51
|
Lezhneva L, Kuras R, Ephritikhine G, de Vitry C. A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6f complex in arabidopsis chloroplasts. J Biol Chem 2008; 283:24608-16. [PMID: 18593701 PMCID: PMC3259826 DOI: 10.1074/jbc.m803869200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/30/2008] [Indexed: 11/06/2022] Open
Abstract
We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.
Collapse
Affiliation(s)
- Lina Lezhneva
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Richard Kuras
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Geneviève Ephritikhine
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Catherine de Vitry
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
52
|
Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, Lybrand T, McKay J, Ong HC, Sims E, Rocap G. Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES293 (West Pacific) strains. BMC Genomics 2008; 9:211. [PMID: 18462506 PMCID: PMC2410131 DOI: 10.1186/1471-2164-9-211] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/08/2008] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. RESULTS H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date. CONCLUSION The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture, gene content and evolution within the stramenopile cluster.
Collapse
MESH Headings
- Algal Proteins/genetics
- Amino Acid Sequence
- Atlantic Ocean
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Conserved Sequence
- DNA, Algal/genetics
- DNA, Algal/isolation & purification
- DNA, Chloroplast/genetics
- DNA, Chloroplast/isolation & purification
- Furans
- Genome, Chloroplast
- Molecular Sequence Data
- Pacific Ocean
- Phaeophyceae/classification
- Phaeophyceae/genetics
- Phaeophyceae/isolation & purification
- Polymorphism, Single Nucleotide
- Recombinases/genetics
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA/methods
- Sequence Homology, Amino Acid
- Species Specificity
- Thiophenes
Collapse
Affiliation(s)
- Rose Ann Cattolico
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| | - Michael A Jacobs
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Yang Zhou
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Jean Chang
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Melinda Duplessis
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
| | - Terry Lybrand
- Vanderbilt University Center for Structural Biology, 5142 Biosci/MRB III, Nashville, TN 37232-8725, USA
| | - John McKay
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| | - Han Chuan Ong
- Department of Biology, University of Washington, Box 355325, Seattle, WA 98195-5325, USA
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
- Division of Science, Lyon College, 2300 Highland Rd, Batesville, AR 72501-3629, USA
| | - Elizabeth Sims
- Department of Medicine, University of Washington, Box 352145, Seattle WA 98195-2145, USA
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195-7940, USA
| |
Collapse
|
53
|
|
54
|
Kuras R, Saint-Marcoux D, Wollman FA, de Vitry C. A specific c-type cytochrome maturation system is required for oxygenic photosynthesis. Proc Natl Acad Sci U S A 2007; 104:9906-10. [PMID: 17535914 PMCID: PMC1887560 DOI: 10.1073/pnas.0702340104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygenic photosynthesis is an important bioenergetic process that maintains the Earth's atmosphere and allows carbon fixation. A critical enzyme in this process, the cytochrome b(6)f complex, differs from other protein complexes of the same family by an unusual covalently attached cofactor chemically defined as a c' heme. We have identified a set of pioneer proteins that carry the biogenesis of this c' heme and started their characterization. They are encoded by the genomes of all organisms performing oxygenic photosynthesis, whatever their phylogenetic distances. These proteins are thus among the few that distinguish photosynthetic cells evolving oxygen from other types of living cells.
Collapse
Affiliation(s)
- Richard Kuras
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Denis Saint-Marcoux
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Catherine de Vitry
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
55
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
56
|
Rochaix JD. The Role of Nucleus- and Chloroplast-Encoded Factors in the Synthesis of the Photosynthetic Apparatus. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-1-4020-4061-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
57
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
|
59
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 2006. [PMID: 16830097 DOI: 10.1007/s00239‐005‐0254‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
60
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. J Mol Evol 2006; 63:194-207. [PMID: 16830097 DOI: 10.1007/s00239-005-0254-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genome, Plant/genetics
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Phylogeny
- Plastids/genetics
- RNA Editing/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanaceae/genetics
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
61
|
Feissner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW, Kranz RG. Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli. Mol Microbiol 2006; 60:563-77. [PMID: 16629661 DOI: 10.1111/j.1365-2958.2006.05132.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic analysis has indicated that the system II pathway for c-type cytochrome biogenesis in Bordetella pertussis requires at least four biogenesis proteins (CcsB, CcsA, DsbD and CcsX). In this study, the eight genes (ccmA-H) associated with the system I pathway in Escherichia coli were deleted. Using B. pertussis cytochrome c4 as a reporter for cytochromes c assembly, it is demonstrated that a single fused ccsBA polypeptide can replace the function of the eight system I genes in E. coli. Thus, the CcsB and CcsA membrane complex of system II is likely to possess the haem delivery and periplasmic cytochrome c-haem ligation functions. Using recombinant system II and system I, both under control of IPTG, we have begun to study the capabilities and characteristics of each system in the same organism (E. coli). The ferrochelatase inhibitor N-methylprotoporphyrin was used to modulate haem levels in vivo and it is shown that system I can use endogenous haem at much lower levels than system II. Additionally, while system I encodes a covalently bound haem chaperone (holo-CcmE), no covalent intermediate has been found in system II. It is shown that this allows system I to use holo-CcmE as a haem reservoir, a capability system II does not possess.
Collapse
Affiliation(s)
- Robert E Feissner
- Washington University, Department of Biology, Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
62
|
Lennartz K, Bossmann S, Westhoff P, Bechtold N, Meierhoff K. HCF153, a novel nuclear-encoded factor necessary during a post-translational step in biogenesis of the cytochrome bf complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:101-12. [PMID: 16367957 DOI: 10.1111/j.1365-313x.2005.02605.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have isolated the nuclear photosynthetic mutant hcf153 which shows reduced accumulation of the cytochrome b(6)f complex. The levels and processing patterns of the RNAs encoding the cytochrome b(6)f subunits are unaltered in the mutant. In vivo protein labeling experiments and analysis of polysome association revealed normal synthesis of the large chloroplast-encoded cytochrome b(6)f subunits. The mutation resulted from a T-DNA insertion and the affected nuclear gene was cloned. HCF153 encodes a 15 kDa protein containing a chloroplast transit peptide. Sequence similarity searches revealed that the protein is restricted to higher plants. A HCF153-Protein A fusion construct introduced into hcf153 mutant plants was able to substitute the function of the wild-type protein. Fractionation of intact chloroplasts from these transgenic plants suggests that most or all of the fusion protein is tightly associated with the thylakoid membrane. Our data show that the identified factor is a novel protein that could be involved in a post-translational step during biogenesis of the cytochrome b(6)f complex. It is also possible that HCF153 is necessary for translation of one of the very small subunits of the cytochrome b(6)f complex.
Collapse
Affiliation(s)
- Katja Lennartz
- Heinrich-Heine-Universität, Institut für Entwicklungs und Molekularbiologie der Pflanzen, Universitätsstrabe 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
63
|
Dühring U, Irrgang KD, Lünser K, Kehr J, Wilde A. Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:3-11. [PMID: 16364235 DOI: 10.1016/j.bbabio.2005.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 01/02/2023]
Abstract
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI). With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Deltaycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Deltaycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.
Collapse
Affiliation(s)
- Ulf Dühring
- Institute of Biology, Humboldt University Berlin, Chausseestr. 117, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
64
|
Brenner WG, Romanov GA, Köllmer I, Bürkle L, Schmülling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:314-33. [PMID: 16212609 DOI: 10.1111/j.1365-313x.2005.02530.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytokinins are hormones that regulate many developmental and physiological processes in plants. Recent work has revealed that the cytokinin signal is transduced by two-component systems to the nucleus where target genes are activated. Most of the rapid transcriptional responses are unknown. We measured immediate-early and delayed cytokinin responses through genome-wide expression profiling with the Affymetrix ATH1 full genome array (Affymetrix Inc., Santa Clara, CA, USA). Fifteen minutes after cytokinin treatment of 5-day-old Arabidopsis seedlings, 71 genes were upregulated and 11 genes were downregulated. Immediate-early cytokinin response genes include a high portion of transcriptional regulators, among them six transcription factors that had previously not been linked to cytokinin. Five plastid transcripts were rapidly regulated as well, indicating a rapid transfer of the signal to plastids or direct perception of the cytokinin signal by plastids. After 2 h of cytokinin treatment genes coding for transcriptional regulators, signaling proteins, developmental and hormonal regulators, primary and secondary metabolism, energy generation and stress reactions were over-represented. A significant number of the responding genes are known to regulate light (PHYA, PSK1, CIP8, PAT1, APRR), auxin (Aux/IAA), ethylene (ETR2, EIN3, ERFs/EREBPs), gibberellin (GAI, RGA1, GA20 oxidase), nitrate (NTR2, NIA) and sugar (STP1, SUS1) dependent processes, indicating intense crosstalk with environmental cues, other hormones and metabolites. Analysis of cytokinin-deficient 35S:AtCKX1 transgenic seedlings has revealed additional, long-lasting cytokinin-sensitive changes of transcript abundance. Comparative overlay-analysis with the software tool mapman identified previously unknown cytokinin-sensitive metabolic genes, for example in the metabolism of trehalose-6-phosphate. Taken together, we present a genome-wide view of changes in cytokinin-responsive transcript abundance of genes that might be functionally relevant for the many biological processes that are governed by cytokinins.
Collapse
Affiliation(s)
- Wolfram G Brenner
- Max Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
65
|
Feissner RE, Beckett CS, Loughman JA, Kranz RG. Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis. J Bacteriol 2005; 187:3941-9. [PMID: 15937156 PMCID: PMC1151747 DOI: 10.1128/jb.187.12.3941-3949.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis of Bordetella pertussis was used to discover mutations in the cytochrome c biogenesis pathway called system II. Using a tetramethyl-p-phenylenediamine cytochrome c oxidase screen, 27 oxidase-negative mutants were isolated and characterized. Nine mutants were still able to synthesize c-type cytochromes and possessed insertions in the genes for cytochrome c oxidase subunits (ctaC, -D, and -E), heme a biosynthesis (ctaB), assembly of cytochrome c oxidase (sco2), or ferrochelatase (hemZ). Eighteen mutants were unable to synthesize all c-type cytochromes. Seven of these had transposons in dipZ (dsbD), encoding the transmembrane thioreduction protein, and all seven mutants were corrected for cytochrome c assembly by exogenous dithiothreitol, which was consistent with the cytochrome c cysteinyl residues of the CXXCH motif requiring periplasmic reduction. The remaining 11 insertions were located in the ccsBA operon, suggesting that with the appropriate thiol-reducing environment, the CcsB and CcsA proteins comprise the entire system II biosynthetic pathway. Antiserum to CcsB was used to show that CcsB is absent in ccsA mutants, providing evidence for a stable CcsA-CcsB complex. No mutations were found in the genes necessary for disulfide bond formation (dsbA or dsbB). To examine whether the periplasmic disulfide bond pathway is required for cytochrome c biogenesis in B. pertussis, a targeted knockout was made in dsbB. The DsbB- mutant makes holocytochromes c like the wild type does and secretes and assembles the active periplasmic alkaline phosphatase. A dipZ mutant is not corrected by a dsbB mutation. Alternative mechanisms to oxidize disulfides in B. pertussis are analyzed and discussed.
Collapse
Affiliation(s)
- Robert E Feissner
- Washington University, Department of Biology, Campus Box 1137, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
66
|
Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z. Chlamydomonas reinhardtii at the crossroads of genomics. EUKARYOTIC CELL 2004; 2:1137-50. [PMID: 14665449 PMCID: PMC326643 DOI: 10.1128/ec.2.6.1137-1150.2003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305. Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Page MLD, Hamel PP, Gabilly ST, Zegzouti H, Perea JV, Alonso JM, Ecker JR, Theg SM, Christensen SK, Merchant S. A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome bf Complex in Arabidopsis Chloroplasts. J Biol Chem 2004; 279:32474-82. [PMID: 15159384 DOI: 10.1074/jbc.m404285200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-type cytochromes are defined by the occurrence of heme covalently linked to the polypeptide via thioether bonds between heme and the cysteine sulfhydryls in the CXXCH motif of apocytochrome. Maintenance of apocytochrome sulfhydryls in a reduced state is a prerequisite for covalent ligation of heme to the CXXCH motif. In bacteria, a thiol disulfide transporter and a thioredoxin are two components in a thio-reduction pathway involved in c-type cytochrome assembly. We have identified in photosynthetic eukaryotes nucleus-encoded homologs of a prokaryotic thiol disulfide transporter, CcdA, which all display an N-terminal extension with respect to their bacterial counterparts. The extension of Arabidopsis CCDA functions as a targeting sequence, suggesting a plastid site of action for CCDA in eukaryotes. Using PhoA and LacZ as topological reporters, we established that Arabidopsis CCDA is a polytopic protein with within-membrane strictly conserved cysteine residues. Insertional mutants in the Arabidopsis CCDA gene were identified, and loss-of-function alleles were shown to impair photosynthesis because of a defect in cytochrome b(6)f accumulation, which we attribute to a block in the maturation of holocytochrome f, whose heme binding domain resides in the thylakoid lumen. We postulate that plastid cytochrome c maturation requires CCDA, thioredoxin HCF164, and other molecules in a membrane-associated trans-thylakoid thiol-reducing pathway.
Collapse
Affiliation(s)
- M L Dudley Page
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ahuja U, Thöny-Meyer L. Dynamic features of a heme delivery system for cytochrome C maturation. J Biol Chem 2003; 278:52061-70. [PMID: 14532274 DOI: 10.1074/jbc.m310077200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, heme is delivered to cytochrome c in a process involving eight proteins encoded by the ccmABCDEFGH operon. Heme is transferred to the periplasmic heme chaperone CcmE by CcmC and from there to apocytochrome c. The role of CcmC was investigated by random as well as site-directed mutagenesis. Important amino acids were all located in periplasmic domains of the CcmC protein that has six membrane-spanning helices. Besides the tryptophan-rich motif and two conserved histidines, new residues were identified as functionally important. Mutants G111S and H184Y had a clear defect in CcmC-CcmE interaction, did not transfer heme to CcmE, and lacked c-type cytochromes. Conversely, mutants D47N, R55P, and S176Y were affected neither in interaction with nor in delivery of heme to CcmE but produced less than 10% c-type cytochromes. A strain carrying a CcmCE fusion had a similar phenotype, suggesting that CcmC is important not only for heme transfer to CcmE but also for its delivery to cytochrome c. Co-immunoprecipitation of CcmC with CcmF was not detectable although CcmE co-precipitated individually with CcmC and CcmF. This contradicts the idea of CcmCEF supercomplex formation. Our results favor a model that predicts CcmE to shuttle between CcmC and CcmF for heme delivery.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
69
|
Dreyfuss BW, Hamel PP, Nakamoto SS, Merchant S. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. J Biol Chem 2003; 278:2604-13. [PMID: 12427747 DOI: 10.1074/jbc.m208652200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ccs1 gene, encoding a highly divergent novel component of a system II type c-type cytochrome biogenesis pathway, is encoded by the previously defined CCS1 locus in Chlamydomonas reinhardtii. phoA and lacZalpha bacterial topological reporters were used to deduce a topological model of the Synechocystis sp. 6803 Ccs1 homologue, CcsB. CcsB, and therefore by analogy Ccs1, possesses a large soluble lumenal domain at its C terminus that is tethered in the thylakoid membrane by three closely spaced transmembrane domains in the N-terminal portion of the protein. Molecular analysis of ccs1 alleles reveals that the entire C-terminal soluble domain is essential for Ccs1 function and that a stromal loop appears to be important in vivo, at least for maintenance of Ccs1. Site-directed mutational analysis reveals that a single histidine (His(274)) within the last transmembrane domain, preceding the large lumenal domain, is required for c-type cytochrome assembly, whereas an invariant cysteine residue (Cys(199)) is shown to be non-essential. Ccs1 is proposed to interact with other Ccs components based on its reduced accumulation in ccs2, ccs3, ccs4, and ccsA strains.
Collapse
Affiliation(s)
- Beth Welty Dreyfuss
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
70
|
Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S. Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem 2003; 278:2593-603. [PMID: 12427766 DOI: 10.1074/jbc.m208651200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three distinct systems (I, II, and III) for catalysis of heme attachment to c-type apocytochromes are known. The CcsA and Ccs1 proteins are required in system II for the assembly of bacterial and plastid cytochromes c. A tryptophan-rich signature motif (WWD), also occurring in CcmC and CcmF found in system I, and three histidinyl residues, all strictly conserved in CcsA suggest a function in heme handling. Topological analysis of plastid CcsA in bacteria using the PhoA and LacZalpha reporters placed the WWD motif, the conserved residues His(212) and His(347) on the lumen side of the membrane, whereas His(309) was assigned a location on the stromal side. Functional analysis of CcsA through site-directed mutagenesis enabled the designation of the initiation codon of the ccsA gene and established the functional importance of the WWD signature motif and the absolute requirement of all three histidines for the assembly of plastid c-type cytochromes. In a ccsA mutant, a 200-kDa Ccs1-containing complex is absent from solubilized thylakoid membranes, suggesting that CcsA operates together with Ccs1. We propose a model where the WWD motif and histidine residues function in relaying heme from stroma to lumen and we postulate the existence of a cytochrome c assembly machinery containing CcsA, Ccs1 and additional components.
Collapse
Affiliation(s)
- Patrice P Hamel
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
71
|
Functional Analysis of Plastid Genes through Chloroplast Reverse Genetics in Chlamydomonas. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-007-1038-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
72
|
Pisa R, Stein T, Eichler R, Gross R, Simon J. The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase. Mol Microbiol 2002; 43:763-70. [PMID: 11929530 DOI: 10.1046/j.1365-2958.2002.02784.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytochrome c nitrite reductase complex (NrfHA) is the terminal enzyme in the electron transport chain catalysing nitrite respiration of Wolinella succinogenes. The catalytic subunit NrfA is a pentahaem cytochrome c containing an active site haem group which is covalently bound via the cysteine residues of a unique CWTCK motif. The lysine residue serves as the axial ligand of the haem iron. The other four haem groups of NrfA are bound by conventional haem-binding motifs (CXXCH). The nrfHAIJ locus was restored on the genome of the W. succinogenes DeltanrfAIJ deletion mutant by integration of a plasmid, thus enabling the expression of modified alleles of nrfA and nrfI. A mutant (K134H) was constructed which contained a nrfA gene encoding a CWTCH motif instead of CWTCK. NrfA of strain K134H was found to be synthesized with five bound haem groups, as judged by matrix-assisted laser-desorption/ionization (MALDI) mass spectrometry. Its nitrite reduction activity with reduced benzyl viologen was 40% of the wild-type activity. Ammonia was formed as the only product of nitrite reduction. The mutant did not grow by nitrite respiration and its electron transport activity from formate to nitrite was 5% of that of the wild-type strain. The predicted nrfI gene product is similar to proteins involved in system II cytochrome c biogenesis. A mutant of W. succinogenes (stopI) was constructed that contained a nrfHAIJ gene cluster with the nrfI codons 47 and 48 altered to stop codons. The NrfA protein of this mutant did not catalyse nitrite reduction and lacked the active site haem group, whereas the other four haem groups were present. Mutant (K134H/stopI) which contained the K134H modification in NrfA in addition to the inactivated nrfI gene had essentially the same properties as strain K134H. NrfA from strain K134H/stopI contained five haem groups. It is concluded that NrfI is involved in haem attachment to the CWTCK motif in NrfA but not to any of the CXXCH motifs. The nrfI gene is obviously dispensable for maturation of a modified NrfA protein containing a CWTCH motif instead of CWTCK. Therefore, NrfI might function as a specific haem lyase that recognizes the active site lysine residue of NrfA. A similar role has been proposed for NrfE, F and G of Escherichia coli, although these proteins share no overall sequence similarity to NrfI and belong to system I cytochrome c biogenesis, which differs fundamentally from system II.
Collapse
Affiliation(s)
- René Pisa
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
73
|
|
74
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
75
|
Hoch U, Ortiz De Montellano PR. Covalently linked heme in cytochrome p4504a fatty acid hydroxylases. J Biol Chem 2001; 276:11339-46. [PMID: 11139583 DOI: 10.1074/jbc.m009969200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three independent experimental methods, liquid chromatography, denaturing gel electrophoresis with heme staining, and mass spectrometry, establish that the CYP4A class of enzymes has a covalently bound heme group even though the heme is not cross-linked to the protein in other P450 enzymes. Covalent binding has been demonstrated for CYP4A1, -4A2, -4A3, -4A8, and -4A11 heterologously expressed in Escherichia coli. However, the covalent link is also present in CYP4A1 isolated from rat liver and is not an artifact of heterologous expression. The extent of heme covalent binding in the proteins as isolated varies and is substoichiometric. In CYP4A3, the heme is attached to the protein via an ester link to glutamic acid residue 318, which is on the I-helix, and is predicted to be within the active site. This is the first demonstration that a class of cytochrome P450 enzymes covalently binds their prosthetic heme group.
Collapse
Affiliation(s)
- U Hoch
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
76
|
Abstract
It is generally agreed that cytochrome c biogenesis requires that the apocytochrome and heme be transported separately to their site of function and assembly. In bacteria, this is outside the cytoplasmic membrane, whereby the apocytochromes c use sec-dependent signals for their translocation. Two different hypotheses have recently emerged as to how heme is exported: one involves an helABCD-encoded ATP binding cassette (ABC) transporter complex and the second does not. The second hypothesis concludes that an (HelAB)2 heterodimeric ABC transporter does not transport heme but some other substrate for cytochrome c biogenesis. The evidence supporting each of these two hypotheses and the role of this ABC transporter is discussed.
Collapse
Affiliation(s)
- B S Goldman
- Life Science Informatics, Monsanto Company, St Louis, MO 63167, USA.
| | | |
Collapse
|
77
|
Proteins Involved in Biogenesis of the Thylakoid Membrane. REGULATION OF PHOTOSYNTHESIS 2001. [DOI: 10.1007/0-306-48148-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
78
|
Beckett CS, Loughman JA, Karberg KA, Donato GM, Goldman WE, Kranz RG. Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model. Mol Microbiol 2000; 38:465-81. [PMID: 11069671 DOI: 10.1046/j.1365-2958.2000.02174.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.
Collapse
Affiliation(s)
- C S Beckett
- Departments of Biology, and Molecular Microbiology, Campus Box 1137, Washington University, One Brookings Drive, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
79
|
Schulz H, Pellicioli EC, Thöny-Meyer L. New insights into the role of CcmC, CcmD and CcmE in the haem delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol Microbiol 2000; 37:1379-88. [PMID: 10998170 DOI: 10.1046/j.1365-2958.2000.02083.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maturation of c-type cytochromes in Escherichia coli is a complex process requiring eight membrane proteins encoded by the ccmABCDEFGH operon. CcmE is a mediator of haem delivery. It binds haem transiently at a conserved histidine residue and releases it for directed transfer to apocytochrome c. CcmC, an integral membrane protein with six transmembrane helices, is necessary and sufficient to incorporate haem covalently into CcmE. CcmC contains a highly conserved tryptophan-rich motif, WGXXWXWD, in its second periplasmic loop. Here, we present the results of a systematic mutational analysis of this motif. Changes of the non-conserved T121 and W122 to A resulted in wild-type CcmC activity. Changes of the single amino acids W119A, G120A, W123A, W125I and D126A or of the spacing within the motif by deleting V124 (DeltaV124) inhibited the covalent haem incorporation into CcmE. Enhanced expression of ccmD suppressed this mutant phenotype by increasing the amounts of CcmC and CcmE polypeptides in the membrane. The DeltaV124 mutant showed the strongest defect of all single mutants. Mutants in which six residues of the tryptophan-rich motif were changed showed no residual CcmC activity. This phenotype was independent of the level of ccmD expression. Our results demonstrate the functional importance of the tryptophan-rich motif for haem transfer to CcmE. We propose that the three membrane proteins CcmC, CcmD and CcmE interact directly with each other, establishing a cytoplasm to periplasm haem delivery pathway for cytochrome c maturation.
Collapse
Affiliation(s)
- H Schulz
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH 8092 Zürich, Switzerland
| | | | | |
Collapse
|
80
|
Abstract
The synthesis of holocytochromes in plastids is a catalyzed process. Several proteins, including plastid CcsA, Ccs1, possibly CcdA and a thioredoxin, plus at least two additional Ccs factors, are required in sub-stoichiometric amounts for the conversion of apocytochromes f and c(6) to their respective holoforms. CcsA, proposed to be a heme delivery factor, and Ccs1, an apoprotein chaperone, are speculated to interact physically in vivo. The formation of holocytochrome b(6) is a multi-step pathway in which at least four, as yet unidentified, Ccb factors are required for association of the b(H) heme. The specific requirement of reduced heme for in vitro synthesis of a cytochrome b(559)-derived holo-beta(2) suggests that cytochrome b synthesis in PSII might also be catalyzed in vivo.
Collapse
Affiliation(s)
- S S Nakamoto
- Department of Chemistry and Biochemistry, University of California, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
81
|
Abstract
Cytochromes of c-type contain covalently bound haem and in bacteria are located on the periplasmic side of the cytoplasmic membrane. More than eight different gene products have been identified as being specifically required for the synthesis of cytochromes c in Gram-negative bacteria. Corresponding genes are not found in the genome sequences of Gram-positive bacteria. Using two random mutagenesis approaches, we have searched for cytochrome c biogenesis genes in the Gram-positive bacterium Bacillus subtilis. Three genes, resB, resC and ccdA, were identified. CcdA has been found previously and is required for a late step in cytochrome c synthesis and also plays a role in spore synthesis. No function has previously been assigned for ResB and ResC but these predicted membrane proteins show sequence similarity to proteins required for cytochrome c synthesis in chloroplasts. Attempts to inactivate resB and resC in B. subtilis have indicated that these genes are essential for growth. We demonstrate that various nonsense mutations in resB or resC can block synthesis of cytochromes c with no effect on other types of cytochromes and little effect on sporulation and growth. The results strongly support the recent proposal that Gram-positive bacteria, cyanobacteria, epsilon-proteobacteria, and chloroplasts have a similar type of machinery for cytochrome c synthesis (System II), which is very different from those of most Gram-negative bacteria (System I) and mitochondria (System III).
Collapse
Affiliation(s)
- N E Le Brun
- Department of Microbiology, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
82
|
Mäenpää P, Gonzalez EB, Chen L, Khan MS, Gray JC, Aro EM. The ycf 9 (orf 62) gene in the plant chloroplast genome encodes a hydrophobic protein of stromal thylakoid membranes. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:375-82. [PMID: 10938845 DOI: 10.1093/jexbot/51.suppl_1.375] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There are still some open reading frames, orfs, with unknown function in the higher plant chloroplast genome. Of these conserved orfs, designated as ycfs (hypothetical chloroplast open reading frames), one is ycf 9 (orf 62) in the transcription unit with the psbC and psbD genes. The aim of this work was to investigate the function of ycf 9 by insertional inactivation of the gene with a selectable marker cassette, consisting of the aadA coding region connected to the trc promoter and rrnB terminator. This cassette was inserted 19 bp downstream from the start of the coding region of the tobacco ycf 9 gene. Two DNA constructs with the aadA cassette in opposite orientations were precipitated on 1 micron gold particles and delivered into leaves of Nicotiana tabacum, cultivar Samsun, by the biolistic method. Spectinomycin-resistant plants regenerated following bombardment with only the construct containing the aadA gene in the opposite orientation as ycf 9. In spite of several subsequent regeneration cycles on spectinomycin, the transplastomic plants did not reach homoplasmicity. This suggests that the ycf 9 gene product is essential for chloroplast function. Using a polyclonal antibody raised against the inner part of the gene product, the polypeptide was localized in the stromal thylakoid membranes of chloroplasts.
Collapse
Affiliation(s)
- P Mäenpää
- Department of Biology, University of Turku, Finland.
| | | | | | | | | | | |
Collapse
|
83
|
Simon J, Gross R, Einsle O, Kroneck PM, Kröger A, Klimmek O. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol 2000; 35:686-96. [PMID: 10672190 DOI: 10.1046/j.1365-2958.2000.01742.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolinella succinogenes can grow by anaerobic respiration with nitrate or nitrite using formate as electron donor. Two forms of nitrite reductase were isolated from the membrane fraction of W. succinogenes. One form consisted of a 58 kDa polypeptide (NrfA) that was identical to the periplasmic nitrite reductase. The other form consisted of NrfA and a 22 kDa polypeptide (NrfH). Both forms catalysed nitrite reduction by reduced benzyl viologen, but only the dimeric form catalysed nitrite reduction by dimethylnaphthoquinol. Liposomes containing heterodimeric nitrite reductase, formate dehydrogenase and menaquinone catalysed the electron transport from formate to nitrite; this was coupled to the generation of an electrochemical proton potential (positive outside) across the liposomal membrane. It is concluded that the electron transfer from menaquinol to the catalytic subunit (NrfA) of W. succinogenes nitrite reductase is mediated by NrfH. The structural genes nrfA and nrfH were identified in an apparent operon (nrfHAIJ) with two additional genes. The gene nrfA encodes the precursor of NrfA carrying an N-terminal signal peptide (22 residues). NrfA (485 residues) is predicted to be a hydrophilic protein that is similar to the NrfA proteins of Sulfurospirillum deleyianum and of Escherichia coli. NrfH (177 residues) is predicted to be a membrane-bound tetrahaem cytochrome c belonging to the NapC/NirT family. The products of nrfI and nrfJ resemble proteins involved in cytochrome c biogenesis. The C-terminal third of NrfI (902 amino acid residues) is similar to CcsA proteins from Gram-positive bacteria, cyanobacteria and chloroplasts. The residual N-terminal part of NrfI resembles Ccs1 proteins. The deduced NrfJ protein resembles the thioredoxin-like proteins (ResA) of Helicobacter pylori and of Bacillus subtilis, but lacks the common motif CxxC of ResA. The properties of three deletion mutants of W. succinogenes (DeltanrfJ, DeltanrfIJ and DeltanrfAIJ) were studied. Mutants DeltanrfAIJ and DeltanrfIJ did not grow with nitrite as terminal electron acceptor or with nitrate in the absence of NH4+ and lacked nitrite reductase activity, whereas mutant DeltanrfJ showed wild-type properties. The NrfA protein formed by mutant DeltanrfIJ seemed to lack part of the haem C, suggesting that NrfI is involved in NrfA maturation.
Collapse
Affiliation(s)
- J Simon
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Monde RA, Zito F, Olive J, Wollman FA, Stern DB. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:61-72. [PMID: 10652151 DOI: 10.1046/j.1365-313x.2000.00653.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A variety of post-transcriptional mechanisms govern the synthesis and assembly of photosynthetic protein complexes in chloroplasts. To test whether such mechanisms are conserved between photosynthetic algae and vascular plants, we have interrupted the chloroplast petA, petB and petD genes of tobacco, which encode three subunits of the cytochrome b6/f complex, and compared our results to those previously obtained with Chlamydomonas reinhardtii. As expected, the mutants exhibited high chlorophyll fluorescence, consistent with the loss of a functional cytochrome b6/f complex. Unlike the corresponding mutants of Chlamydomonas, however, cytochrome f was barely detectable in the DeltapetB or DeltapetD mutants. The amounts of petB- and petD-containing mRNAs were reduced in the mutants compared to wild-type plants, but the remaining mRNA was normally associated with polysomes. In contrast, there was a decrease in polysome association of the polycistronic petA mRNA in the DeltapetB and DeltapetD mutants, suggesting that the synthesis of cytochrome f may be decreased in the absence of cytochrome b6 or SUIV. These results are discussed in light of the translational autoregulation model that has been proposed for cytochrome b6/f complex assembly in Chlamydomonas.
Collapse
Affiliation(s)
- R A Monde
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Tower Road, Ithaca, NY 148534, USA
| | | | | | | | | |
Collapse
|
85
|
Tichy M, Vermaas W. Accumulation of pre-apocytochrome f in a Synechocystis sp. PCC 6803 mutant impaired in cytochrome c maturation. J Biol Chem 1999; 274:32396-401. [PMID: 10542282 DOI: 10.1074/jbc.274.45.32396] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation involves heme transport and covalent attachment of heme to the apoprotein. The 5' end of the ccsB gene, which is involved in the maturation process and resembles the ccs1 gene from Chlamydomonas reinhardtii, was replaced by a chloramphenicol resistance cartridge in the cyanobacterium Synechocystis sp. PCC 6803. The resulting Delta(M1-A24) mutant lacking the first 24 ccsB codons grew only under anaerobic conditions. The mutant retained about 20% of the wild-type amount of processed cytochrome f with heme attached, apparently assembled in a functional cytochrome b(6)f complex. Moreover, the mutant accumulated unprocessed apocytochrome f in its membrane fraction. A pseudorevertant was isolated that regained the ability to grow under aerobic conditions. The locus of the second-site mutation was mapped to ccsB, and the mutation resulted in the formation of a new potential start codon in the intergenic region, between the chloramphenicol resistance marker and ccsB, in frame with the remaining part of ccsB. In this pseudorevertant the amount of holocyt f increased, whereas that of unprocessed apocytochrome f decreased. We suggest that the original deletion mutant Delta(M1-A24) expresses an N-terminally truncated version of the protein. The stable accumulation of unprocessed apocytochrome f in membranes of the Delta(M1-A24) mutant may be explained by its association with truncated and only partially functional CcsB protein resulting in protection from degradation. Our attempt to delete the first 244 codons of ccsB in Synechocystis sp. PCC 6803 was not successful, suggesting that this would lead to a lack of functional cytochrome b(6)f complex. The results suggest that the CcsB protein is an apocytochrome chaperone, which together with CcsA may constitute part of cytochrome c lyase.
Collapse
Affiliation(s)
- M Tichy
- Department of Plant Biology, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | |
Collapse
|
86
|
Cabrejos ME, Zhao HL, Guacucano M, Bueno S, Levican G, Garcia E, Jedlicki E, Holmes DS. IST1 insertional inactivation of the resB gene: implications for phenotypic switching in Thiobacillus ferrooxidans. FEMS Microbiol Lett 1999; 175:223-9. [PMID: 10386372 DOI: 10.1111/j.1574-6968.1999.tb13624.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Thiobacillus ferroxidans ATCC 19859 undergoes rapid phenotypic switching between a wild-type state characterized by the ability to oxidize ferrous iron (FeII) and reduced sulfur compounds and a mutant state where it has lost the capacity to oxidize FeII but retains the ability to oxidize sulfur. The mutant has also gained the capacity to swarm. It is proposed that loss of FeII oxidation is due to the reversible transposition of the insertion sequence IST1 into resB encoding a putative cytochrome c-type biogenesis protein. Downstream from resB and co-transcribed with it is resC, encoding another putative cytochrome biogenesis protein. IST1 insertional inactivation of resB could result in the loss of activity of its target c-type cytochrome(s). This putative target cytochrome(s) is proposed to be essential for FeII oxidation but not for sulfur oxidation. Curiously, resB and resC pertain to the proposed system II cytochrome biogenesis pathway whereas gamma Proteobacteria, of which T. ferrooxidans is a member, normally use system I. This could represent an example of lateral gene transfer.
Collapse
Affiliation(s)
- M E Cabrejos
- Department of Biological Sciences, Faculty of Chemistry and Biology, University of Santiago (USACH), Chile
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Quinn JM, Nakamoto SS, Merchant S. Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpx1 mediated by copper response elements and increased translation from a copper deficiency-specific form of the transcript. J Biol Chem 1999; 274:14444-54. [PMID: 10318870 DOI: 10.1074/jbc.274.20.14444] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coproporphyrinogen III oxidase, encoded by a single nuclear gene in Chlamydomonas reinhardtii, produces three distinct transcripts. One of these transcripts is greatly induced in copper-deficient cells by transcriptional activation, whereas the other forms are copper-insensitive. The induced form of the transcript was expressed coordinately with the cytochrome c6-encoding (Cyc6) gene, which is known to be transcriptionally regulated in copper-deficient cells. The sequence GTAC, which forms the core of a copper response element associated with the Cyc6 gene, is also essential for induction of the Cpx1 gene, suggesting that both are targets of the same signal transduction pathway. The constitutive and induced Cpx1 transcripts have the same half-lives in vivo, and all encode the same polypeptide with a chloroplast-targeting transit sequence, but the shortest one representing the induced form is a 2-4-fold better template for translation than are either of the constitutive forms. The enzyme remains localized to a soluble compartment in the chloroplast even in induced cells, and its abundance is not affected when the tetrapyrrole pathway is manipulated either genetically or by gabaculine treatment.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
88
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
89
|
Kranz R, Lill R, Goldman B, Bonnard G, Merchant S. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 1998; 29:383-96. [PMID: 9720859 DOI: 10.1046/j.1365-2958.1998.00869.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The past 10 years have heralded remarkable progress in the understanding of the biogenesis of c-type cytochromes. The hallmark of c-type cytochrome synthesis is the covalent ligation of haem vinyl groups to two cysteinyl residues of the apocytochrome (at a Cys-Xxx-Yyy-Cys-His signature motif). From genetic, genomic and biochemical studies, it is clear that three distinct systems have evolved in nature to assemble this ancient protein. In this review, common principles of assembly for all systems and the molecular mechanisms predicted for each system are summarized. Prokaryotes, plant mitochondria and chloroplasts use either system I or II, which are each predicted to use dedicated mechanisms for haem delivery, apocytochrome ushering and thioreduction. Accessory proteins of systems I and II co-ordinate the positioning of these two substrates at the membrane surface for covalent ligation. The third system has evolved specifically in mitochondria of fungi, invertebrates and vertebrates. For system III, a pivotal role is played by an enzyme called cytochrome c haem lyase (CCHL) in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- R Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
90
|
Xie Z, Merchant S. A novel pathway for cytochromes c biogenesis in chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:309-18. [PMID: 9693743 DOI: 10.1016/s0005-2728(98)00085-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochromes c are a useful model for the study of the pathways and mechanisms of assembly of the cofactor-containing components of energy transducing membranes. Genetic analyses have identified proteins that are required for the assembly of c-type cytochromes in mitochondria, bacteria and chloroplasts. The components of the pathway operating in fungal and animal mitochondria, i.e. the cytochrome (cyt) c and c1 heme lyases in the intermembrane space, were identified over a decade ago through the study of cytochrome deficiencies in Neurospora crassa and Saccharomyces cerevisiae. More recently, a large number of membrane or membrane-associated components were identified in various alpha- and gamma-proteobacteria as c-type cytochrome assembly factors; they comprise an assembly pathway that is evolutionarily and mechanistically distinct from that in fungal and animal mitochondria. The components function not only in the lyase reaction but also in the delivery and maintenance of the substrates in a state that is suitable for reaction in the bacterial periplasm. Yet a third pathway is required for cytochrome maturation in chloroplasts. Genetic analyses of Chlamydomonas reinhardtii ccs mutants, which are pleiotropically deficient in both the membrane-anchored cytochrome f and the soluble cytochrome c6, revealed a minimum of six loci, plastid ccsA and nuclear CCS1 through CCS5, that are required for the conversion of the chloroplast apocytochromes to their respective holo forms. Sequence analysis of the cloned ccsA and Ccs1 genes indicates that the predicted protein products are integral membrane proteins with homologues in cyanobacteria, some gram-positive bacteria (Bacillus subtilis, Mycobacterium spp.), beta-proteobacteria (Neisseria spp.) and an epsilon-proteobacterium (Helicobacter pylori). CcsA and Ccs1 require each other for accumulation in vivo and are therefore proposed to function in a complex, possibly with the products of some of the other CCS loci. A tryptophan-rich motif, which has been proposed to represent a heme binding site in bacterial cytochrome biogenesis proteins (CcmC and CcmF), is functionally important in plastid CcsA. As is the case for CcmC and CcmF, the tryptophan-rich sequence is predicted to occur in a loop on the p-side of the membrane, where the heme attachment reaction occurs. Conserved histidine residues in the CcsA and Ccs1 may serve as ligands to the heme iron. A multiple alignment of the tryptophan-rich regions of the CcsA-, CcmC- and CcmF-like sequences in the genome databases indicates that they represent three different families.
Collapse
Affiliation(s)
- Z Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
91
|
Abstract
The assembly of chloroplast metalloproteins requires biochemical catalysis. Assembly factors involved in the biosynthesis of metalloproteins might be required to synthesize, chaperone, or transport the cofactor; modify or chaperone the apoprotein; or catalyze cofactor-protein association. Genetic and biochemical approaches have been applied to the study of the assembly of chloroplast iron-sulfur centers, cytochromes, plastocyanin, and the manganese center of photosystem II. These have led to the discovery of NifS-homologues and cysteine desulfhydrase for iron-sulfur center assembly, six loci (CCS1-CCS5, ccsA) for c-type cytochrome assembly, four loci for cytochrome b6 assembly (CCB1-CCB4), the CtpA protease, which is involved in pre-D1 processing, and the PCY2 locus, which is involved in holoplastocyanin accumulation. New assembly factors are likely to be discovered via the study of assembly-defective mutants of Arabidopsis, cyanobacteria, Chlamydomonas, maize, and via the functional analysis of candidate cofactor metabolizing components identified in the genome databases.
Collapse
Affiliation(s)
- Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569; e-mail: ;
| | | |
Collapse
|
92
|
Goldman BS, Beck DL, Monika EM, Kranz RG. Transmembrane heme delivery systems. Proc Natl Acad Sci U S A 1998; 95:5003-8. [PMID: 9560218 PMCID: PMC20203 DOI: 10.1073/pnas.95.9.5003] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1997] [Accepted: 02/23/1998] [Indexed: 02/07/2023] Open
Abstract
Heme proteins play pivotal roles in a wealth of biological processes. Despite this, the molecular mechanisms by which heme traverses bilayer membranes for use in biosynthetic reactions are unknown. The biosynthesis of c-type cytochromes requires that heme is transported to the bacterial periplasm or mitochondrial intermembrane space where it is covalently ligated to two reduced cysteinyl residues of the apocytochrome. Results herein suggest that a family of integral membrane proteins in prokaryotes, protozoans, and plants act as transmembrane heme delivery systems for the biogenesis of c-type cytochromes. The complete topology of a representative from each of the three subfamilies was experimentally determined. Key histidinyl residues and a conserved tryptophan-rich region (designated the WWD domain) are positioned at the site of cytochrome c assembly for all three subfamilies. These histidinyl residues were shown to be essential for function in one of the subfamilies, an ABC transporter encoded by helABCD. We believe that a directed heme delivery pathway is vital for the synthesis of cytochromes c, whereby heme iron is protected from oxidation via ligation to histidinyl residues within the delivery proteins.
Collapse
Affiliation(s)
- B S Goldman
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
93
|
Page MD, Sambongi Y, Ferguson SJ. Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem Sci 1998; 23:103-8. [PMID: 9581502 DOI: 10.1016/s0968-0004(98)01173-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biogenesis of bacterial c-type cytochromes generally involves many gene products--some of which may also have roles in other processes--and their interaction with the disulphide-bond-forming system of the bacterial periplasm. However, in some bacteria a simpler process appears to operate that might be related to the formation of c-type cytochromes in thylakoids of photosynthetic cells. The corresponding process in fungal mitochondria is distinct.
Collapse
Affiliation(s)
- M D Page
- Department of Biochemistry and Oxford Centre for Molecular Sciences, University of Oxford, UK
| | | | | |
Collapse
|
94
|
Pearce DA, Page MD, Norris HAC, Tomlinson EJ, Ferguson SJ. Identification of the contiguous Paracoccus denitrificans ccmF and ccmH genes: disruption of ccmF, encoding a putative transporter, results in formation of an unstable apocytochrome c and deficiency in siderophore production. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):467-477. [PMID: 9493384 DOI: 10.1099/00221287-144-2-467] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apocytochrome C550 was detected in the periplasm of a new mutant of Paracoccus denitrificans, HN48, that is pleiotropically lacking c-type cytochromes, produces reduced levels of siderophores and carries a Tn5 insertion in the ccmF gene for which sequence data, along with that for the contiguous ccmH, are reported. A counterpart to the ccmF gene was found in an archaebacterium but could not be located in the yeast genome, whereas mitochondrial haem lyases in the latter were not present in an archaeobacterial or in eubacterial genomes. A topological analysis for CcmF is presented which indicates at least eleven transmembrane helices, suggesting a role as a transporter; evidence against the substrate being haem is presented but sequence similarity with Escherichia coli gamma-aminobutyric acid transporter was identified. Analysis by pulse-chase methodology has shown that, in this and another cytochrome-c-deficient mutant, the apo form of P. denitrificans cytochrome C550 is much less stable than the holo form, directly demonstrating the presence of a periplasmic degradation system in P. denitrificans that removes non-functional proteins. A variety of phenotypes are observed for P. denitrificans mutated in different ccm genes, thus indicating that the stability of the ccm gene products does not require assembly of a complex of all the Ccm proteins.
Collapse
Affiliation(s)
- David A Pearce
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - M Dudley Page
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hilary A C Norris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Esther J Tomlinson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Stuart J Ferguson
- The Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford, OX1 3QT, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
95
|
Xie Z, Culler D, Dreyfuss BW, Kuras R, Wollman FA, Girard-Bascou J, Merchant S. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: One chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 1998; 148:681-92. [PMID: 9504916 PMCID: PMC1459829 DOI: 10.1093/genetics/148.2.681] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chloroplasts contain up to two c-type cytochromes, membrane-anchored cytochrome f and soluble cytochrome c6. To elucidate the post-translational events required for their assembly, acetate-requiring mutants of Chlamydomonas reinhardtii that have combined deficiencies in both plastid-encoded cytochrome f and nucleus-encoded cytochrome c6 have been identified and analyzed. For strains ct34 and ct59, where the phenotype displays uniparental inheritance, the mutations were localized to the chloroplast ccsA gene, which was shown previously to be required for heme attachment to chloroplast apocytochromes. The mutations in another eight strains were localized to the nuclear genome. Complementation tests of these strains plus three previously identified strains of the same phenotype (ac206, F18, and F2D8) indicate that the 11 ccs strains define four nuclear loci, CCS1-CCS4. We conclude that the products of the CCS1-CCS4 loci are not required for translocation or processing of the preproteins but, like CcsA, they are required for the heme attachment step during assembly of both holocytochrome f and holocytochrome c6. The ccsA gene is transcribed in each of the nuclear mutants, but its protein product is absent in ccs1 mutants, and it appears to be degradation susceptible in ccs3 and ccs4 strains. We suggest that Ccsl may be associated with CcsA in a multisubunit "holocytochrome c assembly complex," and we hypothesize that the products of the other CCS loci may correspond to other subunits.
Collapse
Affiliation(s)
- Z Xie
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Inoue K, Dreyfuss BW, Kindle KL, Stern DB, Merchant S, Sodeinde OA. Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J Biol Chem 1997; 272:31747-54. [PMID: 9395519 DOI: 10.1074/jbc.272.50.31747] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear genes play important regulatory roles in the biogenesis of the photosynthetic apparatus of eukaryotic cells by encoding factors that control steps ranging from chloroplast gene transcription to post-translational processes. However, the identities of these genes and the mechanisms by which they govern these processes are largely unknown. By using glass bead-mediated transformation to generate insertional mutations in the nuclear genome of Chlamydomonas reinhardtii, we have generated four mutants that are defective in the accumulation of the cytochrome b6f complex. One of them, strain abf3, also fails to accumulate holocytochrome c6. We have isolated a gene, Ccs1, from a C. reinhardtii genomic library that complements both the cytochrome b6f and cytochrome c6 deficiencies in abf3. The predicted protein product displays significant identity with Ycf44 from the brown alga Odontella sinensis, the red alga Porphyra purpurea, and the cyanobacterium Synechocystis strain PCC 6803 (25-33% identity). In addition, we note limited sequence similarity with ResB of Bacillus subtilis and an open reading frame in a homologous operon in Mycobacterium leprae (11-12% identity). On the basis of the pleiotropic c-type cytochrome deficiency in the ccs1 mutant, the predicted plastid localization of the protein, and its relationship to candidate cytochrome biosynthesis proteins in Gram-positive bacteria, we conclude that Ccs1 encodes a protein that is required for chloroplast c-type holocytochrome formation.
Collapse
Affiliation(s)
- K Inoue
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
97
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
98
|
Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 1997; 16:6095-104. [PMID: 9321389 PMCID: PMC1326293 DOI: 10.1093/emboj/16.20.6095] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chloroplast genes ycf3 and ycf4 from the green alga Chlamydomonas reinhardtii have been characterized. The deduced amino acid sequences of Ycf4 (197 residues) and Ycf3 (172 residues) display 41-52% and 64-78% sequence identity, respectively, with their homologues from algae, land plants and cyanobacteria. In C. reinhardtii, ycf4 and ycf3 are co-transcribed as members of the rps9-ycf4-ycf3-rps18 polycistronic transcriptional unit into RNAs of 8.0 kb and 3.0 kb corresponding to the entire unit and to rps9-ycf4-ycf3, respectively. Using biolistic transformation, ycf4 and ycf3 were disrupted with a chloroplast selectable marker cassette. Transformants lacking ycf4 or ycf3 were unable to grow photoautotrophically and were deficient in photosystem I activity. Western blot analysis showed that the photosystem I (PSI) complex does not accumulate stably in thylakoid membranes of these transformants. Ycf4 and Ycf3 were localized on thylakoid membranes but not stably associated with the PSI complex and accumulated to wild-type levels in mutants lacking PSI. RNA blot hybridizations showed that transcripts of psaA, psaB and psaC accumulate normally in these mutants and use of chimeric reporter genes revealed that Ycf3 is not required for initiation of translation of psaA and psaB mRNA. Our results indicate that Ycf3 and Ycf4 are required for stable accumulation of the PSI complex.
Collapse
Affiliation(s)
- E Boudreau
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 quai Ernest-Ansermet, CH-1211, Geneve 4, Switzerland
| | | | | | | | | |
Collapse
|
99
|
Hubschmann T, Wilde A, Elanskaya I, Shestakov SV, Borner T. A putative cytochrome c biogenesis gene in Synechocystis sp. PCC 6803. FEBS Lett 1997; 408:201-5. [PMID: 9187367 DOI: 10.1016/s0014-5793(97)00421-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A gene (orf334) with homology to chloroplast ycf5 (ccsA) was isolated from the cyanobacterium Synechocystis PCC 6803. The mRNA level of orf334 decreases in the dark and increases rapidly upon illumination. Transcription is initiated 69 nucleotides upstream of the start site of translation. The deduced amino acid sequence of orf334 has limited identity with bacterial proteins involved in cytochrome c biogenesis. Sequence comparison indicates differing pathways of cytochrome c biogenesis in cyanobacteria/chloroplasts and Gram positive bacteria versus proteobacteria and mitochondria. Insertional inactivation of the orf334 gene gave rise to a heterozygous mutant, i.e. complete absence of the orf334 product seems to be lethal to the cell.
Collapse
Affiliation(s)
- T Hubschmann
- Department of Biology (Genetics), Humboldt-University Berlin, Germany. Thomas=
| | | | | | | | | |
Collapse
|
100
|
DePillis GD, Ozaki SI, Kuo JM, Maltby DA, Ortiz de Montellano PR. Autocatalytic processing of heme by lactoperoxidase produces the native protein-bound prosthetic group. J Biol Chem 1997; 272:8857-60. [PMID: 9083001 DOI: 10.1074/jbc.272.14.8857] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The covalently bound prosthetic group of lactoperoxidase (LPO) has been obtained by hydrolysis of the protein and identified as a dihydroxylated heme. A baculovirus expression system has been developed for LPO and used to obtain protein in which the heme is only partially covalently bound. Reaction of the purified heme. apoLPO complex with H2O2 results in both autocatalytic modification of the heme and covalent attachment to the protein. Hydrolytic experiments establish that the autocatalytically incorporated heme is bound normally. Two monohydroxylated heme intermediates have been detected. The peroxidative activity of LPO increases in proportion to the extent of covalently bound heme. The LPO results provide a paradigm for autocatalytic incorporation of heme groups into the mammalian peroxidases, including myeloperoxidase and eosinophil peroxidase, all of which exhibit strong sequence similarity with LPO and have covalently-bound heme groups.
Collapse
Affiliation(s)
- G D DePillis
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446, USA
| | | | | | | | | |
Collapse
|