes and myocardial fibers to determine the maximal diffusion distance from medium to the core of cells, which is shown not to exceed 8-10 microm. This is a principal index for correctly explaining high apparent Km for exogenous ADP (200-300 microM) in regulation of mitochondrial respiration in oxidative muscle cells in situ. The best fitting of the results of in silico studies may be achieved by using of the compartmentalized energy transfer model. From these results, it may be concluded that in cardiac muscle cells the mitochondria and ATPases are organized into intracellular energetic units (ICEUs) separated from the bulk phase of cytoplasm by some barriers which limit the diffusion of adenine nucleotides. In contrast, alternative models based on the concept of the cell as homogenous system do not explain the observed experimental phenomena and have led to misleading conclusions. The various sources of experimental and conceptual errors are analyzed.
Collapse
Affiliation(s)
- Enn K Seppet
- Department of Pathophysiology, University of Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
69
|
Ventura-Clapier R, Kaasik A, Veksler V. Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 2004; 256-257:29-41. [PMID: 14977168 DOI: 10.1023/b:mcbi.0000009857.69730.97] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In adult mammalian muscle cells, energy consuming processes are mainly localized to the sarcolemma, sarcoplasmic reticulum (SR) and myofibrillar compartments, while energy production occurs within mitochondria or glycolytic complexes. Due to the restricted diffusion of adenine nucleotides near the active sites of ATPases involved in contractile activity and calcium homeostasis, there are multiple local systems that can locally rephosphorylate ADP and provide ATP. The creatine kinase (CK) system, with specific isoenzymes localized within each compartment, efficiently controls local adenylate pools and links energy production and utilization. However, mice lacking one or both of the MM-CK and mi-CK isoforms (CK-/-) are viable and develop almost normal cardiac and skeletal muscle function under the conditions of moderate workload, suggesting adaptations or other mechanisms that may ensure efficient energy transfer. While fixed CK is essentially important, other systems could also be involved as well, such as bound glycolytic enzymes or adenylate kinase. We have shown that, additionally, a direct functional interplay exists between mitochondria and sarcoplasmic reticulum, or between mitochondria and myofilaments in muscle cells, that catalyzes direct energy and signal transfer between organelles. In cardiac cells of CK-/- mice, marked cytoarchitectural modifications were observed, and direct adenine nucleotide channeling between mitochondria and organelles was very effective to rescue SR and myofilament functions. In fast skeletal muscles, increased oxidative capacity also indicates compensatory mechanisms. In mutant mice, mitochondrial capacity increases and a direct energy channeling occurs between mitochondria on one hand and ATP consuming sites on the other. However, these systems appear to be insufficient to fully compensate for the lack of CK at high workload. It can be concluded that local rephosphorylation of ADP is a crucial regulatory point in highly differentiated and organized muscle cells to ensure contractile diversity and efficiency and that the CK system is important to control energy fluxes and energy homeostasis.
Collapse
Affiliation(s)
- R Ventura-Clapier
- U-446 INSERM Université Paris-Sud, 5 rue Jean-Baptiste Clément, Châtenay-Malabry, France.
| | | | | |
Collapse
|
70
|
Vendelin M, Béraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA. Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern. Am J Physiol Cell Physiol 2004; 288:C757-67. [PMID: 15496480 DOI: 10.1152/ajpcell.00281.2004] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to characterize quantitatively the arrangement of mitochondria in heart and skeletal muscles. We studied confocal images of mitochondria in nonfixed cardiomyocytes and fibers from soleus and white gastrocnemius muscles of adult rats. The arrangement of intermyofibrillar mitochondria was analyzed by estimating the densities of distribution of mitochondrial centers relative to each other (probability density function). In cardiomyocytes (1,820 mitochondrial centers marked), neighboring mitochondria are aligned along a rectangle, with distance between the centers equal to 1.97 +/- 0.43 and 1.43 +/- 0.43 microm in the longitudinal and transverse directions, respectively. In soleus (1,659 mitochondrial centers marked) and white gastrocnemius (621 pairs of mitochondria marked), mitochondria are mainly organized in pairs at the I-band level. Because of this organization, there are two distances characterizing mitochondrial distribution in the longitudinal direction in these muscles. The distance between mitochondrial centers in the longitudinal direction within the same I band is 0.91 +/- 0.11 and 0.61 +/- 0.07 microm in soleus and white gastrocnemius, respectively. The distance between mitochondrial centers in different I bands is approximately 3.7 and approximately 3.3 microm in soleus and gastrocnemius, respectively. In the transverse direction, the mitochondria are packed considerably closer to each other in soleus than in white gastrocnemius, with the distance equal to 0.75 +/- 0.22 microm in soleus and 1.09 +/- 0.41 microm in gastrocnemius. Our results show that intermyofibrillar mitochondria are arranged in a highly ordered crystal-like pattern in a muscle-specific manner with relatively small deviation in the distances between neighboring mitochondria. This is consistent with the concept of the unitary nature of the organization of the muscle energy metabolism.
Collapse
Affiliation(s)
- Marko Vendelin
- Group of Quantitative and Structural Bioenergetics, Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Fink E, Fortin D, Serrurier B, Ventura-Clapier R, Bigard AX. Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury. J Muscle Res Cell Motil 2004; 24:421-9. [PMID: 14677645 DOI: 10.1023/a:1027387501614] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The recovery of metabolic pathways after muscle damage has been poorly studied. We investigated the myosin heavy chain (MHC) isoform transitions and the recovery of citrate synthase (CS) activity, isoform distribution of lactate dehydrogenase (LDH) and creatine kinase (CK) in slow muscles after two types of injury. Muscle degeneration was induced in left soleus muscles of male Wistar rats by either notexin injection or crushing and the regenerative process was examined from 2 to 56 days after injury. Myosin transition occurred earlier after notexin than after crush injury. Fast-type IIx and more particularly type IIa MHC isoform disappeared by day 28 after notexin inoculation, while they were still detected long after in crushed muscles. A full recovery of both the CS activity and the specific activity of the H-LDH subunit was observed from day 42 in notexin-treated muscles, while values measured in crushed muscles remained significantly lower than in non-injured muscles (P < 0.05). The activity of the mitochondrial isoform of CK (mi-CK) was markedly affected by the type of injury (P < 0.001), and failed to reach normal levels after crush injury (P < 0.05). The results of this study show that the relatively rapid MHC transitions during regeneration contrasts with the slow recovery in the oxidative capacity. The recovery of the oxidative capacity remained incomplete after crush injury, a model of injury known to lead to disruption of the basal lamina and severe interruption of the vascular and nerve supply.
Collapse
Affiliation(s)
- E Fink
- Department of Human Factors, Centre de Recherches du Service de Santé des Armies, CRSSA, BP 87, 38702 La Tronche, France
| | | | | | | | | |
Collapse
|
72
|
Bruton JD, Dahlstedt AJ, Abbate F, Westerblad H. Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice. J Physiol 2004; 552:393-402. [PMID: 14561823 PMCID: PMC2343388 DOI: 10.1113/jphysiol.2003.050732] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Creatine kinase (CK) has a central role in skeletal muscle, acting as a fast energy buffer and shuttle between sites of energy production (mitochondria) and consumption (cross-bridges and ion pumps). Unexpectedly, isolated fast-twitch skeletal muscle cells of mice deficient in both cytosolic and mitochondrial CK (CK-/-) are highly fatigue resistant during stimulation protocols that stress aerobic metabolism. We have now studied different aspects of mitochondrial function in CK-/- skeletal muscle. Intact, single fibres of flexor digitorum brevis (FDB) muscles were fatigued by repeated tetanic stimulation (70 Hz, 350 ms duration, duty cycle 0.14). Under control conditions, CK-/- FDB fibres were more fatigue resistant than wild-type fibres. However, after mitochondrial inhibition with cyanide, force declined markedly faster in CK-/- fibres than in wild-type fibres. The rapid force decline in CK-/- fibres was not due to decreased myoplasmic [Ca2+] during tetani (measured with indo-1), which in these fibres remained virtually constant during fatigue in the presence of cyanide. Intact, single fibres of highly oxidative soleus muscles were fatigued by repeated tetani (50 Hz, 500 ms duration, duty cycle 0.5). All CK-/- soleus fibres tested (n = 9) produced > 40 % force at the end of the fatiguing stimulation period (500 tetani), whereas force fell to < 40 % before 500 tetani in two of three wild-type fibres. Mitochondrial [Ca2+] (measured with rhod-2 and confocal microscopy) increased during repeated tetanic stimulation in CK-/- but not in wild-type FDB fibres. In conclusion, mitochondria and energy shuttling operate effectively in CK-/- fibres and this is associated with an increase in mitochondrial [Ca2+].
Collapse
Affiliation(s)
- Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
73
|
Ecochard L, Roussel D, Sempore B, Favier R. Stimulation of HSP72 expression following ATP depletion and short-term exercise training in fast-twitch muscle. ACTA ACUST UNITED AC 2004; 180:71-8. [PMID: 14706115 DOI: 10.1046/j.0001-6772.2003.01184.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM Previous data have reported increases in HSP72 expression in skeletal muscles after endurance training but the physiological and biochemical signals that induce HSP72 accumulation remain largely unknown. In this study, we tested the hypothesis that energy status is a key regulatory event for HSP72 accumulation in skeletal muscles. METHODS Reduction of high-energy phosphate levels was induced by supplementation with a creatine analogue, beta-guanidinopropionic acid (GPA) for 3 weeks while control rats received distilled water in the same conditions. Half of the animals were kept sedentary while the others were submitted to a short-term (2 weeks) training program on a treadmill (30 m min-1, 0% slope; 50-70 min day-1). RESULTS GPA supplementation resulted in a large drop ( approximately 50%) in adenosine triphosphate (ATP) level in both fast and slow muscles whether the animals were trained or remained sedentary. HSP72 level did not change with GPA alone, but the training-induced increase in HSP72 level was strongly enhanced by superimposition of GPA diet in fast but not in slow skeletal muscles. The changes in HSP72 level were not linked to changes in fibre typology and/or mitochondrial capacities. CONCLUSIONS The results of the present investigation indicate that levels of high-energy phosphate per se do not play a direct role in determining HSP72 level in skeletal muscles. However, during superimposition of training to GPA, then the adaptive strategy of fast-twitch muscle (e.g. plantaris) seems to be directed towards appearance of some properties of red, oxidative fibres (increase in oxidative capacities and HSP72 level).
Collapse
Affiliation(s)
- L Ecochard
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Laboratoire de Physiologie, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
74
|
Graham BH, Craigen WJ. Genetic approaches to analyzing mitochondrial outer membrane permeability. Curr Top Dev Biol 2004; 59:87-118. [PMID: 14975248 DOI: 10.1016/s0070-2153(04)59004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
75
|
Kongas O, Wagner MJ, ter Veld F, Nicolay K, van Beek JHGM, Krab K. The mitochondrial outer membrane is not a major diffusion barrier for ADP in mouse heart skinned fibre bundles. Pflugers Arch 2004; 447:840-4. [PMID: 14722773 DOI: 10.1007/s00424-003-1214-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 11/05/2003] [Indexed: 12/01/2022]
Abstract
The response of mitochondrial oxygen consumption to ADP in saponin-skinned cardiac fibre bundles has an apparent Km an order of magnitude higher than that in isolated mitochondria. Here we report that incubating skinned cardiac fibre bundles from wild-type mice or double-knockout mice lacking both cytosolic and mitochondrial creatine kinase (CK) with CK and creatine or with yeast hexokinase and glucose as extramitochondrial ADP-producing systems decreases the apparent Km of the bundles for ADP severalfold. We conclude that the affinity of mitochondria for ADP in mouse heart is of the same order of magnitude as that of isolated mitochondria, while the high apparent Km of the bundles is caused by diffusion gradients outside the mitochondria.
Collapse
Affiliation(s)
- Olav Kongas
- Department of Mechanics and Applied Mathematics, Institute of Cybernetics, Tallinn Technical University, Akadeemia 21, 12618 Tallinn, Estonia.
| | | | | | | | | | | |
Collapse
|
76
|
Bahi L, Koulmann N, Sanchez H, Momken I, Veksler V, Bigard AX, Ventura-Clapier R. Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J Appl Physiol (1985) 2004; 96:59-64. [PMID: 12949022 DOI: 10.1152/japplphysiol.00323.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays an important role in the hydroelectrolytic balance, blood pressure regulation, and cell growth. In some studies, the insertion (I) allele of the angiotensin-converting enzyme (ACE) gene, associated with a lower ACE activity, has been found in excess frequency in elite endurance athletes, suggesting that decreased ACE activity could be involved in endurance performance (Myerson S, Hemingway H, Budget R, Martin J, Humphries S, and Montgomery H. J Appl Physiol 87: 1313-1316, 1999). To test this hypothesis, we evaluated whether ACE inhibition could be associated with improved endurance performance and muscle oxidative capacity in rats. Eight male Wistar rats were treated for 10-12 wk with an ACE inhibitor, perindopril (2 mg.kg-1.day-1), and compared with eight control rats. Endurance time was measured on a treadmill, and oxidative capacity and regulation of mitochondrial respiration by substrates were evaluated in saponin-permeabilized fibers of slow soleus and fast gastrocnemius muscles. Endurance time did not differ between groups (57 +/- 5 min for perindopril vs. 55 +/- 6 min for control). Absolute and relative (to body weight) left ventricular weight was 20% (P < 0.01) and 12% (P < 0.01) lower, respectively, in the treated group. No difference in oxidative capacity, mitochondrial enzyme activities, or mitochondrial regulation by ADP was observed in soleus or gastrocnemius. Mitochondrial respiration with glycerol 3-phosphate was 17% higher in gastrocnemius (P < 0.03) and with octanoylcarnitine 14% greater in soleus (P < 0.01) of treated rats. These results demonstrate that ACE inhibition was not associated with improved endurance time and maximal oxidative capacity of skeletal muscles. This suggests that ACE activity has no implication in endurance capacity and only minor effects on mitochondrial function in sedentary animals.
Collapse
Affiliation(s)
- L Bahi
- Cardiologie Cellulaire et Moléculaire, Institut National de la Santé et de la Recherche Médicale unité-446, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Heart failure (HF) is a syndrome resulting from the inability of the cardiac pump to meet the energy requirements of the body. Despite intensive work, the pathogenesis of the cardiac intracellular abnormalities that result from HF remains incompletely understood. Factors that lead to abnormal contraction and relaxation in the failing heart include metabolic pathway abnormalities that result in decreased energy production, energy transfer and energy utilization. Heart failure also affects the periphery. Patients suffering from heart failure always complain of early muscular fatigue and exercise intolerance. This is linked in part to intrinsic alterations of skeletal muscle, among which decreases in the mitochondrial ATP production and in the transfer of energy through the phosphotransfer kinases play an important role. Alterations in energy metabolism that affect both cardiac and skeletal muscles argue for a generalized metabolic myopathy in heart failure. Recent evidence shows that decreased expression of mitochondrial transcription factors and mitochondrial proteins are involved in mechanisms causing the energy starvation in heart failure. This review will focus on energy metabolism alterations in long-term chronic heart failure with only a few references to compensated hypertrophy when necessary. It will briefly describe the energy metabolism of normal heart and skeletal muscles and their alterations in chronic heart failure. It is beyond the scope of this review to address the metabolic switches occurring in compensated hypertrophy; readers could refer to well-documented reviews on this subject.
Collapse
Affiliation(s)
- Renée Ventura-Clapier
- Cardiologie Cellulaire et Moléculaire, U-446 INSERM, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, France.
| | | | | |
Collapse
|
78
|
da Silva CG, Bueno ARF, Schuck PF, Leipnitz G, Ribeiro CAJ, Wannmacher CMD, Wyse ATS, Wajner M. D-2-hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats. Eur J Clin Invest 2003; 33:840-7. [PMID: 14511354 DOI: 10.1046/j.1365-2362.2003.01237.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tissue accumulation of high amounts of D-2-hydroxyglutaric acid (DGA) is the biochemical hallmark of the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (DHGA). Patients affected by this disease usually present hypotonia, muscular weakness, hypertrophy and cardiomyopathy, besides severe neurological findings. However, the underlying mechanisms of muscle injury in this disorder are virtually unknown. MATERIALS AND METHODS In the present study we have evaluated the in vitro role of DGA, at concentrations ranging from 0.25 to 5.0 mM, on total, cytosolic and mitochondrial creatine kinase activities from skeletal and cardiac muscle of 30-day-old Wistar rats. We also tested the effects of various antioxidants on the effects elicited by DGA. RESULTS We first verified that total creatine kinase (CK) activity from homogenates was significantly inhibited by DGA (22-24% inhibition) in skeletal and cardiac muscle, and that this activity was approximately threefold higher in skeletal muscle than in cardiac muscle. We also observed that CK activities from mitochondrial (Mi-CK) and cytosolic (Cy-CK) preparations from skeletal muscle and cardiac muscle were also inhibited (12-35% inhibition) by DGA at concentrations as low as 0.25 mm, with the effect being more pronounced in cardiac muscle preparations. Finally, we verified that the DGA-inhibitory effect was fully prevented by preincubation of the homogenates with reduced glutathione and cysteine, suggesting that this effect is possibly mediated by modification of essential thiol groups of the enzyme. Furthermore, alpha-tocopherol, melatonin and the inhibitor of nitric oxide synthase L-NAME were unable to prevent this effect, indicating that the most common reactive oxygen and nitrogen species were not involved in the inhibition of CK provoked by DGA. CONCLUSION Considering the importance of creatine kinase activity for cellular energy homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA might be an important mechanism involved in the myopathy and cardiomyopathy of patients affected by DHGA.
Collapse
Affiliation(s)
- C G da Silva
- Department of Biochemistry, Institute of Basic Sciences and Health, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Janssen E, Terzic A, Wieringa B, Dzeja PP. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice. J Biol Chem 2003; 278:30441-9. [PMID: 12730234 DOI: 10.1074/jbc.m303150200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load. M-CK/AK1 (MAK=/=) mutant skeletal muscle displayed aberrant ATP/ADP, ADP/AMP and ATP/GTP ratios, reduced intracellular phosphotransfer communication, and increased ATP supply capacity as assessed by 18O labeling of [Pi] and [ATP]. An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance. These results suggest that MAK=/= muscles are energetically less efficient than wild-type muscles, but an apparent compensatory redistribution of high-energy phosphoryl flux through glycolytic and guanylate phosphotransfer pathways limited the overall energetic deficit. Thus, this study suggests a coordinated network of complementary enzymatic pathways that serve in the maintenance of energetic homeostasis and physiological efficiency.
Collapse
Affiliation(s)
- Edwin Janssen
- Department of Cell Biology, University Medical Center, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
80
|
Birkedal R, Gesser H. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle. J Comp Physiol B 2003; 173:493-9. [PMID: 12856133 DOI: 10.1007/s00360-003-0357-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2003] [Indexed: 10/26/2022]
Abstract
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.
Collapse
Affiliation(s)
- R Birkedal
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, 8000 Aarhus C, Denmark.
| | | |
Collapse
|
81
|
Zoll J, N'Guessan B, Ribera F, Lampert E, Fortin D, Veksler V, Bigard X, Geny B, Lonsdorfer J, Ventura-Clapier R, Mettauer B. Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. J Am Coll Cardiol 2003; 42:126-32. [PMID: 12849672 DOI: 10.1016/s0735-1097(03)00499-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We sought to determine whether intrinsic mitochondrial function and regulation were altered in heart transplant recipients (HTRs) and to investigate the response of mitochondrial function to six-week endurance training in these patients. BACKGROUND Despite the normalization of central oxygen transport during exercise, HTRs are still characterized by limited exercise capacity, which is thought to result from skeletal muscle metabolic abnormalities. METHODS Twenty HTRS agreed to have vastus lateralis biopsies and exercise testing: before and after training for 12 of them and before and after the same control period for eight subjects unwilling to train. Mitochondrial respiration was evaluated on saponin-permeabilized muscle fibers in the absence or presence (maximum respiration rate [V(max)]) of saturating adenosine diphosphate. RESULTS Mitochondrial function was preserved at the level of sedentary subjects in untrained HTRs, although they showed 28 +/- 5% functional aerobic impairment (FAI). After training, V(max), citrate synthase, cytochrome c oxidase, and mitochondrial creatine kinase (CK) activities were significantly increased by 48%, 40%, 67%, and 53%, respectively (p < 0.05), whereas FAI decreased to 12 +/- 5% (p < 0.01). The control of mitochondrial respiration by creatine and mitochondrial CK was also improved (p < 0.01), suggesting that phosphocreatine synthesis and transfer by the mitochondrial CK become coupled to oxidative phosphorylation, as shown in trained, healthy subjects. CONCLUSIONS In HTRs, the mitochondrial properties of skeletal muscle were preserved and responded well to training, reaching values of physically active, healthy subjects. This suggests that, in HTRs, immunosuppressive drugs do not alter the intrinsic muscle oxidative capacities and that the patients' physical handicap results from nonmitochondrial mechanisms.
Collapse
Affiliation(s)
- Joffrey Zoll
- Service de Physiologie Clinique et des Explorations Fonctionnelles, Département de Physiologie, Faculté de Médecine, 11 rue Humann, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Nguyen QGV, Buskin JN, Himeda CL, Fabre-Suver C, Hauschka SD. Transgenic and tissue culture analyses of the muscle creatine kinase enhancer Trex control element in skeletal and cardiac muscle indicate differences in gene expression between muscle types. Transgenic Res 2003; 12:337-49. [PMID: 12779122 DOI: 10.1023/a:1023369225799] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer-promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.
Collapse
Affiliation(s)
- Quynh-Giao V Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
83
|
Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Orosco A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA. Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 2003; 206:2059-72. [PMID: 12756288 DOI: 10.1242/jeb.00242] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of mitochondrial respiration both by endogenous and exogenous ADP in the cells in situ was studied in isolated and permeabilized cardiomyocytes, permeabilized cardiac fibers and 'ghost' fibers (all with a diameter of 10-20 micro m) at different (0-3 micro moll(-1)) free Ca(2+) concentrations in the medium. In all these preparations, the apparent K(m) of mitochondrial respiration for exogenous ADP at free Ca(2+) concentrations of 0-0.1 micro moll(-1) was very high, in the range of 250-350 micro moll(-1), in contrast to isolated mitochondria in vitro (apparent K(m) for ADP is approximately 20 micro moll(-1)). An increase in the free Ca(2+) concentration (up to 3 micro moll(-1), which is within physiological range), resulted in a very significant decrease of the apparent K(m) value to 20-30 micro moll(-1), a decrease of V(max) of respiration in permeabilized intact fibers and a strong contraction of sarcomeres. In ghost cardiac fibers, from which myosin was extracted but mitochondria were intact, neither the high apparent K(m) for ADP (300-350 micro moll(-1)) nor V(max) of respiration changed in the range of free Ca(2+) concentration studied, and no sarcomere contraction was observed. The exogenous-ADP-trapping system (pyruvate kinase + phosphoenolpyruvate) inhibited endogenous-ADP-supported respiration in permeabilized cells by no more than 40%, and this inhibition was reversed by creatine due to activation of mitochondrial creatine kinase. These results are taken to show strong structural associations (functional complexes) among mitochondria, sarcomeres and sarcoplasmic reticulum. Inside these complexes, mitochondrial functional state is controlled by channeling of ADP, mostly via energy- and phosphoryl-transfer networks, and apparently depends on the state of sarcomere structures.
Collapse
Affiliation(s)
- T Andrienko
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, Kaambre T, Sikk P, Lemba M, Vendelin M. Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 2003; 84:3436-56. [PMID: 12719270 PMCID: PMC1302901 DOI: 10.1016/s0006-3495(03)70065-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Heterogeneity of ADP diffusion and regulation of respiration were studied in permeabilized cardiomyocytes and cardiac fibers in situ and in silico. Regular arrangement of mitochondria in cells was altered by short-time treatment with trypsin and visualized by confocal microscopy. Manipulation of matrix volumes by changing K(+) and sucrose concentrations did not affect the affinity for ADP either in isolated heart mitochondria or in skinned fibers. Pyruvate kinase (PK)-phosphoenolpyruvate (PEP) were used to trap ADP generated in Ca,MgATPase reactions. Inhibition of respiration by PK-PEP increased 2-3 times after disorganization of regular mitochondrial arrangement in cells. ADP produced locally in the mitochondrial creatine kinase reaction was not accessible to PK-PEP in intact permeabilized fibers, but some part of it was released from mitochondria after short proteolysis due to increased permeability of outer mitochondrial membrane. In in silico studies we show by mathematical modeling that these results can be explained by heterogeneity of ADP diffusion due to its restrictions at the outer mitochondrial membrane and in close areas, which is changed after proteolysis. Localized restrictions and heterogeneity of ADP diffusion demonstrate the importance of mitochondrial functional complexes with sarcoplasmic reticulum and myofibrillar structures and creatine kinase in regulation of oxidative phosphorylation.
Collapse
Affiliation(s)
- Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, 2280 Rue de la Piscine, BP53X-38041, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kaasik A, Veksler V, Boehm E, Novotova M, Ventura-Clapier R. From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle. FASEB J 2003; 17:708-10. [PMID: 12586739 DOI: 10.1096/fj.02-0684fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fast-twitch skeletal muscle of mice deficient in cytosolic and mitochondrial creatine kinase isoforms (CK-/-) lack burst activity but can sustain prolonged contractile activity, suggesting that adaptive mechanisms can regulate local adenine nucleotide turnover. We investigated whether direct energy and signal channeling between mitochondria and sarcoplasmic reticulum (SR) or myofilaments may exist that compensate for the lack of CK isoenzymes. Oxidative capacity of fast-twitch muscle was increased twofold in CK-/- mice. Energy cross talk between organelles was studied in muscle fibers with permeabilized sarcolemma. Energy supply to SR was estimated by analyzing the tension transient induced by caffeine and energy supply to myofilaments was estimated by the relaxation of rigor tension, both under different conditions of energy supply. In normal mice, ATP directly produced by mitochondria was not able to sustain calcium uptake and to relax rigor tension as efficiently as ATP produced by bound CK. However, in CK-/- mice, mitochondria ability to provide ATP for calcium uptake and relaxation of rigor tension was dramatically enhanced, suggesting a direct ATP/ADP channeling between sites of energy production mitochondria) and energy utilization in CK-/- mice. These results demonstrate two possible patterns of energy transport in muscle cells: energy store with phosphocreatine and energy flux through mitochondria.
Collapse
Affiliation(s)
- Allen Kaasik
- U-446 INSERM, Université Paris-Sud, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
86
|
Roman BB, Meyer RA, Wiseman RW. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice. Am J Physiol Cell Physiol 2002; 283:C1776-83. [PMID: 12419710 DOI: 10.1152/ajpcell.00210.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P < 0.001). Initial PCr/ATP ratio and intracellular pH were not significantly different between groups, and there was no detectable change in intracellular pH or ATP in either group after 2 s. The initial difference in net PCr depletion was maintained during the first minute of continuous 5-Hz stimulation. However, there was no significant difference in the quasi-steady-state PCr level approached after 80 s (MMKO 36.1 +/- 3.5 vs. WT 35.5 +/- 4.4% of initial PCr; n = 5-6). A kinetic model of ATPase, creatine kinase, and adenylate kinase fluxes during stimulation was consistent with the observed PCr depletion in MMKO muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.
Collapse
Affiliation(s)
- Brian B Roman
- Department of Cardiology, University of Illinois Medical Center, Chicago, Illinois, USA
| | | | | |
Collapse
|
87
|
Momken I, Fortin D, Serrurier B, Bigard X, Ventura-Clapier R, Veksler V. Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle. Biochem J 2002; 368:341-7. [PMID: 12123418 PMCID: PMC1222955 DOI: 10.1042/bj20020591] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Revised: 07/17/2002] [Accepted: 07/17/2002] [Indexed: 01/21/2023]
Abstract
Oxidative capacity of muscles correlates with capillary density and with microcirculation, which in turn depend on various regulatory factors, including NO generated by endothelial nitric oxide synthase (eNOS). To determine the role of eNOS in patterns of regulation of energy metabolism in various muscles, we studied mitochondrial respiration in situ in saponin-permeabilized fibres as well as the energy metabolism enzyme profile in the cardiac, soleus (oxidative) and gastrocnemius (glycolytic) muscles isolated from mice lacking eNOS (eNOS(-/-)). In soleus muscle, the absence of eNOS induced a marked decrease in both basal mitochondrial respiration without ADP (-32%; P <0.05) and maximal respiration in the presence of ADP (-29%; P <0.05). Furthermore, the eNOS(-/-) soleus muscle showed a decrease in total creatine kinase (-29%; P <0.05), citrate synthase (-31%; P <0.01), adenylate kinase (-27%; P <0.05), glyceraldehyde-3-phosphate dehydrogenase (-43%; P <0.01) and pyruvate kinase (-26%; P <0.05) activities. The percentage of myosin heavy chains I (slow isoform) was significantly increased from 24.3+/-1.5% in control to 30.1+/-1.1% in eNOS(-/-) soleus muscle ( P <0.05) at the expense of a slight non-significant decrease in the three other (fast) isoforms. Besides, eNOS(-/-) soleus showed a 28% loss of weight. Interestingly, we did not find differences in any parameters in cardiac and gastrocnemius muscles compared with respective controls. These results show that eNOS knockout has an important effect on muscle oxidative capacity as well on the activities of energy metabolism enzymes in oxidative (soleus) muscle. The absence of such effects in cardiac and glycolytic (gastrocnemius) muscle suggests a specific role for eNOS-produced NO in oxidative skeletal muscle.
Collapse
Affiliation(s)
- Iman Momken
- Cardiologie Cellulaire et Moléculaire U-446 INSERM, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, 92296, France
| | | | | | | | | | | |
Collapse
|
88
|
ter Veld F, Bruggeman F, Jeneson J, Nicolay K. On the role of mi-cK and VDAC in mitochondrial function of heart muscle cells. Mol Biol Rep 2002; 29:183-6. [PMID: 12241054 DOI: 10.1023/a:1020373728609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A two-compartment kinetic model was used to describe reconstituted systems in which mitochondria compete with pyruvate kinase for kinase-generated ADP. The modelling suggests that cytosolic CK deficiency results in a 50% increase in outer mitochondrial membrane permeability.
Collapse
Affiliation(s)
- Frank ter Veld
- Dept of Experimental In-Vivo NMR, Image Sciences Institute, UMC Utrecht.
| | | | | | | |
Collapse
|
89
|
Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 2002; 543:191-200. [PMID: 12181291 PMCID: PMC2290497 DOI: 10.1113/jphysiol.2002.019661] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study explores the importance of creatine kinase (CK) in the regulation of muscle mitochondrial respiration in human subjects depending on their level of physical activity. Volunteers were classified as sedentary, active or athletic according to the total activity index as determined by the Baecke questionnaire in combination with maximal oxygen uptake values (peak V(O2), expressed in ml min(-1) kg(-1)). All volunteers underwent a cyclo-ergometric incremental exercise test to estimate their peak V(O2) and V(O2) at the ventilatory threshold (VT). Muscle biopsy samples were taken from the vastus lateralis and mitochondrial respiration was evaluated in an oxygraph cell on saponin permeabilised muscle fibres in the absence (V(0)) or in the presence (V(max)) of saturating [ADP]. While V(0) was similar, V(max) differed among groups (sedentary, 3.7 +/- 0.3, active, 5.9 +/- 0.9 and athletic, 7.9 +/- 0.5 micromol O2 min(-1) (g dry weight)(-1)). V(max) was correlated with peak V(O2) (P < 0.01, r = 0.63) and with V(T) (P < 0.01, r = 0.57). There was a significantly greater degree of coupling between oxidation and phosphorylation (V(max)/V(0)) in the athletic individuals. The mitochondrial K(m) for ADP was significantly higher in athletic subjects (P < 0.01). Mitochondrial CK (mi-CK) activation by addition of creatine induced a marked decrease in K(m) in athletic individuals only, indicative of an efficient coupling of mi-CK to ADP rephosphorylation in the athletic subjects only. It is suggested that increasing aerobic performance requires an enhancement of both muscle oxidative capacity and mechanisms of respiratory control, attesting to the importance of temporal co-ordination of energy fluxes by CK for higher efficacy.
Collapse
Affiliation(s)
- J Zoll
- Département de Physiologie, Equipe d'Accueil 3072, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Spindler M, Niebler R, Remkes H, Horn M, Lanz T, Neubauer S. Mitochondrial creatine kinase is critically necessary for normal myocardial high-energy phosphate metabolism. Am J Physiol Heart Circ Physiol 2002; 283:H680-7. [PMID: 12124216 DOI: 10.1152/ajpheart.00800.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The individual functional significance of the various creatine kinase (CK) isoenzymes for myocardial energy homeostasis is poorly understood. Whereas transgenic hearts lacking the M subunit of CK (M-CK) show unaltered cardiac energetics and left ventricular (LV) performance, deletion of M-CK in combination with loss of sarcomeric mitochondrial CK (ScCKmit) leads to significant alterations in myocardial high-energy phosphate metabolites. To address the question as to whether this alteration is due to a decrease in total CK activity below a critical threshold or due to the specific loss of ScCKmit, we studied isolated perfused hearts with selective loss of ScCKmit (ScCKmit(-/-), remaining total CK activity approximately 70%) using (31)P NMR spectroscopy at two different workloads. LV performance in ScCKmit(-/-) hearts (n = 11) was similar compared with wild-type hearts (n = 9). Phosphocreatine/ATP, however, was significantly reduced in ScCKmit(-/-) compared with wild-type hearts (1.02 +/- 0.05 vs. 1.54 +/- 0.07, P < 0.05). In parallel, free [ADP] was higher (144 +/- 11 vs. 67 +/- 7 microM, P < 0.01) and free energy release for ATP hydrolysis (DeltaG(ATP)) was lower (-55.8 +/- 0.5 vs. -58.5 +/- 0.5 kJ/mol, P < 0.01) in ScCKmit(-/-) compared with wild-type hearts. These results demonstrate that M- and B-CK containing isoenzymes are unable to fully substitute for the loss of ScCKmit. We conclude that ScCKmit, in contrast to M-CK, is critically necessary to maintain normal high-energy phosphate metabolite levels in the heart.
Collapse
Affiliation(s)
- Matthias Spindler
- Department of Medicine, Medical University of Würzburg, Josef-Schneider Strasse 2, 97070 Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
91
|
Gustafson LA, Van Beek JHGM. Activation time of myocardial oxidative phosphorylation in creatine kinase and adenylate kinase knockout mice. Am J Physiol Heart Circ Physiol 2002; 282:H2259-64. [PMID: 12003836 DOI: 10.1152/ajpheart.00264.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our goal was to determine whether mice genetically altered to lack either creatine kinase (M/MtCK(-/-)) or adenylate kinase (AK(-/-)) show altered properties in the dynamic regulation of myocardial oxygen consumption (MVO(2)). We measured contractile function, oxygen consumption, and the mean response time of oxygen consumption to a step increase in heart rate [i.e., mitochondrial response time (t(mito))] in isolated Langendorff-perfused hearts from wild-type (n = 6), M/MtCK(-/-) (n = 6), and AK(-/-) (n = 4) mice. Left ventricular developed pressure was higher in M/MtCK(-/-) hearts (88.2 +/- 6.8 mmHg) and lower in AK(-/-) hearts (46.7 +/- 9.4 mmHg) compared with wild-type hearts (60.7 +/- 10.1 mmHg) at the basal pacing rate. Developed pressure fell slightly when heart rate was increased in all three groups. Basal MVO(2) at 300 beats/min was 19.1 +/- 2.4, 19.4 +/- 1.5, and 16.3 +/- 1.9 micromol x min(-1) x g dry wt(-1) for M/MtCK(-/-), AK(-/-), and wild type, respectively, which increased to 25.5 +/- 3.7, 25.4 +/- 2.6, and 22.0 +/- 2.6 micromol. min(-1) x g(-1), when heart rate was increased to 400 beats/min. The t(mito) was significantly faster in M/MtCK(-/-) hearts: 3.0 +/- 0.3 versus 7.3 +/- 0.6 and 8.0 +/- 0.4 s for M/MtCK(-/-), AK(-/-), and wild-type hearts, respectively. Our results demonstrate that MVO(2) of M/MtCK(-/-) hearts adapts more quickly to an increase in heart rate and thereby support the hypothesis that creatine kinase acts as an energy buffer in the cytosol, which delays the energy-related signal between sites of ATP hydrolysis and mitochondria.
Collapse
Affiliation(s)
- Lori A Gustafson
- Laboratory for Physiology, Institute for Cardiovascular Research, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands.
| | | |
Collapse
|
92
|
Burelle Y, Hochachka PW. Endurance training induces muscle-specific changes in mitochondrial function in skinned muscle fibers. J Appl Physiol (1985) 2002; 92:2429-38. [PMID: 12015357 DOI: 10.1152/japplphysiol.01024.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to investigate the potential role of changes in the apparent K(m) for ADP and in the functional coupling of the creatine (Cr) kinase (CK) system (CK efficiency) in explaining the tighter integration of ATP supply and demand after exercise training. Mitochondrial function was assessed in saponin-skinned fibers from the soleus and the deep red portion of the medial gastrocnemius isolated from trained (T; treadmill running, 5 days/wk, 4 wk) and control (C) female Sprague-Dawley rats. In the soleus, V(max) in the presence of 1 mM ADP was increased by 21% after training (5.9 +/- 0.2 vs. 4.7 +/- 0.4 nmol O(2). min(-1). mg dry wt(-1), P < 0.05). This was accompanied by no change in the K(m) for ADP measured in the absence of Cr (146 +/- 9 vs. 149 +/- 13 microM in T and C, respectively) and in its presence (50 +/- 4 vs. 48 +/- 6 microM in T and C, respectively) and in CK efficiency [K(m) (+Cr)/K(m) (-Cr)]. In contrast, in the red gastrocnemius, training decreased, by 35%, the apparent K(m) for ADP in the absence (83 +/- 5 vs. 129 +/- 9 microM, P < 0.01) of Cr, without affecting V(max) (6.2 +/- 0.4 vs. 6.7 +/- 0.3 nmol O(2). min(-1). mg dry wt(-1) in T and C, respectively) and CK efficiency. These results thus suggest that training induces muscle-specific adaptations of mitochondrial function and that a change in the intrinsic sensitivity of mitochondria to ADP could at least partly explain the tighter integration of ATP and demand commonly observed after training.
Collapse
Affiliation(s)
- Yan Burelle
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
93
|
Jones AM, Carter H, Pringle JSM, Campbell IT. Effect of creatine supplementation on oxygen uptake kinetics during submaximal cycle exercise. J Appl Physiol (1985) 2002; 92:2571-7. [PMID: 12015375 DOI: 10.1152/japplphysiol.01065.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to test the effect of oral creatine (Cr) supplementation on pulmonary oxygen uptake (VO(2)) kinetics during moderate [below ventilatory threshold (VT)] and heavy (above VT) submaximal cycle exercise. Nine subjects (7 men; means +/- SD: age 28 +/- 3 yr, body mass 73.2 +/- 5.6 kg, maximal VO(2) 46.4 +/- 8.0 ml. kg(-1). min(-1)) volunteered to participate in this study. Subjects performed transitions of 6-min duration from unloaded cycling to moderate (80% VT; 8-12 repeats) and heavy exercise (50% change; i.e., halfway between VT and maximal VO(2); 4-6 repeats), both in the control condition and after Cr loading, in a crossover design. The Cr loading regimen involved oral consumption of 20 g/day of Cr monohydrate for 5 days, followed by a maintenance dose of 5 g/day thereafter. VO(2) was measured breath by breath and modeled by using two (moderate) or three (heavy) exponential terms. For moderate exercise, there were no differences in the parameters of the VO(2) kinetic response between control and Cr-loaded conditions. For heavy exercise, the time-based parameters of the VO(2) response were unchanged, but the amplitude of the primary component was significantly reduced with Cr loading (means +/- SE: control 2.00 +/- 0.12 l/min; Cr loaded 1.92 +/- 0.10 l/min; P < 0.05) as was the end-exercise VO(2) (control 2.19 +/- 0.13 l/min; Cr loaded 2.12 +/- 0.14 l/min; P < 0.05). The magnitude of the reduction in submaximal VO(2) with Cr loading was significantly correlated with the percentage of type II fibers in the vastus lateralis (r = 0.87; P < 0.01; n = 7), indicating that the effect might be related to changes in motor unit recruitment patterns or the volume of muscle activated.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Exercise and Sport Science, Manchester Metropolitan University, Alsager ST7 2HL, United Kingdom.
| | | | | | | |
Collapse
|
94
|
Abstract
Common strategies employed for general protein detection include organic dye, silver stain, radiolabeling, reverse stain, fluorescent stain, chemiluminescent stain and mass spectrometry-based approaches. Fluorescence-based protein detection methods have recently surpassed conventional technologies such as colloidal Coomassie blue and silver staining in terms of quantitative accuracy, detection sensitivity, and compatibility with modern downstream protein identification and characterization procedures, such as mass spectrometry. Additionally, specific detection methods suitable for revealing protein post-translational modifications have been devised over the years. These include methods for the detection of glycoproteins, phosphoproteins, proteolytic modifications, S-nitrosylation, arginine methylation and ADP-ribosylation. Methods for the detection of a range of reporter enzymes and epitope tags are now available as well, including those for visualizing beta-glucuronidase, beta-galactosidase, oligohistidine tags and green fluorescent protein. Fluorescence-based and mass spectrometry-based methodologies are just beginning to offer unparalleled new capabilities in the field of proteomics through the performance of multiplexed quantitative analysis. The primary objective of differential display proteomics is to increase the information content and throughput of proteomics studies through multiplexed analysis. Currently, three principal approaches to differential display proteomics are being actively pursued, difference gel electrophoresis (DIGE), multiplexed proteomics (MP) and isotope-coded affinity tagging (ICAT). New multiplexing capabilities should greatly enhance the applicability of the two-dimensional gel electrophoresis technique with respect to addressing fundamental questions related to proteome-wide changes in protein expression and post-translational modification.
Collapse
Affiliation(s)
- Wayne F Patton
- Proteomics Section, Biosciences Department, Molecular Probes, Inc., 4849 Pitchford Avenue, Eugene, OR 97402-9165, USA.
| |
Collapse
|
95
|
Holschneider DP, Scremin OU, Chialvo DR, Chen K, Shih JC. Heart rate dynamics in monoamine oxidase-A- and -B-deficient mice. Am J Physiol Heart Circ Physiol 2002; 282:H1751-9. [PMID: 11959640 PMCID: PMC4075429 DOI: 10.1152/ajpheart.00600.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart rate (HR) dynamics were investigated in mice deficient in monoamine oxidase A and B, whose phenotype includes elevated tissue levels of norepinephrine, serotonin, dopamine, and phenylethylamine. In their home cages, spectral analysis of R-R intervals revealed more pronounced fluctuations at all frequencies in the mutants compared with wild-type controls, with a particular enhancement at 1-4 Hz. No significant genotypic differences in HR variability (HRV) or entropies calculated from Poincaré plots of the R-R intervals were noted. During exposure to the stress of a novel environment, HR increased and HRV decreased in both genotypes. However, mutants, unlike controls, demonstrated a rapid return to baseline HR during the 10-min exposure. Such modulation may result from an enhanced vagal tone, as suggested by the observation that mutants responded to cholinergic blockade with a decrease in HRV and a prolonged tachycardia greater than controls. Monoamine oxidase-deficient mice may represent a useful experimental model for studying compensatory mechanisms responsible for changes in HR dynamics in chronic states of high sympathetic tone.
Collapse
Affiliation(s)
- D P Holschneider
- Department of Psychiatry and the Behavioral Sciences, University of Southern California, Keck School of Medicine, Los Angeles 90089, USA.
| | | | | | | | | |
Collapse
|
96
|
Echegaray M, Rivera MA. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med 2002; 31:919-34. [PMID: 11708401 DOI: 10.2165/00007256-200131130-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The ability to perform well in activities that require muscular and cardiorespiratory endurance is a trait influenced, in a considerable part, by the genetic make-up of individuals. Early studies of performance and recent scans of the human genome have pointed at various candidate genes responsible for the heterogeneity of these phenotypes within the population. Among these are the genes for the various creatine kinase (CK) isoenzyme subunits. CK and phosphocreatine (PCr) form an important metabolic system for temporal and spatial energy buffering in cells with large variations in energy demand. The different CK isoenzyme subunits (CK-M and CK-B) are differentially expressed in the tissues of the body. Although CK-M is the predominant form in both skeletal and cardiac muscle, CK-B is expressed to a greater extent in heart than in skeletal muscle. Studies in humans and mice have shown that the expression of CK-B messenger RNA (mRNA) and the abundance and activity of the CK-MB dimer increase in response to cardiorespiratory endurance training. Increases in muscle tissue CK-B content can be energetically favourable because of its lower Michaelis constant (Km) for ADP. The activity of the mitochondrial isoform of CK (Scmit-CK) has also been significantly and positively correlated to oxidative capacity and to CK-MB activity in muscle. In mice where the CK-M gene has been knocked out, significant increases in fatigue resistance together with cellular adaptations increasing aerobic capacity have been observed. These observations have led to the notion that this enzyme may be responsible for fatigue under normal circumstances, most likely because of the local cell compartment increase in inorganic phosphate concentration. Studies where the Scmit-CK gene was knocked out have helped demonstrate that this isoenzyme is very important for the stimulation of aerobic respiration. Human studies of CK-M gene sequence variation have shown a significant association between a polymorphism, distinguished by the NcoI restriction enzyme, and an increase in cardiorespiratory endurance as indexed by maximal oxygen uptake following 20 weeks of training. In conclusion, there is now evidence at the tissue, cell and molecular level indicating that the CK-PCr system plays an important role in determining the phenotypes of muscular and cardiorespiratory endurance. It is envisioned that newer technologies will help determine how the genetic variability of these genes (and many others) impact on performance and health-related phenotypes.
Collapse
Affiliation(s)
- M Echegaray
- Department of Biology, University of Puerto Rico at Cayey.
| | | |
Collapse
|
97
|
Askenasy N, Koretsky AP. Transgenic livers expressing mitochondrial and cytosolic CK: mitochondrial CK modulates free ADP levels. Am J Physiol Cell Physiol 2002; 282:C338-46. [PMID: 11788345 DOI: 10.1152/ajpcell.00404.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The function of creatine kinase (CK) and its effect on phosphorus metabolites was studied in livers of transgenic mice expressing human ubiquitous mitochondrial CK (CK-Mit) and rat brain CK (CK-B) isoenzymes and their combination. (31)P NMR spectroscopy and saturation transfer were recorded in livers of anesthetized mice to measure high-energy phosphates and hepatic CK activity. CK reaction velocity was related to total enzyme activity irrespective of the isoenzyme expressed, and it increased with increasing concentrations of creatine (Cr). The fluxes mediated by both isoenzymes in both directions (phosphocreatine or ATP synthesis) were equal. Over a 20-fold increase in CK-Mit activity (28-560 micromol. g wet wt(-1). min(-1)), the fraction of phosphorylated Cr increased 1.6-fold. Hepatic free ADP concentrations calculated by assuming equilibrium of the CK-catalyzed reaction in vivo decreased from 84 +/- 9 to 38 +/- 4 nmol/g wet wt. Calculated free ADP levels in mice expressing high levels of CK-B (920-1,635 micromol. g wet wt(-1). min(-1)) were 52 +/- 6 nmol/g wet wt. Mice expressing both isoenzymes had calculated free ADP levels of 36 +/- 4 nmol/g wet wt. These findings indicate that CK-Mit catalyzes its reaction equally well in both directions and can lower hepatic apparent free ADP concentrations.
Collapse
Affiliation(s)
- Nadir Askenasy
- Department of Biological Sciences, Pittsburgh NMR Center for Biomedical Research, and Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. askenasy+@andrew.cmu.edu
| | | |
Collapse
|
98
|
Zoll J, Ventura-Clapier R, Serrurier B, Bigard AX. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle. J Muscle Res Cell Motil 2002; 22:141-7. [PMID: 11519737 DOI: 10.1023/a:1010521108884] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P < 0.001) in hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P < 0.01), while mitochondrial creatine kinase activity and sensitivity of mitochondrial respiration to creatine were not altered. The results of this study demonstrate that hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.
Collapse
Affiliation(s)
- J Zoll
- Unité de Bioénergétique et Environnement, Centre de Recherches du Service de Santé des Armies, La Tronche, France
| | | | | | | |
Collapse
|
99
|
Tsintzas K, Williams C, Constantin-Teodosiu D, Hultman E, Boobis L, Clarys P, Greenhaff P. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: effect of carbohydrate ingestion. J Physiol 2001; 537:305-11. [PMID: 11711582 PMCID: PMC2278942 DOI: 10.1111/j.1469-7793.2001.0305k.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. The aim of this study was to examine the effect of carbohydrate (CHO) ingestion on changes in ATP and phosphocreatine (PCr) concentrations in different muscle fibre types during prolonged running and relate those changes to the degree of glycogen depletion. 2. Five male subjects performed two runs at 70 % maximum oxygen uptake (.V(O2,max)), 1 week apart. Each subject ingested 8 ml (kg body mass (BM))(-1) of either a placebo (Con trial) or a 5.5 % CHO solution (CHO trial) immediately before each run and 2 ml (kg BM)(-1) every 20 min thereafter. In the Con trial, the subjects ran to exhaustion (97.0 +/- 6.7 min). In the CHO trial, the run was terminated at the time coinciding with exhaustion in the Con trial. Muscle samples were obtained from the vastus lateralis before and after each trial. 3. Carbohydrate ingestion did not affect ATP concentrations. However, it attenuated the decline in PCr concentration by 46 % in type I fibres (CHO: 20 +/- 8 mmol (kg dry matter (DM))(-1); Con: 34 +/- 6 mmol (kg DM)(-1); P < 0.05) and by 36 % in type II fibres (CHO: 30 +/- 5 mmol (kg DM)(-1); Con: 48 +/- 6 mmol (kg DM)(-1); P < 0.05). 4. A 56 % reduction in glycogen utilisation in type I fibres was observed in CHO compared with Con (117 +/- 39 vs. 240 +/- 32 mmol glucosyl units (kg DM)(-1), respectively; P < 0.01), but no difference was observed in type II fibres. 5. It is proposed that CHO ingestion during exhaustive running attenuates the decline in oxidative ATP resynthesis in type I fibres, as indicated by sparing of both PCr and glycogen breakdown. The CHO-induced sparing of PCr, but not glycogen, in type II fibres may reflect differential recruitment and/or role of PCr between fibre types.
Collapse
Affiliation(s)
- K Tsintzas
- Human Muscle Metabolism Research Group, Loughborough University, Loughborough LE11 3TU, UK.
| | | | | | | | | | | | | |
Collapse
|
100
|
Leclerc N, Ribera F, Zoll J, Warter JM, Poindron P, Lampert E, Borg J. Selective changes in mitochondria respiratory properties in oxidative or glycolytic muscle fibers isolated from G93AhumanSOD1 transgenic mice. Neuromuscul Disord 2001; 11:722-7. [PMID: 11595514 DOI: 10.1016/s0960-8966(01)00240-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cases of familial amyotrophic lateral sclerosis (FALS) are associated with mutations in cytosolic copper, zinc superoxide dismutase (SOD1). Total SOD activity and functional mitochondrial properties were studied in muscles and nervous tissues of control and transgenic mice mimicking the disease. It was found that total SOD activity was lower in nervous tissues than in muscles in both transgenic and control mice. In addition SOD activity increased during progression of disease in muscle but not in nervous tissue of transgenic mice. Maximal oxygen consumption and apparent Km for ADP were decreased in mitochondria from transgenic soleus (an oxidative muscle). However there was no difference between control and transgenic mice in respiratory parameters of mitochondria in the EDL muscle (a glycolytic muscle). These findings indicate that oxidative stress due to SOD1 mutations could alter energy metabolism in FALS mice, thereby affecting primarily oxidative muscle of the limbs, independently of motoneuron loss.
Collapse
Affiliation(s)
- N Leclerc
- Laboratoire de Pathologie des Communications entre Cellules Nerveuses et Musculaires, UPRES 2308, Université Louis Pasteur, Centre de Recherches Pharmaceutiques, BP24, 74 route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|