51
|
An image-based genetic assay identifies genes in T1D susceptibility loci controlling cellular antiviral immunity in mouse. PLoS One 2014; 9:e108777. [PMID: 25268627 PMCID: PMC4182575 DOI: 10.1371/journal.pone.0108777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-γ) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-β. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines.
Collapse
|
52
|
Zicca E, Quirino A, Marascio N, Nucara S, Fabiani F, Trapasso F, Perrotti N, Strazzulla A, Torti C, Liberto MC, Focà A. Interleukin 27 polymorphisms in HCV RNA positive patients: is there an impact on response to interferon therapy? BMC Infect Dis 2014; 14 Suppl 5:S5. [PMID: 25236666 PMCID: PMC4160899 DOI: 10.1186/1471-2334-14-s5-s5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Interleukin 27 (IL-27) has pleiotropic properties that can either limit or enhance immune responses. Recent studies revealed that single nucleotide polymorphisms (SNPs) of the IL-27 promoter region modulate the development of infectious diseases and individual's susceptibility to therapeutic response. Little is known about the relationship between IL-27 single nucleotide polymorphisms and therapy response in patients infected by hepatitis C virus (HCV). In this study we have investigated the potential role of SNPs in the promoter region of IL27 p28 gene (alleles rs153109) on the outcome of HCV infected patients. Methods rs153109, corresponding to position c.-964A>G of the IL-27 locus, was amplified from genomic DNA extracted from 15 patients with chronic hepatitis C stratified by sustained viral response (SVR), relapser and non-responder, after treatment with peginterferon-α (PegIFN- α) combined with ribavirin (RBV). Amplification products were studied by direct sequencing. Results This method has been applied in a preliminary study on patients with chronic hepatitis C to provide information for a standardized assay useful to genotyping of rs153109 SNPs of IL-27p28. The genotype distribution of the c.-964 A>G polymorphism was more present in patients who did not achieve a SVR. By contrast, the genotype G/G was absent in non-responder and relapser patients. Moreover, the analysis of allelic distribution of rs153109 highlighted a predominance of allele A in all genotypes in spite of allele G. Conclusions Our work provides preliminary information for a standardized method potentially useful for genotyping rs153109, and suggests its utility as a candidate approach to evaluate IL-27 p28 polymorphisms as additional clinical predictors of response to therapies in HCV infected patients.
Collapse
|
53
|
Liu FDM, Kenngott EE, Schröter MF, Kühl A, Jennrich S, Watzlawick R, Hoffmann U, Wolff T, Norley S, Scheffold A, Stumhofer JS, Saris CJM, Schwab JM, Hunter CA, Debes GF, Hamann A. Timed action of IL-27 protects from immunopathology while preserving defense in influenza. PLoS Pathog 2014; 10:e1004110. [PMID: 24809349 PMCID: PMC4014457 DOI: 10.1371/journal.ppat.1004110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 03/26/2014] [Indexed: 12/20/2022] Open
Abstract
Infection with influenza virus can result in massive pulmonary infiltration and potentially fatal immunopathology. Understanding the endogenous mechanisms that control immunopathology could provide a key to novel adjunct therapies for this disease. Here we show that the cytokine IL-27 plays a crucial role in protection from exaggerated inflammation during influenza virus infection. Using Il-27ra−/− mice, IL-27 was found to limit immunopathology, neutrophil accumulation, and dampened TH1 or TH17 responses via IL-10–dependent and -independent pathways. Accordingly, the absence of IL-27 signals resulted in a more severe disease course and in diminished survival without impacting viral loads. Consistent with the delayed expression of endogenous Il-27p28 during influenza, systemic treatment with recombinant IL-27 starting at the peak of virus load resulted in a major amelioration of lung pathology, strongly reduced leukocyte infiltration and improved survival without affecting viral clearance. In contrast, early application of IL-27 impaired virus clearance and worsened disease. These findings demonstrate the importance of IL-27 for the physiological control of immunopathology and the potential value of well-timed IL-27 application to treat life-threatening inflammation during lung infection. Annual epidemics of influenza result in 3 to 5 million cases of severe illness and approximately 300,000 deaths around the world. Although most patients infected with normal circulating influenza A viruses recover from the illness, complications arise during infections with highly pathogenic strains of the virus, resulting in increased mortality associated with severe immunopathology and acute respiratory distress. Previous studies suggested a major contribution of the vigorous immune response to lung damage. How the immune system constrains the negative impact of inflammation might therefore be of significant importance for future therapies. Our study in a mouse model of influenza shows that the cytokine IL-27 plays a crucial role in survival by protecting against lung damage. Its actions include regulation of innate (neutrophil influx) and adaptive (inflammatory cytokine production of T cells) arms of immunity during the acute respiratory infection. The data also suggest a therapeutic potential of IL-27, as mice treated with recombinant cytokine at later stages of infection exhibited decreased immunopathology and showed improved survival. The findings uncover an important role of IL-27 in limiting the collateral damages of anti-viral immunity and provide initial evidence that these mechanisms might be exploited for the management of severe immunopathology after infection.
Collapse
Affiliation(s)
- Francesca Diane M. Liu
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Elisabeth E. Kenngott
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Micha F. Schröter
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Kühl
- Research Center ImmunoSciences (RCIS), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Silke Jennrich
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ralf Watzlawick
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Hoffmann
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Alexander Scheffold
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jason S. Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Christiaan J. M. Saris
- Department of Inflammation Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Jan M. Schwab
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gudrun F. Debes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum and Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
54
|
Cao Y, Zhang R, Zhang W, Zhu C, Yu Y, Song Y, Wang Q, Bai L, Liu Y, Wu K, Wu J. IL-27, a cytokine, and IFN-λ1, a type III IFN, are coordinated to regulate virus replication through type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:691-703. [PMID: 24337382 DOI: 10.4049/jimmunol.1300252] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-27, a member of the IL-12 family, plays a critical role in the control of innate and adaptive immune responses. IFN-λ1, a member of the type III IFN family, shows antiviral abilities. In this study, we investigated the effects of IL-27 and IFN-λ1 on the replication of hepatitis B virus (HBV), a major pathogen associated with a high risk for cirrhosis, liver failure, and hepatocellular carcinoma. We revealed that HBV infection activates IL-27 expression and IFN-λ1 production and demonstrated that viral-activated IL-27 and IFN-λ1 are coordinated to inhibit HBV replication. Initially, HBV infection upregulates IL-27 expression, which, in turn, stimulates IFN-λ1 production through regulating ERK1/2 signaling and by enhancing NF-κB nuclear translocation to bind to the IFN-λ1 promoter. Moreover, IL-27-activated IFN-λ1 upregulates IFN-λ1 receptor (IL-28R1 and IL-10Rβ) activity, resulting in the activation of the STAT1/2 pathway, which, in turn, induces the expression of IFN-stimulated genes, including IFN-inducible dsRNA-activated protein kinase, oligoadenylate synthetase 1, and IFN-induced GTP-binding protein 1 and, finally, inhibits HBV protein expression and viral capsid-associated DNA replication. More interestingly, we also revealed that type I IFN (IFN-α) is also involved in the downregulation of HBV replication mediated by IL-27. Thus, we identified a previously unknown mechanism by which IL-27 and IFN-λ1 are coordinated to regulate virus replication through type I IFN.
Collapse
MESH Headings
- Cell Line, Tumor
- Dendritic Cells/metabolism
- Down-Regulation/genetics
- Female
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/metabolism
- Hepatitis B, Chronic/virology
- Hepatocytes/metabolism
- Humans
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interferons
- Interleukins/genetics
- Interleukins/metabolism
- MAP Kinase Signaling System/genetics
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Receptors, Interferon
- Receptors, Interleukin-10/genetics
- Receptors, Interleukin-10/metabolism
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- STAT2 Transcription Factor/genetics
- STAT2 Transcription Factor/metabolism
- Up-Regulation/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Yanhua Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Swaminathan S, Dai L, Lane HC, Imamichi T. Evaluating the potential of IL-27 as a novel therapeutic agent in HIV-1 infection. Cytokine Growth Factor Rev 2013; 24:571-7. [PMID: 23962745 PMCID: PMC3851681 DOI: 10.1016/j.cytogfr.2013.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
Abstract
Interleukin 27 (IL-27) is an immunomodulatory cytokine with important roles in both the innate and adaptive immune systems. In the last five years, the addition of exogenous IL-27 to primary cell cultures has been demonstrated to decrease HIV-1 replication in a number of cell types including peripheral blood mononuclear cells (PBMCs), CD4+ T cells, macrophages and dendritic cells. These in vitro findings suggest that IL-27 may have therapeutic value in the setting of HIV-1 infection. In this review, we describe the current knowledge of the biology of IL-27, its effects primarily on HIV-1 replication but also in other viral infections and explore its potential role as a therapeutic cytokine for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Lue Dai
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| |
Collapse
|
56
|
Jin S, Zou X. Construction of the influenza A virus infection-induced cell-specific inflammatory regulatory network based on mutual information and optimization. BMC SYSTEMS BIOLOGY 2013; 7:105. [PMID: 24138989 PMCID: PMC4016583 DOI: 10.1186/1752-0509-7-105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 09/20/2013] [Indexed: 12/21/2022]
Abstract
Background Influenza A virus (IAV) infection-induced inflammatory regulatory networks (IRNs) are extremely complex and dynamic. Specific biological experiments for investigating the interactions between individual inflammatory factors cannot provide a detailed and insightful multidimensional view of IRNs. Recently, data from high-throughput technologies have permitted system-level analyses. The construction of large and cell-specific IRNs from high-throughput data is essential to understanding the pathogenesis of IAV infection. Results In this study, we proposed a computational method, which combines nonlinear ordinary differential equation (ODE)-based optimization with mutual information, to construct a cell-specific optimized IRN during IAV infection by integrating gene expression data with a prior knowledge of network topology. Moreover, we used the average relative error and sensitivity analysis to evaluate the effectiveness of our proposed approach. Furthermore, from the optimized IRN, we confirmed 45 interactions between proteins in biological experiments and identified 37 new regulatory interactions and 8 false positive interactions, including the following interactions: IL1β regulates TLR3, TLR3 regulates IFN-β and TNF regulates IL6. Most of these regulatory interactions are statistically significant by Z-statistic. The functional annotations of the optimized IRN demonstrated clearly that the defense response, immune response, response to wounding and regulation of cytokine production are the pivotal processes of IAV-induced inflammatory response. The pathway analysis results from the Kyoto Encyclopaedia of Genes and Genomes (KEGG) showed that 8 pathways are enriched significantly. The 5 pathways were validated by experiments, and 3 other pathways, including the intestinal immune network for IgA production, the cytosolic DNA-sensing pathway and the allograft rejection pathway, are the predicted novel pathways involved in the inflammatory response. Conclusions Integration of knowledge-driven and data-driven methods allows us to construct an effective IRN during IAV infection. Based on the constructed network, we have identified new interactions among inflammatory factors and biological pathways. These findings provide new insight into our understanding of the molecular mechanisms in the inflammatory network in response to IAV infection. Further characterization and experimental validation of the interaction mechanisms identified from this study may lead to a novel therapeutic strategy for the control of infections and inflammatory responses.
Collapse
Affiliation(s)
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
57
|
Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cell-conditioned medium. Mediators Inflamm 2013; 2013:264260. [PMID: 24191131 PMCID: PMC3804401 DOI: 10.1155/2013/264260] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that mesenchymal stem cells (MSCs) play anti-inflammatory roles during innate immune responses. However, little is known about the effect of MSCs or their secretions on the ligand response of Toll-like receptor (TLR) 7 and TLR8, receptors that recognize viral single-stranded RNA (ssRNA). Macrophages play a critical role in the innate immune response to ssRNA virus infection; therefore, we investigated the effect of MSC-conditioned medium on cytokine expression in macrophages following stimulation with TLR7/8 ligands. After stimulation with TLR7/8 ligand, bone marrow-derived macrophages cultured with MSCs or in MSC-conditioned medium expressed lower levels of tumor necrosis factor (TNF) α and interleukin (IL) 6 and higher levels of IL-10 compared to macrophages cultured without MSCs or in control medium, respectively. The modulations of cytokine expression were associated with prostaglandin E2 (PGE2) secreted by the MSCs. PGE2 enhanced extracellular signal-related kinase (ERK) signaling and suppressed nuclear factor-κB (NF-κB) signaling. Enhanced ERK signaling contributed to enhanced IL-10 production, and suppression of NF-κB signaling contributed to the low production of TNF-α. Collectively, these results indicate that MSCs and MSC-conditioned medium modulate the cytokine expression profile in macrophages following TLR7/8-mediated stimulation, which suggests that MSCs play an immunomodulatory role during ssRNA virus infection.
Collapse
|
58
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
59
|
Soluble interleukin-6 receptor-mediated innate immune response to DNA and RNA viruses. J Virol 2013; 87:11244-54. [PMID: 23946454 DOI: 10.1128/jvi.01248-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interleukin-6 (IL-6) receptor, which exists as membrane-bound and soluble forms, plays critical roles in the immune response. The soluble IL-6 receptor (sIL6R) has been identified as a potential therapeutic target for preventing coronary heart disease. However, little is known about the role of this receptor during viral infection. In this study, we show that sIL6R, but not IL-6, is induced by viral infection via the cyclooxygenase-2 pathway. Interestingly, sIL6R, but not IL-6, exhibited extensive antiviral activity against DNA and RNA viruses, including hepatitis B virus, influenza virus, human enterovirus 71, and vesicular stomatitis virus. No synergistic effects on antiviral action were observed by combining sIL6R and IL-6. Furthermore, sIL6R mediated antiviral action via the p28 pathway and induced alpha interferon (IFN-α) by promoting the nuclear translocation of IFN regulatory factor 3 (IRF3) and NF-κB, which led to the activation of downstream IFN effectors, including 2',5'-oligoadenylate synthetase (OAS), double-stranded RNA-dependent protein kinase (PKR), and myxovirus resistance protein (Mx). Thus, our results demonstrate that sIL6R, but not IL-6, plays an important role in the host antiviral response.
Collapse
|
60
|
Abstract
A growing body of evidence suggests an essential role of the heterodimeric cytokine, IL-27, for regulating immunity. IL-27 is composed of two subunits (p28 and EBI3) and is classified as a member of the IL-12 family of cytokines. APCs have been recognized as a major cellular source of IL-27 following activation with microbial products or IFNs (types I and II). In this review, we describe the current knowledge of the implications of IL-27 during the pathogenesis of infectious and autoimmune diseases. Experimental studies have used genetically targeted IL-27RA-/- mice, EBI3-/- mice, and p28-/- mice or involved study designs with administration of bioengineered IL-27/IL-27RA homologs. Whereas many reports have described that IL-27 suppresses inflammation, we also review the current literature, suggesting promotion of inflammation by IL-27 in some settings. Recent advances have also been made in understanding the cross-talk of cleavage products of the complement system with IL-27-mediated immune responses. Additional data on IL-27 have been obtained recently by observational studies in human patients with acute and chronic inflammatory diseases. Collectively, the findings from the past decade identify IL-27 as a critical immunoregulatory cytokine, especially for T cells, whereas some controversy is fueled by results challenging the view of IL-27 as a classical silencer of inflammation.
Collapse
Affiliation(s)
- Markus Bosmann
- 1.University of Michigan Medical School, 1301 Catherine Rd., Ann Arbor, MI 48109-5602, USA.
| | | |
Collapse
|
61
|
IL-27 is elevated in acute lung injury and mediates inflammation. J Clin Immunol 2013; 33:1257-68. [PMID: 23842867 PMCID: PMC7102048 DOI: 10.1007/s10875-013-9923-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/02/2013] [Indexed: 12/02/2022]
Abstract
Cytokines play a critical role in the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Here we investigated whether IL-27 was elevated in patients with ALI/ARDS and its potential clinical significance. Bronchoalveolar lavage (BAL) and serum samples were obtained from 58 ALI/ARDS patients, and 25 control healthy volunteers. IL-27 and other inflammatory mediators were measured in BAL and serum by ELISA. Besides, a mouse model of cecal ligation and puncture (CLP)-induced lung inflammation/injury was established, and serum, BAL fluid and tissues were collected for analyses in the presence or absence of IL-27 neutralizing antibodies. BAL IL-27 was found to be significantly higher in patients with ALI/ARDS than that in controls, particularly of pulmonary origin; serum IL-27 was also significantly higher. Increased IL-27 was associated with markers of inflammation, and correlated with disease severity of patients in ALI/ARDS. In a mouse model of CLP-induced lung inflammation/injury, elevated IL-27 levels were observed in the lung, serum, and BAL fluids. IL-27 neutralizing antibody treatment reduced pulmonary inflammation and lung injury and improved mouse survival in response to CLP. Therefore, IL-27 is a critical cytokine in ALI/ARDS and inhibition of IL-27 may open a promising approach for ALI/ARDS patients.
Collapse
|
62
|
Dong S, Zhang X, He Y, Xu F, Li D, Xu W, Wang H, Yin Y, Cao J. Synergy of IL-27 and TNF-α in regulating CXCL10 expression in lung fibroblasts. Am J Respir Cell Mol Biol 2013; 48:518-30. [PMID: 23333920 DOI: 10.1165/rcmb.2012-0340oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-27 is involved in inflammatory reactions. CXCL10 is an important chemokine contributing to airway inflammatory disease. In this study, we investigated whether IL-27 modulated the synthesis of CXCL10 in primary human lung fibroblasts (HLFs). HLFs were activated by IL-27 alone, or in combination with other cytokines. CXCL10 synthesis was measured by real-time PCR and ELISA. An examination of transcriptional regulation was performed via the transient transfection of promoter constructs, whereas mRNA stability was assessed by actinomycin D chase and real-time PCR. The underlying signaling pathways were studied by Western blotting and intracellular staining, using flow cytometry. Our results demonstrated that IL-27 induced and synergized with TNF-α to up-regulate CXCL10 mRNA and protein concentrations in a steroid-insensitive manner. This synergistic CXCL10 production was dependent on the transcriptional regulation of CXCL10 gene promoter activity and the enhanced stability of CXCL10 mRNA because of IL-27 and TNF-α, and this synergism was regulated by the activation of p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-OH kinase (PI3K)-Akt dominantly, and in small part via NF-κB. Interestingly, IL-27 promoted the basal and enhanced TNF-α-induced phosphorylation of p38 MAPK and Akt, but not IκBα. Moreover, enhanced CXCL10 mRNA stability occurred via a p38 MAPK-dependent pathway. Finally, clinical analysis showed that IL-27 was detected in the bronchoalveolar lavage of patients with asthma, chronic obstructive pulmonary disease (COPD), and pulmonary tuberculosis (PTB), and increased IL-27 concentrations were correlated with increased CXCL10 concentrations in patients with COPD and PTB. Our findings suggest that IL-27 has the potential to amplify airway inflammation via the induction of CXCL10 from HLFs, in combination with TNF-α.
Collapse
Affiliation(s)
- Shanshan Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Yin J, Liu S, Zhu Y. An overview of the highly pathogenic H5N1 influenza virus. Virol Sin 2013; 28:3-15. [PMID: 23325419 PMCID: PMC7090813 DOI: 10.1007/s12250-013-3294-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/31/2012] [Indexed: 11/17/2022] Open
Abstract
Since the first human case of H5N1 avian influenza virus infection was reported in 1997, this highly pathogenic virus has infected hundreds of people around the world and resulted in many deaths. The ability of H5N1 to cross species boundaries, and the presence of polymorphisms that enhance virulence, present challenges to developing clear strategies to prevent the pandemic spread of this highly pathogenic avian influenza (HPAI) virus. This review summarizes the current understanding of, and recent research on, the avian influenza H5N1 virus, including transmission, virulence, pathogenesis, clinical characteristics, treatment and prevention.
Collapse
Affiliation(s)
- Jingchuan Yin
- The State Key laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
64
|
Shin MS, Lee JS, Lee N, Lee WW, Kim SH, Kang I. Maintenance of CMV-specific CD8+ T cell responses and the relationship of IL-27 to IFN-γ levels with aging. Cytokine 2012; 61:485-90. [PMID: 23280240 DOI: 10.1016/j.cyto.2012.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022]
Abstract
We investigated whether healthy young (age ≤ 40) and elderly (age ≥ 65) people infected with cytomegalovirus (CMV) had similar levels of CD8(+) T cell cytokine production and proliferation in response to an immunodominant CMV pp65 peptide pool given the role of CD8(+) T cells in controlling viral infection and the association of CMV with immunosenescence. Plus, we determined the effects of aging and CMV-infectious status on plasma levels of IL-27, an innate immune cytokine with pro- and anti-inflammatory properties, as well as on its relationship to IFN-γ in that IL-27 can promote the production of IFN-γ. The results of our study show that young and elderly people had similar levels of CD8(+) T cell proliferation, and IFN-γ and TNF-α production in response to CMV pp65 peptides. Plasma levels of IL-27 were similar between the two groups although CMV-infected young and elderly people had a trend toward increased levels of IL-27. Regardless of aging and CMV-infectious status, plasma levels of IL-27 correlated highly with plasma levels of IFN-γ. These findings suggest the maintenance of CMV pp65-specific CD8(+) T cell proliferation and cytokine production with aging as well as the sustaining of circulatory IL-27 levels and its biological link to IFN-γ in young and elderly people irrespective of CMV infection.
Collapse
Affiliation(s)
- Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|