51
|
Sun C, Zhou X, Guo T, Meng J. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol 2023; 14:1168818. [PMID: 37388748 PMCID: PMC10306395 DOI: 10.3389/fimmu.2023.1168818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage and synovial inflammation and carries an enormous public health and economic burden. It is crucial to uncover the potential mechanisms of OA pathogenesis to develop new targets for OA treatment. In recent years, the pathogenic role of the gut microbiota in OA has been well recognized. Gut microbiota dysbiosis can break host-gut microbe equilibrium, trigger host immune responses and activate the "gut-joint axis", which aggravates OA. However, although the role of the gut microbiota in OA is well known, the mechanisms modulating the interactions between the gut microbiota and host immunity remain unclear. This review summarizes research on the gut microbiota and the involved immune cells in OA and interprets the potential mechanisms for the interactions between the gut microbiota and host immune responses from four aspects: gut barrier, innate immunity, adaptive immunity and gut microbiota modulation. Future research should focus on the specific pathogen or the specific changes in the gut microbiota composition to identify the related signaling pathways involved in the pathogenesis of OA. In addition, future studies should include more novel interventions on immune cell modifications and gene regulation of specific gut microbiota related to OA to validate the application of gut microbiota modulation in the onset of OA.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ting Guo
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
52
|
Churchward MA, Michaud ER, Mullish BH, Miguens Blanco J, Garcia Perez I, Marchesi JR, Xu H, Kao D, Todd KG. Short-chain fatty and carboxylic acid changes associated with fecal microbiota transplant communally influence microglial inflammation. Heliyon 2023; 9:e16908. [PMID: 37484415 PMCID: PMC10360965 DOI: 10.1016/j.heliyon.2023.e16908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.
Collapse
Affiliation(s)
- Matthew A. Churchward
- Department of Biological and Environmental Sciences, Concordia University of Edmonton, AB, T5B 4E4, Canada
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Emily R. Michaud
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Benjamin H. Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Jesús Miguens Blanco
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Isabel Garcia Perez
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Huiping Xu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine Indianapolis, IN, USA, 46202
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Kathryn G. Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
53
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
54
|
Lin B, Ye Z, Ye Z, Wang M, Cao Z, Gao R, Zhang Y. Gut microbiota in brain tumors: An emerging crucial player. CNS Neurosci Ther 2023; 29 Suppl 1:84-97. [PMID: 36627748 PMCID: PMC10314108 DOI: 10.1111/cns.14081] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In recent decades, various roles of the gut microbiota in physiological and pathological conditions have been uncovered. Among the many interacting pathways between the host and gut flora, the gut-brain axis has drawn increasing attention and is generally considered a promising way to understand and treat brain tumors, one of the most lethal neoplasms. In this narrative review, we aimed to unveil and dissect the sophisticated mechanisms by which the gut-brain axis exerts its influence on brain tumors. Furthermore, we summarized the latest research regarding the gastrointestinal microbial landscape and the effect of gut-brain axis malfunction on different brain tumors. Finally, we outlined the ongoing developing approaches of microbial manipulation and their corresponding research related to neuro-malignancies. Collectively, we recapitulated the advances in gut microbial alterations along with their potential interactive mechanisms in brain tumors and encouraged increased efforts in this area.
Collapse
Affiliation(s)
- Ben Lin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhan Cao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
55
|
Kovtonyuk LV, McCoy KD. Microbial metabolites and immunotherapy: Basic rationale and clinical indications. Semin Immunol 2023; 67:101755. [PMID: 36989542 DOI: 10.1016/j.smim.2023.101755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Our microbiota has a critical role in shaping host immunity. Microbes that reside in the gut harbor a large metabolic arsenal to aid in physiological functions of the host. Microbial metabolites, which are products of microbial metabolism, such as short chain fatty acids (SCFA), purine metabolites, cyclic dinucleotides, tryptophan derivatives, and secondary bile acids, can tailor the host immune cell landscape in homeostasis and during cancer immunotherapy. The critical role of the microbiome in aiding immune checkpoint blockade therapies has become clearer over the past few years, with the most recent studies providing more detailed mechanistic insight on how microbes and their metabolites control the outcome of immunotherapy. This review summarizes recent studies on how microbial metabolites orchestrate immune responses during cancer immunotherapies.
Collapse
Affiliation(s)
- Larisa V Kovtonyuk
- Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada.
| |
Collapse
|
56
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
58
|
Rajput M, Momin T, Singh A, Banerjee S, Villasenor A, Sheldon J, Paudel P, Rajput R. Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Vet Anim Sci 2023; 19:100279. [PMID: 36533218 PMCID: PMC9755367 DOI: 10.1016/j.vas.2022.100279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is one of the important and most abundant immunoglobulins which neutralize invading pathogens at mucosal sites. Gut microbial community and their metabolites which are responsible for higher IgA are poorly known. The current study was carried out to determine those microbial community and their metabolites. Twenty-two healthy, 26 days wean piglets were used in the study. After 10 days of weaning, piglets were divided into two groups. Group 1 with significantly higher fecal IgA while group 2 with significantly lower IgA concentrations from each other. Both groups were analyzed for the fecal inflammatory cytokine, fecal microbial community using 16S ribosomal sequencing, and microbial metabolites using GC-MS. Results showed that Firmicutes and Bacteroidetes constituted 90.56% of the microbiome population in the fecal matter of pigs with higher IgA concentration while pigs with lower fecal IgA had Firmicutes and Bacteroidetes abundance as of 95.56%. Pigs with higher IgA had significantly higher Bacteroidota and Desulfobacterota populations, while significantly lower Firmicutes and Firmicutes/ Bacteroidota ratio (p <0.05). Roughly at the species level, animals with higher fecal IgA concentration had significantly higher bacteria which are associated with gut inflammation and infectious such Prevotella spp and Lachnospiraceae AC2044. Pigs with higher IgA had comparatively lower short-chain fatty acid (SCFA) such as acetic acid, butyric, formic acid, isovaleric acid, and propionic acid which has been associated with gut immune tolerance and immune homeostasis.
Collapse
Affiliation(s)
- Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Surya Banerjee
- Department of Biological Sciences, Arkansas Tech University Russellville, AR, 72801, United States of America
| | - Andrew Villasenor
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Jessica Sheldon
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Pratikshya Paudel
- Department of Biological Sciences, Arkansas Tech University Russellville, AR, 72801, United States of America
| | - Ravindra Rajput
- Department of Mathematics, Statistics and Computer Science, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
59
|
Bhatt S, Gupta M. Dietary fiber from fruit waste as a potential source of metabolites in maintenance of gut milieu during ulcerative colitis: A comprehensive review. Food Res Int 2023; 164:112329. [PMID: 36737922 DOI: 10.1016/j.foodres.2022.112329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of inflammatory bowel disease, particularly ulcerative colitis (UC), has increased dramatically in the past few years owing to a changed lifestyle. Despite various therapeutic treatments, management of the disease is still an issue due to several limitations, including cost and adverse reactions. In this regard, researchers and consumers are inclined towards natural herbal medicines and prophylactic agents. Of these, dietary fiber (DF) (polysaccharides) has become an important topic of interest owing to various putative health attributes, particularly for diseases associated with the large intestine, such as UC. To fulfil industrial and scientific demands of dietary fibers, waste utilization can prove advantageous. Here, the present review highlights recent comprehensive advances in dietary fiber from waste resources in improving UC. Additionally, their role in the gut-associated microbiome, pathway for metabolites synthesis, inflammation, and its mediators. Moreover, here we also discussed short-chain fatty acids (SCFAs) transport and epithelial barrier function along with the mechanism of inflammation regulation. Collectively, it depicts dietary fiber from waste resources that could regulate various cellular processes and molecular mechanisms involved in perpetuating UC and can be used as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Shriya Bhatt
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh Gupta
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
60
|
Wu N, Li X, Ma H, Zhang X, Liu B, Wang Y, Zheng Q, Fan X. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol 2023; 14:1108738. [PMID: 36816570 PMCID: PMC9929158 DOI: 10.3389/fneur.2023.1108738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain-Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,*Correspondence: Yuan Wang ✉
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Qi Zheng ✉
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Xueli Fan ✉
| |
Collapse
|
61
|
Polycystic ovary syndrome and iron overload: biochemical link and underlying mechanisms with potential novel therapeutic avenues. Biosci Rep 2023; 43:232133. [PMID: 36408981 PMCID: PMC9867939 DOI: 10.1042/bsr20212234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in women with components of significant genetic predisposition and possibly multiple, but not yet clearly defined, triggers. This disorder shares several clinical features with hemochromatosis, a genetically defined inheritable disorder of iron overload, which includes insulin resistance, increased adiposity, diabetes, fatty liver, infertility, and hyperandrogenism. A notable difference between the two disorders, however, is that the clinical symptoms in PCOS appear at much younger age whereas they become evident in hemochromatosis at a much later age. Nonetheless, noticeable accumulation of excess iron in the body is a common finding in both disorders even at adolescence. Hepcidin, the iron-regulatory hormone secreted by the liver, is reduced in both disorders and consequently increases intestinal iron absorption. Recent studies have shown that gut bacteria play a critical role in the control of iron absorption in the intestine. As dysbiosis is a common finding between PCOS and hemochromatosis, changes in bacterial composition in the gut may represent another cause for iron overload in both diseases via increased iron absorption. This raises the possibility that strategies to prevent accumulation of excess iron with iron chelators and/or probiotics may have therapeutic potential in the management of polycystic ovary syndrome.
Collapse
|
62
|
Lu J, Jin X, Yang S, Li Y, Wang X, Wu M. Immune mechanism of gut microbiota and its metabolites in the occurrence and development of cardiovascular diseases. Front Microbiol 2022; 13:1034537. [PMID: 36590426 PMCID: PMC9794627 DOI: 10.3389/fmicb.2022.1034537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The risk of cardiovascular disease (CVD) is associated with unusual changes in the human gut microbiota, most commonly coronary atherosclerotic heart disease, hypertension, and heart failure. Immune mechanisms maintain a dynamic balance between the gut microbiota and the host immune system. When one side changes and the balance is disrupted, different degrees of damage are inflicted on the host and a diseased state gradually develops over time. This review summarizes the immune mechanism of the gut microbiota and its metabolites in the occurrence of common CVDs, discusses the relationship between gut-heart axis dysfunction and the progression of CVD, and lists the currently effective methods of regulating the gut microbiota for the treatment of CVDs.
Collapse
|
63
|
Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, Reyes RJ, Manandhar B, Bhatt S, Jha NK, Singh TG, Gupta G, Singh SK, Chellappan DK, Paudel KR, Hansbro PM, Oliver BG, Dua K. Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact 2022; 368:110231. [DOI: 10.1016/j.cbi.2022.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
|
64
|
Jiang Q, Li T, Chen W, Huo Y, Mou X, Zhao W. Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Front Microbiol 2022; 13:955297. [PMID: 36406399 PMCID: PMC9672376 DOI: 10.3389/fmicb.2022.955297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The microbiota plays a crucial role in individuals’ early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.
Collapse
Affiliation(s)
- Qingru Jiang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingfang Huo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiangyu Mou,
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenjing Zhao,
| |
Collapse
|
65
|
Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis. Front Immunol 2022; 13:1010572. [PMID: 36311749 PMCID: PMC9608452 DOI: 10.3389/fimmu.2022.1010572] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS), a chronic condition that commonly influences the spine and sacroiliac joints, usually progresses to stiffness and progressive functional limitation. Its fundamental etiology and pathogenesis are likely multifactorial and remain elusive. As environmental factors, gut microbiota performs critical functions in the pathogenesis of AS through various mechanisms, including interacting with genes, enhancing intestinal permeability, activating the gut mucosa immune system, and affecting the intestinal microbiota metabolites. This review provides an overview of recent advances in investigating gut microbiota in AS pathogenesis and discusses potential methods for future therapeutic intervention.
Collapse
Affiliation(s)
- Zi-Yi Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Duo Yuan
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
66
|
Xu X, Wang M, Wang Z, Chen Q, Chen X, Xu Y, Dai M, Wu B, Li Y. The bridge of the gut-joint axis: Gut microbial metabolites in rheumatoid arthritis. Front Immunol 2022; 13:1007610. [PMID: 36275747 PMCID: PMC9583880 DOI: 10.3389/fimmu.2022.1007610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint destruction, synovitis, and pannus formation. Gut microbiota dysbiosis may exert direct pathogenic effects on gut homeostasis. It may trigger the host's innate immune system and activate the "gut-joint axis", which exacerbates the RA. However, although the importance of the gut microbiota in the development and progression of RA is widely recognized, the mechanisms regulating the interactions between the gut microbiota and the host immune system remain incompletely defined. In this review, we discuss the role of gut microbiota-derived biological mediators, such as short-chain fatty acids, bile acids, and tryptophan metabolites, in maintaining intestinal barrier integrity, immune balance and bone destruction in RA patients as the bridge of the gut-joint axis.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xixuan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yingyue Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
67
|
The Impact of Short-Chain Fatty Acids on Neonatal Regulatory T Cells. Nutrients 2022; 14:nu14183670. [PMID: 36145046 PMCID: PMC9503436 DOI: 10.3390/nu14183670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Over the first weeks of life, the neonatal gastrointestinal tract is rapidly colonised by a diverse range of microbial species that come to form the ‘gut microbiota’. Microbial colonisation of the neonatal gut is a well-established regulator of several physiological processes that contribute to immunological protection in postnatal life, including the development of the intestinal mucosa and adaptive immunity. However, the specific microbiota-derived signals that mediate these processes have not yet been fully characterised. Accumulating evidence suggests short-chain fatty acids (SCFAs), end-products of intestinal bacterial metabolism, as one of the key mediators of immune development in early life. Critical to neonatal health is the development of regulatory T (Treg) cells that promote and maintain immunological tolerance against self and innocuous antigens. Several studies have shown that SCFAs can induce the differentiation and expansion of Tregs but also mediate pathological effects in abnormal amounts. However, the exact mechanisms through which SCFAs regulate Treg development and pathologies in early life remain poorly defined. In this review, we summarise the current knowledge surrounding SCFAs and their potential impact on the neonatal immune system with a particular focus on Tregs, and the possible mechanisms through which SCFAs achieve their immune modulatory effect.
Collapse
|
68
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Alexis Ramírez-Coronel A, Kamal Abdelbasset W, Hasan Abed M, Markov A, Raheem Lateef Al-Awsi G, Azamatovich Shamsiev J, Thaeer Hammid A, Nader Shalaby M, Karampoor S, Mirzaei R. The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol 2022; 110:108983. [PMID: 35750016 DOI: 10.1016/j.intimp.2022.108983] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Murtadha Hasan Abed
- Department of Medical Laboratory, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation; Tyumen Industrial University, Tyumen, Russian Federation.
| | | | - Jamshid Azamatovich Shamsiev
- Department of Pediatric Surgery, Anesthesiology and Intensive Care, Samarkand State Medical Institute, Samarkand, Uzbekistan; Research scholar, Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan.
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq.
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
69
|
Avery EG, Bartolomaeus H, Rauch A, Chen CY, N'Diaye G, Löber U, Bartolomaeus TUP, Fritsche-Guenther R, Rodrigues AF, Yarritu A, Zhong C, Fei L, Tsvetkov D, Todiras M, Park JK, Markó L, Maifeld A, Patzak A, Bader M, Kempa S, Kirwan JA, Forslund SK, Müller DN, Wilck N. Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovasc Res 2022:6651675. [PMID: 35904261 DOI: 10.1093/cvr/cvac121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS Four-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/d) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory fecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSIONS Microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN. TRANSLATION PERSPECTIVE To assess the potential of microbiota-targeted interventions to prevent organ damage in hypertension, an accurate quantification of microbial influence is necessary. We provide evidence that the development of hypertensive organ damage is dependent on colonization status and suggest that a healthy microbiota provides anti-hypertensive immune and metabolic signals to the host. In the absence of normal symbiotic host-microbiome interactions, hypertensive damage to the kidney in particular is exacerbated. We suggest that hypertensive patients experiencing perturbations to the microbiota, which are common in CVD, may be at a greater risk for target-organ damage than those with a healthy microbiome.
Collapse
Affiliation(s)
- Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriele N'Diaye
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - André F Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Cheng Zhong
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lingyan Fei
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Geriatrics, University of Greifswald, University District Hospital Wolgast, Greifswald, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemianu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Lajos Markó
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - András Maifeld
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Patzak
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Integrative Proteomics and Metabolomics Platform, Berlin Institute for Medical Systems Biology BIMSB, Berlin, Germany
| | - Jennifer A Kirwan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Metabolomics Platform, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
70
|
Wilson KR, Gressier E, McConville MJ, Bedoui S. Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Front Immunol 2022; 13:897462. [PMID: 35880171 PMCID: PMC9307905 DOI: 10.3389/fimmu.2022.897462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a gateway for viruses and bacteria from the external environment to invade the human body. Critical to the protection against these invaders are dendritic cells (DCs) - a group of highly specialized myeloid cells that monitors the lung microenvironment and relays contextual and antigenic information to T cells. Following the recognition of danger signals and/or pathogen molecular associated patterns in the lungs, DCs undergo activation. This process arms DCs with the unique ability to induce the proliferation and differentiation of T cells responding to matching antigen in complex with MHC molecules. Depending on how DCs interact with T cells, the ensuing T cell response can be tolerogenic or immunogenic and as such, the susceptibility and severity of respiratory infections is influenced by the signals DCs receive, integrate, and then convey to T cells. It is becoming increasingly clear that these facets of DC biology are heavily influenced by the cellular components and metabolites produced by the lung and gut microbiota. In this review, we discuss the roles of different DC subsets in respiratory infections and outline how microbial metabolites impact the development, propensity for activation and subsequent activation of DCs. In particular, we highlight these concepts in the context of respiratory immunity.
Collapse
Affiliation(s)
- Kayla R. Wilson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kayla R. Wilson,
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
71
|
Fasitasari M, Subagio HW, Suprihati S. The role of synbiotics in improving inflammatory status in nasopharyngeal carcinoma patients. J Basic Clin Physiol Pharmacol 2022; 34:263-275. [PMID: 35671251 DOI: 10.1515/jbcpp-2021-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that grows from the epithelial cells of nasopharynx. NPC has the ability to modify its metabolism and leads the patient to suffer from malnutrition and cachexia, therefore aggravates the occurrence of impaired inflammatory response. Currently, available treatments for NPC are chemotherapy, radiotherapy, or chemoradiotherapy. Despite of its efficacy, these regimens have been known to elicit various inflammation-related side effects including infection, diarrhea, and mucositis. It has long been established that increased activity of inflammatory response is associated to low survival rate in both early and advanced stage of cancer. Furthermore, uncontrolled and dysregulated inflammatory response are significantly correlated with malignant progression of cancer. Considering how pivotal inflammation to malignancy progression, there is a need for effective strategies to modulate inflammatory response. Various strategies have been proposed to improve immune response in NPC patients including dietary supplementation of synbiotics. Synbiotics refers to the manipulation of both probiotics and prebiotics to provide a synergistic benefit to the host by promoting the growth of beneficial bacteria while inhibiting the growth of pathogenic bacteria. There is a growing number of evidences related to the potential of synbiotics in modulating the pro-inflammatory response and improve immune systems in a variety of conditions, including cancer. In this study, we will discuss the immunomodulatory effects of synbiotics in the nasopharyngeal carcinoma occurrences.
Collapse
Affiliation(s)
- Minidian Fasitasari
- Department of Nutrition, Medical Faculty of Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Suprihati Suprihati
- Department of Otolaryngology, Medical Faculty of Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
72
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
73
|
Ali Q, Ma S, La S, Guo Z, Liu B, Gao Z, Farooq U, Wang Z, Zhu X, Cui Y, Li D, Shi Y. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health. Anim Biosci 2022; 35:1461-1478. [PMID: 35507857 PMCID: PMC9449382 DOI: 10.5713/ab.21.0562] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/18/2022] [Indexed: 11/27/2022] Open
Abstract
The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.
Collapse
|
74
|
Stakišaitis D, Kapočius L, Valančiūtė A, Balnytė I, Tamošuitis T, Vaitkevičius A, Sužiedėlis K, Urbonienė D, Tatarūnas V, Kilimaitė E, Gečys D, Lesauskaitė V. SARS-CoV-2 Infection, Sex-Related Differences, and a Possible Personalized Treatment Approach with Valproic Acid: A Review. Biomedicines 2022; 10:biomedicines10050962. [PMID: 35625699 PMCID: PMC9138665 DOI: 10.3390/biomedicines10050962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
- Correspondence: (D.S.); (V.L.)
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Daiva Urbonienė
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (A.V.); (I.B.); (E.K.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania; (V.T.); (D.G.)
- Correspondence: (D.S.); (V.L.)
| |
Collapse
|
75
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
76
|
Föh B, Buhre JS, Lunding HB, Moreno-Fernandez ME, König P, Sina C, Divanovic S, Ehlers M. Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS One 2022; 17:e0266071. [PMID: 35333906 PMCID: PMC8956175 DOI: 10.1371/journal.pone.0266071] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The microbially-derived short-chain fatty acid butyrate is a central inhibitor of inflammatory innate and adaptive immune responses. Emerging evidence suggests that butyrate induces differentiation of IL-10-producing (IL-10+) regulatory B cells. However, the underlying mechanisms of butyrate-driven modulation of B cell differentiation are not fully defined. Given the dominant role of regulatory plasma cells (PCs) as the main source of anti-inflammatory cytokines including IL-10 and the observation that butyrate also induces the differentiation of PCs, we here investigated the effect of the microbial metabolite butyrate on the induction of regulatory IL-10+ PCs and underlying mechanisms. Here we show that butyrate induces the differentiation of IL-10+IgM+ PCs. Ex vivo, butyrate, but hardly propionate, another microbially-derived short-chain fatty acid, induced the differentiation of IL-10+IgM+ CD138high PCs from isolated splenic murine B cells. In vivo, administration of butyrate via drinking water or by daily intraperitoneal injection increased the number of IL-10+IgM+ CD138high PCs in the spleens of Ovalbumin (Ova)/complete Freund’s adjuvant-immunized mice. The induction of these regulatory PCs was associated with an increase of anti-Ova IgM, but a reduction of anti-Ova class-switched pathogenic IgG2b serum antibodies. Based on the knowledge that butyrate inhibits histone deacetylases (HDACs) thereby increasing histone acetylation, we identified here that HDAC3 inhibition was sufficient to induce PC differentiation and IL-10+ expression. Furthermore, reduced mitochondrial superoxide levels following butyrate treatment and HDAC3 inhibition were necessary for PC differentiation, but not IL-10 expression. In summary, the microbial metabolite butyrate promotes the differentiation of IgM+ PCs and their expression of IL-10. HDAC3 inhibition may be involved as an underlying pathway for both PC differentiation and IL-10 expression, while reduced mitochondrial superoxide levels are crucial only for PC differentiation. The induction of regulatory IL-10+IgM+ PCs and the inhibition of class switching to antigen-specific pathogenic IgG subclasses might represent important pathways of butyrate to limit inflammation.
Collapse
Affiliation(s)
- Bandik Föh
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jana Sophia Buhre
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Hanna B. Lunding
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Maria E. Moreno-Fernandez
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
- * E-mail:
| |
Collapse
|
77
|
Gut-derived butyrate suppresses ocular surface inflammation. Sci Rep 2022; 12:4512. [PMID: 35296712 PMCID: PMC8927112 DOI: 10.1038/s41598-022-08442-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/23/2022] [Indexed: 12/16/2022] Open
Abstract
Dry eye is a common ocular inflammatory disorder characterized by tear film instability and reduced tear production. There is increasing evidence that homeostasis of the ocular surface is impacted by the intestinal microbiome. We are interested in investigating the potential role of microbially produced small molecules in mediating the interaction between the intestinal microbiota and the ocular surface. One such molecule is butyrate, a short-chain fatty acid (SCFA) produced by certain members of the gut microbiota through fermentation of dietary fiber. Here we show that SCFA transporter SLC5A8 is expressed in vivo in murine conjunctival and corneal epithelium. Pre-treatment of in vitro corneal epithelial cultures or bone marrow-derived dendritic cells (BMDCs) with phenylbutyrate (PBA) reduces lipopolysaccharide-induced pro-inflammatory Tnf expression. Corneal epithelial cultures and BMDCs isolated from Slc5a8 knockout mice are unable to respond to PBA pre-treatment, suggesting that SLC5A8 is required for the protective effect of PBA. The treatment of mice undergoing desiccating stress (DS) with oral tributyrin, a prodrug form of butyrate, reduces inflammation at the ocular surface in vivo, and this effect partially requires SLC5A8. Finally, expression analysis on conjunctival tissue isolated from mice subjected to DS with and without tributyrin treatment revealed that treatment downregulated genes involved in Type I interferon signaling. Together these data support our hypothesis that SCFAs produced in the gut participate in the maintenance of ocular surface homeostasis.
Collapse
|
78
|
Yu E, Chen D, Yu B, Huang Z, Mao X, Zheng P, Luo Y, Yin H, Yu J, Luo J, Yan H, He J. Alteration of Porcine Intestinal Microbiota in Response to Dietary Manno-Oligosaccharide Supplementation. Front Microbiol 2022; 12:811272. [PMID: 35222309 PMCID: PMC8866978 DOI: 10.3389/fmicb.2021.811272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Manno-oligosaccharide (MOS) is a prebiotic derived from natural plants or yeasts. Here, we explored the response of intestinal microbiota and epithelial functions after ingestion of MOS in a porcine model. Sixteen pigs were randomly assigned into two treatments and fed with basal or MOS-containing (0.3% MOS) diet for 21 days. Results showed that MOS supplementation increased the cecal acetate content and ileal 16S rRNA gene copies (p < 0.05). Importantly, MOS decreased the abundance of phylum Proteobacteria in cecal digesta (p < 0.05). Moreover, MOS elevated the expression level of SCL5A8 and GPR109A but decreased the expression levels of HDAC1 and TNF-α in the ileal and cecal mucosa (p < 0.05). MOS upregulated the expression levels of tight-junction protein (ZO-1, claudin-1, and occludin) and IGF-1 in the ileum and cecum (p < 0.05). This study presents the alteration of intestinal microbiota composition and intestinal barrier function after MOS administration, and facilitates our understanding of the mechanisms behind the dietary MOS-modulated intestinal microbiota and health.
Collapse
Affiliation(s)
- En Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu, China
| |
Collapse
|
79
|
Juknevičienė M, Balnytė I, Valančiūtė A, Stanevičiūtė J, Sužiedėlis K, Stakišaitis D. The effect of valproic acid on SLC5A8 expression in gonad-intact and gonadectomized rat thymocytes. Int J Immunopathol Pharmacol 2022; 36:20587384211051954. [PMID: 35120418 PMCID: PMC8819739 DOI: 10.1177/20587384211051954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Valproic acid (VPA) pharmacological mechanisms are related to the anti-inflammatory and anti-viral effects. VPA is a histone deacetylases inhibitor and serves a role in its immunomodulatory impacts. VPA has complex effects on immune cell's mitochondrial metabolism. The SLC5A8 transporter of short fatty acids has an active role in regulating mitochondrial metabolism. The study aimed to investigate whether SLC5A8 expresses the sex-related difference and how SLC5A8 expression depends on gonadal hormones, VPA treatment, and NKCC1 expression in rat thymocytes. METHODS Control groups and VPA-treated gonad-intact and gonadectomized Wistar male and female rats were investigated (n = 6 in a group). The VPA 300 mg/kg/day in drinking water was given for 4 weeks. The SLC5A8 (Slc5a8 gene) and NKCC1 (Slc12a2 gene) RNA expressions were determined by the RT-PCR method. RESULTS The higher Slc5a8 expression was found in the gonad-intact males than respective females (p = 0.004). VPA treatment decreased the Slc5a8 expression in gonad-intact and castrated males (p = 0.02 and p = 0.03, respectively), and increased in gonad-intact female rats compared to their control (p = 0.03). No significant difference in the Slc5a8 expression between the ovariectomized female control and VPA-treated females was determined (p > 0.05). VPA treatment alters the correlation between Slc5a8 and Slc12a2 gene expression in thymocytes of gonad-intact rats. CONCLUSION VPA effect on the Slc5a8 expression in rat thymocytes is gender- and gonadal hormone-dependent.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Ingrida Balnytė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Angelija Valančiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Jūratė Stanevičiūtė
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| | - Donatas Stakišaitis
- Department of Histology and
Embryology, Medical Academy, Lithuanian University of Health
Sciences, Kaunas, Lithuania
- Laboratory of Molecular Oncology, National Cancer
Institute, Vilnius, Lithuania
| |
Collapse
|
80
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
81
|
Zhong SR, Kuang Q, Zhang F, Chen B, Zhong ZG. Functional roles of the microbiota-gut-brain axis in Alzheimer’s disease: Implications of gut microbiota-targeted therapy. Transl Neurosci 2021; 12:581-600. [PMID: 35070442 PMCID: PMC8724360 DOI: 10.1515/tnsci-2020-0206] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing scientific evidence demonstrates that the gut microbiota influences normal physiological homeostasis and contributes to pathogenesis, ranging from obesity to neurodegenerative diseases, such as Alzheimer’s disease (AD). Gut microbiota can interact with the central nervous system (CNS) through the microbiota-gut-brain axis. The interaction is mediated by microbial secretions, metabolic interventions, and neural stimulation. Here, we review and summarize the regulatory pathways (immune, neural, neuroendocrine, or metabolic systems) in the microbiota-gut-brain axis in AD pathogenesis. Besides, we highlight the significant roles of the intestinal epithelial barrier and blood–brain barrier (BBB) in the microbiota-gut-brain axis. During the progression of AD, there is a gradual shift in the gut microbiota and host co-metabolic relationship, leading to gut dysbiosis, and the imbalance of microbial secretions and metabolites, such as lipopolysaccharides (LPS) and short-chain fatty acids (SCFAs). These products may affect the CNS metabolic state and immune balance through the microbiota-gut-brain axis. Further, we summarize the potential microbiota-gut-brain axis-targeted therapy including carbohydrates, probiotics, dietary measures, and propose new strategies toward the development of anti-AD drugs. Taken together, the data in this review suggest that remodeling the gut microbiota may present a tractable strategy in the management and development of new therapeutics against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Ran Zhong
- School of Health Medicine, Guangzhou Huashang College , Guangzhou , 511300 , People’s Republic of China
| | - Qi Kuang
- School of Health Medicine, Guangzhou Huashang College , Guangzhou , 511300 , People’s Republic of China
| | - Fan Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , 510006 , People’s Republic of China
| | - Ben Chen
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine , Nanning City , 530200, Guangxi Zhuang Autonomous Region , People’s Republic of China
| | - Zhen-Guo Zhong
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine , Nanning City , 530200, Guangxi Zhuang Autonomous Region , People’s Republic of China
| |
Collapse
|
82
|
Piotrowska M, Binienda A, Fichna J. The role of fatty acids in Crohn's disease pathophysiology - An overview. Mol Cell Endocrinol 2021; 538:111448. [PMID: 34480991 DOI: 10.1016/j.mce.2021.111448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) which is characterized by chronic and relapsing inflammation of the gastrointestinal (GI) tract. The etiology of CD is unknown, but factors such as epithelial barrier dysfunction, immune system imbalance, microbiota dysbiosis and environmental influences are thought to be involved in its pathogenesis. Recent studies have shown that short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) play a vital role in pathophysiology and development of CD by various mechanisms affecting pro- and anti-inflammatory mediators, and maintaining the intestinal homeostasis and regulation of gene expression. SCFAs and LCFAs activate signaling cascades that control immune functions through interaction with cell surface free fatty acid receptors (FFARs), i.e. FFAR1, FFAR2, FFAR3, and FFAR4. This review highlights the role of fatty acids in maintenance of intestinal and immune homeostasis and supports the supplementation of fatty acids as a promising adjunctive treatment for CD.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
83
|
Guan ZW, Yu EZ, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021; 26:molecules26226802. [PMID: 34833893 PMCID: PMC8624670 DOI: 10.3390/molecules26226802] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
Collapse
Affiliation(s)
- Zhi-Wei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- School of Life Science, Qi Lu Normal University, Jinan 250200, China
| | - En-Ze Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
84
|
Tang M, Li S, Wei L, Hou Z, Qu J, Li L. Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota? Front Immunol 2021; 12:684605. [PMID: 34594323 PMCID: PMC8476765 DOI: 10.3389/fimmu.2021.684605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely exploited in several industrial domains as well as our daily life, raising concern over their potential adverse effects. While in general ENMs do not seem to have detrimental effects on immunity or induce severe inflammation, their indirect effects on immunity are less known. In particular, since the gut microbiota has been tightly associated with human health and immunity, it is possible that ingested ENMs could affect intestinal immunity indirectly by modulating the microbial community composition and functions. In this perspective, we provide a few pieces of evidence and discuss a possible link connecting ENM exposure, gut microbiota and host immune response. Some experimental works suggest that excessive exposure to ENMs could reshape the gut microbiota, thereby modulating the epithelium integrity and the inflammatory state in the intestine. Within such microenvironment, numerous microbiota-derived components, including but not limited to SCFAs and LPS, may serve as important effectors responsible of the ENM effect on intestinal immunity. Therefore, the gut microbiota is implicated as a crucial regulator of the intestinal immunity upon ENM exposure. This calls for including gut microbiota analysis within future work to assess ENM biocompatibility and immunosafety. This also calls for refinement of future studies that should be designed more elaborately and realistically to mimic the human exposure situation.
Collapse
Affiliation(s)
- Mingxing Tang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Li
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lan Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zhaohua Hou
- Department of Surgery, Sloan Kettering Institute Z427-D, Mortimer B. Zuckerman Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
85
|
A Proton-Coupled Transport System for β-Hydroxy-β-Methylbutyrate (HMB) in Blood-Brain Barrier Endothelial Cell Line hCMEC/D3. Nutrients 2021; 13:nu13093220. [PMID: 34579098 DOI: 10.3390/nu13093220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and β-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.
Collapse
|
86
|
Tudela H, Claus SP, Saleh M. Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Front Cell Dev Biol 2021; 9:719072. [PMID: 34540837 PMCID: PMC8440917 DOI: 10.3389/fcell.2021.719072] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The community of the diverse microorganisms residing in the gastrointestinal tract, known as the gut microbiota, is exceedingly being studied for its impact on health and disease. This community plays a major role in nutrient metabolism, maintenance of the intestinal epithelial barrier but also in local and systemic immunomodulation. A dysbiosis of the gut microbiota, characterized by an unbalanced microbial ecology, often leads to a loss of essential functions that may be associated with proinflammatory conditions. Specifically, some key microbes that are depleted in dysbiotic ecosystems, called keystone species, carry unique functions that are essential for the balance of the microbiota. In this review, we discuss current understanding of reported keystone species and their proposed functions in health. We also elaborate on current and future bioinformatics tools needed to identify missing functions in the gut carried by keystone species. We propose that the identification of such keystone species functions is a major step for the understanding of microbiome dynamics in disease and toward the development of microbiome-based therapeutics.
Collapse
Affiliation(s)
- Héloïse Tudela
- YSOPIA Bioscience, Bordeaux, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | - Maya Saleh
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
87
|
Morales Fénero C, Amaral MA, Xavier IK, Padovani BN, Paredes LC, Takiishi T, Lopes-Ferreira M, Lima C, Colombo A, Saraiva Câmara NO. Short chain fatty acids (SCFAs) improves TNBS-induced colitis in zebrafish. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:142-154. [PMID: 35492385 PMCID: PMC9040093 DOI: 10.1016/j.crimmu.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
The short-chain fatty acids (SCFAs) are metabolites originated from the fermentation of dietary fibers and amino acids produced by the bacteria of the intestinal microbiota. The most abundant SCFAs, acetate, propionate, and butyrate, have been proposed as a treatment for inflammatory bowel diseases (IBDs) due to their anti-inflammatory properties. This work aimed to analyze the effects of the treatment of three combined SCFAs in TNBS-induced intestinal inflammation in zebrafish larvae. Here, we demonstrated that SCFAs significantly increased the survival of TNBS-exposed larvae, preserved the intestinal endocytic function, reduced the expression of inflammatory cytokines and the intestinal recruitment of neutrophils caused by TNBS. However, SCFAs treatment did not appear to avoid TNBS-induced tissue damage in the intestinal wall and did not restore the number of mucus-producing goblet cells. Finally, exposure to TNBS induced dysbiosis of the microbiota with an increase in Betaproteobacteria and Actinobacteria, while the treatment with SCFAs maintained these population levels similar to control. Thus, we demonstrate that the treatment of three combined SCFAs presented anti-inflammatory properties previously seen in mammals, opening an opportunity to use zebrafish to explore the potential benefit of these and other metabolites to treat inflammation.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Izabella Karina Xavier
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lais Cavalieri Paredes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Takiishi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Mônica Lopes-Ferreira
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Carla Lima
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alicia Colombo
- Department of Pathologic Anatomy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Federal University of São Paulo, Brazil
| |
Collapse
|
88
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
89
|
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2021; 38:23-48. [PMID: 32340570 DOI: 10.1146/annurev-immunol-070119-115104] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
90
|
Thiruvengadam M, Subramanian U, Venkidasamy B, Thirupathi P, Samynathan R, Shariati MA, Rebezov M, Chung IM, Rengasamy KRR. Emerging role of nutritional short-chain fatty acids (SCFAs) against cancer via modulation of hematopoiesis. Crit Rev Food Sci Nutr 2021; 63:827-844. [PMID: 34319824 DOI: 10.1080/10408398.2021.1954874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The understanding of gut microbiota has emerged as a significant frontier in development of strategies to maintain normal human body's homeostasis and preventing the disease development over the last decade. The composition of the gut microbiota influences the clinical benefit of immune checkpoints in patients with advanced cancer, but the mechanisms underlying this relationship are unclear. Cancer is among the leading causes of mortality worldwide. So far, there is no universal treatment for cancer and despite significant advances, a lot of improvement on cancer therapy is required. Owing to its role in preserving the host's health and maintaining cellular integrity, the human gut microbiome has recently drawn a lot of interest as a target for cancer treatment. Dietary fiber is fermented by the gut microbiota to generate short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, which are physiologically active metabolites. SCFAs can modulate the pathophysiology of the tumor environment through various critical signaling pathways. In addition, SCFAs can bind to carcinogens and other toxic chemicals, thus facilitating their biotransformation and elimination through different excretory mechanisms. This review discusses the mechanisms of action of short-chain fatty acids in modulating hematopoiesis of various immune system cells and the resultant beneficial anti-cancer effects. It also provides future perspectives on cancer therapy.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Umadevi Subramanian
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Prabhu Thirupathi
- Translational Research Platform for Veterinary Biologicals, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation.,Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russian Federation
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Mankweng, South Africa
| |
Collapse
|
91
|
Intestinal Microbial Metabolites in Ankylosing Spondylitis. J Clin Med 2021; 10:jcm10153354. [PMID: 34362137 PMCID: PMC8347740 DOI: 10.3390/jcm10153354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammation of axial joints and the pelvis. It is known that intestinal dysbiosis may exert direct pathogenic effects on gut homeostasis and may act as a triggering factor for the host innate immune system to activate and cause inflammation in extraintestinal sites in the so-called "gut-joint axis", contributing to AS pathogenesis. However, although the intestinal microbiota's influence on the clinical manifestation of AS is widely accepted, the mechanisms mediating the cross-talk between the intestinal lumen and the immune system are still not completely defined. Recent evidence suggests that the metabolism of microbial species may be a source of metabolites and small molecules participating in the complex network existing between bacteria and host cells. These findings may give inputs for further research of novel pharmacological targets and pave the way to applying dietary interventions to prevent the onset and ameliorate the clinical presentation of the disease. In this review, we discuss the role of some of the biological mediators of microbial origin, with a particular focus on short-chain fatty acids, tryptophan and vitamin B derivatives, and their role in barrier integrity and type 3 immunity in the context of AS.
Collapse
|
92
|
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, Michaudel C, Spatz M, Trottein F, Langella P, Sokol H, Michel ML. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep 2021; 36:109332. [PMID: 34233192 DOI: 10.1016/j.celrep.2021.109332] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
Gut interleukin-17A (IL-17)-producing γδ T cells are tissue-resident cells that are involved in both host defense and regulation of intestinal inflammation. However, factors that regulate their functions are poorly understood. In this study, we find that the gut microbiota represses IL-17 production by cecal γδ T cells. Treatment with vancomycin, a Gram-positive bacterium-targeting antibiotic, leads to decreased production of short-chain fatty acids (SCFAs) by the gut microbiota. Our data reveal that these microbiota-derived metabolites, particularly propionate, reduce IL-17 and IL-22 production by intestinal γδ T cells. Propionate acts directly on γδ T cells to inhibit their production of IL-17 in a histone deacetylase-dependent manner. Moreover, the production of IL-17 by human IL-17-producing γδ T cells from patients with inflammatory bowel disease (IBD) is regulated by propionate. These data contribute to a better understanding of the mechanisms regulating gut γδ T cell functions and offer therapeutic perspectives of these cells.
Collapse
Affiliation(s)
- Louise Dupraz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France
| | - Aurélie Magniez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Mathias L Richard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Grégory Da Costa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Sothea Touch
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Mayeur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julien Planchais
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Allison Agus
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Camille Danne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Chloé Michaudel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Madeleine Spatz
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 9017, University of Lille, CHU Lille, Institut Pasteur de Lille, 59000 Lille, France
| | - Philippe Langella
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marie-Laure Michel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.
| |
Collapse
|
93
|
Caffaratti C, Plazy C, Mery G, Tidjani AR, Fiorini F, Thiroux S, Toussaint B, Hannani D, Le Gouellec A. What We Know So Far about the Metabolite-Mediated Microbiota-Intestinal Immunity Dialogue and How to Hear the Sound of This Crosstalk. Metabolites 2021; 11:406. [PMID: 34205653 PMCID: PMC8234899 DOI: 10.3390/metabo11060406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.
Collapse
Affiliation(s)
- Clément Caffaratti
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Caroline Plazy
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Geoffroy Mery
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Department of Infectiology-Pneumology, CHU Grenoble-Alpes, 38000 Grenoble, France
| | - Abdoul-Razak Tidjani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Federica Fiorini
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Sarah Thiroux
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Bertrand Toussaint
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| | - Dalil Hannani
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
| | - Audrey Le Gouellec
- Faculty of Medicine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble Alpes, TIMC (UMR5525), 38000 Grenoble, France; (C.C.); (C.P.); (G.M.); (A.-R.T.); (S.T.); (B.T.)
- Service de Biochimie Biologie Moléculaire Toxicologie Environnementale, UM Biochimie des Enzymes et des Protéines, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France
- Plateforme de Métabolomique GEMELI-GExiM, Institut de Biologie et Pathologie, CHU Grenoble-Alpes, 38000 Grenoble, France;
| |
Collapse
|
94
|
Lyu Y, Yang H, Chen L. Metabolic regulation on the immune environment of glioma through gut microbiota. Semin Cancer Biol 2021; 86:990-997. [PMID: 33971263 DOI: 10.1016/j.semcancer.2021.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The gut-brain axis has paved our way in understanding varieties of disease. The gut microbiota especially the bacterial population plays critical roles in immune system development and function. Glioma comprises 80 percent of malignant brain cancer and glioblastoma (GBM) is the most malignant kind. GBM has a reputation for its suppressive immune environment and poor patient prognosis. Moreover, altered metabolites from gut microbiota affect both systemic immune and central nervous system (CNS) immunity. Here we will focus on the crosstalk between gut microbiota and GBM, and further explore how this communication contributes to glioma initiation and development. Finally, we highlight the latest insights on the metabolic regulation of immunity through gut microbiota, which provides a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China; Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
95
|
Liébana-García R, Olivares M, Bullich-Vilarrubias C, López-Almela I, Romaní-Pérez M, Sanz Y. The gut microbiota as a versatile immunomodulator in obesity and associated metabolic disorders. Best Pract Res Clin Endocrinol Metab 2021; 35:101542. [PMID: 33980476 DOI: 10.1016/j.beem.2021.101542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity has reached epidemic proportions and is associated with chronic-low-grade inflammation and metabolic morbidities. Energy-dense diets and a sedentary lifestyle are determinants of obesity. The gut microbiome is a novel biological factor involved in obesity via interactions with the host and the diet. The gut microbiome act as a synergistic force protecting or aggravating the effects of the diet on the metabolic phenotype. The role of the microbiome in the regulation of intestinal and systemic immunity is one of the mechanisms by which it contributes to the host's response to the diet and to the pathophysiology of diet-induced obesity. Here, we review the mechanisms whereby "obesogenic" diets and the microbiome impact immunity, locally and systemically, focusing on the consequences in the gut-adipose tissue axis. We also review the structural and microbial metabolites that influence immunity and how advances in this field could help design microbiome-informed strategies to tackle obesity-related disorders more effectively.
Collapse
Affiliation(s)
- Rebeca Liébana-García
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Marta Olivares
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Clara Bullich-Vilarrubias
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Inmaculada López-Almela
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
96
|
Kim CH. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol 2021; 18:1161-1171. [PMID: 33850311 PMCID: PMC8093302 DOI: 10.1038/s41423-020-00625-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
A mounting body of evidence indicates that dietary fiber (DF) metabolites produced by commensal bacteria play essential roles in balancing the immune system. DF, considered nonessential nutrients in the past, is now considered to be necessary to maintain adequate levels of immunity and suppress inflammatory and allergic responses. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major DF metabolites and mostly produced by specialized commensal bacteria that are capable of breaking down DF into simpler saccharides and further metabolizing the saccharides into SCFAs. SCFAs act on many cell types to regulate a number of important biological processes, including host metabolism, intestinal functions, and immunity system. This review specifically highlights the regulatory functions of DF and SCFAs in the immune system with a focus on major innate and adaptive lymphocytes. Current information regarding how SCFAs regulate innate lymphoid cells, T helper cells, cytotoxic T cells, and B cells and how these functions impact immunity, inflammation, and allergic responses are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
97
|
Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, Ortiz A, Fernandez-Fernandez B, Sanchez-Niño MD. Phosphate, Microbiota and CKD. Nutrients 2021; 13:1273. [PMID: 33924419 PMCID: PMC8070653 DOI: 10.3390/nu13041273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Elena Gomá-Garcés
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
- School of Medicine, Department of Pharmacology and Therapeutics, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
98
|
Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front Physiol 2021; 12:662739. [PMID: 33897470 PMCID: PMC8060628 DOI: 10.3389/fphys.2021.662739] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by the bacterial fermentation of dietary fiber, and they play a critical role in the maintenance of intestinal health. SCFAs are also essential for modulating different processes, and they have anti-inflammatory properties and immunomodulatory effects. As the inflammatory process predisposes the development of cancer and promotes all stages of tumorigenesis, an antitumor effect has also been associated with SCFAs. This is strongly supported by epidemiological studies showing that a diet rich in fiber is linked to a reduced risk of colon cancer and has significant clinical benefits in patients with inflammatory bowel disease (IBD). SCFAs may signal through the metabolite-sensing G protein-coupled receptors free fatty acid receptor 3 [FFAR3 or G protein-coupled receptor 41 (GPR41)], FFAR2 (GPR43), and GPR109A (also known as hydroxycarboxylic acid receptor 2 or HCAR2) expressed in the gut epithelium and immune cells. This review summarizes the existing knowledge regarding the SCFA-mediated suppression of inflammation and carcinogenesis in IBD and colon cancer.
Collapse
Affiliation(s)
- María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
99
|
Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine 2021; 66:103293. [PMID: 33813134 PMCID: PMC8047503 DOI: 10.1016/j.ebiom.2021.103293] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
Collapse
Affiliation(s)
- Sara Deleu
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium; Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kristin Verbeke
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
100
|
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 2021; 18:866-877. [PMID: 33707689 PMCID: PMC8115644 DOI: 10.1038/s41423-021-00661-4] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.
Collapse
|