51
|
Ernst AM, Syed SA, Zaki O, Bottanelli F, Zheng H, Hacke M, Xi Z, Rivera-Molina F, Graham M, Rebane AA, Björkholm P, Baddeley D, Toomre D, Pincet F, Rothman JE. S-Palmitoylation Sorts Membrane Cargo for Anterograde Transport in the Golgi. Dev Cell 2019; 47:479-493.e7. [PMID: 30458139 DOI: 10.1016/j.devcel.2018.10.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
While retrograde cargo selection in the Golgi is known to depend on specific signals, it is unknown whether anterograde cargo is sorted, and anterograde signals have not been identified. We suggest here that S-palmitoylation of anterograde cargo at the Golgi membrane interface is an anterograde signal and that it results in concentration in curved regions at the Golgi rims by simple physical chemistry. The rate of transport across the Golgi of two S-palmitoylated membrane proteins is controlled by S-palmitoylation. The bulk of S-palmitoylated proteins in the Golgi behave analogously, as revealed by click chemistry-based fluorescence and electron microscopy. These palmitoylated cargos concentrate in the most highly curved regions of the Golgi membranes, including the fenestrated perimeters of cisternae and associated vesicles. A palmitoylated transmembrane domain behaves similarly in model systems.
Collapse
Affiliation(s)
- Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Saad A Syed
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Omar Zaki
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Zheng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Moritz Hacke
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Patrik Björkholm
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA; Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
52
|
Wang X, Bakanina Kissanga GM, Li E, Li Q, Yao J. The catalytic mechanism of S-acyltransferases: acylation is triggered on by a loose transition state and deacylation is turned off by a tight transition state. Phys Chem Chem Phys 2019; 21:12163-12172. [DOI: 10.1039/c9cp02248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of S-acyltransferase is characterized by a loose transition state.
Collapse
Affiliation(s)
- Xia Wang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | | | - E. Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Qiang Li
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| | - Jianzhuang Yao
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
53
|
Abstract
Palmitoylation or S-acylation is the posttranslational attachment of fatty acids to cysteine residues and is common among integral and peripheral membrane proteins. Palmitoylated proteins have been found in every eukaryotic cell type examined (yeast, insect, and vertebrate cells), as well as in viruses grown in these cells. The exact functions of protein palmitoylation are not well understood. Intrinsically hydrophilic proteins, especially signaling molecules, are anchored by long-chain fatty acids to the cytoplasmic face of the plasma membrane. Palmitoylation may also promote targeting to membrane subdomains enriched in glycosphingolipids and cholesterol or affect protein-protein interactions.This chapter describes (1) a standard protocol for metabolic labeling of palmitoylated proteins and also the procedures to prove a covalent and ester-type linkage of the fatty acids, (2) a simple method to analyze the fatty acid content of S-acylated proteins, (3) two methods to analyze dynamic palmitoylation for a given protein, and (4) protocols to study cell-free palmitoylation of proteins.
Collapse
Affiliation(s)
- Larisa Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Ludwig Krabben
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Zentrum für Infektionsmedizin, Institut für Virologie, Berlin, Germany
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Veit
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Zentrum für Infektionsmedizin, Institut für Virologie, Berlin, Germany.
| |
Collapse
|
54
|
The molecular mechanism of DHHC protein acyltransferases. Biochem Soc Trans 2018; 47:157-167. [PMID: 30559274 DOI: 10.1042/bst20180429] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Protein S-acylation is a reversible lipidic posttranslational modification where a fatty acid chain is covalently linked to cysteine residues by a thioester linkage. A family of integral membrane enzymes known as DHHC protein acyltransferases (DHHC-PATs) catalyze this reaction. With the rapid development of the techniques used for identifying lipidated proteins, the repertoire of S-acylated proteins continues to increase. This, in turn, highlights the important roles that S-acylation plays in human physiology and disease. Recently, the first molecular structures of DHHC-PATs were determined using X-ray crystallography. This review will comment on the insights gained on the molecular mechanism of S-acylation from these structures in combination with a wealth of biochemical data generated by researchers in the field.
Collapse
|
55
|
Spinelli M, Fusco S, Grassi C. Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19123820. [PMID: 30513609 PMCID: PMC6320809 DOI: 10.3390/ijms19123820] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Diet is the main environmental stimulus chronically impinging on the organism throughout the entire life. Nutrients impact cells via a plethora of mechanisms including the regulation of both protein post-translational modifications and gene expression. Palmitoylation is the most-studied protein lipidation, which consists of the attachment of a molecule of palmitic acid to residues of proteins. S-palmitoylation is a reversible cysteine modification finely regulated by palmitoyl-transferases and acyl-thioesterases that is involved in the regulation of protein trafficking and activity. Recently, several studies have demonstrated that diet-dependent molecules such as insulin and fatty acids may affect protein palmitoylation. Here, we examine the role of protein palmitoylation on the regulation of gene expression focusing on the impact of this modification on the activity of chromatin remodeler enzymes, transcription factors, and nuclear proteins. We also discuss how this physiological phenomenon may represent a pivotal mechanism underlying the impact of diet and nutrient-dependent signals on human diseases.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Salvatore Fusco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome 00168, Italy.
| |
Collapse
|
56
|
Lee CJ, Rana MS, Bae C, Li Y, Banerjee A. In vitro reconstitution of Wnt acylation reveals structural determinants of substrate recognition by the acyltransferase human Porcupine. J Biol Chem 2018; 294:231-245. [PMID: 30420431 DOI: 10.1074/jbc.ra118.005746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Wnt proteins regulate a large number of processes, including cellular growth, differentiation, and tissue homeostasis, through the highly conserved Wnt signaling pathway in metazoans. Porcupine (PORCN) is an endoplasmic reticulum (ER)-resident integral membrane enzyme that catalyzes posttranslational modification of Wnts with palmitoleic acid, an unsaturated lipid. This unique form of lipidation with palmitoleic acid is a vital step in the biogenesis and secretion of Wnt, and PORCN inhibitors are currently in clinical trials for cancer treatment. However, PORCN-mediated Wnt lipidation has not been reconstituted in vitro with purified enzyme. Here, we report the first successful purification of human PORCN and confirm, through in vitro reconstitution with the purified enzyme, that PORCN is necessary and sufficient for Wnt acylation. By systematically examining a series of substrate variants, we show that PORCN intimately recognizes the local structure of Wnt around the site of acylation. Our in vitro assay enabled us to examine the activity of PORCN with a range of fatty acyl-CoAs with varying length and unsaturation. The selectivity of human PORCN across a spectrum of fatty acyl-CoAs suggested that the kink in the unsaturated acyl chain is a key determinant of PORCN-mediated catalysis. Finally, we show that two putative PORCN inhibitors that were discovered with cell-based assays indeed target human PORCN. Together, these results provide discrete, high-resolution biochemical insights into the mechanism of PORCN-mediated Wnt acylation and pave the way for further detailed biochemical and structural studies.
Collapse
Affiliation(s)
- Chul-Jin Lee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitra S Rana
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- Protein/Peptide Sequencing Facility, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
57
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
58
|
Kouskou M, Thomson DM, Brett RR, Wheeler L, Tate RJ, Pratt JA, Chamberlain LH. Disruption of the Zdhhc9 intellectual disability gene leads to behavioural abnormalities in a mouse model. Exp Neurol 2018; 308:35-46. [PMID: 29944857 PMCID: PMC6104741 DOI: 10.1016/j.expneurol.2018.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/04/2022]
Abstract
Protein S-acylation is a widespread post-translational modification that regulates the trafficking and function of a diverse array of proteins. This modification is catalysed by a family of twenty-three zDHHC enzymes that exhibit both specific and overlapping substrate interactions. Mutations in the gene encoding zDHHC9 cause mild-to-moderate intellectual disability, seizures, speech and language impairment, hypoplasia of the corpus callosum and reduced volume of sub-cortical structures. In this study, we have undertaken behavioural phenotyping, magnetic resonance imaging (MRI) and isolation of S-acylated proteins to investigate the effect of disruption of the Zdhhc9 gene in mice in a C57BL/6 genetic background. Zdhhc9 mutant male mice exhibit a range of abnormalities compared with their wild-type littermates: altered behaviour in the open-field test, elevated plus maze and acoustic startle test that is consistent with a reduced anxiety level; a reduced hang time in the hanging wire test that suggests underlying hypotonia but which may also be linked to reduced anxiety; deficits in the Morris water maze test of hippocampal-dependent spatial learning and memory; and a 36% reduction in corpus callosum volume revealed by MRI. Surprisingly, membrane association and S-acylation of H-Ras was not disrupted in either whole brain or hippocampus of Zdhhc9 mutant mice, suggesting that other substrates of this enzyme are linked to the observed changes. Overall, this study highlights a key role for zDHHC9 in brain development and behaviour, and supports the utility of the Zdhhc9 mutant mouse line to investigate molecular and cellular changes linked to intellectual disability and other deficits in the human population. Zdhhc9 mutant mice display hypotonia and reduced anxiety. Zdhhc9 mutant mice have an altered performance in the Morris water maze. Zdhhc9 mutant mice have reduced corpus callosum volume. Membrane binding and S-acylation of H-Ras is not affected in Zdhhc9 mutant brain.
Collapse
Affiliation(s)
- Marianna Kouskou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Ros R Brett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Lee Wheeler
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
59
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
60
|
Cheng W, Doyle DA, El Arnaout T. The N-acyltransferase Lnt: Structure-function insights from recent simultaneous studies. Int J Biol Macromol 2018; 117:870-877. [PMID: 29859843 DOI: 10.1016/j.ijbiomac.2018.05.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Bacterial lipoproteins have been researched for decades due to their roles in a large number of biological functions. There were no structures of their main three membrane processing enzymes, until 2016 for Lgt and LspA, and then 2017 for Lnt with not one but three simultaneous, independent publications. We have analyzed the recent findings for this apolipoprotein N-acyltransferase Lnt, with comparisons between the novel structures, and with soluble nitrilases, to determine the significance of unique features in terms of substrate's recognition and binding mechanism influenced by exclusive residues, two transmembrane helices, and a flexible loop.
Collapse
Affiliation(s)
- Wei Cheng
- Division of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Declan A Doyle
- Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Toufic El Arnaout
- School of Food Science and Environmental Health, Dublin Institute of Technology, Marlborough St, Dublin 1, Ireland.
| |
Collapse
|
61
|
Nievas YR, Vashisht AA, Corvi MM, Metz S, Johnson PJ, Wohlschlegel JA, de Miguel N. Protein Palmitoylation Plays an Important Role in Trichomonas vaginalis Adherence. Mol Cell Proteomics 2018; 17:2229-2241. [PMID: 29444981 DOI: 10.1074/mcp.ra117.000018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/03/2018] [Indexed: 01/16/2023] Open
Abstract
The flagellated protozoan parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted infection worldwide. As an obligate extracellular pathogen, adherence to epithelial cells is critical for parasite survival within the human host and a better understanding of this process is a prerequisite for the development of therapies to combat infection. In this sense, recent work has shown S-acylation as a key modification that regulates pathogenesis in different protozoan parasites. However, there are no reports indicating whether this post-translational modification is a mechanism operating in T. vaginalis In order to study the extent and function of S-acylation in T. vaginalis biology, we undertook a proteomic study to profile the full scope of S-acylated proteins in this parasite and reported the identification of 363 proteins involved in a variety of biological processes such as protein transport, pathogenesis related and signaling, among others. Importantly, treatment of parasites with the palmitoylation inhibitor 2-bromopalmitate causes a significant decrease in parasite: parasite aggregation as well as adherence to host cells suggesting that palmitoylation could be modifying proteins that are key regulators of Trichomonas vaginalis pathogenesis.
Collapse
Affiliation(s)
- Yesica R Nievas
- From the ‡Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús B7130IWA, Argentina
| | - Ajay A Vashisht
- §Department of Biological Chemistry, University of California, Los Angeles, California, 90095-1489
| | - Maria M Corvi
- ¶Laboratorio de Bioquímica de Parásitos, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús B7130IWA, Argentina
| | - Sebastian Metz
- From the ‡Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús B7130IWA, Argentina
| | - Patricia J Johnson
- ‖Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, 90095-1489
| | - James A Wohlschlegel
- §Department of Biological Chemistry, University of California, Los Angeles, California, 90095-1489
| | - Natalia de Miguel
- From the ‡Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús B7130IWA, Argentina;
| |
Collapse
|
62
|
Rana MS, Kumar P, Lee CJ, Verardi R, Rajashankar KR, Banerjee A. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science 2018; 359:eaao6326. [PMID: 29326245 PMCID: PMC6317078 DOI: 10.1126/science.aao6326] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
DHHC (Asp-His-His-Cys) palmitoyltransferases are eukaryotic integral membrane enzymes that catalyze protein palmitoylation, which is important in a range of physiological processes, including small guanosine triphosphatase (GTPase) signaling, cell adhesion, and neuronal receptor scaffolding. We present crystal structures of two DHHC palmitoyltransferases and a covalent intermediate mimic. The active site resides at the membrane-cytosol interface, which allows the enzyme to catalyze thioester-exchange chemistry by using fatty acyl-coenzyme A and explains why membrane-proximal cysteines are candidates for palmitoylation. The acyl chain binds in a cavity formed by the transmembrane domain. We propose a mechanism for acyl chain-length selectivity in DHHC enzymes on the basis of cavity mutants with preferences for shorter and longer acyl chains.
Collapse
Affiliation(s)
- Mitra S. Rana
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, MD-20892
| | - Pramod Kumar
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, MD-20892
| | - Chul-Jin Lee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, MD-20892
| | - Raffaello Verardi
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, MD-20892
| | - Kanagalaghatta R. Rajashankar
- NE-CAT and Dept. of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL-60439
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, MD-20892
| |
Collapse
|
63
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
64
|
Fredericks GJ, Hoffmann FW, Hondal RJ, Rozovsky S, Urschitz J, Hoffmann PR. Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate. Antioxidants (Basel) 2017; 7:antiox7010004. [PMID: 29286308 PMCID: PMC5789314 DOI: 10.3390/antiox7010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Selenoprotein K (SELENOK) is a selenocysteine (Sec)-containing protein localized in the endoplasmic reticulum (ER) membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids) enzyme to promote protein acyl transferase (PAT) reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys) residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50%) under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92), we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur.
Collapse
Affiliation(s)
- Gregory J Fredericks
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA.
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE 19716, USA.
| | - Johann Urschitz
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA.
| |
Collapse
|
65
|
Substrate selectivity in the zDHHC family of S-acyltransferases. Biochem Soc Trans 2017; 45:751-758. [PMID: 28620036 DOI: 10.1042/bst20160309] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
S-acylation is a reversible lipid modification occurring on cysteine residues mediated by a family of membrane-bound 'zDHHC' enzymes. S-acylation predominantly results in anchoring of soluble proteins to membrane compartments or in the trafficking of membrane proteins to different compartments. Recent work has shown that although S-acylation of some proteins may involve very weak interactions with zDHHC enzymes, a pool of zDHHC enzymes exhibit strong and specific interactions with substrates, thereby recruiting them for S-acylation. For example, the ankyrin-repeat domains of zDHHC17 and zDHHC13 interact specifically with unstructured consensus sequences present in some proteins, thus contributing to substrate specificity of these enzymes. In addition to this new information on zDHHC enzyme protein substrate specificity, recent work has also identified marked differences in selectivity of zDHHC enzymes for acyl-CoA substrates and has started to unravel the underlying molecular basis for this lipid selectivity. This review will focus on the protein and acyl-CoA selectivity of zDHHC enzymes.
Collapse
|
66
|
Ganglioside glycosyltransferases are S-acylated at conserved cysteine residues involved in homodimerisation. Biochem J 2017; 474:2803-2816. [DOI: 10.1042/bcj20170124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Ganglioside glycosyltransferases (GGTs) are type II membrane proteins bearing a short N-terminal cytoplasmic tail, a transmembrane domain (TMD), and a lumenal catalytic domain. The expression and activity of these enzymes largely determine the quality of the glycolipids that decorate mammalian cell membranes. Many glycosyltransferases (GTs) are themselves glycosylated, and this is important for their proper localisation, but few if any other post-translational modifications of these proteins have been reported. Here, we show that the GGTs, ST3Gal-V, ST8Sia-I, and β4GalNAcT-I are S-acylated at conserved cysteine residues located close to the cytoplasmic border of their TMDs. ST3Gal-II, a GT that sialylates glycolipids and glycoproteins, is also S-acylated at a conserved cysteine located in the N-terminal cytoplasmic tail. Many other GTs also possess cysteine residues in their cytoplasmic regions, suggesting that this modification occurs also on these GTs. S-acylation, commonly known as palmitoylation, is catalysed by a family of palmitoyltransferases (PATs) that are mostly localised at the Golgi complex but also at the endoplasmic reticulum (ER) and the plasma membrane. Using GT ER retention mutants, we found that S-acylation of β4GalNAcT-I and ST3Gal-II takes place at different compartments, suggesting that these enzymes are not substrates of the same PAT. Finally, we found that cysteines that are the target of S-acylation on β4GalNAcT-I and ST3Gal-II are involved in the formation of homodimers through disulphide bonds. We observed an increase in ST3Gal-II dimers in the presence of the PAT inhibitor 2-bromopalmitate, suggesting that GT homodimerisation may be regulating S-acylation
Collapse
|
67
|
Hamel LD, Lenhart BJ, Mitchell DA, Santos RG, Giulianotti MA, Deschenes RJ. Identification of Protein Palmitoylation Inhibitors from a Scaffold Ranking Library. Comb Chem High Throughput Screen 2017; 19:262-74. [PMID: 27009891 PMCID: PMC5068503 DOI: 10.2174/1386207319666160324123844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 01/21/2023]
Abstract
The addition of palmitoyl moieties to proteins regulates their membrane targeting, subcellular localization, and stability. Dysregulation of the enzymes which catalyzed the palmitoyl addition and/or the substrates of these enzymes have been linked to cancer, cardiovascular, and neurological disorders, implying these enzymes and substrates are valid targets for pharmaceutical intervention. However, current chemical modulators of zDHHC PAT enzymes lack specificity and affinity, underscoring the need for screening campaigns to identify new specific, high affinity modulators. This report describes a mixture based screening approach to identify inhibitors of Erf2 activity. Erf2 is the Saccharomyces cerevisiae PAT responsible for catalyzing the palmitoylation of Ras2, an ortholog of the human Ras oncogene proteins. A chemical library developed by the Torrey Pines Institute for Molecular Studies consists of more than 30 million compounds designed around 68 molecular scaffolds that are systematically arranged into positional scanning and scaffold ranking formats. We have used this approach to identify and characterize several scaffold backbones and R-groups that reduce or eliminate the activity of Erf2 in vitro. Here, we present the analysis of one of the scaffold backbones, bis-cyclic piperazine. We identified compounds that inhibited Erf2 auto-palmitoylation activity using a fluorescence-based, coupled assay in a high throughput screening (HTS) format and validated the hits utilizing an orthogonal gel-based assay. Finally, we examined the effects of the compounds on cell growth in a yeast cell-based assay. Based on our results, we have identified specific, high affinity palmitoyl transferase inhibitors that will serve as a foundation for future compound design.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert J Deschenes
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
68
|
Verardi R, Kim JS, Ghirlando R, Banerjee A. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase. Structure 2017; 25:1337-1347.e6. [PMID: 28757145 DOI: 10.1016/j.str.2017.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/25/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022]
Abstract
DHHC enzymes catalyze palmitoylation, a major post-translational modification that regulates a number of key cellular processes. There are up to 24 DHHCs in mammals and hundreds of substrate proteins that get palmitoylated. However, how DHHC enzymes engage with their substrates is still poorly understood. There is currently no structural information about the interaction between any DHHC enzyme and protein substrates. In this study we have investigated the structural and thermodynamic bases of interaction between the ankyrin repeat domain of human DHHC17 (ANK17) and Snap25b. We solved a high-resolution crystal structure of the complex between ANK17 and a peptide fragment of Snap25b. Through structure-guided mutagenesis, we discovered key residues in DHHC17 that are critically important for interaction with Snap25b. We further extended our finding by showing that the same residues are also crucial for the interaction of DHHC17 with Huntingtin, one of its most physiologically relevant substrates.
Collapse
Affiliation(s)
- Raffaello Verardi
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Jin-Sik Kim
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anirban Banerjee
- Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
69
|
Abstract
UNLABELLED Postsynaptic density (PSD)-95, the most abundant postsynaptic scaffolding protein, plays a pivotal role in synapse development and function. Continuous palmitoylation cycles on PSD-95 are essential for its synaptic clustering and regulation of AMPA receptor function. However, molecular mechanisms for palmitate cycling on PSD-95 remain incompletely understood, as PSD-95 depalmitoylating enzymes remain unknown. Here, we isolated 38 mouse or rat serine hydrolases and found that a subset specifically depalmitoylated PSD-95 in heterologous cells. These enzymes showed distinct substrate specificity. α/β-Hydrolase domain-containing protein 17 members (ABHD17A, 17B, and 17C), showing the strongest depalmitoylating activity to PSD-95, showed different localization from other candidates in rat hippocampal neurons, and were distributed to recycling endosomes, the dendritic plasma membrane, and the synaptic fraction. Expression of ABHD17 in neurons selectively reduced PSD-95 palmitoylation and synaptic clustering of PSD-95 and AMPA receptors. Furthermore, taking advantage of the acyl-PEGyl exchange gel shift (APEGS) method, we quantitatively monitored the palmitoylation stoichiometry and the depalmitoylation kinetics of representative synaptic proteins, PSD-95, GluA1, GluN2A, mGluR5, Gαq, and HRas. Unexpectedly, palmitate on all of them did not turn over in neurons. Uniquely, most of the PSD-95 population underwent rapid palmitoylation cycles, and palmitate cycling on PSD-95 decelerated accompanied by its increased stoichiometry as synapses developed, probably contributing to postsynaptic receptor consolidation. Finally, inhibition of ABHD17 expression dramatically delayed the kinetics of PSD-95 depalmitoylation. This study suggests that local palmitoylation machinery composed of synaptic DHHC palmitoylating enzymes and ABHD17 finely controls the amount of synaptic PSD-95 and synaptic function. SIGNIFICANCE STATEMENT Protein palmitoylation, the most common lipid modification, dynamically regulates neuronal protein localization and function. Its unique reversibility is conferred by DHHC-type palmitoyl acyl transferases (palmitoylating enzymes) and still controversial palmitoyl-protein thioesterases (depalmitoylating enzymes). Here, we identified the membrane-anchored serine hydrolases, ABHD17A, 17B, and 17C, as the physiological PSD-95 depalmitoylating enzymes that regulate PSD-95 palmitoylation cycles in neurons. This study describes the first direct evidence for the neuronal depalmitoylating enzyme and provides a new aspect of the dynamic regulatory mechanisms of synaptic development and synaptic plasticity. In addition, our established APEGS assay, which provides unbiased and quantitative information about the palmitoylation state and dynamics, revealed the distinct regulatory mechanisms for synaptic palmitoylation.
Collapse
|
70
|
Collins MO, Woodley KT, Choudhary JS. Global, site-specific analysis of neuronal protein S-acylation. Sci Rep 2017; 7:4683. [PMID: 28680068 PMCID: PMC5498535 DOI: 10.1038/s41598-017-04580-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023] Open
Abstract
Protein S-acylation (palmitoylation) is a reversible lipid modification that is an important regulator of dynamic membrane-protein interactions. Proteomic approaches have uncovered many putative palmitoylated proteins however, methods for comprehensive palmitoylation site characterization are lacking. We demonstrate a quantitative site-specific-Acyl-Biotin-Exchange (ssABE) method that allowed the identification of 906 putative palmitoylation sites on 641 proteins from mouse forebrain. 62% of sites map to known palmitoylated proteins and 102 individual palmitoylation sites are known from the literature. 54% of palmitoylation sites map to synaptic proteins including many GPCRs, receptors/ion channels and peripheral membrane proteins. Phosphorylation sites were also identified on a subset of peptides that were palmitoylated, demonstrating for the first time co-identification of these modifications by mass spectrometry. Palmitoylation sites were identified on over half of the family of palmitoyl-acyltransferases (PATs) that mediate protein palmitoylation, including active site thioester-linked palmitoyl intermediates. Distinct palmitoylation motifs and site topology were identified for integral membrane and soluble proteins, indicating potential differences in associated PAT specificity and palmitoylation function. ssABE allows the global identification of palmitoylation sites as well as measurement of the active site modification state of PATs, enabling palmitoylation to be studied at a systems level.
Collapse
Affiliation(s)
- Mark O Collins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK. .,Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Keith T Woodley
- Department of Biomedical Science & Centre for Membrane Interactions and Dynamics (CMIAD), Firth Court, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
71
|
Abstract
It has been estimated that 10% of the human genome encodes proteins that are fatty acylated at cysteine residues. The vast majority of these proteins are modified by members of the DHHC protein family, which carry out their enzymatic function on the cytoplasmic face of cell membranes. The biomedical importance of DHHC proteins is underscored by their association with human disease; unique and essential roles for DHHC proteins have been uncovered using DHHC-deficient mouse models. Accordingly, there is great interest in elucidating the molecular mechanisms that underlie DHHC protein function. In this review, we present recent insights into the structure and function of DHHC enzymes.
Collapse
|
72
|
Hemsley PA. An outlook on protein S-acylation in plants: what are the next steps? JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3155-3164. [PMID: 28158736 DOI: 10.1093/jxb/erw497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
S-acylation, also known as palmitoylation, is the reversible post-translational addition of fatty acids to proteins. Historically thought primarily to be a means for anchoring otherwise soluble proteins to membranes, evidence now suggests that reversible S-acylation may be an important dynamic regulatory mechanism. Importantly S-acylation affects the function of many integral membrane proteins, making it an important factor to consider in understanding processes such as cell wall synthesis, membrane trafficking, signalling across membranes and regulating ion, hormone and metabolite transport through membranes. This review summarises the latest thoughts, ideas and findings in the field as well discussing future research directions to gain a better understanding of the role of this enigmatic regulatory protein modification.
Collapse
Affiliation(s)
- Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, UK
| |
Collapse
|
73
|
Tabaczar S, Czogalla A, Podkalicka J, Biernatowska A, Sikorski AF. Protein palmitoylation: Palmitoyltransferases and their specificity. Exp Biol Med (Maywood) 2017; 242:1150-1157. [PMID: 28485685 DOI: 10.1177/1535370217707732] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A plethora of novel information has emerged over the past decade regarding protein lipidation. The reversible attachment of palmitic acid to cysteine residues, termed S-palmitoylation, has focused a special attention. This is mainly due to the unique role of this modification in the regulation of protein trafficking and function. A large family of protein acyltransferases (PATs) containing a conserved aspartate-histidine-histidine-cysteine motif use ping-pong kinetic mechanism to catalyze S-palmitoylation of a substrate protein. Here, we discuss the topology of PAT proteins and their cellular localization. We will also give an overview of the mechanism of protein palmitoylation and how it is regulated. New information concerning the recent discovery of depalmitoylating enzymes belonging to the family of α/β-hydrolase domain-containing protein 17 (ABHD17A) is included. Considering the recent advances that have occurred in understanding the mechanisms underlying the interplay between palmitoylation and depalmitoylation, it is clear that we are beginning to understand the fundamental nature of how cellular signal-transduction mediates membrane-level organization in health and disease. Impact statement Protein palmitoylation is one of most important reversible post-translational modifications of protein function in cell-signaling systems. This review gathers the latest information on the molecular mechanism of protein palmitoyl transferase action. It also discusses the issue of substrate specificity of palmitoyl transferases. Another important question is the role of depalmitoylation enzymes. This review should help to formulate questions concerning the regulation of activity of particular PATs as well as of depalmitoylating enzymes (APT).
Collapse
Affiliation(s)
- Sabina Tabaczar
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Joanna Podkalicka
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| |
Collapse
|
74
|
McGovern-Gooch KR, Mahajani NS, Garagozzo A, Schramm AJ, Hannah LG, Sieburg MA, Chisholm JD, Hougland JL. Synthetic Triterpenoid Inhibition of Human Ghrelin O-Acyltransferase: The Involvement of a Functionally Required Cysteine Provides Mechanistic Insight into Ghrelin Acylation. Biochemistry 2017; 56:919-931. [PMID: 28134508 DOI: 10.1021/acs.biochem.6b01008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.
Collapse
Affiliation(s)
| | - Nivedita S Mahajani
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Ariana Garagozzo
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Anthony J Schramm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Lauren G Hannah
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Michelle A Sieburg
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - John D Chisholm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| |
Collapse
|
75
|
Molecular basis of fatty acid selectivity in the zDHHC family of S-acyltransferases revealed by click chemistry. Proc Natl Acad Sci U S A 2017; 114:E1365-E1374. [PMID: 28167757 DOI: 10.1073/pnas.1612254114] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S-acylation is a major posttranslational modification, catalyzed by the zinc finger DHHC domain containing (zDHHC) enzyme family. S-acylated proteins can be modified by different fatty acids; however, very little is known about how zDHHC enzymes contribute to acyl chain heterogeneity. Here, we used fatty acid-azide/alkyne labeling of mammalian cells, showing their transformation into acyl-CoAs and subsequent click chemistry-based detection, to demonstrate that zDHHC enzymes have marked differences in their fatty acid selectivity. This difference in selectivity was apparent even for highly related enzymes, such as zDHHC3 and zDHHC7, which displayed a marked difference in their ability to use C18:0 acyl-CoA as a substrate. Furthermore, we identified isoleucine-182 in transmembrane domain 3 of zDHHC3 as a key determinant in limiting the use of longer chain acyl-CoAs by this enzyme. This study uncovered differences in the fatty acid selectivity profiles of cellular zDHHC enzymes and mapped molecular determinants governing this selectivity.
Collapse
|
76
|
Matakatsu H, Blair SS, Fehon RG. The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 2016; 216:265-277. [PMID: 28031421 PMCID: PMC5223609 DOI: 10.1083/jcb.201609094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
The palmitoyl transferase Approximated regulates signaling by the protocadherin Fat to control tissue growth upstream of the Hippo pathway in Drosophila. Matakatsu et al. show that palmitoylation of the intracellular domain of Fat by Approximated negatively regulates Fat and its ability to restrict growth. The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
77
|
ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation. Mol Cell Biol 2016; 36:2208-25. [PMID: 27247265 DOI: 10.1128/mcb.00144-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis.
Collapse
|
78
|
Reddy KD, Malipeddi J, DeForte S, Pejaver V, Radivojac P, Uversky VN, Deschenes RJ. Physicochemical sequence characteristics that influence S-palmitoylation propensity. J Biomol Struct Dyn 2016; 35:2337-2350. [PMID: 27498722 DOI: 10.1080/07391102.2016.1217275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Over the past 30 years, several hundred eukaryotic proteins spanning from yeast to man have been shown to be S-palmitoylated. This post-translational modification involves the reversible addition of a 16-carbon saturated fatty acyl chain onto the cysteine residue of a protein where it regulates protein membrane association and distribution, conformation, and stability. However, the large-scale proteome-wide discovery of new palmitoylated proteins has been hindered by the difficulty of identifying a palmitoylation consensus sequence. Using a bioinformatics approach, we show that the enrichment of hydrophobic and basic residues, the cellular context of the protein, and the structural features of the residues surrounding the palmitoylated cysteine all influence the likelihood of palmitoylation. We developed a new palmitoylation predictor that incorporates these identified features, and this predictor achieves a Matthews Correlation Coefficient of .74 using 10-fold cross validation, and significantly outperforms existing predictors on unbiased testing sets. This demonstrates that palmitoylation sites can be predicted with accuracy by taking into account not only physiochemical properties of the modified cysteine and its surrounding residues, but also structural parameters and the subcellular localization of the modified cysteine. This will allow for improved predictions of palmitoylated residues in uncharacterized proteins. A web-based version of this predictor is currently under development.
Collapse
Affiliation(s)
- Krishna D Reddy
- a Department of Molecular Medicine , University of South Florida , 12901 Bruce B. Downs Blvd., MDC 07, Tampa , FL 33612 , USA
| | - Jashwanth Malipeddi
- a Department of Molecular Medicine , University of South Florida , 12901 Bruce B. Downs Blvd., MDC 07, Tampa , FL 33612 , USA
| | - Shelly DeForte
- a Department of Molecular Medicine , University of South Florida , 12901 Bruce B. Downs Blvd., MDC 07, Tampa , FL 33612 , USA
| | - Vikas Pejaver
- c Department of Computer Science and Informatics , Indiana University , Bloomington , IN 47405 , USA
| | - Predrag Radivojac
- c Department of Computer Science and Informatics , Indiana University , Bloomington , IN 47405 , USA
| | - Vladimir N Uversky
- a Department of Molecular Medicine , University of South Florida , 12901 Bruce B. Downs Blvd., MDC 07, Tampa , FL 33612 , USA.,b Johnnie B. Byrd Alzheimer's Research Institute , University of South Florida , Tampa , FL 33612 , USA
| | - Robert J Deschenes
- a Department of Molecular Medicine , University of South Florida , 12901 Bruce B. Downs Blvd., MDC 07, Tampa , FL 33612 , USA
| |
Collapse
|
79
|
Genomics and expression analysis of DHHC-cysteine-rich domain S-acyl transferase protein family in apple. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
80
|
Han J, Zhang H, Wang S, Zhou J, Luo Y, Long LH, Hu ZL, Wang F, Chen JG, Wu PF. Potentiation of Surface Stability of AMPA Receptors by Sulfhydryl Compounds: A Redox-Independent Effect by Disrupting Palmitoylation. Neurochem Res 2016; 41:2890-2903. [PMID: 27426946 DOI: 10.1007/s11064-016-2006-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
Sulfhydryl compounds such as dithiothreitol (DTT) and β-mercaptoethanol (β-ME) are widely used as redox agents. Previous studies in our group and other laboratory have reported the effect of sulfhydryl compounds on the function of glutamate receptor, including plasticity. Most of these findings have focused on the N-methyl-D-aspartic acid receptor, in contrast, very little is known about the effect of sulfhydryl compounds on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). Here, we observed that DTT (100 μM), β-ME (200 μM) and L-cysteine (200 μM) significantly elevated the surface expression of AMPARs via reducing their palmitoylation in rat hippocampal slices in vitro. Increased surface stability of AMPARs was not be correlated with the altered redox status, because the chemical entities containing mercapto group such as penicillamine (200 μM) and 2-mercapto-1-methylimidazole (200 μM) exhibited little effects on the surface expression of AMPARs. Computing results of Asp-His-His-Cys (DHHC) 3, the main enzyme for palmitoylation of AMPARs, indicated that only the alkyl mercaptans with chain-like configuration, such as DTT and β-ME, can enter the pocket of DHHC3 and disrupt the catalytic activity via inhibiting DHHC3 auto-palmitoylation. Collectively, our findings indicate a novel redox-independent mechanism underlay the multiple effects of thiol reductants on synaptic function.
Collapse
Affiliation(s)
- Jun Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Sheng Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China. .,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, Hubei, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China. .,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
81
|
Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res 2016; 63:120-31. [PMID: 27233110 DOI: 10.1016/j.plipres.2016.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022]
Abstract
Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10075, United States.
| |
Collapse
|
82
|
Identification of new palmitoylated proteins in Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:400-8. [PMID: 26825284 DOI: 10.1016/j.bbapap.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 01/23/2023]
Abstract
Protein palmitoylation has been shown to be an important post-translational modification in eukaryotic cells. This modification alters the localization and/or the function of the targeted protein. In recent years, protein palmitoylation has risen in importance in apicomplexan parasites as well. In Toxoplasma gondii, some proteins have been reported to be modified by palmitate. With the development of new techniques that allow the isolation of palmitoylated proteins, this significant post-translational modification has begun to be studied in more detail in T. gondii. Here we describe the palmitoylome of the tachyzoite stage of T. gondii using a combination of the acyl-biotin exchange chemistry method and mass spectrometry analysis. We identified 401 proteins found in multiple cellular compartments, with a wide range of functions that vary from metabolic processes, gliding and host-cell invasion to even regulation of transcription and translation. Besides, we found that more rhoptry proteins than the ones already described for Toxoplasma are palmitoylated, suggesting an important role for this modification in the invasion mechanism of the host-cell. This study documents that protein palmitoylation is a common modification in T. gondii that could have an impact on different cellular processes.
Collapse
|
83
|
Abstract
The discovery of the zDHHC family of S-acyltransferase enzymes has been one of the major breakthroughs in the S-acylation field. Now, more than a decade since their discovery, major questions centre on profiling the substrates of individual zDHHC enzymes (there are 24 ZDHHC genes and several hundred S-acylated proteins), defining the mechanisms of enzyme-substrate specificity and unravelling the importance of this enzyme family for cellular physiology and pathology.
Collapse
|
84
|
S-acylation of influenza virus proteins: Are enzymes for fatty acid attachment promising drug targets? Vaccine 2015; 33:7002-7. [DOI: 10.1016/j.vaccine.2015.08.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/10/2015] [Accepted: 08/28/2015] [Indexed: 11/22/2022]
|
85
|
Fukata Y, Murakami T, Yokoi N, Fukata M. Local Palmitoylation Cycles and Specialized Membrane Domain Organization. CURRENT TOPICS IN MEMBRANES 2015; 77:97-141. [PMID: 26781831 DOI: 10.1016/bs.ctm.2015.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Palmitoylation is an evolutionally conserved lipid modification of proteins. Dynamic and reversible palmitoylation controls a wide range of molecular and cellular properties of proteins including the protein trafficking, protein function, protein stability, and specialized membrane domain organization. However, technical difficulties in (1) detection of palmitoylated substrate proteins and (2) purification and enzymology of palmitoylating enzymes have prevented the progress in palmitoylation research, compared with that in phosphorylation research. The recent development of proteomic and chemical biology techniques has unexpectedly expanded the known complement of palmitoylated proteins in various species and tissues/cells, and revealed the unique occurrence of palmitoylated proteins in membrane-bound organelles and specific membrane compartments. Furthermore, identification and characterization of DHHC (Asp-His-His-Cys) palmitoylating enzyme-substrate pairs have contributed to elucidating the regulatory mechanisms and pathophysiological significance of protein palmitoylation. Here, we review the recent progress in protein palmitoylation at the molecular, cellular, and in vivo level and discuss how locally regulated palmitoylation machinery works for dynamic nanoscale organization of membrane domains.
Collapse
Affiliation(s)
- Yuko Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Murakami
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Norihiko Yokoi
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
86
|
Gottlieb CD, Zhang S, Linder ME. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc. J Biol Chem 2015; 290:29259-69. [PMID: 26487721 DOI: 10.1074/jbc.m115.691147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 11/06/2022] Open
Abstract
DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins.
Collapse
Affiliation(s)
| | - Sheng Zhang
- the Core Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
87
|
González Montoro A, Chumpen Ramirez S, Valdez Taubas J. The canonical DHHC motif is not absolutely required for the activity of the yeast S-acyltransferases Swf1 and Pfa4. J Biol Chem 2015. [PMID: 26224664 DOI: 10.1074/jbc.m115.651356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S-acyltransferases, also known as palmitoyltransferases (PATs), are characterized by the presence of a 50-amino acid domain called the DHHC domain. Within this domain, these four amino acids constitute a highly conserved motif. It has been proposed that the palmitoylation reaction occurs through a palmitoyl-PAT covalent intermediate that involves the conserved cysteine in the DHHC motif. Mutation of this cysteine results in lack of function for several PATs, and DHHA or DHHS mutants are used regularly as catalytically inactive controls. In a genetic screen to isolate loss-of-function mutations in the yeast PAT Swf1, we isolated an allele encoding a Swf1 DHHR mutant. Overexpression of this mutant is able to partially complement a swf1Δ strain and to acylate the Swf1 substrates Tlg1, Syn8, and Snc1. Overexpression of the palmitoyltransferase Pfa4 DHHA or DHHR mutants also results in palmitoylation of its substrate Chs3. We also investigated the role of the first histidine of the DHHC motif. A Swf1 DQHC mutant is also partially active but a DQHR is not. Finally, we show that Swf1 substrates are differentially modified by both DHHR and DQHC Swf1 mutants. We propose that, in the absence of the canonical mechanism, alternative suboptimal mechanisms take place that are more dependent on the reactivity of the acceptor protein. These results also imply that caution must be exercised when proposing non-canonical roles for PATs on the basis of considering DHHC mutants as catalytically inactive and, more generally, contribute to an understanding of the mechanism of protein palmitoylation.
Collapse
Affiliation(s)
- Ayelén González Montoro
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Sabrina Chumpen Ramirez
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Javier Valdez Taubas
- From the Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET and Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
88
|
Protein S-palmitoylation and cancer. Biochim Biophys Acta Rev Cancer 2015; 1856:107-20. [PMID: 26112306 DOI: 10.1016/j.bbcan.2015.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 12/16/2022]
Abstract
Protein S-palmitoylation is a reversible posttranslational modification of proteins with fatty acids, an enzymatic process driven by a recently discovered family of protein acyltransferases (PATs) that are defined by a conserved catalytic domain characterized by a DHHC sequence motif. Protein S-palmitoylation has a prominent role in regulating protein location, trafficking and function. Recent studies of DHHC PATs and their functional effects have demonstrated that their dysregulation is associated with human diseases, including schizophrenia, X-linked mental retardation, and Huntington's Disease. A growing number of reports indicate an important role for DHHC proteins and their substrates in tumorigenesis. Whereas DHHC PATs comprise a family of 23 enzymes in humans, a smaller number of enzymes that remove palmitate have been identified and characterized as potential therapeutic targets. Here we review current knowledge of the enzymes that mediate reversible palmitoylation and their cancer-associated substrates and discuss potential therapeutic applications.
Collapse
|
89
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
90
|
Wang W, Runkle KB, Terkowski SM, Ekaireb RI, Witze ES. Protein Depalmitoylation Is Induced by Wnt5a and Promotes Polarized Cell Behavior. J Biol Chem 2015; 290:15707-15716. [PMID: 25944911 DOI: 10.1074/jbc.m115.639609] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 11/06/2022] Open
Abstract
Wnt5a signaling regulates polarized cell behavior, but the downstream signaling events that promote cell polarity are not well understood. Our results show that Wnt5a promotes depalmitoylation of the melanoma cell adhesion molecule (MCAM) at cysteine 590. Mutation of Cys-590 to glycine is sufficient to polarize MCAM localization, similar to what is observed with Wnt5a stimulation. Inhibition of the depalmitoylating enzyme APT1 blocks Wnt5a-induced depalmitoylation, asymmetric MCAM localization, and cell invasion. Directly altering expression of the basal protein palmitoylation machinery is sufficient to promote cell invasion. Additionally, cancer mutations in palmitoyltransferases decrease MCAM palmitoylation and have impaired ability to suppress cell invasion. Our results provide evidence that Wnt5a induces protein depalmitoylation, which promotes polarized protein localization and cell invasion.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristin B Runkle
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Samantha M Terkowski
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rachel I Ekaireb
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Eric S Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
91
|
Abstract
Huntington disease (HD) is an adult-onset neurodegenerative disease caused by a CAG expansion in the HTT gene. HD is characterized by striatal atrophy and is associated with motor, cognitive and psychiatric deficits. In the presence of the HD mutation, the interactions between huntingtin (HTT) and huntingtin interacting protein 14 (HIP14 or DHHC17) and HIP14-like (DHHC13, a HIP14 orthologue), palmitoyl acyltransferases for HTT, are disturbed, resulting in reduced palmitoylation of HTT. Genetic ablation of either Hip14 or Hip14l recapitulates many features of HD, including striatal atrophy and motor deficits. However, there are no changes in palmitoylation of HTT in either mouse model and, subsequently, the similarities between the phenotypes of these two mouse models and the HD mouse model are believed to result from underpalmitoylation of other HIP14 and HIP14L substrates. HTT acts as a modulator of HIP14 activity such that in the presence of the HD mutation, HIP14 is less active. Consequently, HIP14 substrates are less palmitoylated, leading to neuronal toxicity. This suggests that altered HIP14–HTT and HIP14L–HTT interactions in the presence of the HD mutation reduces palmitoylation and promotes mislocalization of HTT and other HIP14/HIP14L substrates. Ultimately, HD may be, in part, a disease of altered palmitoylation.
Collapse
|
92
|
Ren W, Sun Y, Du K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem Biophys Res Commun 2015; 460:709-14. [PMID: 25824042 DOI: 10.1016/j.bbrc.2015.03.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminished Glut4 responsiveness to insulin in membrane translocation in both adipocytes and CHO-IR cells. We have examined C223S Glut4 subcellular localization and observed that it was absence from tubular-vesicle structure, where insulin responsive Glut4 vesicles were presented. Together, our studies uncover a novel mechanism under which Glut4 palmitoylation regulates Glut4 sorting to insulin responsive vesicles, thereby insulin-dependent Glut4 membrane translocation.
Collapse
Affiliation(s)
- Wenying Ren
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Yingmin Sun
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Keyong Du
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
93
|
Hurst CH, Hemsley PA. Current perspective on protein S-acylation in plants: more than just a fatty anchor? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1599-606. [PMID: 25725093 DOI: 10.1093/jxb/erv053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Membranes are an important signalling platform in plants. The plasma membrane is the point where information about the external environment must be converted into intracellular signals, while endomembranes are important sites of protein trafficking, organization, compartmentalization, and intracellular signalling. This requires co-ordinating the spatial distribution of proteins, their activation state, and their interacting partners. This regulation frequently occurs through post-translational modification of proteins. Proteins that associate with the cell membrane do so through transmembrane domains, protein-protein interactions, lipid binding motifs/domains or use the post-translational addition of lipid groups as prosthetic membrane anchors. S-acylation is one such lipid modification capable of anchoring proteins to the membrane. Our current knowledge of S-acylation function in plants is fairly limited compared with other post-translational modifications and S-acylation in other organisms. However, it is becoming increasingly clear that S-acylation can act as more than just a simple membrane anchor: it can also act as a regulatory mechanism in signalling pathways in plants. S-acylation is, therefore, an ideal mechanism for regulating protein function at membranes. This review discusses our current knowledge of S-acylated proteins in plants, the interaction of different lipid modifications, and the general effects of S-acylation on cellular function.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| | - Piers A Hemsley
- Division of Plant Sciences, University of Dundee, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, uk Cell and molecular sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, K
| |
Collapse
|
94
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
95
|
Tian H, Lu JY, Shao C, Huffman KE, Carstens RM, Larsen JE, Girard L, Liu H, Rodriguez-Canales J, Frenkel EP, Wistuba II, Minna JD, Hofmann SL. Systematic siRNA Screen Unmasks NSCLC Growth Dependence by Palmitoyltransferase DHHC5. Mol Cancer Res 2015; 13:784-94. [PMID: 25573953 DOI: 10.1158/1541-7786.mcr-14-0608] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Protein S-palmitoylation is a widespread and dynamic posttranslational modification that regulates protein-membrane interactions, protein-protein interactions, and protein stability. A large family of palmitoyl acyl transferases, termed the DHHC family due to the presence of a common catalytic motif, catalyzes S-palmitoylation; the role of these enzymes in cancer is largely unexplored. In this study, an RNAi-based screen targeting all 23 members of the DHHC family was conducted to examine the effects on the growth in non-small cell lung cancer (NSCLC). Interestingly, siRNAs directed against DHHC5 broadly inhibited the growth of multiple NSCLC lines but not normal human bronchial epithelial cell (HBEC) lines. Silencing of DHHC5 by lentivirus-mediated expression of DHHC5 shRNAs dramatically reduced in vitro cell proliferation, colony formation, and cell invasion in a subset of cell lines that were examined in further detail. The phenotypes were restored by transfection of a wild-type DHHC5 plasmid but not by a plasmid expressing a catalytically inactive DHHC5. Tumor xenograft formation was severely inhibited by DHHC5 knockdown and rescued by DHHC5 expression, using both a conventional and tetracycline-inducible shRNA. These data indicate that DHHC5 has oncogenic capacity and contributes to tumor formation in NSCLC, thus representing a potential novel therapeutic target. IMPLICATIONS Inhibitors of DHHC5 enzyme activity may inhibit non-small cell lung cancer growth.
Collapse
Affiliation(s)
- Hui Tian
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jui-Yun Lu
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chunli Shao
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth E Huffman
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryan M Carstens
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jill E Larsen
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Liu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Eugene P Frenkel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandra L Hofmann
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
96
|
Mechanistic insights into the inhibitory effects of palmitoylation on cytosolic thioredoxin reductase and thioredoxin. Biochimie 2015; 110:25-35. [PMID: 25576832 DOI: 10.1016/j.biochi.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/29/2014] [Indexed: 11/20/2022]
Abstract
Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect the TrxR1 active site selenol/thiol group(s) from palmitoylation. Our data suggest that Se/S-palmitoylation acts as an important modulator of TrxR1/hTrx1 activities, representing a novel potential mechanism that underlies overnutrition-induced events.
Collapse
|
97
|
Lemonidis K, Gorleku OA, Sanchez-Perez MC, Grefen C, Chamberlain LH. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. Mol Biol Cell 2014; 25:3870-83. [PMID: 25253725 PMCID: PMC4244197 DOI: 10.1091/mbc.e14-06-1169] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/05/2014] [Accepted: 09/16/2014] [Indexed: 02/01/2023] Open
Abstract
S-acylation, the attachment of fatty acids onto cysteine residues, regulates protein trafficking and function and is mediated by a family of zDHHC enzymes. The S-acylation of peripheral membrane proteins has been proposed to occur at the Golgi, catalyzed by an S-acylation machinery that displays little substrate specificity. To advance understanding of how S-acylation of peripheral membrane proteins is handled by Golgi zDHHC enzymes, we investigated interactions between a subset of four Golgi zDHHC enzymes and two S-acylated proteins-synaptosomal-associated protein 25 (SNAP25) and cysteine-string protein (CSP). Our results uncover major differences in substrate recognition and S-acylation by these zDHHC enzymes. The ankyrin-repeat domains of zDHHC17 and zDHHC13 mediated strong and selective interactions with SNAP25/CSP, whereas binding of zDHHC3 and zDHHC7 to these proteins was barely detectable. Despite this, zDHHC3/zDHHC7 could S-acylate SNAP25/CSP more efficiently than zDHHC17, whereas zDHHC13 lacked S-acylation activity toward these proteins. Overall the results of this study support a model in which dynamic intracellular localization of peripheral membrane proteins is achieved by highly selective recruitment by a subset of zDHHC enzymes at the Golgi, combined with highly efficient S-acylation by other Golgi zDHHC enzymes.
Collapse
Affiliation(s)
- Kimon Lemonidis
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Oforiwa A Gorleku
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Maria C Sanchez-Perez
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | | | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| |
Collapse
|
98
|
Edmonds MJ, Morgan A. A systematic analysis of protein palmitoylation in Caenorhabditis elegans. BMC Genomics 2014; 15:841. [PMID: 25277130 PMCID: PMC4192757 DOI: 10.1186/1471-2164-15-841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans. RESULTS Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms. CONCLUSIONS This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.
Collapse
Affiliation(s)
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St,, Liverpool L69 3BX, UK.
| |
Collapse
|
99
|
Merino MC, Zamponi N, Vranych CV, Touz MC, Rópolo AS. Identification of Giardia lamblia DHHC proteins and the role of protein S-palmitoylation in the encystation process. PLoS Negl Trop Dis 2014; 8:e2997. [PMID: 25058047 PMCID: PMC4109852 DOI: 10.1371/journal.pntd.0002997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/23/2014] [Indexed: 12/17/2022] Open
Abstract
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation. Giardiasis is a major cause of non-viral/non-bacterial diarrheal disease worldwide and has been included within the WHO Neglected Disease Initiative since 2004. Infection begins with the ingestion of Giardia lamblia in cyst form, which, after exposure to gastric acid in the host stomach and proteases in the duodenum, gives rise to trophozoites. The inverse process is called encystation and begins when the trophozoites migrate to the lower part of the small intestine where they receive signals that trigger synthesis of the components of the cyst wall. The cyst form enables the parasite to survive in the environment, infect a new host and evade the immune response. In this work, we explored the role of protein S-palmitoylation, a unique reversible post-translational modification, during Giardia encystation, because de novo generation of endomembrane compartments, protein sorting and vesicle fusion occur in this process. Our findings may contribute to the design of therapeutic agents against this important human pathogen.
Collapse
Affiliation(s)
- María C. Merino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia V. Vranych
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
100
|
Chavda B, Arnott JA, Planey SL. Targeting protein palmitoylation: selective inhibitors and implications in disease. Expert Opin Drug Discov 2014; 9:1005-19. [DOI: 10.1517/17460441.2014.933802] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Burzin Chavda
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| | - John A Arnott
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| | - Sonia Lobo Planey
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| |
Collapse
|