51
|
Trigueiros-Cunha N, Renard N, Humbert G, Tavares MA, Eybalin M. Catecholamine-independent transient expression of tyrosine hydroxylase in primary auditory neurons is coincident with the onset of hearing in the rat cochlea. Eur J Neurosci 2003; 18:2653-62. [PMID: 14622167 DOI: 10.1046/j.1460-9568.2003.02989.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the last stages of neuronal maturation, tyrosine hydroxylase is transiently expressed in the absence of the other catecholamine-synthesizing enzymes. We show here that it is expressed in rat spiral ganglion neurons between postnatal days 8 and 20, with a peak of expression at postnatal day 12. These tyrosine hydroxylase-immunoreactive neurons did not display aromatic amino acid decarboxylase- or dopamine-beta-hydroxylase-immunoreactivities, ruling out the possibilities of dopamine or noradrenaline synthesis. They also did not display peripherin- or intense neurofilament 200-kDa-immunoreactivities, two indicators of type II primary auditory neurons. Tyrosine hydroxylase-immunoreactive dendrites were seen in synaptic contact with the inner hair cells and expressed the GluR2 subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, further confirming the type I nature of the neurons transiently expressing the enzyme. The end of the tyrosine hydroxylase expression was not due to cell death because the immunoreactive neurons did not show TUNEL-labelled nuclei. Finally, all the type I neurons expressed the tyrosine hydroxylase mRNA at postnatal day 12, suggesting that the expression of the enzyme is a maturational step common to all these neurons and that the expression of the protein is not synchronized. Because the period of transient expression of tyrosine hydroxylase in type I neurons parallels the periods of maturation of evoked exocytosis in inner hair cells and of appearance and maturation of the cochlear potentials, we propose that the expression of the enzyme indicates the onset of hearing in individual type I primary auditory neurons. This enzyme expression could rely on a Ca2+ activation of its encoding gene subsequent to a sudden and massive Ca2+ entry through voltage-activated Ca2+ channels.
Collapse
Affiliation(s)
- Nuno Trigueiros-Cunha
- INSERM U.583 and Université Montpellier 1, 71 rue de Navacelles, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
52
|
Sun B, Tank AW. c-Fos is essential for the response of the tyrosine hydroxylase gene to depolarization or phorbol ester. J Neurochem 2003; 85:1421-30. [PMID: 12787062 DOI: 10.1046/j.1471-4159.2003.01789.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) gene transcription rate increases in response to numerous pharmacological and physiological stimuli. The AP1 site within the TH gene proximal promoter is thought to play an important role in mediating many of these responses; however, it is unclear which AP1 factors are required. To investigate whether c-Fos is essential for the response of the TH gene to different stimuli, c-Fos-deficient PC12 cell lines were produced utilizing an antisense RNA strategy. In these cell lines, stimulus-induced increases in c-Fos protein levels were dramatically attenuated, while c-Jun and CREB levels remained unchanged. TH gene transcription rate increased from four- to eight-fold in control cells after treatment with either 50 mM KCl or TPA. These responses were dramatically decreased in the c-Fos-deficient cell lines. In contrast, c-Fos down-regulation had little effect on the response of the TH gene to forskolin. Stimulation of TH gene promoter activity, which was observed in control cell lines treated with either 50 mm KCl or TPA was also dramatically inhibited in the c-Fos-deficient cells. These results suggest that c-Fos induction is essential for maximal stimulation of the TH gene in response to either depolarization or PKC activation in PC12 cells.
Collapse
Affiliation(s)
- Baoyong Sun
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
53
|
Sun B, Sterling CR, Tank AW. Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. J Pharmacol Exp Ther 2003; 304:575-88. [PMID: 12538809 DOI: 10.1124/jpet.102.043596] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotine is a powerful stimulant of the sympathoadrenal system, causing the release of peripheral catecholamines and activation of catecholamine biosynthesis. In previous reports, we have studied the mechanisms by which short-term nicotine treatment regulates tyrosine hydroxylase (TH) in adrenal medulla. In this report, we study the effects of chronic nicotine treatment on adrenal TH gene expression. Rats were injected with either saline or nicotine twice per day for up to 14 days. Chronic nicotine treatment elicited long-lasting, dose-dependent increases in the levels of adrenal TH mRNA, TH protein, and TH activity. In contrast, a single injection of nicotine elicited only a small increase in adrenal TH mRNA levels, which was transient and did not result in the induction of TH enzyme. Chronic nicotine administration also elicited a sustained increase in adrenal TH gene transcription rate, which persisted for up to 7 days after the final nicotine injection. This sustained transcriptional response correlated with a modest sustained increase in adrenal TH AP1 binding, but not in the levels of Fra-2 or other fos or jun proteins. These results demonstrate that repeated nicotine injections administered chronically over 1 to 2 weeks lead to sustained stimulation of the TH gene and consequent induction of TH gene expression in rat adrenal medulla. These studies support the hypothesis that chronic nicotine administration produces long-lasting cellular changes in adrenal medulla that lead to sustained transcriptional responses.
Collapse
Affiliation(s)
- Baoyong Sun
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
54
|
Paulding WR, Schnell PO, Bauer AL, Striet JB, Nash JA, Kuznetsova AV, Czyzyk-Krzeska MF. Regulation of gene expression for neurotransmitters during adaptation to hypoxia in oxygen-sensitive neuroendocrine cells. Microsc Res Tech 2002; 59:178-87. [PMID: 12384962 DOI: 10.1002/jemt.10192] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reduced oxygen tension (hypoxia) in the environment stimulates oxygen-sensitive cells in the carotid body (CB). Upon exposure to hypoxia, the CB immediately triggers a reflexive physiological response, thereby increasing respiration. Adaptation to hypoxia involves changes in the expression of various CB genes, whose products are involved in the transduction and modulation of the hypoxic signal to the central nervous system (CNS). Genes encoding neurotransmitter-synthesizing enzymes and receptors are particularly important in this regard. The cellular response to hypoxia correlates closely with the release and biosynthesis of catecholamines. The gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme for catecholamine biosynthesis, is regulated by hypoxia in the CB and in the oxygen-sensitive cultured PC12 cell line. Recently, genomic microarray studies have identified additional genes regulated by hypoxia. Patterns of gene expression vary, depending on the type of applied hypoxia, e.g., intermittent vs. chronic. Construction of a hypoxia-regulated, CB-specific, subtractive cDNA library will enable us to further characterize regulation of gene expression in the CB.
Collapse
Affiliation(s)
- Waltke R Paulding
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Suzuki T, Yamakuni T, Hagiwara M, Ichinose H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem 2002; 277:40768-74. [PMID: 12196528 DOI: 10.1074/jbc.m206043200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of catecholamine-synthesizing genes is important for the determination of neurotransmitters during brain development. We found that three catecholamine-synthesizing genes were transcriptionally up-regulated in cloned PC12D cells overexpressing V-1, a protein that is highly expressed during postnatal brain development (1). To reveal the molecular mechanism to regulate the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, we analyzed the transcription factors responsible for TH induction in the V-1 clonal cells. First, by using reporter constructs, we found that the transcription mediated by cAMP-responsive element (CRE) was selectively enhanced in the V-1 cells, and TH promoter activity was totally dependent on the CRE in the promoter region of the TH gene. Next, immunoblot analyses and a transactivation assay using a GAL4 reporter system revealed that ATF-2, but not cAMP-responsive element-binding protein (CREB), was highly phosphorylated and activated in the V-1 cells, while both CREB and ATF-2 were bound to the TH-CRE. Finally, the enhanced TH promoter activity was competitively attenuated by expression of a plasmid containing the ATF-2 transactivation domain. These data demonstrated that activation of ATF-2 resulted in the increased transcription of the TH gene and suggest that ATF-2 may be deeply involved in the transcriptional regulation of catecholamine-synthesizing genes during neural development.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | |
Collapse
|
56
|
Mena MA, de Bernardo S, Casarejos MJ, Canals S, Rodríguez-Martín E. The role of astroglia on the survival of dopamine neurons. Mol Neurobiol 2002; 25:245-63. [PMID: 12109874 DOI: 10.1385/mn:25:3:245] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glial cells play a key role in the function of dopamine (DA) neurons and regulate their differentiation, morphology, physiological and pharmacological properties, survival, and resistance to different models of DA lesion. Several studies suggest that glial cells may be important in the pathogenesis of Parkinson's disease (PD), a common neurodegenerative disorder characterized by degeneration of the nigrostriatal DA system. In this disease the role of glia could be due to the excessive production of toxic products such as nitric oxide (NO) or cytokines characteristic of inflammatory process, or related to a defective release of neuroprotective agents, such as small antioxidants with free radical scavenging properties or peptidic neurotrophic factors.
Collapse
Affiliation(s)
- María Angeles Mena
- Dpto Neurobiología-Investigación, Hospital Ramón y Cajal, Ctra de Colmenar, Madrid, Spain.
| | | | | | | | | |
Collapse
|
57
|
Peng H, Myers J, Fang X, Stachowiak EK, Maher PA, Martins GG, Popescu G, Berezney R, Stachowiak MK. Integrative nuclear FGFR1 signaling (INFS) pathway mediates activation of the tyrosine hydroxylase gene by angiotensin II, depolarization and protein kinase C. J Neurochem 2002; 81:506-24. [PMID: 12065659 DOI: 10.1046/j.1471-4159.2002.00833.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The integrative nuclear FGFR1 signaling (INFS) pathway functions in association with cellular growth, differentiation, and regulation of gene expression, and is activated by diverse extracellular signals. Here we show that stimulation of angiotensin II (AII) receptors, depolarization, or activation protein kinase C (PKC) or adenylate cyclase all lead to nuclear accumulation of fibroblast growth factor 2 (FGF-2) and FGFR1, association of FGFR1 with splicing factor-rich domains, and activation of the tyrosine hydroxylase (TH) gene promoter in bovine adrenal medullary cells (BAMC). The up-regulation of endogenous TH protein or a transfected TH promoter-luciferase construct by AII, veratridine, or PMA (but not by forskolin) is abolished by transfection with a dominant negative FGFR1TK-mutant which localizes to the nucleus and plasma membrane, but not by extracellularly acting FGFR1 antagonists suramin and inositolhexakisphosphate (IP6). Mechanism of TH gene activation by FGF-2 and FGFR1 was further investigated in BAMC and human TE671 cultures. TH promoter was activated by co-transfected HMW FGF-2 (which is exclusively nuclear) but not by cytoplasmic FGF-1 or extracellular FGFs. Promoter transactivation by HMWFGF-2 was accompanied by an up-regulation of FGFR1 specifically in the cell nucleus and was prevented FGFR1(TK-) but not by IP6 or suramin. The TH promoter was also transactivated by co-transfected wild-type FGFR1, which localizes to both to the nucleus and the plasma membrane, and by an exclusively nuclear, soluble FGFR1(SP-/NLS) mutant with an inserted nuclear localization signal. Activation of the TH promoter by nuclear FGFR1 and FGF-2 was mediated through the cAMP-responsive element (CRE) and was associated with induction of CREB- and CBP/P-300-containing CRE complexes. We propose a new model for gene regulation in which nuclear FGFR1 acts as a mediator of CRE transactivation by AII, cell depolarization, and PKC.
Collapse
Affiliation(s)
- Hu Peng
- Department of Pathology and Anatomical Sciences, Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Murchison D, Dove LS, Abbott LC, Griffith WH. Homeostatic compensation maintains Ca2+ signaling functions in Purkinje neurons in the leaner mutant mouse. CEREBELLUM (LONDON, ENGLAND) 2002; 1:119-27. [PMID: 12882361 DOI: 10.1080/147342202753671259] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Several human neurological disorders have been associated with mutations in the gene coding for the alpha1 subunit of the P/Q type voltage-gated calcium channel (alpha1A/Ca(v)2.1). Mutations in this gene also occur in a number of neurologically affected mouse strains, including leaner (tg(la)/tg(la)). Because the P-type calcium current is very prominent in cerebellar Purkinje neurons, these cells from mice with alpha1 subunit mutations make excellent models for the investigation of the functional consequences of native mutations in a voltage-gated calcium channel of mammalian central nervous system. In this review, we describe the impact of altered channel function on cellular calcium homeostasis and signaling. Remarkably, calcium buffering functions of the endoplasmic reticulum and calcium-binding proteins appear to be regulated in order to compensate for altered calcium influx through the mutant channels. Although this compensation may serve to maintain calcium signaling functions, such as calcium-induced calcium release, it remains uncertain whether such compensation alleviates or contributes to the behavioral phenotype.
Collapse
Affiliation(s)
- David Murchison
- Department of Medical Pharmacology & Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
59
|
Kim MS, Lee KM, Jung H, Moon BS, Ko CB, Lee I, Park R. Sunghyangjungisan protects PC12 cells against neurotoxicity elicited by withdrawal of trophic support via CRE activation. Immunopharmacol Immunotoxicol 2002; 24:97-112. [PMID: 12022448 DOI: 10.1081/iph-120003406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sunghyangjungisan (SHJS) is a commonly prescribed drug for cerebrovascular diseases in Oriental medicine. The water extract of SHJS was found to be protective against neurotoxicity elicited by deprivation of tropic factors. SHJS inhibited the activation of caspase 3-like protease and nucleosome-sized DNA fragmentation in serum-deprived PC12 Pheochromocytoma cells. Interestingly, pretreatment with an inhibitor of protein kinase A, KT5720 inhibited the neuroprotective effects of SHJS via inhibition of capase 3-like protease activation. When PC12 cells were treated with SHJS, Ser133 phosphorylation of cAMP-responsive elements binding protein (CREB), a transcription factor, was also increased in a time- and dose-dependent manner. In addition, CRE DNA binding activity of CREB was also increased in a time-dependent manner. SHJS-induced CRE binding activity was blocked by KT5720. Taken together, we suggest the possibility that SHJS may provide a neuroprotective effects on serum-deprived apoptosis of PC12 cells in a CREB- and CRE-dependent manner.
Collapse
Affiliation(s)
- Myung-Sunny Kim
- Institute of Medical Science, Wonkwang University, Iksan Chonbuk, South Korea
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
A possible source for transplantable neurons in Parkinson's disease are adult olfactory bulb (OB) dopamine (DA) progenitors that originate in the anterior subventricular zone and reach the OB through the rostral migratory stream. We used adult transgenic mice expressing a lacZ reporter directed by an 8.9 kb tyrosine hydroxylase (TH) promoter to investigate the course of DAergic differentiation. Parallel transgene and intrinsic TH mRNA expression occurred during migration of DA interneurons through the mitral and superficial granule cell layers before these cells reached their final periglomerular position. Differential transgene and calcium-calmodulin-dependent protein kinase IV expression distinguished two nonoverlapping populations of interneurons. Transgenic mice carrying a TH8.9kb/lacZ construct with a mutant AP-1 site demonstrated that this element confers OB DA-specific TH gene regulation. These results indicate that DA phenotypic determination is specific to a subset of mobile OB progenitors.
Collapse
|
61
|
Hagerty T, Fernandez E, Lynch K, Wang SS, Morgan WW, Strong R. Interaction of a glucocorticoid-responsive element with regulatory sequences in the promoter region of the mouse tyrosine hydroxylase gene. J Neurochem 2001; 78:1379-88. [PMID: 11579146 DOI: 10.1046/j.1471-4159.2001.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the work reported here was to determine whether the tyrosine hydroxylase glucocorticoid-responsive element (TH-GRE) interacts with the cyclic AMP pathway and the CRE in regulating mouse TH promoter activity, and whether an additional, previously identified downstream GRE-like element also participates in the function of the TH-GRE and CRE. To determine the role of the cAMP pathway on TH-GRE function, we compared the effects of forskolin and dexamethasone on TH mRNA, TH gene transcription and TH promoter activity in a mutant PC12 cell line (A126-1B2) deficient in cAMP-dependent protein kinase A (PKA) with their effects in the wild-type parental strain. Forskolin treatment increased TH mRNA content, transcriptional activity and the activity of a chimeric gene with 3.6 kb of the TH promoter in wild-type cells, but not in PKA-deficient cells. In contrast, dexamethasone treatment stimulated equivalent increases in TH mRNA, TH gene transcription and TH promoter activity in each cell type. Mutation of the CRE in chimeric constructs containing 3.6 kb of the 5' flanking sequence of the mouse TH gene or coexpression of a dominant-negative mutant of CREB prevented the stimulation of TH promoter activity by forskolin. However, neither the mutation of the CRE nor inhibition of CREB influenced basal or dexamethasone-stimulated promoter activity. Site-directed mutagenesis of the TH-GRE eliminated the response of the promoter to dexamethasone. However, the mutagenesis of a more proximal 15-bp region with a GRE-like sequence had no demonstrable effect on the ability of dexamethasone to stimulate TH promoter activity. Neither mutagenesis of the TH-GRE or the downstream GRE-like sequence had an effect on the ability of forskolin to activate this chimeric gene. Taken together, these results provide evidence that a single GRE is sufficient for maximal induction of transcriptional activity by glucocorticoids and that the CRE is not required for either partial or full activity of this upstream GRE sequence.
Collapse
Affiliation(s)
- T Hagerty
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
62
|
Schick BP, Petrushina I, Brodbeck KC, Castronuevo P. Promoter regulatory elements and DNase I-hypersensitive sites involved in serglycin proteoglycan gene expression in human erythroleukemia, CHRF 288-11, and HL-60 cells. J Biol Chem 2001; 276:24726-35. [PMID: 11333275 DOI: 10.1074/jbc.m102958200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have compared regulation of the serglycin gene in human erythroleukemia (HEL) and CHRF 288-11 cells, which have megakaryocytic characteristics, with promyelocytic HL-60 cells. Deletion constructs were prepared from the region -1123/+42 to -20/+42, and putative regulatory sites were mutated. In all three cell lines, the two major regulatory elements for constitutive expression were the (-80)ets site and the cyclic AMP response element (CRE) half-site at -70. A protein from HEL and CHRF, but not HL60, nuclear extracts bound to the (-80)ets site. Another protein from all three cell lines bound to the (-70)CRE. Phorbol 12-myristate 13-acetate (PMA) and dibutyryl cyclic AMP (dbcAMP) increased expression of the reporter in HEL cells 2.5-3- and 4.5-fold, respectively, from all constructs except those with (-70)CRE mutations. PMA virtually eliminated expression of serglycin mRNA and promoter constructs, but dbcAMP increased expression in HL-60 cells. The effects of PMA and dbcAMP on promoter expression correlated with mRNA expression. The strengths of two DNase I-hypersensitive sites in the 5'-flanking region and the first intron in all three cells correlated with relative endogenous serglycin mRNA expression. An additional DNase I-hypersensitive site in HL60 DNA in the first intron may be related to the high serglycin expression in HL60 relative to HEL or CHRF cells.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Jefferson Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
63
|
Sawada K, Sakata-Haga H, Hisano S, Fukui Y. Topological relationship between corticotropin-releasing factor-immunoreactive cerebellar afferents and tyrosine hydroxylase-immunoreactive Purkinje cells in a hereditary ataxic mutant, rolling mouse Nagoya. Neuroscience 2001; 102:925-35. [PMID: 11182254 DOI: 10.1016/s0306-4522(00)00533-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using immunohistochemistry we examined the distribution of corticotropin-releasing factor-positive cerebellar afferents and the topological relationship between their projections and the distribution of tyrosine hydroxylase-positive Purkinje cells in an ataxic mutant, rolling mouse Nagoya. In the mutants, some climbing fibers were more intensely stained for corticotropin-releasing factor, but their zonal distribution remained the same as in non-ataxic littermates (control mice). These climbing fibers arose from the dorsal accessory nucleus, the ventral lamella of principal nucleus, the dorsomedial cell group, the subnucleus A, the beta subnucleus and the ventrolateral protrusion of the inferior olive, since perikarya in these olivary subdivisions were more intensely stained for corticotropin-releasing factor than in controls. Some mossy fiber rosettes in the vermal lobules, the simple lobule, the crus I of ansiform lobule, the copula pyramidis and the flocculus also exhibited corticotropin-releasing factor immunoreactivity and were more densely stained in the mutants than in controls. Double immunostaining for corticotropin-releasing factor and tyrosine hydroxylase in the mutant cerebellum revealed that the distribution of tyrosine hydroxylase-positive Purkinje cells corresponded to terminal fields of corticotropin-releasing factor-positive climbing fibers but not corticotropin-releasing factor-positive mossy fibers. This study indicated an increased corticotropin-releasing factor immunoreactivity in some climbing or mossy fibers in the cerebellum of rolling mouse Nagoya. We also found that the distribution of tyrosine hydroxylase-positive Purkinje cells corresponded to terminal fields of corticotropin-releasing factor-positive climbing fibers in the mutant cerebellum. As the transcription of the tyrosine hydroxylase gene is facilitated by Ca2+, abnormal tyrosine hydroxylase expression in the mutant Purkinje cells may indicate functional abnormality by alterations in intracellular Ca2+ concentrations. Therefore, we suggest that an increased level of corticotropin-releasing factor in a specific population of climbing fibers may alter the function of their target Purkinje cells.
Collapse
Affiliation(s)
- K Sawada
- Department of Anatomy, University of Tokushima School of Medicine, Tokushima, Japan.
| | | | | | | |
Collapse
|
64
|
Eells JB, Rives JE, Yeung SK, Nikodem VM. In vitro regulated expression of tyrosine hydroxylase in ventral midbrain neurons from Nurr1-null mouse pups. J Neurosci Res 2001; 64:322-30. [PMID: 11340638 DOI: 10.1002/jnr.1082] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor Nurr1, an orphan member of the steroid-thyroid hormone nuclear receptor superfamily, is essential for the proper terminal differentiation of ventral midbrain dopaminergic neurons. Disruption of the Nurr1 gene in mice by homologous recombination abolishes synthesis of dopamine (DA) and expression of DA biosynthetic enzymes, including tyrosine hydroxylase (TH), in the ventral midbrain without affecting the synthesis of DA in other areas of the brain. At birth, however, dopaminergic neuron precursors in Nurr1 null (-/-) pups remain as shown by continued expression of residual, untranslated Nurr1 mRNA not altered by homologous recombination. Since Nurr1 disruption is lethal shortly after birth, to further investigate the developmental properties of these neurons, dissociated ventral midbrain neurons from newborn pups were grown for 5 days on an astrocyte feeder layer, subjected to various treatments and then evaluated for expression of TH by fluorescent immunocytochemistry. Initially, a small percentage of neurons (0.26% +/- 0.07%) from the ventral midbrain of Nurr1 -/- pups were TH-immunoreactive (TH-IR). No change in TH expression was observed in the presence of glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), or DA alone or in combination. Treatment with forskolin (Fsk), however, significantly increased the percentage of TH-IR neurons (1.36% +/- 0.15%). Combination of Fsk, BNDF, and DA further increased the percentage of TH-IR neurons (2.58% +/- 0.50%). Therefore, these data suggest that dopaminergic neuron precursors, which develop in vivo without Nurr1, remain in an undifferentiated condition that is permissive to the induction of TH in vitro. J. Neurosci. Res. 64:322-330, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J B Eells
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
65
|
Sung JY, Shin SW, Ahn YS, Chung KC. Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells. J Biol Chem 2001; 276:13858-66. [PMID: 11278709 DOI: 10.1074/jbc.m010610200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors bind to their specific receptors on the responsive cell surface and thereby initiate dramatic changes in the proliferation, differentiation, and survival of their target cells. In the present study we have examined the mechanism by which growth factor-induced signals are propagated to the nucleus, leading to the activation of transcription factor, cis-acting cAMP response element (CRE)-binding protein (CREB), in immortalized hippocampal progenitor cells (H19-7). During the differentiation of H19-7 cells by basic fibroblast growth factor (bFGF) a critical regulatory Ser(133) residue of CREB was phosphorylated followed by an increase of CRE-mediated gene transcription. Expression of S133A CREB mutants blocked the differentiation of H19-7 cells by bFGF. Although the kinetics of CREB phosphorylation by EGF was transient, bFGF induced a prolonged pattern of CREB phosphorylation. Interestingly, bFGF-induced CREB phosphorylation and subsequent CRE-mediated gene transcription is not likely to be mediated by any of previously known signaling pathways that lead to phosphorylation of CREB, such as mitogen-activated protein kinases, protein kinase A, protein kinase C, phosphatidylinositol 3-kinase-p70(S6K), calcium/calmodulin dependent protein kinase, and casein kinase 2. By using in vitro in gel kinase assay the presence of a novel 120-kDa bFGF-inducible CREB kinase was identified. These findings identify a new growth factor-activated signaling pathway that regulates gene expression at the CRE.
Collapse
Affiliation(s)
- J Y Sung
- Department of Pharmacology, Brain Research Institute, and Brain Korea 21 Projects for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
66
|
Valjent E, Caboche J, Vanhoutte P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol 2001; 23:83-99. [PMID: 11817219 DOI: 10.1385/mn:23:2-3:083] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway is an evolutionarily conserved signaling cascade involved in a plethora of physiological responses, including cell proliferation, survival, differentiation, and, in neuronal cells, synaptic plasticity. Increasing evidence now implicates this pathway in cognitive functions, such as learning and memory formation, and also in behavioral responses to addictive drugs. Although multiple intracellular substrates can be activated by ERKs, nuclear targeting of transcription factors, and thereby control of gene expression, seems to be a major event in ERK-induced neuronal adaptation. By controlling a prime burst of gene expression, ERK signaling could be critically involved in molecular adaptations that are necessary for long-term behavioral changes. Reviewed here are data providing evidence for a role of ERKs in long-term behavioral alterations, and the authors discuss molecular mechanisms that could underlie this role.
Collapse
Affiliation(s)
- E Valjent
- Laboratoire de Signalisation Neuronale et Régulations Géniques, CNRS-Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
67
|
Katsuki H, Takenaka C, Kume T, Kaneko S, Akaike A. Requirement of neural activity for the maintenance of dopaminergic neurons in rat midbrain slice cultures. Neurosci Lett 2001; 300:166-70. [PMID: 11226637 DOI: 10.1016/s0304-3940(01)01570-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic treatment of organotypic midbrain slice cultures with L-type Ca(2+) channel blocker nicardipine (3-10 microM) or verapamil (10 microM) for 18 days resulted in a drastic decrease in the number of dopaminergic neurons. A voltage-dependent Na(+) channel blocker tetrodotoxin (1 microM) was also effective in decreasing the number of dopaminergic neurons. Concurrent application of forskolin (20 microM) or dibutyryl cyclic AMP (1 mM) counteracted the effects of nicardipine and tetrodotoxin. These results suggest that spontaneous neuronal activity within midbrain slice cultures, causing Ca(2+) influx through L-type Ca(2+) channels that maintains intracellular cyclic AMP levels, is required for the maintenance of dopaminergic neurons.
Collapse
Affiliation(s)
- H Katsuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, 606-8501, Kyoto, Japan
| | | | | | | | | |
Collapse
|
68
|
Piech-Dumas KM, Best JA, Chen Y, Nagamoto-Combs K, Osterhout CA, Tank AW. The cAMP responsive element and CREB partially mediate the response of the tyrosine hydroxylase gene to phorbol ester. J Neurochem 2001; 76:1376-85. [PMID: 11238722 DOI: 10.1046/j.1471-4159.2001.00127.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA.
Collapse
Affiliation(s)
- K M Piech-Dumas
- Department of Pharmacology and Physiology, and the Neuroscience Program, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | | | | | |
Collapse
|
69
|
Nerve growth factor, but not epidermal growth factor, increases Fra-2 expression and alters Fra-2/JunD binding to AP-1 and CREB binding elements in pheochromocytoma (PC12) cells. J Neurosci 2001. [PMID: 11150315 DOI: 10.1523/jneurosci.21-01-00018.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In pheochromocytoma (PC12) cells nerve growth factor (NGF) and epidermal growth factor (EGF) activate similar receptor tyrosine kinase signaling pathways but evoke strikingly different biological outcomes: NGF induces differentiation and EGF acts as a mitogen. A novel approach was developed for identifying transcription factor activities associated with NGF-activated, but not EGF-activated, signaling, using random oligonucleotide clones from a DNA recognition library to isolate specific DNA binding proteins from PC12 nuclear extracts. A protein complex from NGF-treated, but not EGF-treated, cells was identified that exhibits increased mobility and DNA binding activity in gel mobility shift assays. The binding complex was identified in supershift assays as Fra-2/JunD. The clones used as probes contain either AP-1 or cAMP response element binding (CREB) recognition elements. Time course experiments revealed further differences in NGF and EGF signaling in PC12 cells. NGF elicits a more delayed and sustained ERK phosphorylation than EGF, consistent with previous reports. Both growth factors transiently induce c-fos, but NGF evokes a greater response than EGF. NGF specifically increases Fra-1 and Fra-2 levels at 4 and 24 hr. The latter is represented in Western blots by bands in the 40-46 kDa range. NGF, but not EGF, enhances the upper bands, corresponding to phosphorylated Fra-2. These findings suggest that prolonged alterations in Fra-2 and subsequent increases in Fra-2/JunD binding to AP-1 and CREB response elements common among many gene promoters could serve to trigger broadly an NGF-specific program of gene expression.
Collapse
|
70
|
Hagerty T, Morgan WW, Elango N, Strong R. Identification of a glucocorticoid-responsive element in the promoter region of the mouse tyrosine hydroxylase gene. J Neurochem 2001; 76:825-34. [PMID: 11158254 DOI: 10.1046/j.1471-4159.2001.00072.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been known for nearly 30 years that glucocorticoid receptor stimulation induces increased tyrosine hydroxylase (TH) gene expression. However, the mechanism mediating this effect has remained elusive. Sequences with homology to known glucocorticoid-responsive elements (GRE) have been identified in the 5' flanking region of the TH gene of several vertebrate species, but none has been shown to be functional. To identify the GRE element(s) in the TH promoter, we generated chimeric constructs in which different lengths of the 5' flanking sequences of the mouse TH gene (3.6, 1.1 and 0.8 kb) were ligated to a luciferase reporter gene. Dexamethasone treatment increased luciferase expression only in cells transiently transfected with the construct containing 3.6 kb of the TH 5' flanking DNA. Co-administration of mifepristone (RU486), a glucocorticoid receptor antagonist, blocked this effect. We identified a TH-GRE sequence (5'-GGCACAGTGTGGTCT) in the mouse 5' flanking DNA between -2435 and -2421 from the transcription start. Responsiveness to dexamethasone was lost following deletion of this sequence. To determine the ability of this element to function in a heterologous promoter, we prepared a chimeric construct in which the TH-GRE sequence was cloned just upstream of a minimal thymidine kinase (TK) promoter. Promoter activity was increased 2-fold in dexamethasone-treated PC12 cells transfected with the TH-GRE-TK construct. These results provide strong evidence that the 15 base-pair sequence in the 5' flanking DNA of the mouse TH gene functions as a glucocorticoid response element. This is the first report identifying a functional glucocorticoid response element in the promoter region of the TH gene of any species.
Collapse
Affiliation(s)
- T Hagerty
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | |
Collapse
|
71
|
Beitner-Johnson D, Rust RT, Hsieh T, Millhorn DE. Regulation of CREB by moderate hypoxia in PC12 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 475:143-52. [PMID: 10849656 DOI: 10.1007/0-306-46825-5_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The mechanisms by which excitable cells adapt and respond to changes in O2 levels remain largely unknown. We have investigated the effect of hypoxia on the cyclic AMP response element binding protein (CREB) transcription factor. PC12 cells were exposed to moderate levels of hypoxia (5% O2) for various times between 20 min and 6 hr. We found that hypoxia rapidly and persistently induced ser133 phosphorylation of CREB. This effect was more robust than that produced by exposing PC12 cells to either forskolin, KCl, or NGF. This effect was not due to activation of any of the previously known CREB kinases, including PKA, CaMK, PKC, p70s6k, or MAPKAP kinase-2. Thus, hypoxia may induce activation of a novel CREB kinase. To test whether phosphorylation of CREB was associated with an activation of CRE-dependent gene expression, cells were transfected with wild type and mutated regions of the 5'-flanking region of the tyrosine hydroxylase (TH) gene fused to a CAT reporter gene. Mutation of the CRE element in a TH reporter gene reduced, but did not abolish, the effects of hypoxia on TH gene expression. However, hypoxia did not induce transactivation of a GAL4-luciferase reporter by a GAL4-CREB fusion protein. Thus, the mechanism by which hypoxia regulates CREB is distinct, and more complex, than that induced by forskolin, depolarization, or nerve growth factor.
Collapse
Affiliation(s)
- D Beitner-Johnson
- Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, OH 45267-0576, USA
| | | | | | | |
Collapse
|
72
|
Scammell JG, Reddy S, Valentine DL, Coker TN, Nikolopoulos SN, Ross RA. Isolation and characterization of the human secretogranin II gene promoter. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:8-15. [PMID: 10648883 DOI: 10.1016/s0169-328x(99)00269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The goal of this study was to isolate and functionally characterize the human secretogranin II (SgII) gene promoter. SgII is a member of the granin family of proteins which are selectively expressed in neurosecretory cells. The human SgII promoter contains a consensus TATA box and cyclic AMP response element (CRE) 35 and 74 bp upstream of the transcription start site, respectively, elements also found in the mouse and rat SgII gene promoters. Transfection studies showed that 869 bp of the human SgII promoter were sufficient to confer cell type-specific expression of an SgII promoter-luciferase reporter gene in neurosecretory PC-12, GH and BE(2)-M17 cells. The activity of the human SgII promoter was also compared in three N-type, human neuroblastoma cell lines [BE(2)-M17, SMS-KAN and SH-SY5Y], which differ markedly in the level of SgII expression. SgII promoter activities in the neuroblastoma cell lines correlated not only with the levels of SgII but also the levels of the cyclic AMP response element-binding protein CREB which were highest in BE(2)-M17 cells and lowest in SH-SY5Y cells. To establish that the activity of the human SgII promoter in these neuroblastoma cell lines is dependent on the level of CREB, rat CREB was overexpressed in SH-SY5Y cells. SgII promoter activity was up to 8-fold higher in SH-SY5Y cells overexpressing CREB. These results suggest that SgII expression is a marker for neuronal differentiation in human neuroblastoma cell lines and is dependent on the level of CREB expression.
Collapse
Affiliation(s)
- J G Scammell
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, USA
| | | | | | | | | | | |
Collapse
|
73
|
Nankova BB, Tank AW, Sabban EL. Transient or sustained transcriptional activation of the genes encoding rat adrenomedullary catecholamine biosynthetic enzymes by different durations of immobilization stress. Neuroscience 1999; 94:803-8. [PMID: 10579571 DOI: 10.1016/s0306-4522(99)00290-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The impact of stress on the transcription of rat adrenal tyrosine hydroxylase and dopamine beta-hydroxylase genes was examined. Nuclear run-on assays revealed that repeated immobilization stress elicited marked (about threefold) increases in the relative rates of transcription, being sustained for at least one day. Parallel changes in the steady-state messenger RNA levels for tyrosine hydroxylase and dopamine beta-hydroxylase were also observed. A single episode of stress triggered similar enhancements in their relative transcription rates. Depending on the duration of the stress signal, the effect on gene transcription varied in its persistence. After very short (5 min) immobilization, there was a marked transient rise in the transcription of both genes, without an accumulation of the corresponding mRNAs. Longer episodes of stress (30 min) increased the relative rate of tyrosine hydroxylase transcription for hours, causing elevations in the steady-state messenger RNA levels. In contrast, although dopamine beta-hydroxylase transcription was elevated to a similar extent by 30-min immobilization stress, the effect was transient and not reflected in significant accumulation of its messenger RNA. The results of our studies emphasize that the stress-evoked increases in the expression of the genes encoding adrenomedullary catecholamine biosynthetic enzymes involve transcriptional activation. Depending on the duration and reiteration of the stress signal, different transcriptional mechanisms may be employed.
Collapse
Affiliation(s)
- B B Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla 10595, USA
| | | | | |
Collapse
|
74
|
Nankova BB, Sabban EL. Multiple signalling pathways exist in the stress-triggered regulation of gene expression for catecholamine biosynthetic enzymes and several neuropeptides in the rat adrenal medulla. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:1-9. [PMID: 10519971 DOI: 10.1046/j.1365-201x.1999.00566.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A critical component of the response to stress is the coincident activation of the hypothalamic-pituitary-adrenal axis and the sympathoadrenal system - comprised of sympathetic ganglia and the adrenal medullae. The sympathoadrenal system produces the catecholamines - noradrenaline and adrenaline, and several neuropeptides, involved in the homeostatic mechanisms that govern the adaptation to stress. This brief survey aims to provide a general overview of the present knowledge about the impact of stress on neurotransmitter gene expression in the adrenal medulla, with particular attention paid to the apparent heterogeneity in stress-evoked signals and regulatory pathways.
Collapse
Affiliation(s)
- B B Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
75
|
Piech-Dumas KM, Tank AW. CREB mediates the cAMP-responsiveness of the tyrosine hydroxylase gene: use of an antisense RNA strategy to produce CREB-deficient PC12 cell lines. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:219-30. [PMID: 10407170 DOI: 10.1016/s0169-328x(99)00149-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
cAMP initiates the PKA signaling cascade in rat pheochromocytoma PC12 cells, resulting in transcriptional activation of the tyrosine hydroxylase (TH) gene. This effect is mediated primarily through the cAMP responsive element (CRE), located at position -45 to -38 within the TH gene promoter. In this study, we applied an antisense RNA strategy to evaluate the role of the cAMP responsive element binding protein (CREB) in regulating TH gene expression. CREB antisense RNA expression vectors were stably introduced into PC12 cells to generate cell lines deficient in CREB. CREB protein and mRNA levels were diminished up to 90% in the stably transfected cell lines. Promoter analysis experiments demonstrated that cAMP-mediated inducibility of either TH gene proximal promoter activity or the activity of the TH CRE by itself fused upstream of a basal promoter was diminished in CREB-deficient cell lines. PKA activity in the CREB-deficient cell lines was comparable to the activity in control cell lines. In addition, neither ATF1, nor CREM proteins were significantly down-regulated in the CREB-deficient cells. Most significantly, the cAMP-inducibility of endogenous TH mRNA was completely blocked in the CREB-deficient cells, indicating that the response of the endogenous gene to cAMP was dependent on CREB. These results support the hypothesis that CREB (not other CRE-binding proteins) is the key transcription factor that is required for regulating TH gene expression in response to cAMP. Furthermore, our studies indicate that these CREB-deficient PC12 cells are excellent tools to study the participation of CREB in gene regulation.
Collapse
Affiliation(s)
- K M Piech-Dumas
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | | |
Collapse
|
76
|
Kypreos KE, Marhamati DJ, Sonenshein GE. B-Myb represses trans-activation of the Col5A2 collagen promoter indirectly via inhibition of binding of factors interacting with positive elements within the first exon. Matrix Biol 1999; 18:275-85. [PMID: 10429946 DOI: 10.1016/s0945-053x(99)00023-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
B-myb, a member of the myb gene family, was originally isolated based on its high homology with c-myb in the DNA-binding domain. Previously we showed that B-myb is expressed in bovine vascular smooth muscle cells (SMCs) in a cell cycle-dependent fashion, and inhibits type I collagen gene promoter activity. Here, we have explored its role in regulation of another fibrillar collagen gene, Col5A2, encoding the (alpha2 chain of type V collagen. Ectopic expression of B-Myb decreased alpha 2(V) promoter activity and endogenous alpha 2(V) collagen mRNA levels. The responsive region of the alpha 2(V) collagen gene was localized to a fragment including 100 bp of basal promoter and 150 bp of exon 1 sequences, which contained two CRE-like elements. Binding to these elements increased upon deprivation of serum-growth factors, when expression of the Col5A2 gene is elevated, leading us to test their role despite the failure of excess unlabelled CRE oligonucleotide from the somatostatin gene to successfully compete for binding. Mutation of the elements significantly decreased the basal level of alpha2(V) collagen promoter activity and ablated inhibition by B-Myb. Furthermore, addition of B-Myb-glutathionine S-transferase fusion protein inhibited complex formation. Thus, these results confirm a major role for B-Myb in mediating intracellular signals controlling collagen gene expression in vascular SMCs. A model of indirect repression of the Col5A2 gene by B-Myb, via interaction with a positively-acting matrix regulatory factor, termed MRF-V, is discussed.
Collapse
Affiliation(s)
- K E Kypreos
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA
| | | | | |
Collapse
|
77
|
Abstract
Expression of tyrosine hydroxylase (TH) by juxtaglomerular (JG) neurons of the olfactory bulb (OB) requires innervation of the bulb by olfactory receptor neurons (ORNs). ORN lesion selectively downregulates TH in JG neurons. In reversible odor deprivation, TH expression is downregulated as the naris is closed and then upregulated upon naris reopening. The mechanism or mechanisms regulating this dependence are unknown. TH expression could be regulated by trophic factor release and/or synaptic activity from ORN terminals. We investigated TH expression in cocultures of dissociated postnatal rat OB cells and embryonic olfactory neuroepithelium (OE) slice explants. TH-positive neurons in control dissociated OB cell cultures alone comprise only a small fraction of the total population of cells present in the culture. However, when OE slice explants are cocultured with dispersed OB cells, there is a mean 2.4-fold increase in the number of TH-positive neurons. ORNs in vivo use glutamate as a neurotransmitter. Broad spectrum excitatory amino acid antagonists (kyurenic acid) or selective antagonists of the NMDA receptor (APV) both prevent induction of TH expression in OE-OB cocultures. Furthermore, pulse application of NMDA stimulates TH expression in OB neurons in the absence of OE. In vitro, OB TH neurons express NMDA receptors, suggesting that NMDA stimulation is acting directly on TH neurons. Exposure of OE explants to natural odorants results in upregulation of TH, presumably through increased ORN activity, which could be blocked by APV. These findings indicate that odorant-stimulated glutamate release by ORN terminals regulates TH expression via NMDA receptors on JG dopaminergic neurons.
Collapse
|
78
|
Anderson PN, Campbell G, Zhang Y, Lieberman AR. Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. PROGRESS IN BRAIN RESEARCH 1999; 117:211-32. [PMID: 9932411 DOI: 10.1016/s0079-6123(08)64018-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Studies of the regeneration of CNS axons into peripheral nerve grafts have provided information crucial to our understanding of the regenerative potential of CNS neurons. Injured axons in the thalamus and corpus striatum produce regenerative sprouts within a few days of graft implantation, apparently in response to living cells in the grafts. The regenerating axons often grow directly towards the grafts, and enter Schwann cell columns where they elongate surrounded by Schwann cell processes. The regenerating CNS axons, and the Schwann cell processes along which they grow, initially express the cell adhesion molecules NCAM, and L1. The axons also express polysialic acid and, unlike regenerating peripheral axons, bind tenascin-C derived from Schwann cells. Wherever peripheral nerve grafts are implanted into the CNS they appear to promote the differential regeneration of CNS axons. Most of the axons which grow into grafts in the thalamus are derived from the thalamic reticular nucleus (TRN), whereas grafts in the striatum promote regeneration of axons from the substantia nigra pars compacta (SNpc) and grafts in the cerebellum promote regeneration from deep cerebellar nuclei (DCN) and brainstem precerebellar neurons. In contrast most thalamocortical projection neurons, striatal projection neurons and Purkinje cells in the cerebellar cortex are poor at regenerating. There are patterns to the expression of regeneration-related molecules by axons injured by nerve grafts in the CNS. Most neurons which regenerate well (e.g. TRN and DCN neurons) upregulate GAP-43, L1 and the transcription factor c-jun in response to a graft, whereas those neurons which do not regenerate well (e.g. Purkinje cells, thalamocortical and striatal projection neurons) do not upregulate these molecules. These observations suggest that some classes of CNS neurons may be intrinsically unable to regenerate axons and the repair of injuries in the brain and spinal cord may consequently require some form of gene therapy for axotomised neurons.
Collapse
Affiliation(s)
- P N Anderson
- Department of Anatomy and Developmental Biology, University College London, UK.
| | | | | | | |
Collapse
|
79
|
Liu N, Cigola E, Tinti C, Jin BK, Conti B, Volpe BT, Baker H. Unique regulation of immediate early gene and tyrosine hydroxylase expression in the odor-deprived mouse olfactory bulb. J Biol Chem 1999; 274:3042-7. [PMID: 9915843 DOI: 10.1074/jbc.274.5.3042] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine hydroxylase (TH), expressed in a population of periglomerular neurons intrinsic to the olfactory bulb, displays dramatic down-regulation in response to odor deprivation. To begin to elucidate the importance of immediate early genes (IEG) in TH gene regulation, the present study examined expression of IEGs in the olfactory bulb in response to odor deprivation. In addition, the composition of TH AP-1 and CRE binding complexes was investigated in control and odor-deprived mice. Immunocytochemical studies showed that c-Fos, Fos-B, Jun-D, CRE-binding protein (CREB), and phosphorylated CREB (pCREB) are colocalized with TH in the dopaminergic periglomerular neurons. Unilateral naris closure resulted in down-regulation of c-Fos and Fos-B, but not Jun-D, CREB, or pCREB, in the glomerular layer of the ipsilateral olfactory bulb. Gel shift assays demonstrated a significant decrease (32%) in TH AP-1, but not CRE, binding activity in the odor-deprived bulb. Fos-B was found to be the exclusive member of the Fos family present in the TH AP-1 complex. CREB, CRE modulator protein (CREM), Fos-B, and Jun-D, but not c-Fos, all contributed to the CRE DNA-protein complex. These results indicated that Fos-B, acting through both AP-1 and CRE motifs, may be implicated in the regulation of TH expression in the olfactory bulb dopaminergic neurons.
Collapse
Affiliation(s)
- N Liu
- Laboratory of Molecular Neurobiology, Cornell University Medical College at The Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Gueorguiev VD, Zeman RJ, Hiremagalur B, Menezes A, Sabban EL. Differing temporal roles of Ca2+ and cAMP in nicotine-elicited elevation of tyrosine hydroxylase mRNA. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C54-65. [PMID: 9886920 DOI: 10.1152/ajpcell.1999.276.1.c54] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The involvement of cAMP- and Ca2+-mediated pathways in the activation of tyrosine hydroxylase (TH) gene expression by nicotine was examined in PC-12 cells. Extracellular Ca2+ and elevations in intracellular Ca2+ concentration ([Ca2+]i) were required for nicotine to increase TH mRNA. The nicotine-elicited rapid rise in [Ca2+]i was inhibited by blockers of either L-type or N-type, and to a lesser extent P/Q-, but not T-type, voltage-gated Ca2+ channels. With continual nicotine treatment, [Ca2+]i returned to basal levels within 3-4 min. After a lag of approximately 5-10 min, there was a smaller elevation in [Ca2+]i that persisted for 6 h and displayed different responsiveness to Ca2+ channel blockers. This second phase of elevated [Ca2+]i was blocked by an inhibitor of store-operated Ca2+ channels, consistent with the observed generation of inositol trisphosphate. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM), when added before or 2 h after nicotine, prevented elevation of TH mRNA. Nicotine treatment significantly raised cAMP levels. Addition of the adenylyl cyclase inhibitor 2', 5'-dideoxyadenosine (DDA) prevented the nicotine-elicited phosphorylation of cAMP response element binding protein. DDA also blocked the elevation of TH mRNA only when added after the initial transient rise in [Ca2+]i and not after 1 h. This study reveals that several temporal phases are involved in the induction of TH gene expression by nicotine, each of them with differing requirements for Ca2+ and cAMP.
Collapse
Affiliation(s)
- V D Gueorguiev
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
81
|
Best JA, Tank AW. The THCRE2 site in the rat tyrosine hydroxylase gene promoter is responsive to phorbol ester. Neurosci Lett 1998; 258:131-4. [PMID: 9885948 DOI: 10.1016/s0304-3940(98)00854-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, our laboratory has identified a tyrosine hydroxylase (TH) gene promoter element, THCRE2 (located at -97 to -90), that is required for maximal response to cyclic AMP. In this study we test whether the THCRE2 is responsive to phorbol ester. Rat PC12 cells were transfected with a reporter gene construct, TH(-272/+27)-CAT, which is driven by the first 272 bp of the rat TH gene 5' flanking region. Treatment of transfected cells with 0.1 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) elicited a 5-6-fold increase in TH gene proximal promoter activity. Mutagenesis of the THCRE2 sequence diminished TPA-responsiveness of the TH gene promoter by approximately 50%. Minimal promoter constructs driven by a single copy of the region of the TH gene that encodes the THCRE2 (from -117 to -59) were also responsive to TPA. Our results suggest that the THCRE2 is a phorbol ester-responsive element, as well as a cyclic AMP-responsive element.
Collapse
Affiliation(s)
- J A Best
- Center for Oral Biology and Eastman Department of Dentistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
82
|
Yamakuni T, Yamamoto T, Hoshino M, Song SY, Yamamoto H, Kunikata-Sumitomo M, Minegishi A, Kubota M, Ito M, Konishi S. A novel protein containing Cdc10/SWI6 motifs regulates expression of mRNA encoding catecholamine biosynthesizing enzymes. J Biol Chem 1998; 273:27051-4. [PMID: 9765218 DOI: 10.1074/jbc.273.42.27051] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catecholaminergic (dopaminergic, noradrenergic, and adrenergic) transmitter phenotypes require the cooperative actions of four biosynthetic enzymes: tyrosine hydroxylase, aromatic L-amino acid decarboxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase. Mechanisms that control expression of these enzymes in a transmitter phenotype-specific manner, however, are poorly understood. Here, we provide evidence that overexpression of a novel cdc10/SWI6 motif-containing protein, V-1, elicits the coordinate up-regulation of tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and dopamine beta-hydroxylase mRNAs in the neuronal cell line PC12D, and as a result, catecholamine levels are increased. Furthermore, V-1 is strongly expressed in the cytoplasm of rat chromaffin cells of adrenal medulla. Thus, V-1 may act as a cytoplasmic protein/protein adapter and be involved in control of the catecholaminergic phenotype expression via an intracellular pathway signaling to the nucleus.
Collapse
Affiliation(s)
- T Yamakuni
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Tyrosine hydroxylase expression in primary cultures of olfactory bulb: role of L-type calcium channels. J Neurosci 1998. [PMID: 9742135 DOI: 10.1523/jneurosci.18-19-07638.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory activity mediates regulation of tyrosine hydroxylase (TH), the first enzyme in the dopamine biosynthetic pathway, in the rodent olfactory bulb. The current studies established for the first time primary cultures of neonatal mouse olfactory bulb expressing TH and tested whether L-type calcium channels mediate the activity-dependent regulation of the dopamine phenotype. After 1 d in vitro (DIV), a small population of TH-immunostained neurons that lacked extensive processes could be demonstrated. After an additional 2 DIV in serum-free medium, the number of TH neurons had doubled, and they exhibited long interdigitating processes. Membrane depolarization for 48 hr with 50 mM KCl produced a further 2.4-fold increase in the number of TH-immunoreactive neurons compared with control cultures. Increased TH neuron number required at least 36 hr of exposure to KCl. Forskolin, which increases intracellular cAMP levels, induced a 1.5- to 1.6-fold increase in the number of TH-immunostained neurons. Combined treatment with KCl and forskolin was not additive. Nifedipine, an L-type calcium channel blocker, completely prevented the depolarization-mediated increase in TH expression but did not block the response to forskolin. Treatment with Bay K8644, an L-type calcium channel agonist, also significantly increased the number of TH-expressing neurons. Depolarization also induced alterations in neuritic outgrowth, resulting in a stellate versus an elongate morphology that, in contrast, was not prevented by nifedipine. These results are the first demonstration that in vitro, as in vivo, depolarization increases TH expression in olfactory bulb and that L-type calcium channels mediate this activity-dependent regulation of the dopamine phenotype.
Collapse
|
84
|
Swanson DJ, Zellmer E, Lewis EJ. AP1 proteins mediate the cAMP response of the dopamine beta-hydroxylase gene. J Biol Chem 1998; 273:24065-74. [PMID: 9727025 DOI: 10.1074/jbc.273.37.24065] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmitter biosynthesis is regulated by environmental stimuli, which transmit intracellular signals via second messengers and protein kinase pathways. For the catecholamine biosynthetic enzymes, dopamine beta-hydroxylase and tyrosine hydroxylase, regulation of gene expression by cyclic AMP, diacyl glycerol, and Ca2+ leads to increased neurotransmitter biosynthesis. In this report, we demonstrate that the cAMP-mediated regulation of transcription from the dopamine beta-hydroxylase promoter is mediated by the AP1 proteins c-Fos, c-Jun, and JunD. Following treatment of cultured cells with cAMP, protein complexes bound to the dopamine beta-hydroxylase AP1/cAMP response element element change from consisting of c-Jun and JunD to include c-Fos, c-Jun, and JunD. The homeodomain protein Arix is also a component of this DNA-protein complex, binding to the adjacent homeodomain recognition sites. Transfection of a dominant negative JunD expression plasmid inhibits cAMP-mediated expression of the dopamine beta-hydroxylase promoter construct in PC12 and CATH.a cells. In addition to the role of c-Fos in regulating dopamine beta-hydroxylase gene expression in response to cAMP, a second pathway, involving Rap1/B-Raf is involved. These experiments illustrate an unusual divergence of cAMP-dependent protein kinase signaling through multiple pathways that then reconverge on a single element in the dopamine beta-hydroxylase promoter to elicit activation of gene expression.
Collapse
Affiliation(s)
- D J Swanson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, L224, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
85
|
Lau A, Gant TW, Cann AJ. The mechanism of trans-activation of the MDR1 gene by human T-cell leukemia virus. Biochem Biophys Res Commun 1998; 249:397-404. [PMID: 9712708 DOI: 10.1006/bbrc.1998.9142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), the protein product of the multidrug resistance gene (MDR1), confers a drug resistant phenotype on cells. We have recently demonstrated that the MDR1 promoter is transcriptionally activated by the HTLV-I tax protein, providing an explanation for the development of drug resistance in HTLV-I infections. Here we report that HTLV-I mediated MDR1 activation is dependent on the presence of an NF-IL6-binding site located between base pairs -148 and -141 relative to the transcription start site. This finding opens up the possibility of moderating P-gp expression through interference with NF-IL6 binding to its trans recognition element and subsequent repression of MDR1 transcription.
Collapse
Affiliation(s)
- A Lau
- Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | | | | |
Collapse
|
86
|
Beitner-Johnson D, Millhorn DE. Hypoxia induces phosphorylation of the cyclic AMP response element-binding protein by a novel signaling mechanism. J Biol Chem 1998; 273:19834-9. [PMID: 9677418 DOI: 10.1074/jbc.273.31.19834] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate signaling mechanisms by which hypoxia regulates gene expression, we examined the effect of hypoxia on the cyclic AMP response element-binding protein (CREB) in PC12 cells. Exposure to physiological levels of hypoxia (5% O2, approximately 50 mm Hg) rapidly induced a persistent phosphorylation of CREB on Ser133, an event that is required for CREB-mediated transcriptional activation. Hypoxia-induced phosphorylation of CREB was more robust than that induced by any other stimulus tested, including forskolin, depolarization, and osmotic stress. Furthermore, this effect was not mediated by any of the previously known signaling pathways that lead to phosphorylation of CREB, including protein kinase A, calcium/calmodulin-dependent protein kinase, protein kinase C, ribosomal S6 kinase-2, and mitogen-activated protein kinase-activated protein kinase-2. Hypoxic activation of a CRE-containing reporter (derived from the 5'-flanking region of the tyrosine hydroxylase gene) was attenuated markedly by mutation of the CRE. Thus, a physiological reduction in O2 levels induces a functional phosphorylation of CREB at Ser133 via a novel signaling pathway.
Collapse
Affiliation(s)
- D Beitner-Johnson
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576, USA.
| | | |
Collapse
|
87
|
Moffett J, Kratz E, Stachowiak MK. Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:293-305. [PMID: 9582440 DOI: 10.1016/s0169-328x(98)00010-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FGF-2, a mitogenic/neurotrophic protein, controls the development and plasticity of many types of neural cells. In neural crest-derived adrenal pheochromatocytes, induction of FGF-2 coincides with the establishment of functional innervation and is reproduced in vitro by stimulating acetylcholine receptors (AChR). The mechanisms by which AChR activate the FGF-2 gene were examined in cultured bovine adrenal medullary chromaffin (BAMC) cells in which AChR induce expression and nuclear accumulation of growth-promoting FGF-2 and FGF-2 receptors. Carbachol or nicotine increased expression of transfected FGF-2 gene promoter-luciferase constructs and were more potent than the muscarinic agonist ABMCB. Deletion analysis has identified a unique -555/-512 bp element that confers AChR stimulation and basal activity to the downstream FGF-2 promoter, and a separate protein kinase C/cAMP-responsive sequence (-625/-555 bp). Stimulation of AChR increased in vitro formation of protein complexes with the AChR-responsive element which were not displaced by target oligonucleotides for common trans-activators. Southwestern analysis identified 50-55, 125, 140 and 170 kDa proteins that interact with the AChR-responsive element in a manner stimulated by AChR. Nicotine increased tyrosine phosphorylation of cytoplasmic and nuclear proteins, including 50-55 kDa promoter-binding factors. Activation of the FGF-2 promoter was reduced by genistein. Thus, nicotinic AChR activate the FGF-2 gene via a new signaling mechanism separate from the cAMP/PKC pathways. It utilizes tyrosine phosphorylation and interaction of trans-activating factors with a novel cis-acting element. It offers a new pathway through which trans-synaptic signals may control neural development and plasticity.
Collapse
Affiliation(s)
- J Moffett
- Laboratory of Molecular Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA
| | | | | |
Collapse
|
88
|
Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 1998; 18:967-77. [PMID: 9447994 PMCID: PMC108809 DOI: 10.1128/mcb.18.2.967] [Citation(s) in RCA: 440] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several studies have characterized the upstream regulatory region of c-fos, and identified cis-acting elements termed the cyclic AMP (cAMP) response elements (CREs) that are critical for c-fos transcription in response to a variety of extracellular stimuli. Although several transcription factors can bind to CREs in vitro, the identity of the transcription factor(s) that activates the c-fos promoter via the CRE in vivo remains unclear. To help identify the trans-acting factors that regulate stimulus-dependent transcription of c-fos via the CREs, dominant-negative (D-N) inhibitor proteins that function by preventing DNA binding of B-ZIP proteins in a dimerization domain-dependent fashion were developed. A D-N inhibitor of CREB, termed A-CREB, was constructed by fusing a designed acidic amphipathic extension onto the N terminus of the CREB leucine zipper domain. The acidic extension of A-CREB interacts with the basic region of CREB forming a coiled-coil extension of the leucine zipper and thus prevents the basic region of wild-type CREB from binding to DNA. Other D-N inhibitors generated in a similar manner with the dimerization domains of Fos, Jun, C/EBP, ATF-2, or VBP did not block CREB DNA binding activity, nor did they inhibit transcriptional activation of a minimal promoter containing a single CRE in PC12 cells. A-CREB inhibited activation of CRE-mediated transcription evoked by three distinct stimuli: forskolin, which increases intracellular cAMP; membrane depolarization, which promotes Ca2+ influx; and nerve growth factor (NGF). A-CREB completely inhibited cAMP-mediated, but only partially inhibited Ca2+- and NGF-mediated, transcription of a reporter gene containing 750 bp of the native c-fos promoter. Moreover, glutamate induction of c-fos expression in primary cortical neurons was dependent on CREB. In contrast, induction of c-fos transcription by UV light was not inhibited by A-CREB. Lastly, A-CREB attenuated NGF induction of morphological differentiation in PC12 cells. These results suggest that CREB or its closely related family members are general mediators of stimulus-dependent transcription of c-fos and are required for at least some of the long-term actions of NGF.
Collapse
Affiliation(s)
- S Ahn
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Transcription of the rat tyrosine hydroxylase (TH) gene is controlled by enhancer sequences in its 5' flanking region; these enhancers include the AP1, dyad, and cAMP response element (CRE) motifs. We show that a novel basal promoter element (-17 GCCTGCCTGGCGA -5) positioned between the TATA box and +1 works in conjunction with the upstream AP1-dyad and CRE enhancers but cannot support transcription by itself. A mutation of this element, termed partial dyad, reduces basal expression of a reporter gene in TH-positive cell lines and TH-negative lines but has no effect on cAMP- or KCl-induced expression. A double mutant at positions -17 and -11 of the partial dyad reduces transcriptional activation by 80%. Conversely, insertion of this element into a heterologous promoter restores basal expression to levels mediated by the native TH promoter. The partial dyad is a novel activational element that is required for full expression of the TH gene and may assist in the function of the AP1, dyad, and CRE motifs and also other enhancers further upstream. Hence, the rat TH gene is unusual in that its enhancers will not function with a heterologous promoter but require a specific TH promoter sequence for full activation.
Collapse
|