51
|
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host- Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response. Front Immunol 2017; 8:1080. [PMID: 28955329 PMCID: PMC5601305 DOI: 10.3389/fimmu.2017.01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.
Collapse
Affiliation(s)
- Thaís Rigueti Brasil
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
52
|
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, El Bissati K, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer. Sci Rep 2017; 7:11496. [PMID: 28904337 PMCID: PMC5597608 DOI: 10.1038/s41598-017-10675-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/14/2017] [Indexed: 12/27/2022] Open
Abstract
One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.
Collapse
Affiliation(s)
- Huân M Ngô
- The University of Chicago, Chicago, IL, 60637, USA.,Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.,BrainMicro LLC, New Haven, CT, 06511, USA
| | - Ying Zhou
- The University of Chicago, Chicago, IL, 60637, USA
| | | | - Kai Wang
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Ernest Mui
- The University of Chicago, Chicago, IL, 60637, USA
| | | | | | | | - Fiona L Henriquez
- The University of Chicago, Chicago, IL, 60637, USA.,FLH, IBEHR School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Alexandre Montpetit
- Genome Quebec, Montréal, QC H3B 1S6, Canada; McGill University, Montréal, QC H3A 0G4, Canada
| | - Jenefer M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.,Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | | | | | | | | | | | - Charles Cobbs
- California Pacific Medical Center, San Francisco, CA, 94114, USA
| | - Dennis A Steindler
- JM USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Kenneth Boyer
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - A Gwendolyn Noble
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Charles N Swisher
- Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Peter Rabiah
- Northshore University Health System, Evanston, IL, 60201, USA
| | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Rima McLeod
- The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
53
|
Cai Y, Shen J. Modulation of host immune responses to Toxoplasma gondii by microRNAs. Parasite Immunol 2017; 39. [PMID: 28170109 DOI: 10.1111/pim.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
To survive successfully, Toxoplasma counteracts the strictly regulated host innate response to downregulate inflammation that could be deleterious for the parasite. MicroRNAs are vital regulators of both innate and adaptive immunity, controlling the maintenance and development of immune progenitors as well as the differentiation and the functions of host mature immune cells. Thus, the complexity of mechanisms underlying the connection between Toxoplasma and host immunity has led to investigations of miRNAs as additional key molecular players. The knowledge acquired from these studies will be useful for aiding the discovery of new targets for diagnosis or therapeutic approaches for toxoplasmosis and insight into the interaction between host and parasite.
Collapse
Affiliation(s)
- Y Cai
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - J Shen
- Department of Parasitology, Provincial Laboratory of Pathogen Biology Anhui and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, China
| |
Collapse
|
54
|
He C, Kong L, Zhou L, Xia J, Wei H, Liu M, Peng H. Host Cell Vimentin Restrains Toxoplasma gondii Invasion and Phosphorylation of Vimentin is Partially Regulated by Interaction with TgROP18. Int J Biol Sci 2017; 13:1126-1137. [PMID: 29104504 PMCID: PMC5666328 DOI: 10.7150/ijbs.21247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
The obligate intracellular parasite, Toxoplasma gondii, manipulates the cytoskeleton of its host cells to facilitate infection. A significant rearrangement of host cell vimentin around Toxoplasma parasitophorous vacuoles is observed during the course of infection. ROP18 (TgROP18) is a serine-threonine kinase secreted by T. gondii rhoptry and a major virulence factor; however, the mechanisms by which this kinase modulates host factors remain poorly understood. Different and dynamic patterns of vimentin solubility, phosphorylation, and expression levels were observed in host cells infected with T. gondii strain RH and RH Δrop18 strains, suggesting that TgROP18 contributes to the regulation of these dynamic patterns. Additionally, host cell vimentin was demonstrated to interact with and be phosphorylated by TgROP18. A significant increase in T. gondii infection rate was observed in vimentin knockout human brain microvessel endothelial cells (HBMEC), while vimentin knockout or knock down in host cells had no impact on parasite proliferation and egress. These results indicate that host cell vimentin can inhibit T. gondii invasion. Interestingly, western blotting of different mouse tissues indicated that the lowest vimentin expression level was present in the brain, which may explain the mechanism underlying the nervous system tropism of T. gondii, and the phenomenon of huge cyst burdens developing in the mouse brain during chronic infection.
Collapse
Affiliation(s)
- Cheng He
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ling Kong
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Lijuan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jing Xia
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Haixia Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
55
|
Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. Parasitol Res 2017; 116:2707-2719. [DOI: 10.1007/s00436-017-5579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
56
|
Swierzy IJ, Händel U, Kaever A, Jarek M, Scharfe M, Schlüter D, Lüder CGK. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci Rep 2017; 7:7229. [PMID: 28775382 PMCID: PMC5543063 DOI: 10.1038/s41598-017-07838-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites’ ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.
Collapse
Affiliation(s)
- Izabela J Swierzy
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany
| | - Ulrike Händel
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Alexander Kaever
- Institute of Microbiology and Genetics, Department of Bioinformatics, Georg-August-University, 37077, Göttingen, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Maren Scharfe
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany.
| |
Collapse
|
57
|
Synergistic Activity between Statins and Bisphosphonates against Acute Experimental Toxoplasmosis. Antimicrob Agents Chemother 2017; 61:AAC.02628-16. [PMID: 28559264 DOI: 10.1128/aac.02628-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/22/2017] [Indexed: 11/20/2022] Open
Abstract
Bisphosphonates are widely used for the treatment of bone disorders. These drugs also inhibit the growth of a variety of protozoan parasites, such as Toxoplasma gondii, the etiologic agent of toxoplasmosis. The target of the most potent bisphosphonates is the isoprenoid biosynthesis pathway enzyme farnesyl diphosphate synthase (FPPS). Based on our previous work on the inhibitory effect of sulfur-containing linear bisphosphonates against T. gondii, we investigated the potential synergistic interaction between one of these derivatives, 1-[(n-heptylthio)ethyl]-1,1-bisphosphonate (C7S), and statins, which are potent inhibitors of the host 3-hydroxy-3-methyl glutaryl-coenzyme A reductase (3-HMG-CoA reductase). C7S showed high activity against the T. gondii bifunctional farnesyl diphosphate (FPP)/geranylgeranyl diphosphate (GGPP) synthase (TgFPPS), which catalyzes the formation of FPP and GGPP (50% inhibitory concentration [IC50] = 31 ± 0.01 nM [mean ± standard deviation]), and modest effect against the human FPPS (IC50 = 1.3 ± 0.5 μM). We tested combinations of C7S with statins against the in vitro replication of T. gondii We also treated mice infected with a lethal dose of T. gondii with similar combinations. We found strong synergistic activities when using low doses of C7S, which were stronger in vivo than when tested in vitro We also investigated the synergism of several commercially available bisphosphonates with statins both in vitro and in vivo Our results provide evidence that it is possible to develop drug combinations that act synergistically by inhibiting host and parasite enzymes in vitro and in vivo.
Collapse
|
58
|
Adeyemi OS, Murata Y, Sugi T, Han Y, Kato K. Modulation of host HIF-1α activity and the tryptophan pathway contributes to the anti- Toxoplasma gondii potential of nanoparticles. Biochem Biophys Rep 2017; 11:84-92. [PMID: 28955772 PMCID: PMC5614707 DOI: 10.1016/j.bbrep.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 01/24/2023] Open
Abstract
Background Toxoplasmosis constitutes a large global burden that is further exacerbated by the shortcomings of available therapeutic options, thus underscoring the urgent need for better anti-Toxoplasma gondii therapy or strategies. Recently, we showed that the anti-parasitic action of inorganic nanoparticles (NPs) could, in part, be due to changes in redox status as well as in the parasite mitochondrial membrane potential. Methods In the present study, we explored the in vitro mode of action of the anti-T. gondii effect of NPs by evaluating the contributions of host cellular processes, including the tryptophan pathway and hypoxia-inducing factor activity. NPs, at concentrations ranging from 0.01 to 200 µg/ml were screened for anti-parasitic activity. Sulfadiazine and/or pyrimethamine served as positive controls. Results We found that interplay among multiple host cellular processes, including HIF-1α activity, indoleamine 2,3-dioxygenase activity, and to a larger extent the tryptophan pathway, contribute to the anti-parasitic action of NPs. Conclusion To our knowledge, this is the first study to demonstrate an effect of NPs on the tryptophan and/or kynurenine pathway. General significance Our findings deepen our understanding of the mechanism of action of NPs and suggest that modulation of the host nutrient pool may represent a viable approach to the development of new and effective anti-parasitic agents. L-tryptophan relieved parasite growth restriction by nanoparticles. Nanoparticles modulate host HIF-1α and IDO activity while mildly activating kynurenine pathway.
Collapse
Affiliation(s)
- Oluyomi Stephen Adeyemi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.,Medicinal Biochemistry and Toxicology Laboratory, Department of Biological Sciences, Landmark University, PMB 1004, Ipetu Road, Omu-Aran 370102, Nigeria
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yongmei Han
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
59
|
Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem 2017; 292:11009-11020. [PMID: 28487365 DOI: 10.1074/jbc.m116.768176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Upon infection, the intracellular parasite Toxoplasma gondii co-opts critical functions of its host cell to avoid immune clearance and gain access to nutritional resources. One route by which Toxoplasma co-opts its host cell is through hijacking host organelles, many of which have roles in immunomodulation. Here we demonstrate that Toxoplasma infection results in increased biogenesis of host lipid droplets through rewiring of multiple components of host neutral lipid metabolism. These metabolic changes cause increased responsiveness of host cells to free fatty acid, leading to a radical increase in the esterification of free fatty acids into triacylglycerol. We identified c-Jun kinase and mammalian target of rapamycin (mTOR) as components of two distinct host signaling pathways that modulate the parasite-induced lipid droplet accumulation. We also found that, unlike many host processes dysregulated during Toxoplasma infection, the induction of lipid droplet generation is conserved not only during infection with genetically diverse Toxoplasma strains but also with Neospora caninum, which is closely related to Toxoplasma but has a restricted host range and uses different effector proteins to alter host signaling. Finally, by showing that a Toxoplasma strain deficient in exporting a specific class of effectors is unable to induce lipid droplet accumulation, we demonstrate that the parasite plays an active role in this process. These results indicate that, despite their different host ranges, Toxoplasma and Neospora use a conserved mechanism to co-opt these host organelles, which suggests that lipid droplets play a critical role at the coccidian host-pathogen interface.
Collapse
Affiliation(s)
- Xiaoyu Hu
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Derk Binns
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Michael L Reese
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| |
Collapse
|
60
|
Chao MN, Li C, Storey M, Falcone BN, Szajnman SH, Bonesi SM, Docampo R, Moreno SNJ, Rodriguez JB. Activity of Fluorine-Containing Analogues of WC-9 and Structurally Related Analogues against Two Intracellular Parasites: Trypanosoma cruzi and Toxoplasma gondii. ChemMedChem 2016; 11:2690-2702. [PMID: 27886451 PMCID: PMC5200956 DOI: 10.1002/cmdc.201600505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/20/2016] [Indexed: 11/10/2022]
Abstract
Two obligate intracellular parasites, Trypanosoma cruzi, the agent of Chagas disease, and Toxoplasma gondii, an agent of toxoplasmosis, upregulate the mevalonate pathway of their host cells upon infection, which suggests that this host pathway could be a potential drug target. In this work, a number of compounds structurally related to WC-9 (4-phenoxyphenoxyethyl thiocyanate), a known squalene synthase inhibitor, were designed, synthesized, and evaluated for their effect on T. cruzi and T. gondii growth in tissue culture cells. Two fluorine-containing derivatives, the 3-(3-fluorophenoxy)- and 3-(4-fluorophenoxy)phenoxyethyl thiocyanates, exhibited half-maximal effective concentration (EC50 ) values of 1.6 and 4.9 μm, respectively, against tachyzoites of T. gondii, whereas they showed similar potency to WC-9 against intracellular T. cruzi (EC50 values of 5.4 and 5.7 μm, respectively). In addition, 2-[3- (phenoxy)phenoxyethylthio]ethyl-1,1-bisphosphonate, which is a hybrid inhibitor containing 3-phenoxyphenoxy and bisphosphonate groups, has activity against T. gondii proliferation at sub-micromolar levels (EC50 =0.7 μm), which suggests a combined inhibitory effect of the two functional groups.
Collapse
Affiliation(s)
- María N. Chao
- M. N. Chao, Dr. B. N. Falcone, Dr. S. H. Szajnman, Prof. Dr. J. B. Rodriguez, Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Catherine Li
- C. Li, M. Storey, Prof. Dr. R. Docampo, Prof. Dr. S. N. J. Moreno, Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Melissa Storey
- C. Li, M. Storey, Prof. Dr. R. Docampo, Prof. Dr. S. N. J. Moreno, Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Bruno N. Falcone
- M. N. Chao, Dr. B. N. Falcone, Dr. S. H. Szajnman, Prof. Dr. J. B. Rodriguez, Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Sergio H. Szajnman
- M. N. Chao, Dr. B. N. Falcone, Dr. S. H. Szajnman, Prof. Dr. J. B. Rodriguez, Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Sergio M. Bonesi
- Prof. Dr. S. M. Bonesi, Departamento de Química Orgánica and CIHIDECAR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Roberto Docampo
- C. Li, M. Storey, Prof. Dr. R. Docampo, Prof. Dr. S. N. J. Moreno, Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Silvia N. J. Moreno
- C. Li, M. Storey, Prof. Dr. R. Docampo, Prof. Dr. S. N. J. Moreno, Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Juan B. Rodriguez
- M. N. Chao, Dr. B. N. Falcone, Dr. S. H. Szajnman, Prof. Dr. J. B. Rodriguez, Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
61
|
Kwarteng A, Ahuno ST. The Potentials and Pitfalls of Microarrays in Neglected Tropical Diseases: A Focus on Human Filarial Infections. MICROARRAYS 2016; 5:microarrays5030020. [PMID: 27600086 PMCID: PMC5040967 DOI: 10.3390/microarrays5030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 12/01/2022]
Abstract
Data obtained from expression microarrays enables deeper understanding of the molecular signatures of infectious diseases. It provides rapid and accurate information on how infections affect the clustering of gene expression profiles, pathways and networks that are transcriptionally active during various infection states compared to conventional diagnostic methods, which primarily focus on single genes or proteins. Thus, microarray technologies offer advantages in understanding host-parasite interactions associated with filarial infections. More importantly, the use of these technologies can aid diagnostics and helps translate current genomic research into effective treatment and interventions for filarial infections. Studying immune responses via microarray following infection can yield insight into genetic pathways and networks that can have a profound influence on the development of anti-parasitic vaccines.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Private Mail Bag, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University Science & Technology, KNUST, Kumasi 233, Ghana.
| |
Collapse
|
62
|
Choi J, Biering SB, Hwang S. Quo vadis? Interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy. Small GTPases 2016; 8:199-207. [PMID: 27428166 PMCID: PMC5680725 DOI: 10.1080/21541248.2016.1213090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the pathogen gets exposed to the hostile cytoplasm. What has been obscure is how the immune system detects and directs the GTPases to these pathogen shelters. Using a common protist parasite of mice, Toxoplasma gondii, we found that the LC3 conjugation system of autophagy is necessary and sufficient for targeting the interferon-inducible GTPases to membranes. We dubbed this process Targeting by AutophaGy proteins (TAG). In canonical autophagy, the LC3 conjugation system is required to form membrane-bound autophagosomes, which encircle and deliver cytosolic materials to lysosomes for degradation. In TAG, however, the conjugation system is required to mark the membranes of pathogen-containing vacuoles with ubiquitin-like LC3 homologs, which function as molecular beacons to recruit the GTPases to their target membranes. Our data suggest that the LC3 conjugation system of autophagy plays an essential role in detecting and marking pathogen-containing vacuoles for immune effector targeting by the host immune system.
Collapse
Affiliation(s)
- Jayoung Choi
- a Department of Pathology , The University of Chicago , Chicago , IL , USA
| | - Scott B Biering
- b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| | - Seungmin Hwang
- a Department of Pathology , The University of Chicago , Chicago , IL , USA.,b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| |
Collapse
|
63
|
Park S, Choi J, Biering SB, Dominici E, Williams LE, Hwang S. Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy. Autophagy 2016; 12:1153-67. [PMID: 27172324 PMCID: PMC4990996 DOI: 10.1080/15548627.2016.1178447] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
LC3 has been used as a marker to locate autophagosomes. However, it is also well established that LC3 can localize on various membranous structures other than autophagosomes. We recently demonstrated that the LC3 conjugation system (ATG7, ATG3, and ATG12–ATG5-ATG16L1) is required to target LC3 and IFNG (interferon, gamma)-inducible GTPases to the parasitophorus vacuole membrane (PVM) of a protist parasite Toxoplasma gondii and consequently for IFNG to control T. gondii infection. Here we show that not only LC3, but also its homologs (GABARAP, GABARAPL1, and GABARAPL2) localize on the PVM of T. gondii in a conjugation-dependent manner. Knockout/knockdown of all LC3 homologs led to a significant reduction in targeting of the IFNG-inducible GTPases to the PVM of T. gondii and the IFNG-mediated control of T. gondii infection. Furthermore, when we relocated the ATG12–ATG5-ATG16L1 complex, which specifies the conjugation site of LC3 homologs, to alternative target membranes, the IFNG-inducible GTPases were targeted to the new target membranes rather than the PVM of T. gondii. These data suggest that the localization of LC3 homologs onto a membrane by the LC3 conjugation system is necessary and sufficient for targeting of the IFNG-inducible GTPases to the membrane, implying Targeting by AutophaGy proteins (TAG). Our data further suggest that the conjugation of ubiquitin-like LC3 homologs to the phospholipids of membranes may change the destiny of the membranes beyond degradation through lysosomal fusion, as the conjugation of ubiquitin to proteins changes the destiny of the proteins beyond proteasomal degradation.
Collapse
Affiliation(s)
- Sungwoo Park
- a Department of Pathology , University of Chicago , Chicago , IL , USA
| | - Jayoung Choi
- a Department of Pathology , University of Chicago , Chicago , IL , USA
| | - Scott B Biering
- b Committee on Microbiology, University of Chicago , Chicago , IL , USA
| | - Erin Dominici
- a Department of Pathology , University of Chicago , Chicago , IL , USA
| | - Lelia E Williams
- a Department of Pathology , University of Chicago , Chicago , IL , USA
| | - Seungmin Hwang
- a Department of Pathology , University of Chicago , Chicago , IL , USA.,b Committee on Microbiology, University of Chicago , Chicago , IL , USA
| |
Collapse
|
64
|
Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. ACTA ACUST UNITED AC 2016; 23:12. [PMID: 26984115 PMCID: PMC4794628 DOI: 10.1051/parasite/2016012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Long Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li-Min Wen
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan-Jiang Pei
- Department of General Surgery, Xi'an Red Cross Hospital, Xi'an, Shanxi 710000, PR China
| | - Fen Wang
- Department of Infection Control, The Central Hospital of Enshi Prefecture, Enshi, Hubei 445000, PR China
| | - Li-Tian Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Rui Guo
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Chun-Fang Wang
- Laboratory Animal Center, Shanxi Medical University; Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Diseases, Taiyuan, Shanxi 030001, PR China
| | - Guo-Rong Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
65
|
Helms JB, Kaloyanova DV, Strating JRP, van Hellemond JJ, van der Schaar HM, Tielens AGM, van Kuppeveld FJM, Brouwers JF. Targeting of the hydrophobic metabolome by pathogens. Traffic 2016; 16:439-60. [PMID: 25754025 PMCID: PMC7169838 DOI: 10.1111/tra.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
The hydrophobic molecules of the metabolome – also named the lipidome – constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host–pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs.
Collapse
Affiliation(s)
- J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine & Institute of Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Pérez D, Ruiz A, Muñoz M, Molina J, Hermosilla C, López A, Matos L, Ortega L, Martín S, Taubert A. Modulation of the pro-inflammatory molecules E-selectin and TNF-α gene transcription in Eimeria ninakohlyakimovae -infected primary caprine host endothelial cells. Parasitol Int 2015; 64:471-7. [DOI: 10.1016/j.parint.2015.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/22/2015] [Accepted: 05/10/2015] [Indexed: 01/02/2023]
|
67
|
Hamid PH, Hirzmann J, Kerner K, Gimpl G, Lochnit G, Hermosilla CR, Taubert A. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Vet Res 2015; 46:100. [PMID: 26395984 PMCID: PMC4579583 DOI: 10.1186/s13567-015-0230-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.
Collapse
Affiliation(s)
- Penny H Hamid
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Joerg Hirzmann
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus LiebigUniversity Giessen, Frankfurter Str. 85-89, D-35392, Giessen, Germany.
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johann-Joachim-Becherweg 30, D-55099, Mainz, Germany.
| | - Guenter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, D-35392, Giessen, Germany.
| | - Carlos R Hermosilla
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| |
Collapse
|
68
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
69
|
Swann J, Jamshidi N, Lewis NE, Winzeler EA. Systems analysis of host-parasite interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:381-400. [PMID: 26306749 PMCID: PMC4679367 DOI: 10.1002/wsbm.1311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug‐resistant parasites necessitates that the research community take an active role in understanding host–parasite infection biology in order to develop improved therapeutics. Recent advances in next‐generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host–parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high‐throughput ‐omic data will undoubtedly generate extraordinary insight into host–parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host–parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381–400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justine Swann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, USA.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics and Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
70
|
Hamdani N, Daban-Huard C, Lajnef M, Gadel R, Le Corvoisier P, Delavest M, Carde S, Lépine JP, Jamain S, Houenou J, Galeh B, Richard JR, Aoki M, Charron D, Krishnamoorthy R, Yolken R, Dickerson F, Tamouza R, Leboyer M. Cognitive deterioration among bipolar disorder patients infected by Toxoplasma gondii is correlated to interleukin 6 levels. J Affect Disord 2015; 179:161-6. [PMID: 25863913 DOI: 10.1016/j.jad.2015.03.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognitive deficits are present in a large majority of Bipolar Disorder (BD) patients and known to be a marker of bad prognosis. Because, these deficits encompass several domains and no specific medical treatment seems to be effective, it is important to better understand the mechanisms underlying cognitive deterioration. As Toxoplasma gondii is known to induce the synthesis of pro-inflammatory cytokines such as IL-6, we will explore here the possible role of T. gondii in the cognitive decline observed in BD. METHODS 42 euthymic BD patients and 36 controls were assessed for episodic verbal memory using the CVLT and for working memory and verbal ability using the WAIS III. Patients and controls were also screened for seropositivity to T. gondii and evaluated for the levels of IL-6 transcripts. RESULTS The seropositivity for T. gondii was significantly higher in BD patients as compared to controls (p=0.005). The cognitive deterioration index (DI) was higher in BD patients (p=5.10(-6)) and correlated to high IL-6 mRNA expression only among those infected by T. gondii (rho=0.43, p=0.01). Among deteriorated patients (defined by scores above 0.10 according to Weschler׳s definition), the IL-6 mRNA expression was twice greater (p=0.01). LIMITATIONS Our results are to be interpreted with caution because of our small sample size and the cross-sectional design. CONCLUSIONS A long-term exposure to inflammation, measured here with IL-6 mRNA expression in T. gondii infected BD may alter cognitive functioning. IL-6 could thus be a useful predictive marker of cognitive deterioration in BD and may help to design personalized treatment.
Collapse
Affiliation(s)
- Nora Hamdani
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France.
| | - Claire Daban-Huard
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France
| | - Mohamed Lajnef
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France
| | - Rémi Gadel
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France
| | - Philippe Le Corvoisier
- CIC 006Henri Mondor INSERM & Plateforme de Ressources Biologiques, Université Paris Est Créteil, AP-HP, France
| | - Marine Delavest
- Neurospin, UNIACT Lab, Psychiatry Team, CEA Saclay, France; AP-HP, Université Paris Diderot, Service de Psychiatrie, Hôpital Lariboisiere Fernand Widal, F-75010 Paris, France
| | - Soufiane Carde
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; Neurospin, UNIACT Lab, Psychiatry Team, CEA Saclay, France
| | - Jean-Pierre Lépine
- Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; AP-HP, Université Paris Diderot, Service de Psychiatrie, Hôpital Lariboisiere Fernand Widal, F-75010 Paris, France
| | - Stéphane Jamain
- Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; AP-HP, Université Paris Diderot, Service de Psychiatrie, Hôpital Lariboisiere Fernand Widal, F-75010 Paris, France
| | - Josselin Houenou
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; Neurospin, UNIACT Lab, Psychiatry Team, CEA Saclay, France
| | - Bijan Galeh
- CIC 006Henri Mondor INSERM & Plateforme de Ressources Biologiques, Université Paris Est Créteil, AP-HP, France
| | - Jean-Romain Richard
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France
| | - Masayuki Aoki
- Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; Jean Dausset Dept & INSERM, UMRS 940, Hôpital Saint Louis, Univ Paris Diderot, Paris F75010, France
| | - Dominique Charron
- Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; Jean Dausset Dept & INSERM, UMRS 940, Hôpital Saint Louis, Univ Paris Diderot, Paris F75010, France
| | | | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University Medical Center, Baltimore, USA
| | - Faith Dickerson
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University Medical Center, Baltimore, USA
| | - Ryad Tamouza
- Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France; Stanley Research Program, Sheppard Pratt, Baltimore, MD, USA
| | - Marion Leboyer
- Inserm U955, Equipe 15 « Psychiatrie Génétique », Créteil F-94000, France; AP-HP, DHU Pe-PSY, Université Paris Est Créteil, Groupe Henri Mondor - Albert Chenevier, Pôle de psychiatrie et d׳Addictologie, Créteil F-94000, France; Fondation Fondamental, Fondation de coopération scientifique, Créteil F94000, France
| |
Collapse
|
71
|
siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells. mBio 2015; 6:e00462. [PMID: 26106078 PMCID: PMC4479703 DOI: 10.1128/mbio.00462-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for growth. Here, we report that Toxoplasma regulates the abundance and activity of a key host metabolic enzyme, hexokinase 2, by activating HIF-1 and by promoting dissociation of hexokinase 2 from the mitochondrial membrane. Collectively, our data reveal HIF-1/hexokinase 2 as a novel target for an intracellular pathogen that acts by reprograming the host cell’s metabolism to create an environment conducive for parasite replication at physiological oxygen levels.
Collapse
|
72
|
Bouchut A, Chawla AR, Jeffers V, Hudmon A, Sullivan WJ. Proteome-wide lysine acetylation in cortical astrocytes and alterations that occur during infection with brain parasite Toxoplasma gondii. PLoS One 2015; 10:e0117966. [PMID: 25786129 PMCID: PMC4364782 DOI: 10.1371/journal.pone.0117966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023] Open
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.
Collapse
Affiliation(s)
- Anne Bouchut
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Aarti R. Chawla
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Victoria Jeffers
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Andy Hudmon
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail:
| |
Collapse
|
73
|
Swierzy IJ, Lüder CGK. Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation ofToxoplasma gondiitowards the bradyzoite stage. Cell Microbiol 2014; 17:2-17. [DOI: 10.1111/cmi.12342] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/03/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Izabela J. Swierzy
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology; University Medical Center; Georg-August-University; Kreuzbergring 57 D-37075 Göttingen Germany
| |
Collapse
|
74
|
Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development. Parasitol Res 2014; 113:4165-76. [DOI: 10.1007/s00436-014-4092-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
75
|
Schmid M, Heitlinger E, Spork S, Mollenkopf HJ, Lucius R, Gupta N. Eimeria falciformis infection of the mouse caecum identifies opposing roles of IFNγ-regulated host pathways for the parasite development. Mucosal Immunol 2014; 7:969-82. [PMID: 24368565 DOI: 10.1038/mi.2013.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 02/04/2023]
Abstract
Intracellular parasites reprogram host functions for their survival and reproduction. The extent and relevance of parasite-mediated host responses in vivo remains poorly studied, however. We utilized Eimeria falciformis, a parasite infecting the mouse intestinal epithelium, to identify and validate host determinants of parasite infection. Most prominent mouse genes induced during the onset of asexual and sexual growth of parasite comprise interferon γ (IFNγ)-regulated factors, e.g., immunity-related GTPases (IRGA6/B6/D/M2/M3), guanylate-binding proteins (GBP2/3/5/6/8), chemokines (CxCL9-11), and several enzymes of the kynurenine pathway including indoleamine 2,3-dioxygenase 1 (IDO1). These results indicated a multifarious innate defense (tryptophan catabolism, IRG, GBP, and chemokine signaling), and a consequential adaptive immune response (chemokine-cytokine signaling and lymphocyte recruitment). The inflammation- and immunity-associated transcripts were increased during the course of infection, following influx of B cells, T cells, and macrophages to the parasitized caecum tissue. Consistently, parasite growth was enhanced in animals inhibited for CxCr3, a major receptor for CxCL9-11 present on immune cells. Interestingly, despite a prominent induction, mouse IRGB6 failed to bind and disrupt the parasitophorous vacuole, implying an immune evasion by E. falciformis. Furthermore, oocyst output was impaired in IFNγ-R(-/-) and IDO1(-/-) mice, both of which suggest a subversion of IFNγ signaling by the parasite to promote its growth.
Collapse
Affiliation(s)
- Manuela Schmid
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Simone Spork
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Microarray and Genomics Core Facility, Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Richard Lucius
- Department of Molecular Parasitology, Humboldt University, Berlin, Germany
| | - Nishith Gupta
- 1] Department of Molecular Parasitology, Humboldt University, Berlin, Germany [2] Department of Parasitology, Max-Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
76
|
Toxoplasma gondii development of its replicative niche: in its host cell and beyond. EUKARYOTIC CELL 2014; 13:965-76. [PMID: 24951442 DOI: 10.1128/ec.00081-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections. Toxoplasma gondii is an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence of Toxoplasma in humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by which Toxoplasma interacts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells.
Collapse
|
77
|
Brown KM, Suvorova E, Farrell A, McLain A, Dittmar A, Wiley GB, Marth G, Gaffney PM, Gubbels MJ, White M, Blader IJ. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases. PLoS Pathog 2014; 10:e1004180. [PMID: 24945800 PMCID: PMC4055737 DOI: 10.1371/journal.ppat.1004180] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/28/2014] [Indexed: 02/02/2023] Open
Abstract
The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1. Understanding how a compound blocks growth of an intracellular pathogen is important not only for developing these compounds into drugs that can be prescribed to patients, but also because these data will likely provide novel insight into the biology of these pathogens. Forward genetic screens are one established approach towards defining these mechanisms. But performing these screens with intracellular parasites has been limited not only because of technical limitations but also because the compounds may have off-target effects in either the host or parasite. Here, we report the first compound that kills a pathogen by simultaneously inhibiting distinct host- and parasite-encoded targets. Because developing drug resistance simultaneously to two targets is less likely, this work may highlight a new approach to antimicrobial drug discovery.
Collapse
Affiliation(s)
- Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Elena Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Andrew Farrell
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Aaron McLain
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Ashley Dittmar
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Graham B Wiley
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Gabor Marth
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marc Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael White
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Ira J Blader
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America; Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
78
|
Cai Y, Chen H, Mo X, Tang Y, Xu X, Zhang A, Lun Z, Lu F, Wang Y, Shen J. Toxoplasma gondii inhibits apoptosis via a novel STAT3-miR-17-92-Bim pathway in macrophages. Cell Signal 2014; 26:1204-12. [PMID: 24583285 DOI: 10.1016/j.cellsig.2014.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/21/2014] [Indexed: 02/01/2023]
Abstract
In order to accomplish their life cycles, intracellular pathogens, including the apicomplexan Toxoplasma gondii, subvert the innate apoptotic response of infected host cells. However, the precise mechanisms of parasite interference with the apoptotic pathway remain unclear. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level. Using T. gondii strain TgCtwh3, which was isolated from felids and possesses the predominant genotype China 1 (ToxoDB(#)9) in China, we analyzed the miRNA expression profile of human macrophages challenged with TgCtwh3. The results showed that miR-17-92 miRNA expression was significantly increased and Bim was decreased in TgCtwh3-infected cells. Database analysis of miR-17-92 miRNAs revealed the potential binding sites in the 3'UTR of Bim, one of the crucial effectors of pro-apoptosis. Furthermore, we demonstrated that the promoter of the miR-17-92 gene cluster which encodes miRNAs was transactivated through the promoter binding of the STAT3 following TgCtwh3 infection. Taken together, we describe a novel STAT3-miR-17-92-Bim pathway, thus providing a mechanistic explanation for inhibition of apoptosis of host cells following Toxoplasma infection.
Collapse
Affiliation(s)
- Yihong Cai
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, China; Department of Immunology, Anhui Medical University, Hefei, China
| | - He Chen
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xuwei Mo
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Yuanyuan Tang
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China
| | - Xiucai Xu
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; The Central Laboratory of Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Aimei Zhang
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China; The Central Laboratory of Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Zhaorong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control, The Ministry of Education, Zhongshan Medical College, China; Department of Pathogen Biology, Sun Yat-Sen University, Guangzhou, China
| | - Fangli Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control, The Ministry of Education, Zhongshan Medical College, China; Department of Pathogen Biology, Sun Yat-Sen University, Guangzhou, China
| | - Yong Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jilong Shen
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, China.
| |
Collapse
|
79
|
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. EUKARYOTIC CELL 2014; 13:483-93. [PMID: 24532536 DOI: 10.1128/ec.00316-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxoplasma gondii infection has previously been described to cause dramatic changes in the host transcriptome by manipulating key regulators, including STATs, NF-κB, and microRNAs. Here, we report that Toxoplasma tachyzoites also mediate rapid and sustained induction of another pivotal regulator of host cell transcription, c-Myc. This induction is seen in cells infected with all three canonical types of Toxoplasma but not the closely related apicomplexan parasite Neospora caninum. Coinfection of cells with both Toxoplasma and Neospora still results in an increase in the level of host c-Myc, showing that c-Myc is actively upregulated by Toxoplasma infection (rather than repressed by Neospora). We further demonstrate that this upregulation may be mediated through c-Jun N-terminal protein kinase (JNK) and is unlikely to be a nonspecific host response, as heat-killed Toxoplasma parasites do not induce this increase and neither do nonviable parasites inside the host cell. Finally, we show that the induced c-Myc is active and that transcripts dependent on its function are upregulated, as predicted. Hence, c-Myc represents an additional way in which Toxoplasma tachyzoites have evolved to specifically alter host cell functions during intracellular growth.
Collapse
|
80
|
Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol 2014; 44:109-20. [DOI: 10.1016/j.ijpara.2013.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/22/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
|
81
|
Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, Barbosa HS. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors 2014; 7:47. [PMID: 24457118 PMCID: PMC3904159 DOI: 10.1186/1756-3305-7-47] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background The interest in the mechanisms involved in Toxoplasma gondii lipid acquisition has steadily increased during the past few decades, but it remains not completely understood. Here, we investigated the biogenesis and the fate of lipid droplets (LD) of skeletal muscle cells (SkMC) during their interaction with T. gondii by confocal and electron microscopy. We also evaluated whether infected SkMC modulates the production of prostaglandin E2 (PGE2), cytokines interleukin-12 (IL-12) and interferon-gamma (INF-g), and also the cyclooxygenase-2 (COX-2) gene induction. Methods Primary culture of skeletal muscle cells were infected with tachyzoites of T. gondii and analysed by confocal microscopy for observation of LD. Ultrastructural cytochemistry was also used for lipid and sarcoplasmatic reticulum (SR) detection. Dosage of cytokines (IL-12 and INF-g) by ELISA technique and enzyme-linked immunoassay (EIA) for PGE2 measurement were employed. The COX-2 gene expression analysis was performed by real time reverse transcriptase polymerase chain reaction (qRT-PCR). Results We demonstrated that T. gondii infection of SkMC leads to increase in LD number and area in a time course dependent manner. Moreover, the ultrastructural analysis demonstrated that SR and LD are in direct contact with parasitophorous vacuole membrane (PVM), within the vacuolar matrix, around it and interacting directly with the membrane of parasite, indicating that LD are recruited and deliver their content inside the parasitophorous vacuole (PV) in T. gondii-infected SkMC. We also observed a positive modulation of the production of IL-12 and IFN-g, increase of COX-2 mRNA levels in the first hour of T. gondii-SkMC interaction and an increase of prostaglandin E2 (PGE2) synthesis from 6 h up to 48 h of infection. Conclusions Taken together, the close association between SR and LD with PV could represent a source of lipids as well as other nutrients for the parasite survival, and together with the increased levels of IL-12, INF-g and inflammatory indicators PGE2 and COX-2 might contribute to the establishment and maintenance of chronic phase of the T. gondii infection in muscle cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
82
|
Smolarz B, Wilczyński J, Nowakowska D. DNA repair mechanisms and Toxoplasma gondii infection. Arch Microbiol 2014; 196:1-8. [PMID: 24337694 PMCID: PMC3890036 DOI: 10.1007/s00203-013-0944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/15/2013] [Accepted: 11/23/2013] [Indexed: 01/22/2023]
Abstract
Lately, we can observe significant progress in understanding mechanism of DNA repair owing to fast methods of DNA sequence analysis from different organisms the revealing of structure and function of DNA repair proteins in prokaryota and eukaryota. The protozoan parasites survival depends on DNA repair systems. Better understanding of DNA repair systems can help in new antipathogen drug development. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA repair genes regarding Toxoplasma gondii infections and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Beata Smolarz
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Jan Wilczyński
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland
| |
Collapse
|
83
|
Cai Y, Chen H, Jin L, You Y, Shen J. STAT3-dependent transactivation of miRNA genes following Toxoplasma gondii infection in macrophage. Parasit Vectors 2013; 6:356. [PMID: 24341525 PMCID: PMC3878672 DOI: 10.1186/1756-3305-6-356] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/08/2013] [Indexed: 12/21/2022] Open
Abstract
Background The apicomplexan parasite Toxoplasma gondii can infect and replicate in virtually any nucleated cell in many species of warm-blooded animals; T. gondii has elaborate mechanisms to counteract host-cell apoptosis in order to maintain survival and breed in the host cells. Methods Using microarray profiling and a combination of conventional molecular approaches, we investigated the levels of microRNAs (miRNAs ) in human macrophage during T. gondii infection. We used molecular tools to examine Toxoplasma-upregualted miRNAs to revealed potential signal transducers and activators of transcription 3(STAT3) binding sites in the promoter elements of a subset of miRNA genes. We analysed the apoptosis of human macrophage with the functional inhibition of the STAT3-binding miRNAs by flow cytometry. Results Our results demonstrated differential alterations in the mature miRNA expression profile in human macrophage following T. gondii infection. Database analysis of Toxoplasma-upregulated miRNAs revealed potential STAT3 binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that miR-30c-1, miR-125b-2, miR-23b-27b-24-1 and miR-17 ~ 92 cluster genes were transactivated through promoter binding of the STAT3 following T. gondii infection. Importantly, functional inhibition of selected STAT3-binding miRNAs in human macropahges increased apoptosis of host cells. Conclusions A panel of miRNAs is regulated through promoter binding of the STAT3 in human macrophage and these miRNAs are involved in anti-apoptosis in response to T. gondii infection.
Collapse
Affiliation(s)
| | | | | | | | - Jilong Shen
- Anhui Provincial Laboratories of Pathogen Biology and Zoonoses, Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China.
| |
Collapse
|
84
|
Metabolic reconstruction identifies strain‐specific regulation of virulence in
Toxoplasma gondii. Mol Syst Biol 2013; 9:708. [PMID: 24247825 PMCID: PMC4039375 DOI: 10.1038/msb.2013.62] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/10/2013] [Indexed: 12/27/2022] Open
|
85
|
Li ZH, Ramakrishnan S, Striepen B, Moreno SNJ. Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin. PLoS Pathog 2013; 9:e1003665. [PMID: 24146616 PMCID: PMC3798403 DOI: 10.1371/journal.ppat.1003665] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/14/2013] [Indexed: 01/03/2023] Open
Abstract
Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. Toxoplasma gondii is an obligate intracellular parasite and is not able to replicate outside the host cell. The parasite lives in a specialized parasitophorous vacuole in contact with the host cytoplasm through the parasitophorous vacuole membrane. It is highly likely that a very active exchange of metabolites occurs between parasite and host cell. We present evidence for this exchange for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Our work shows that intracellular T. gondii tachyzoites are able to salvage farnesyl diphosphate (FPP) and/or geranylgeranyl diphosphate (GGPP) from the host, and the parasite is able to grow even when its endogenous production is shut down. However, when extracellular, the parasite depends entirely on its own production of isoprenoids. We propose to use a combination of inhibitors that would hit both the host and the parasite pathways as a novel therapeutic approach against Toxoplasma gondii that could also work against other Apicomplexan parasites.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Srinivasan Ramakrishnan
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
86
|
Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. ACTA ACUST UNITED AC 2013; 210:2071-86. [PMID: 24043761 PMCID: PMC3782045 DOI: 10.1084/jem.20130103] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii secretes a novel dense granule protein, GRA24, that traffics from the vacuole to the host cell nucleus where it prolongs p38a activation and correlates with proinflammatory cytokine production. Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38α MAP kinase. This noncanonical kinetics of p38α activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24–p38α complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.
Collapse
Affiliation(s)
- Laurence Braun
- Centre National de la Recherche Scientifique (CNRS), UMR5163, Laboratoire Adaptation et Pathogénie des Microorganismes, F-38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Human innate immunity to Toxoplasma gondii is mediated by host caspase-1 and ASC and parasite GRA15. mBio 2013; 4:mBio.00255-13. [PMID: 23839215 PMCID: PMC3705447 DOI: 10.1128/mbio.00255-13] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a "master regulator" of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.
Collapse
|
88
|
Moser LA, Pollard AM, Knoll LJ. A genome-wide siRNA screen to identify host factors necessary for growth of the parasite Toxoplasma gondii. PLoS One 2013; 8:e68129. [PMID: 23840822 PMCID: PMC3695992 DOI: 10.1371/journal.pone.0068129] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/30/2013] [Indexed: 01/25/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that is able to infect virtually any nucleated cell of all warm-blooded animals. The host cell factors important for parasite attachment, invasion, and replication are poorly understood. We screened a siRNA library targeting 18,200 individual human genes in order to identify host proteins with a role in T. gondii growth. Our screen identified 19 genes whose inhibition by siRNA consistently and significantly lowered parasite replication. The gene ontology categories for those 19 genes represented a wide variety of functions with several genes implicated in regulation of the cell cycle, ion channels and receptors, G-protein coupled receptors, and cytoskeletal structure as well as genes involved in transcription, translation and protein degradation. Further investigation of 5 of the 19 genes demonstrated that the primary reason for the reduction in parasite growth was death of the host cell. Our results suggest that once T. gondii has invaded and established an infection, global changes in the host cell may be necessary to reduce parasite replication. While siRNA screens have been used, albeit rarely, in other parasite systems, this is the first report to describe a high-throughput siRNA screen for host proteins that affect T. gondii replication.
Collapse
Affiliation(s)
- Lindsey A. Moser
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Angela M. Pollard
- Agile Sciences, Inc., Raleigh, North Carolina, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
89
|
Jia B, Lu H, Liu Q, Yin J, Jiang N, Chen Q. Genome-wide comparative analysis revealed significant transcriptome changes in mice after Toxoplasma gondii infection. Parasit Vectors 2013; 6:161. [PMID: 23734932 PMCID: PMC3679772 DOI: 10.1186/1756-3305-6-161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular parasite that can modulate host responses and presumably host behavior. Host responses as well as pathogenesis vary depending on the parasite strains that are responsible for infection. In immune competent individuals, T. gondii preferentially infects tissues of the central nervous systems (CNS), which might be an additional factor in certain psychiatric disorders. While in immune-compromised individuals and pregnant women, the parasite can cause life-threatening infections. With the availability of the genome-wide investigation platform, the global responses in gene expression of the host after T. gondii infection can be systematically investigated. METHODS Total RNA of brain tissues and peripheral lymphocytes of BALB/C mice infected with RH and ME 49 strain T. gondii as well as that of healthy mice were purified and converted to cRNA with incorporated Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA probes were hybridized to the Whole Mouse Genome Microarray. The impact of parasite infection on gene expression in both brain tissues and peripheral lymphocytes were analyzed. Differentially expressed genes were revalidated with real-time quantitative reverse transcriptase-polymerase chain reaction (Q-PCR). RESULTS Data indicated that the genes associated with immunity were up-regulated after infection by the two parasite strains, but significant up-regulation was observed in both brain tissues and peripheral lymphocytes of mice infected with ME49 strain compared to that infected by RH strain. The pathways related to pathogenesis of the nervous system were more significantly up-regulated in mice infected with RH strain. CONCLUSIONS Genetically distinct T. gondii strains showed clear differences in modulation of host pathophysiological and immunological responses in both brain tissue and peripheral lymphocytes. It was likely that some of the host responses to T. gondii infection were universal, but the immune response and CNS reaction were in a strain-specific manner.
Collapse
Affiliation(s)
- Boyin Jia
- Key Laboratory of Zoonosis, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Xi An Da Lu 5333, Changchun 130062, China.
| | | | | | | | | | | |
Collapse
|
90
|
Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, Rupp J, Däubener W. Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions. PLoS One 2013; 8:e63301. [PMID: 23675474 PMCID: PMC3652816 DOI: 10.1371/journal.pone.0063301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses. On the other hand, it has been observed that IDO has immunoregulatory functions as it efficiently controls the activation and survival of T-cells. Although these important effects have been analysed in much detail, they have been observed in vitro using cells cultured in the presence of 20% O2 (normoxia). Such high oxygen concentrations are not present in vivo especially within infected and inflamed tissues. We therefore analysed IDO-mediated effects under lower oxygen concentrations in vitro and observed that the function of IDO is substantially impaired in tumour cells as well as in native cells. Hypoxia led to reduced IDO expression and as a result to reduced production of kynurenine, the downstream product of tryptophan degradation. Consequently, effector functions of IDO were abrogated under hypoxic conditions: in different human cell lines such as tumour cells (glioblastoma, HeLa) but also in native cells (human foreskin fibroblasts; HFF) IDO lost the capacity to inhibit the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) or viruses (herpes simplex virus type 1). Additionally, IDO could no longer efficiently control the proliferation of T-cells that have been co-cultured with IDO expressing HFF cells in vitro. In conclusion, the potent antimicrobial as well as immunoregulatory functions of IDO were substantially impaired under hypoxic conditions that pathophysiologically occurs in vivo.
Collapse
Affiliation(s)
- Silvia K. Schmidt
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Ebel
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eric Keil
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Claudia Woite
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joachim F. Ernst
- Institute for Molecular Mycology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anika E. Benzin
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
- Medical Clinic III/UK-SH, Campus Lübeck, Lübeck, Germany
| | - Walter Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
91
|
Toxoplasma gondii migration within and infection of human retina. PLoS One 2013; 8:e54358. [PMID: 23437042 PMCID: PMC3578837 DOI: 10.1371/journal.pone.0054358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Toxoplasmic retinochoroiditis is a common blinding retinal infection caused by the parasite, Toxoplasma gondii. Basic processes relating to establishment of infection in the human eye by T. gondii tachyzoites have not been investigated. To evaluate the ability of tachyzoites to navigate the human retina, we developed an ex vivo assay, in which a suspension containing 1.5 × 10(7) parasites replaced vitreous in a posterior eyecup. After 8 hours, the retina was formalin-fixed and paraffin-embedded, and sections were immunostained to identify tachyzoites. To determine the preference of tachyzoites for human retinal neuronal versus glial populations, we infected dissociated retinal cultures, subsequently characterized by neuron-specific enolase or glial fibrillary acidic protein expression, and retinal cell lines, with YFP-expressing tachyzoites. In migration assays, retinas contained 110-250 live tachyzoites; 64.5-95.2% (mean =79.6%) were localized to the nerve fiber layer, but some were detected in the outer retina. Epifluorescence imaging of dissociated retinal cultures 24 hours after infection indicated preferential infection of glia. This observation was confirmed in growth assays, with significantly higher (p ≤ 0.005) numbers of tachyzoites measured in glial verus neuronal cell lines. Our translational studies indicate that, after entering retina, tachyzoites may navigate multiple tissue layers. Tachyzoites preferentially infect glial cells, which exist throughout the retina. These properties may contribute to the success of T. gondii as a human pathogen.
Collapse
|
92
|
Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 2013; 8:8. [PMID: 23391314 PMCID: PMC3583726 DOI: 10.1186/1750-9378-8-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The obligate intracellular protozoan parasite Toxoplasma gondii infects humans and other warm-blooded animals and establishes a chronic infection in the central nervous system after invasion. Studies showing a positive correlation between anti-Toxoplasma antibodies and incidences of brain cancer have led to the notion that Toxoplasma infections increase the risk of brain cancer. However, molecular events involved in Toxoplasma induced brain cancers are not well understood. Presentation of the hypothesis Toxoplasma gains control of host cell functions including proliferation and apoptosis by channelizing parasite proteins into the cell cytoplasm and some of the proteins are targeted to the host nucleus. Recent studies have shown that Toxoplasma is capable of manipulating host micro RNAs (miRNAs), which play a central role in post-transcriptional regulation of gene expression. Therefore, we hypothesize that Toxoplasma promotes brain carcinogenesis by altering the host miRNAome using parasitic proteins and/or miRNAs. Testing the hypothesis The miRNA expression profiles of brain cancer specimens obtained from patients infected with Toxoplasma could be analyzed and compared with that of normal tissues as well as brain cancer tissues from Toxoplasma uninfected individuals to identify dysregulated miRNAs in Toxoplasma-driven brain cancer cells. Identified miRNAs will be further confirmed by studying cancer related miRNA profiles of the different types of brain cells before and after Toxoplasma infection using cell lines and experimental animals. Expected outcome The miRNAs specifically associated with brain cancers that are caused by Toxoplasma infection will be identified. Implications of the hypothesis Toxoplasma infection may promote initiation and progression of cancer by modifying the miRNAome in brain cells. If this hypothesis is true, the outcome of this research would lead to the development of novel biomarkers and therapeutic tools against Toxoplasma driven brain cancers.
Collapse
Affiliation(s)
- Sivasakthivel Thirugnanam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, 1601 Parkview Ave, Rockford, IL, 61107, USA.
| | | | | |
Collapse
|
93
|
Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol 2013; 10:766-78. [PMID: 23070557 DOI: 10.1038/nrmicro2858] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii is a common parasite of animals and humans and can cause serious opportunistic infections. However, the majority of infections are asymptomatic, possibly because the organism has co-evolved with its many vertebrate hosts and has developed multiple strategies to persist asymptomatically for the lifetime of the host. Over the past two decades, infection studies in the mouse, combined with forward-genetics approaches aimed at unravelling the molecular basis of infection, have revealed that T. gondii virulence is mediated, in part, by secretion of effector proteins into the host cell during invasion. Here, we review recent advances that illustrate how these virulence factors disarm innate immunity and promote survival of the parasite.
Collapse
Affiliation(s)
- Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
94
|
Abstract
Toxoplasma gondii, an Apicomplexan, is a pathogic protozoan that can infect the central nervous system. Infection during pregnancy can result in a congenial infection with severe neurological sequelae. In immunocompromised individuals reactivation of latent neurological foci can result in encephalitis. Immunocompetent individuals infected with T. gondii are typically asymptomatic and maintain this infection for life. However, recent studies suggest that these asymptomatic infections may have effects on behavior and other physiological processes. Toxoplasma gondii infects approximately one-third of the world population, making it one of the most successful parasitic organisms. Cats and other felidae serve as the definite host producing oocysts, an environmentally resistant life cycle stage found in cat feces, which can transmit the infection when ingested orally. A wide variety of warm-blooded animals, including humans, can serve as the intermediate host in which tissue cysts (containing bradyzoites) develop. Transmission also occurs due to ingestion of the tissue cysts. There are three predominant clonal lineages, termed Types I, II and III, and an association with higher pathogenicity with the Type I strains in humans has emerged. This chapter presents a review of the biology of this infection including the life cycle, transmission, epidemiology, parasite strains, and the host immune response. The major clinical outcomes of congenital infection, chorioretinitis and encephalitis, and the possible association of infection of toxoplasmosis with neuropsychiatric disorders such as schizophrenia, are reviewed.
Collapse
Affiliation(s)
- Sandra K Halonen
- Department of Microbiology, Montana State University, Bozeman, MT, USA
| | | |
Collapse
|
95
|
Kemp LE, Yamamoto M, Soldati-Favre D. Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev 2012. [PMID: 23186105 DOI: 10.1111/1574-6976.12013] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rhoptries are club-shaped secretory organelles located at the anterior pole of species belonging to the phylum of Apicomplexa. Parasites of this phylum are responsible for a huge burden of disease in humans and animals and a loss of economic productivity. Members of this elite group of obligate intracellular parasites include Plasmodium spp. that cause malaria and Cryptosporidium spp. that cause diarrhoeal disease. Although rhoptries are almost ubiquitous throughout the phylum, the relevance and role of the proteins contained within the rhoptries varies. Rhoptry contents separate into two intra-organellar compartments, the neck and the bulb. A number of rhoptry neck proteins are conserved between species and are involved in functions such as host cell invasion. The bulb proteins are less well-conserved and probably evolved for a particular lifestyle. In the majority of species studied to date, rhoptry content is involved in formation and maintenance of the parasitophorous vacuole; however some species live free within the host cytoplasm. In this review, we will summarise the knowledge available regarding rhoptry proteins. Specifically, we will discuss the role of the rhoptry kinases that are used by Toxoplasma gondii and other coccidian parasites to subvert the host cellular functions and prevent parasite death.
Collapse
Affiliation(s)
- Louise E Kemp
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
96
|
Hermosilla C, Ruiz A, Taubert A. Eimeria bovis: An update on parasite–host cell interactions. Int J Med Microbiol 2012; 302:210-5. [DOI: 10.1016/j.ijmm.2012.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
97
|
Ellis J, Goodswen S, Kennedy PJ, Bush S. The core mouse response to infection by neospora caninum defined by gene set enrichment analyses. Bioinform Biol Insights 2012; 6:187-202. [PMID: 23012496 PMCID: PMC3448498 DOI: 10.4137/bbi.s9954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this study, the BALB/c and Qs mouse responses to infection by the parasite Neospora caninum were investigated in order to identify host response mechanisms. Investigation was done using gene set (enrichment) analyses of microarray data. GSEA, MANOVA, Romer, subGSE and SAM-GS were used to study the contrasts Neospora strain type, Mouse type (BALB/c and Qs) and time post infection (6 hours post infection and 10 days post infection). The analyses show that the major signal in the core mouse response to infection is from time post infection and can be defined by gene ontology terms Protein Kinase Activity, Cell Proliferation and Transcription Initiation. Several terms linked to signaling, morphogenesis, response and fat metabolism were also identified. At 10 days post infection, genes associated with fatty acid metabolism were identified as up regulated in expression. The value of gene set (enrichment) analyses in the analysis of microarray data is discussed.
Collapse
Affiliation(s)
- John Ellis
- School of Medical and Molecular Biosciences and the I3 Institute, University of Technology, Sydney, Broadway, Australia
| | | | | | | |
Collapse
|
98
|
Dubremetz JF, Lebrun M. Virulence factors of Toxoplasma gondii. Microbes Infect 2012; 14:1403-10. [PMID: 23006855 DOI: 10.1016/j.micinf.2012.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii virulence is dependent on factors involved in either parasite-host cell interaction, or in host immune response. It is essentially defined in the mouse and little is known concerning human infection. The genetic dependence of virulence is a growing field, benefiting from the recent development of research of the population structure of T. gondii.
Collapse
Affiliation(s)
- Jean François Dubremetz
- UMR 5235 CNRS, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| | | |
Collapse
|
99
|
CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system. Proc Natl Acad Sci U S A 2012; 109:16312-7. [PMID: 22988118 DOI: 10.1073/pnas.1205589109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan pathogen that traffics to the central nervous system (CNS) following invasion of its host. In the CNS, T. gondii undergoes transformation from a rapidly dividing tachyzoite to a long-lived, slow-dividing bradyzoite contained within cysts. The role of extracellular adenosine in T. gondii pathogenesis has not been previously investigated. T. gondii uses host purines such as adenosine for its energy needs, as it is unable to make its own. Here, we show that CD73(-/-) mice, which lack the ability to generate extracellular adenosine, are protected from T. gondii chronic infection, with significantly fewer cysts and reduced susceptibility to reactivation of infection in the CNS independent of host effector function. Parasite dissemination to the brain was unimpaired in CD73(-/-) hosts, suggesting that the reduced cyst number is due to impaired parasite differentiation in the CNS. Confirming this, T. gondii tachyzoites formed fewer cysts following alkaline pH stress in astrocytes isolated from CD73(-/-) mice compared with wild type, and in fibroblasts treated with a CD73 inhibitor. Cyst formation was rescued in CD73(-/-) astrocytes supplemented with adenosine, but not with adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine. Furthermore, mice lacking adenosine receptors had no defect in cyst formation. Based on these findings, we conclude that CD73 expression promotes Toxoplasma bradyzoite differentiation and cyst formation by a mechanism dependent on the generation of adenosine, but independent of adenosine receptor signaling. Overall, these findings suggest that modulators of extracellular adenosine may be used to develop therapies aimed at defending against human toxoplasmosis.
Collapse
|
100
|
Host metabolism regulates growth and differentiation of Toxoplasma gondii. Int J Parasitol 2012; 42:947-59. [PMID: 22940576 DOI: 10.1016/j.ijpara.2012.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/21/2023]
Abstract
A critical step in the pathogenesis of Toxoplasma gondii is conversion from the fast-replicating tachyzoite form experienced during acute infection to the slow-replicating bradyzoite form that establishes long-lived tissue cysts during chronic infection. Bradyzoite cyst development exhibits a clear tissue tropism in vivo, yet conditions of the host cell environment that influence this tropism remain unclear. Using an in vitro assay of bradyzoite conversion, we have found that cell types differ dramatically in the ability to facilitate differentiation of tachyzoites into bradyzoites. Characterization of cell types that were either resistant or permissive for conversion revealed that resistant cell lines release low molecular weight metabolites that could support tachyzoite growth under metabolic stress conditions and thereby inhibit bradyzoite formation in permissive cells. Biochemical analysis revealed that the glycolytic metabolite lactate is an inhibitory component of supernatants from resistant cells. Furthermore, upregulation of glycolysis in permissive cells through the addition of glucose or by overexpression of the host kinase, Akt, was sufficient to convert cells from a permissive to a resistant phenotype. These results suggest that the metabolic state of the host cell may play a role in determining the predilection of the parasite to switch from the tachyzoite to bradyzoite form.
Collapse
|