51
|
Mores KL, Cummins BR, Cassell RJ, van Rijn RM. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front Pharmacol 2019; 10:407. [PMID: 31057409 PMCID: PMC6478756 DOI: 10.3389/fphar.2019.00407] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6′GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States
| | - Benjamin R Cummins
- Department of Chemistry, College of Science, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| |
Collapse
|
52
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
53
|
Fujita W, Yokote M, Gomes I, Gupta A, Ueda H, Devi LA. Regulation of an Opioid Receptor Chaperone Protein, RTP4, by Morphine. Mol Pharmacol 2019; 95:11-19. [PMID: 30348895 PMCID: PMC6277927 DOI: 10.1124/mol.118.112987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022] Open
Abstract
Signaling by classic analgesics, such as morphine, is governed primarily by the relative abundance of opioid receptors at the cell surface, and this is regulated by receptor delivery to, and retrieval from, the plasma membrane. Although retrieval mechanisms, such as receptor endocytosis, have been extensively investigated, fewer studies have explored mechanisms of receptor maturation and delivery to the plasma membrane. A previous study implicated receptor transporter proteins (RTPs) in the latter process. Since not much is known about regulation of RTP expression, we initiated studies examining the effect of chronic morphine administration on the levels of RTPs in the brain. Among the four RTPs, we detected selective and region-specific changes in RTP4 expression; RTP4 mRNA is significantly upregulated in the hypothalamus compared with other brain regions. We examined whether increased RTP4 expression impacted receptor protein levels and found a significant increase in the abundance of mu opioid receptors (MOPrs) but not other related G protein-coupled receptors (GPCRs, such as delta opioid, CB1 cannabinoid, or D2 dopamine receptors) in hypothalamic membranes from animals chronically treated with morphine. Next, we used a cell culture system to show that RTP4 expression is necessary and sufficient for regulating opioid receptor abundance at the cell surface. Interestingly, selective MOPr-mediated increase in RTP4 expression leads to increases in cell surface levels of MOPr-delta opioid receptor heteromers, and this increase is significantly attenuated by RTP4 small interfering RNA. Together, these results suggest that RTP4 expression is regulated by chronic morphine administration, and this, in turn, regulates opioid receptor cell surface levels and function.
Collapse
Affiliation(s)
- Wakako Fujita
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Mini Yokote
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Ivone Gomes
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Achla Gupta
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Hiroshi Ueda
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| | - Lakshmi A Devi
- Departments of Frontier Life Science (W.F.) and Therapeutic Innovation and Pharmacology (M.Y., H.U.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., A.G., L.A.D.)
| |
Collapse
|
54
|
Tosh D, Ciancetta A, Mannes P, Warnick E, Janowsky A, Eshleman AJ, Gizewski E, Brust TF, Bohn LM, Auchampach JA, Gao ZG, Jacobson KA. Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS OMEGA 2018; 3:12658-12678. [PMID: 30411015 PMCID: PMC6210068 DOI: 10.1021/acsomega.8b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
While screening off-target effects of rigid (N)-methanocarba-adenosine 5'-methylamides as A3 adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl 24 and propyl 30), which retained TSPO interaction (μM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 28 and 29, K i ≈ 40 nM), revealed μ-OR and DOR binding, and reduced AR affinity. Molecular docking and dynamics simulations located a putative KOR binding mode consistent with the observed affinities, placing C7 in a hydrophobic region. 3-Deaza modification permitted TSPO but not OR binding, and 1-deaza was permissive to both; ribose-restored analogues were inactive at both. Thus, we have repurposed a known AR nucleoside scaffold for OR antagonism, with a detailed hypothesis for KOR recognition.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Antonella Ciancetta
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Philip Mannes
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Eugene Warnick
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Aaron Janowsky
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Amy J. Eshleman
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Elizabeth Gizewski
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Tarsis F. Brust
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - Laura M. Bohn
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
55
|
Grim TW, Jinhong Park S, Schmid CL, Laprairie RB, Cameron M, Bohn LM. The effect of quinine in two bottle choice procedures in C57BL6 mice: Opioid preference, somatic withdrawal, and pharmacokinetic outcomes. Drug Alcohol Depend 2018; 191:195-202. [PMID: 30138791 PMCID: PMC6317844 DOI: 10.1016/j.drugalcdep.2018.05.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 10/28/2022]
Abstract
Previous reports assessing morphine effects in two bottle choice (TBC) paradigms often use taste adulterants such as sweeteners (e.g., saccharin) and/or bitterants (e.g., quinine) to demonstrate morphine preference with C57BL6 mice. The effect of these additional components on the morphine preference of C57BL6 remains poorly understood. Thus, we sought to elucidate the interrelationship of morphine and quinine in the TBC paradigm. As expected, when morphine was included in the opposite bottle from quinine, a preference for the morphine solution was observed. Conversely, when quinine was included in each bottle, or when fentanyl without quinine was used, no preference was observed. All opioid-drinking mice displayed withdrawal signs, and morphine was detectable in plasma and brain. When these results were compared to previous results via conversion to quinine preference scores, quinine was revealed to determine largely the measured morphine preference. Thus, quinine is effective to drive morphine consumption and engender dependence but may confound the ability to measure oral abuse liability of morphine. Together, these results suggest future TBC procedures should consider the effect of quinine upon measured preference for compounds in the opposite bottle, and that excessively high quinine concentrations appear to influence preference more so than the opposite solute when using C57BL6 mice. Alternative conditions to assess oral abuse liability may be necessary to complement and confirm results from TBC experiments utilizing morphine or other opioids.
Collapse
Affiliation(s)
- Travis W Grim
- The Scripps Research Institute, 110 Scripps Way, Jupiter, FL, 33458, USA.
| | | | - Cullen L. Schmid
- The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458 USA
| | | | - Michael Cameron
- The Scripps Research Institute, 110 Scripps Way, Jupiter, FL, 33458, USA.
| | - Laura M. Bohn
- The Scripps Research Institute, 110 Scripps Way, Jupiter, FL 33458 USA
| |
Collapse
|
56
|
Ho JH, Stahl EL, Schmid CL, Scarry SM, Aubé J, Bohn LM. G protein signaling-biased agonism at the κ-opioid receptor is maintained in striatal neurons. Sci Signal 2018; 11:11/542/eaar4309. [PMID: 30087177 DOI: 10.1126/scisignal.aar4309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biased agonists of G protein-coupled receptors may present a means to refine receptor signaling in a way that separates side effects from therapeutic properties. Several studies have shown that agonists that activate the κ-opioid receptor (KOR) in a manner that favors G protein coupling over β-arrestin2 recruitment in cell culture may represent a means to treat pain and itch while avoiding sedation and dysphoria. Although it is attractive to speculate that the bias between G protein signaling and β-arrestin2 recruitment is the reason for these divergent behaviors, little evidence has emerged to show that these signaling pathways diverge in the neuronal environment. We further explored the influence of cellular context on biased agonism at KOR ligand-directed signaling toward G protein pathways over β-arrestin-dependent pathways and found that this bias persists in striatal neurons. These findings advance our understanding of how a G protein-biased agonist signal differs between cell lines and primary neurons, demonstrate that measuring [35S]GTPγS binding and the regulation of adenylyl cyclase activity are not necessarily orthogonal assays in cell lines, and emphasize the contributions of the environment to assessing biased agonism.
Collapse
Affiliation(s)
- Jo-Hao Ho
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cullen L Schmid
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sarah M Scarry
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Aubé
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
57
|
Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem 2018; 61:9841-9878. [PMID: 29939744 DOI: 10.1021/acs.jmedchem.8b00435] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) signal through both G-protein-dependent and G-protein-independent pathways, and β-arrestin recruitment is the most recognized one of the latter. Biased ligands selective for either pathway are expected to regulate biological functions of GPCRs in a more precise way, therefore providing new drug molecules with superior efficacy and/or reduced side effects. During the past decade, biased ligands have been discovered and developed for many GPCRs, such as the μ opioid receptor, the angiotensin II receptor type 1, the dopamine D2 receptor, and many others. In this Perspective, recent advances in this field are reviewed by discussing the structure-functional selectivity relationships (SFSRs) of GPCR biased ligands and the therapeutic potential of these molecules. Further understanding of the biological functions associated with each signaling pathway and structural basis for biased signaling will facilitate future drug design in this field.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - Wenzhong Yan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy , Medical College of Wisconsin , 8701 W. Watertown Plank Road , Milwaukee , Wisconsin 53226 , United States
| | - Jianjun Cheng
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| |
Collapse
|
58
|
A single, extinction-based treatment with a kappa opioid receptor agonist elicits a long-term reduction in cocaine relapse. Neuropsychopharmacology 2018; 43:1492-1497. [PMID: 29472645 PMCID: PMC5983548 DOI: 10.1038/s41386-017-0006-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Abstract
Kappa opioid receptor (KOR) agonists have known anti-addiction properties and can reduce drug seeking. Their potential for clinical use has largely been daunted by their aversive properties mediated through p38 MAPK signaling. Here we examined the therapeutic potential of the KOR agonist U50,488 (U50) to reduce cocaine seeking in a self-administration model. Following cocaine self-administration and 7 days of forced home-cage abstinence, rats were administered a single dose of U50 (5 mg/kg, i.p.) 30 min prior to the first extinction training session, wherein cocaine and the discrete cocaine-paired cues were no longer available. U50 reduced cocaine seeking on this first extinction session, but did not alter extinction training over subsequent days. 2 weeks after U50 treatment, rats underwent a test of cue-induced reinstatement, and rats that had received U50 reinstated less than controls. Central inhibition of p38 MAPK at the time of U50 administration prevented its long-term therapeutic effect on reinstatement, but not its acute reduction in drug seeking on extinction day 1. The long-term therapeutic effect of U50 required operant extinction during U50 exposure, extended to cocaine-primed reinstatement, and was not mimicked by another aversive drug, lithium chloride (LiCl). These data suggest U50 elicits its long-term anti-relapse effects through a KOR-p38 MAPK-specific aversive counterconditioning of the operant cocaine-seeking response. A single, albeit aversive treatment that is able to reduce relapse long-term warrants further consideration of the therapeutic potential of KOR agonists in the treatment of addiction.
Collapse
|
59
|
Angiotensin II cyclic analogs as tools to investigate AT 1R biased signaling mechanisms. Biochem Pharmacol 2018; 154:104-117. [PMID: 29684376 DOI: 10.1016/j.bcp.2018.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/18/2018] [Indexed: 01/14/2023]
Abstract
G protein coupled receptors (GPCRs) produce pleiotropic effects by their capacity to engage numerous signaling pathways once activated. Functional selectivity (also called biased signaling), where specific compounds can bring GPCRs to adopt conformations that enable selective receptor coupling to distinct signaling pathways, continues to be significantly investigated. However, an important but often overlooked aspect of functional selectivity is the capability of ligands such as angiotensin II (AngII) to adopt specific conformations that may preferentially bind to selective GPCRs structures. Understanding both receptor and ligand conformation is of the utmost importance for the design of new drugs targeting GPCRs. In this study, we examined the properties of AngII cyclic analogs to impart biased agonism on the angiotensin type 1 receptor (AT1R). Positions 3 and 5 of AngII were substituted for cysteine and homocysteine residues ([Sar1Hcy3,5]AngII, [Sar1Cys3Hcy5]AngII and [Sar1Cys3,5]AngII) and the resulting analogs were evaluated for their capacity to activate the Gq/11, G12, Gi2, Gi3, Gz, ERK and β-arrestin (βarr) signaling pathways via AT1R. Interestingly, [Sar1Hcy3,5]AngII exhibited potency and full efficacy on all pathways tested with the exception of the Gq pathway. Molecular dynamic simulations showed that the energy barrier associated with the insertion of residue Phe8 of AngII within the hydrophobic core of AT1R, associated with Gq/11 activation, is increased with [Sar1Hcy3,5]AngII. These results suggest that constraining the movements of molecular determinants within a given ligand by introducing cyclic structures may lead to the generation of novel ligands providing more efficient biased agonism.
Collapse
|
60
|
Kenakin T. Is the Quest for Signaling Bias Worth the Effort? Mol Pharmacol 2018; 93:266-269. [PMID: 29348268 DOI: 10.1124/mol.117.111187] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/14/2023] Open
Abstract
The question of whether signaling bias is a viable discovery strategy for drug therapy is discussed as a value proposition. On the positive side, bias is easily identified and quantified in simple in vitro functional assays with little resource expenditure. However, there are valid pharmacological reasons why these in vitro bias numbers may not accurately translate to in vivo therapeutic systems making the expectation of direct correspondence of in vitro bias to in vivo systems a problematic process. Presently, in vitro bias is used simply as a means to identify unique molecules to be advanced to more complex therapeutic assays but from this standpoint alone, the value proposition lies far to the positive. However, pharmacological attention needs to be given to the translational gap to reduce inevitable and costly attrition in biased molecule progression.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
61
|
Nivedha AK, Tautermann CS, Bhattacharya S, Lee S, Casarosa P, Kollak I, Kiechle T, Vaidehi N. Identifying Functional Hotspot Residues for Biased Ligand Design in G-Protein-Coupled Receptors. Mol Pharmacol 2018; 93:288-296. [PMID: 29367258 PMCID: PMC5832328 DOI: 10.1124/mol.117.110395] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) mediate multiple signaling pathways in the cell, depending on the agonist that activates the receptor and multiple cellular factors. Agonists that show higher potency to specific signaling pathways over others are known as "biased agonists" and have been shown to have better therapeutic index. Although biased agonists are desirable, their design poses several challenges to date. The number of assays to identify biased agonists seems expensive and tedious. Therefore, computational methods that can reliably calculate the possible bias of various ligands ahead of experiments and provide guidance, will be both cost and time effective. In this work, using the mechanism of allosteric communication from the extracellular region to the intracellular transducer protein coupling region in GPCRs, we have developed a computational method to calculate ligand bias ahead of experiments. We have validated the method for several β-arrestin-biased agonists in β2-adrenergic receptor (β2AR), serotonin receptors 5-HT1B and 5-HT2B and for G-protein-biased agonists in the κ-opioid receptor. Using this computational method, we also performed a blind prediction followed by experimental testing and showed that the agonist carmoterol is β-arrestin-biased in β2AR. Additionally, we have identified amino acid residues in the biased agonist binding site in both β2AR and κ-opioid receptors that are involved in potentiating the ligand bias. We call these residues functional hotspots, and they can be used to derive pharmacophores to design biased agonists in GPCRs.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/metabolism
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Drug Design
- Humans
- Ligands
- Molecular Dynamics Simulation/trends
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Anita K Nivedha
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Christofer S Tautermann
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Supriyo Bhattacharya
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Sangbae Lee
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Paola Casarosa
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Ines Kollak
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Tobias Kiechle
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| | - Nagarajan Vaidehi
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, Duarte, California (A.K.N., S.B., S.L., N.V.); Departments of Medicinal Chemistry (C.S.T.) and Immunology and Respiratory Diseases Research (I.K., T.K.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany; and Corporate Department of Business Development and Licensing, C.H. Boehringer Sohn, Ingelheim, Germany (P.C.)
| |
Collapse
|
62
|
Insights from molecular dynamics simulations to exploit new trends for the development of improved opioid drugs. Neurosci Lett 2018; 700:50-55. [PMID: 29466721 DOI: 10.1016/j.neulet.2018.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023]
Abstract
Having accidental deaths from opioid overdoses almost quadrupled over the past fifteen years, there is a strong need to develop new, non-addictive medications for chronic pain to stop one of the deadliest epidemics in American history. Given their potentially fewer on-target overdosing risks and other adverse effects compared to classical opioid drugs, attention has recently shifted to opioid allosteric modulators and G protein-biased opioid agonists as likely drug candidates to prevent and/or reverse opioid overdoses. Understanding how these molecules bind and activate their receptors at an atomistic level is key to developing them into effective new therapeutics, and molecular dynamics-based strategies are contributing tremendously to this understanding.
Collapse
|
63
|
|
64
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
65
|
Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the neural systems that drive alcohol motivation and are disrupted in alcohol use disorders is of critical importance in developing novel treatments. The dynorphin and orexin/hypocretin neuropeptide systems are particularly relevant with respect to alcohol use and misuse. Both systems are strongly associated with alcohol-seeking behaviors, particularly in cases of high levels of alcohol use as seen in dependence. Furthermore, both systems also play a role in stress and anxiety, indicating that disruption of these systems may underlie long-term homeostatic dysregulation seen in alcohol use disorders. These systems are also closely interrelated with one another - dynorphin/kappa opioid receptors and orexin/hypocretin receptors are found in similar regions and hypocretin/orexin neurons also express dynorphin - suggesting that these two systems may work together in the regulation of alcohol seeking and may be mutually disrupted in alcohol use disorders. This chapter reviews studies demonstrating a role for each of these systems in motivated behavior, with a focus on their roles in regulating alcohol-seeking and self-administration behaviors. Consideration is also given to evidence indicating that these neuropeptide systems may be viable targets for the development of potential treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.,Science and Technology Policy Fellowships, American Association for the Advancement of Science, Washington, DC, USA
| | - David E Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA. .,Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA. .,Department of Veterans Affairs, Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
66
|
Lazenka ML, Moerke MJ, Townsend EA, Freeman KB, Carroll FI, Negus SS. Dissociable effects of the kappa opioid receptor agonist nalfurafine on pain/itch-stimulated and pain/itch-depressed behaviors in male rats. Psychopharmacology (Berl) 2018; 235:203-213. [PMID: 29063139 PMCID: PMC5750069 DOI: 10.1007/s00213-017-4758-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Nalfurafine is a G protein signaling-biased kappa opioid receptor (KOR) agonist approved in Japan for second-line treatment of uremic pruritus. Neither nalfurafine nor any other KOR agonist is currently approved anywhere for treatment of pain, but recent evidence suggests that G protein signaling-biased KOR agonists may have promise as candidate analgesics/antipruritics with reduced side effects compared to nonbiased or ß-arrestin-signaling-biased KOR agonists. OBJECTIVES This study compared nalfurafine effects in rats using assays of pain-stimulated and pain-depressed behavior used previously to evaluate other candidate analgesics. Nalfurafine effects were also examined in complementary assays of itch-stimulated and itch-depressed behavior. METHODS Intraperitoneal lactic acid (IP acid) and intradermal serotonin (ID 5HT) served as noxious and pruritic stimuli, respectively, in male Sprague Dawley rats to stimulate stretching (IP acid) or scratching (ID 5HT) or to depress positively reinforced operant responding in an assay of intracranial self-stimulation (ICSS; both stimuli). RESULTS Nalfurafine was equipotent to decrease IP acid-stimulated stretching and ID 5HT-stimulated scratching; however, doses of nalfurafine that decreased these pain/itch-stimulated behaviors also decreased control ICSS performance. Moreover, nalfurafine failed to alleviate either IP acid- or ID 5HT-induced depression of ICSS. CONCLUSIONS These results suggest that nalfurafine-induced decreases in pain/itch-stimulated behaviors may reflect nonselective decreases in motivated behavior rather than analgesia or antipruritus against the noxious and pruritic stimuli used here. This conclusion agrees with the absence of clinical data for nalfurafine analgesia and the weak clinical data for nalfurafine antipruritus. Nalfurafine bias for G protein signaling may not be sufficient for clinically safe and reliable analgesia or antipruritus.
Collapse
Affiliation(s)
- Matthew L Lazenka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Megan J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - E Andrew Townsend
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
67
|
Roach J, Sasano Y, Schmid CL, Zaidi S, Katritch V, Stevens RC, Bohn LM, Shenvi RA. Dynamic Strategic Bond Analysis Yields a Ten-Step Synthesis of 20-nor-Salvinorin A, a Potent κ-OR Agonist. ACS CENTRAL SCIENCE 2017; 3:1329-1336. [PMID: 29296674 PMCID: PMC5746855 DOI: 10.1021/acscentsci.7b00488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Salvinorin A (SalA) is a plant metabolite that agonizes the human kappa-opioid receptor (κ-OR) with high affinity and high selectivity over mu- and delta-opioid receptors. Its therapeutic potential has stimulated extensive semisynthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis, and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification. Finally, we describe a workflow to identify structural changes that retain molecular complexity, but reduce synthetic complexity-two related, but independent ways of looking at complexity.
Collapse
Affiliation(s)
- Jeremy
J. Roach
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yusuke Sasano
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Cullen L. Schmid
- Departments
of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Saheem Zaidi
- Departments
of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Vsevolod Katritch
- Departments
of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Departments
of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Laura M. Bohn
- Departments
of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ryan A. Shenvi
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
68
|
Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z, Morgenweck J, Cameron MD, Bannister TD, Bohn LM. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell 2017; 171:1165-1175.e13. [PMID: 29149605 DOI: 10.1016/j.cell.2017.10.035] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023]
Abstract
Biased agonism has been proposed as a means to separate desirable and adverse drug responses downstream of G protein-coupled receptor (GPCR) targets. Herein, we describe structural features of a series of mu-opioid-receptor (MOR)-selective agonists that preferentially activate receptors to couple to G proteins or to recruit βarrestin proteins. By comparing relative bias for MOR-mediated signaling in each pathway, we demonstrate a strong correlation between the respiratory suppression/antinociception therapeutic window in a series of compounds spanning a wide range of signaling bias. We find that βarrestin-biased compounds, such as fentanyl, are more likely to induce respiratory suppression at weak analgesic doses, while G protein signaling bias broadens the therapeutic window, allowing for antinociception in the absence of respiratory suppression.
Collapse
Affiliation(s)
- Cullen L Schmid
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Nicole M Kennedy
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Nicolette C Ross
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kimberly M Lovell
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Zhizhou Yue
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thomas D Bannister
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
69
|
Harland AA, Pogozheva ID, Griggs NW, Trask TJ, Traynor JR, Mosberg HI. Placement of Hydroxy Moiety on Pendant of Peptidomimetic Scaffold Modulates Mu and Kappa Opioid Receptor Efficacy. ACS Chem Neurosci 2017; 8:2549-2557. [PMID: 28796483 PMCID: PMC5691919 DOI: 10.1021/acschemneuro.7b00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
In
an effort to expand the structure–activity relationship (SAR)
studies of a series of mixed-efficacy opioid ligands, peptidomimetics
that incorporate methoxy and hydroxy groups around a benzyl or 2-methylindanyl
pendant on a tetrahydroquinoline (THQ) core of the peptidomimetics
were evaluated. Compounds containing a methoxy or hydroxy moiety in
the o- or m-positions increased
binding affinity to the kappa opioid receptor (KOR), whereas compounds
containing methoxy or hydroxy groups in the p-position
decreased KOR affinity and reduced or eliminated efficacy at the mu
opioid receptor (MOR). The results from a substituted 2-methylindanyl
series aligned with the findings from the substituted benzyl series.
Our studies culminated in the development of 8c, a mixed-efficacy
MOR agonist/KOR agonist with subnanomolar binding affinity for both
MOR and KOR.
Collapse
Affiliation(s)
- Aubrie A. Harland
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler J. Trask
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
70
|
Ford BM, Franks LN, Tai S, Fantegrossi WE, Stahl EL, Berquist MD, Cabanlong CV, Wilson CD, Penthala NR, Crooks PA, Prather PL. Characterization of structurally novel G protein biased CB 1 agonists: Implications for drug development. Pharmacol Res 2017; 125:161-177. [PMID: 28838808 DOI: 10.1016/j.phrs.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
Abstract
The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB1Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1 receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to β-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Edward L Stahl
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Michael D Berquist
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA.
| |
Collapse
|
71
|
Spetea M, Eans SO, Ganno ML, Lantero A, Mairegger M, Toll L, Schmidhammer H, McLaughlin JP. Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice. Br J Pharmacol 2017; 174:2444-2456. [PMID: 28494108 PMCID: PMC5513865 DOI: 10.1111/bph.13854] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The κ receptor has a central role in modulating neurotransmission in central and peripheral neuronal circuits that subserve pain and other behavioural responses. Although κ receptor agonists do not produce euphoria or lead to respiratory suppression, they induce dysphoria and sedation. We hypothesized that brain-penetrant κ receptor ligands possessing biased agonism towards G protein signalling over β-arrestin2 recruitment would produce robust antinociception with fewer associated liabilities. EXPERIMENTAL APPROACH Two new diphenethylamines with high κ receptor selectivity, HS665 and HS666, were assessed following i.c.v. administration in mouse assays of antinociception with the 55°C warm-water tail withdrawal test, locomotor activity in the rotorod and conditioned place preference. The [35 S]-GTPγS binding and β-arrestin2 recruitment in vitro assays were used to characterize biased agonism. KEY RESULTS HS665 (κ receptor agonist) and HS666 (κ receptor partial agonist) demonstrated dose-dependent antinociception after i.c.v. administration mediated by the κ receptor. These highly selective κ receptor ligands displayed varying biased signalling towards G protein coupling in vitro, consistent with a reduced liability profile, reflected by reduced sedation and absence of conditioned place aversion for HS666. CONCLUSIONS AND IMPLICATIONS HS665 and HS666 activate central κ receptors to produce potent antinociception, with HS666 displaying pharmacological characteristics of a κ receptor analgesic with reduced liability for aversive effects correlating with its low efficacy in the β-arrestin2 signalling pathway. Our data provide further understanding of the contribution of central κ receptors in pain suppression, and the prospect of dissociating the antinociceptive effects of HS665 and HS666 from κ receptor-mediated adverse effects.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
| | - Shainnel O Eans
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
- Department of PharmacodynamicsUniversity of FloridaGainesvilleFLUSA
| | | | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Michael Mairegger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Lawrence Toll
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
- Department of PharmacodynamicsUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
72
|
Yi B, Jahangir A, Evans AK, Briggs D, Ravina K, Ernest J, Farimani AB, Sun W, Rajadas J, Green M, Feinberg EN, Pande VS, Shamloo M. Discovery of novel brain permeable and G protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS One 2017; 12:e0180319. [PMID: 28746336 PMCID: PMC5529018 DOI: 10.1371/journal.pone.0180319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023] Open
Abstract
The beta-1 adrenergic receptor (ADRB1) is a promising therapeutic target intrinsically involved in the cognitive deficits and pathological features associated with Alzheimer's disease (AD). Evidence indicates that ADRB1 plays an important role in regulating neuroinflammatory processes, and activation of ADRB1 may produce neuroprotective effects in neuroinflammatory diseases. Novel small molecule modulators of ADRB1, engineered to be highly brain permeable and functionally selective for the G protein with partial agonistic activity, could have tremendous value both as pharmacological tools and potential lead molecules for further preclinical development. The present study describes our ongoing efforts toward the discovery of functionally selective partial agonists of ADRB1 that have potential therapeutic value for AD and neuroinflammatory disorders, which has led to the identification of the molecule STD-101-D1. As a functionally selective agonist of ADRB1, STD-101-D1 produces partial agonistic activity on G protein signaling with an EC50 value in the low nanomolar range, but engages very little beta-arrestin recruitment compared to the unbiased agonist isoproterenol. STD-101-D1 also inhibits the tumor necrosis factor α (TNFα) response induced by lipopolysaccharide (LPS) both in vitro and in vivo, and shows high brain penetration. Other than the therapeutic role, this newly identified, functionally selective, partial agonist of ADRB1 is an invaluable research tool to study mechanisms of G protein-coupled receptor signal transduction.
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Agonists/chemistry
- Adrenergic beta-1 Receptor Agonists/pharmacokinetics
- Adrenergic beta-1 Receptor Agonists/therapeutic use
- Alzheimer Disease/drug therapy
- Alzheimer Disease/metabolism
- Animals
- Brain/metabolism
- CHO Cells
- Cell Line, Tumor
- Cells, Cultured
- Cricetinae
- Cricetulus
- Crystallography, X-Ray
- Drug Discovery
- GTP-Binding Proteins/metabolism
- Humans
- Magnetic Resonance Spectroscopy
- Male
- Mice, Inbred C57BL
- Models, Chemical
- Models, Molecular
- Molecular Structure
- Neurocognitive Disorders/drug therapy
- Neurocognitive Disorders/metabolism
- Permeability
- Phenyl Ethers/chemistry
- Phenyl Ethers/pharmacokinetics
- Phenyl Ethers/therapeutic use
- Propanolamines/chemistry
- Propanolamines/pharmacokinetics
- Propanolamines/therapeutic use
- Protein Binding
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/chemistry
- Receptors, Adrenergic, beta-1/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bitna Yi
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Alam Jahangir
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Andrew K. Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Denise Briggs
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Kristine Ravina
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jacqueline Ernest
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Amir B. Farimani
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael Green
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Evan N. Feinberg
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Vijay S. Pande
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
73
|
Bohn LM, Aubé J. Seeking (and Finding) Biased Ligands of the Kappa Opioid Receptor. ACS Med Chem Lett 2017; 8:694-700. [PMID: 28740600 PMCID: PMC5512133 DOI: 10.1021/acsmedchemlett.7b00224] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
The discovery and characterization of two classes of kappa opioid receptor agonists that are biased for G protein over βarrestin signaling are described.
Collapse
Affiliation(s)
- Laura M. Bohn
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
74
|
Identification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination. J Neurosci 2017; 36:7925-35. [PMID: 27466337 DOI: 10.1523/jneurosci.1493-16.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Remyelinating therapies seek to promote restoration of function and normal cellular architecture following demyelination in diseases, such as multiple sclerosis (MS). Functional screening for small molecules or novel targets for remyelination is a major hurdle to the identification and development of rational therapeutics for MS. Recent findings and technical advances provide us with a unique opportunity to provide insight into the cell autonomous mechanisms for remyelination and address this unmet need. Upon screening a G-protein-coupled receptor small-molecule library, we report the identification of a cluster of κ-opioid receptor (KOR) agonists that significantly promotes oligodendrocyte differentiation and myelination. KOR agonists were validated in purified rat oligodendroglial cultures, and the (±)U-50488 compound proved to be most effective for differentiation. (±)U-50488 treatment significantly enhances differentiation and myelination in purified oligodendroglial cocultures and greatly accelerates the kinetics of remyelination in vivo after focal demyelination with lysolecithin. The effect of (±)U-50488 is attenuated by KOR antagonists and completely abolished in KOR-null oligodendroglia. Conditional deletion of KOR in murine oligodendrocyte precursor cells (OPCs) greatly inhibits remyelination after focal demyelination lacking any response to (±)U-50488 treatment. To determine whether agonism of KOR represents a feasible therapeutic approach, human induced pluripotent stem cell-derived OPCs were treated with (±)U-50488. Consistent with findings, differentiation of human OPCs into mature oligodendrocytes was significantly enhanced. Together, KOR is a therapeutic target to consider for future remyelination therapy. SIGNIFICANCE STATEMENT Remyelination represents a promising strategy to achieve functional recovery in demyelinating diseases, like MS. Thus, identification of potent compounds and targets that promote remyelination represents a critically unmet need. This study reports a cluster of compounds that are highly effective in enhancing remyelination and identifies κ-opioid receptor (KOR) as a positive regulator for oligodendroglial differentiation, implicating KOR agonism as a potential strategy to accelerate remyelination.
Collapse
|
75
|
Gatfield J, Menyhart K, Wanner D, Gnerre C, Monnier L, Morrison K, Hess P, Iglarz M, Clozel M, Nayler O. Selexipag Active Metabolite ACT-333679 Displays Strong Anticontractile and Antiremodeling Effects but Low β-Arrestin Recruitment and Desensitization Potential. J Pharmacol Exp Ther 2017; 362:186-199. [PMID: 28476928 DOI: 10.1124/jpet.116.239665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Prostacyclin (PGI2) receptor (IP receptor) agonists, which are indicated for the treatment of pulmonary arterial hypertension (PAH), increase cytosolic cAMP levels and thereby inhibit pulmonary vasoconstriction, pulmonary arterial smooth muscle cell (PASMC) proliferation, and extracellular matrix synthesis. Selexipag (Uptravi, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide) is the first nonprostanoid IP receptor agonist, it is available orally and was recently approved for the treatment of PAH. In this study we show that the active metabolite of selexipag and the main contributor to clinical efficacy ACT-333679 (previously known as MRE-269) behaved as a full agonist in multiple PAH-relevant receptor-distal-or downstream-cellular assays with a maximal efficacy (Emax) comparable to that of the prototypic PGI2 analog iloprost. In PASMC, ACT-333679 potently induced cellular relaxation (EC50 4.3 nM) and inhibited cell proliferation (IC50 4.0 nM) as well as extracellular matrix synthesis (IC50 8.3 nM). In contrast, ACT-333679 displayed partial agonism in receptor-proximal-or upstream-cAMP accumulation assays (Emax 56%) when compared with iloprost and the PGI2 analogs beraprost and treprostinil (Emax ∼100%). Partial agonism of ACT-333679 also resulted in limited β-arrestin recruitment (Emax 40%) and lack of sustained IP receptor internalization, whereas all tested PGI2 analogs behaved as full agonists in these desensitization-related assays. In line with these in vitro findings, selexipag, but not treprostinil, displayed sustained efficacy in rat models of pulmonary and systemic hypertension. Thus, the partial agonism of ACT-333679 allows for full efficacy in amplified receptor-distal PAH-relevant readouts while causing limited activity in desensitization-related receptor-proximal readouts.
Collapse
Affiliation(s)
- John Gatfield
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Daniel Wanner
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | | | - Patrick Hess
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Marc Iglarz
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Oliver Nayler
- Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
76
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017; 69:256-297. [PMID: 28626043 PMCID: PMC5482185 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
77
|
da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. Factors influencing biased agonism in recombinant cells expressing the human α 1A -adrenoceptor. Br J Pharmacol 2017; 174:2318-2333. [PMID: 28444738 DOI: 10.1111/bph.13837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Agonists acting at GPCRs promote biased signalling via Gα or Gβγ subunits, GPCR kinases and β-arrestins. Since the demonstration of biased agonism has implications for drug discovery, it is essential to consider confounding factors contributing to bias. We have examined bias at human α1A -adrenoceptors stably expressed at low levels in CHO-K1 cells, identifying off-target effects at endogenous receptors that contribute to ERK1/2 phosphorylation in response to the agonist oxymetazoline. EXPERIMENTAL APPROACH Intracellular Ca2+ mobilization was monitored in a Flexstation® using Fluo 4-AM. The accumulation of cAMP and ERK1/2 phosphorylation were measured using AlphaScreen® proximity assays, and mRNA expression was measured by RT-qPCR. Ligand bias was determined using the operational model of agonism. KEY RESULTS Noradrenaline, phenylephrine, methoxamine and A61603 increased Ca2+ mobilization, cAMP accumulation and ERK1/2 phosphorylation. However, oxymetazoline showed low efficacy for Ca+2 mobilization, no effect on cAMP generation and high efficacy for ERK1/2 phosphorylation. The apparent functional selectivity of oxymetazoline towards ERK1/2 was related to off-target effects at 5-HT1B receptors endogenously expressed in CHO-K1 cells. Phenylephrine and methoxamine showed genuine bias towards ERK1/2 phosphorylation compared to Ca2+ and cAMP pathways, whereas A61603 displayed bias towards cAMP accumulation compared to ERK1/2 phosphorylation. CONCLUSION AND IMPLICATIONS We have shown that while adrenergic agonists display bias at human α1A -adrenoceptors, the marked bias of oxymetazoline for ERK1/2 phosphorylation originates from off-target effects. Commonly used cell lines express a repertoire of endogenous GPCRs that may confound studies on biased agonism at recombinant receptors.
Collapse
Affiliation(s)
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie Broxton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
78
|
Norman H, D'Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl) 2017; 234:1371-1394. [PMID: 28285326 DOI: 10.1007/s00213-017-4582-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. METHODS In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. RESULTS Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. CONCLUSION Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.
Collapse
Affiliation(s)
- Haval Norman
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA.
| |
Collapse
|
79
|
Johnstone S, Albert JS. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Bioorg Med Chem Lett 2017; 27:2239-2258. [PMID: 28408223 DOI: 10.1016/j.bmcl.2017.03.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
New strategies to potentially improve drug safety and efficacy emerge with allosteric programs. Biased allosteric modulators can be designed with high subtype selectivity and defined receptor signaling endpoints, however, selecting the most meaningful parameters for optimization can be perplexing. Historically, "potency hunting" at the expense of physicochemical and pharmacokinetic optimization has led to numerous tool compounds with excellent pharmacological properties but no path to drug development. Conversely, extensive physicochemical and pharmacokinetic screening with only post hoc bias and allosteric characterization has led to inefficacious compounds or compounds with on-target toxicities. This field is rapidly evolving with new mechanistic understanding, changes in terminology, and novel opportunities. The intent of this digest is to summarize current understanding and debates within the field. We aim to discuss, from a medicinal chemistry perspective, the parameter choices available to drive SAR.
Collapse
Affiliation(s)
- Shawn Johnstone
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada.
| | - Jeffrey S Albert
- Department of Chemistry, IntelliSyn Pharma, 7171 Frederick-Banting, Montreal, Quebec H4S 1Z9, Canada; Department of Chemistry, AviSyn Pharma, 4275 Executive Square, Suite 200, La Jolla, CA 92037, United States.
| |
Collapse
|
80
|
Ranjan R, Pandey S, Shukla AK. Biased Opioid Receptor Ligands: Gain without Pain. Trends Endocrinol Metab 2017; 28:247-249. [PMID: 28110810 DOI: 10.1016/j.tem.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
Kappa opioid receptor (κ-OR) agonists are promising therapeutic candidates for pain and itch; however, they also exhibit the adverse effects of sedation and dysphoria. A recent study has demonstrated that a G protein-biased agonist for κ-OR provides effective pain and itch relief without causing sedation or dysphoria, in animal models.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| |
Collapse
|
81
|
Soeberdt M, Molenveld P, Storcken RPM, Bouzanne des Mazery R, Sterk GJ, Autar R, Bolster MG, Wagner C, Aerts SNH, van Holst FR, Wegert A, Tangherlini G, Frehland B, Schepmann D, Metze D, Lotts T, Knie U, Lin KY, Huang TY, Lai CC, Ständer S, Wünsch B, Abels C. Design and Synthesis of Enantiomerically Pure Decahydroquinoxalines as Potent and Selective κ-Opioid Receptor Agonists with Anti-Inflammatory Activity in Vivo. J Med Chem 2017; 60:2526-2551. [PMID: 28218838 DOI: 10.1021/acs.jmedchem.6b01868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to develop novel κ agonists restricted to the periphery, a diastereo- and enantioselective synthesis of (4aR,5S,8aS)-configured decahydroquinoxalines 5-8 was developed. Physicochemical and pharmacological properties were fine-tuned by structural modifications in the arylacetamide and amine part of the pharmacophore as well as in the amine part outside the pharmacophore. The decahydroquinoxalines 5-8 show single-digit nanomolar to subnanomolar κ-opioid receptor affinity, full κ agonistic activity in the [35S]GTPγS assay, and high selectivity over μ, δ, σ1, and σ2 receptors as well as the PCP binding site of the NMDA receptor. Several analogues were selective for the periphery. The anti-inflammatory activity of 5-8 after topical application was investigated in two mouse models of dermatitis. The methanesulfonamide 8a containing the (S)-configured hydroxypyrrolidine ring was identified as a potent (Ki = 0.63 nM) and highly selective κ agonist (EC50 = 1.8 nM) selective for the periphery with dose-dependent anti-inflammatory activity in acute and chronic skin inflammation.
Collapse
Affiliation(s)
- Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| | - Peter Molenveld
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Roy P M Storcken
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | - Geert Jan Sterk
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Reshma Autar
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Marjon G Bolster
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Clemens Wagner
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | | | - Anita Wegert
- Mercachem , Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Giovanni Tangherlini
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Bastian Frehland
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Dieter Metze
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Tobias Lotts
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany.,Kompetenzzentrum chronischer Pruritus (KCP), Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Ulrich Knie
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| | - Kun-Yuan Lin
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Tai-Yu Huang
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Chih-Ching Lai
- Eurofins Panlabs Taiwan, Ltd. , 158 Li-Teh Road, Peitou, Taipei 11259, Taiwan
| | - Sonja Ständer
- Klinik für Hautkrankheiten, Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany.,Kompetenzzentrum chronischer Pruritus (KCP), Universitätsklinikium Münster , Von-Esmarch-Straße 58, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster , Correnstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Universität Münster , D-48149 Münster, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel , Sudbrackstraße 56, D-33611 Bielefeld, Germany
| |
Collapse
|
82
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017; 25:12-25. [PMID: 28035079 PMCID: PMC5207460 DOI: 10.4062/biomolther.2016.165] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Zuzana Bologna
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
84
|
Crowley RS, Riley AP, Sherwood AM, Groer CE, Shivaperumal N, Biscaia M, Paton K, Schneider S, Provasi D, Kivell BM, Filizola M, Prisinzano TE. Synthetic Studies of Neoclerodane Diterpenes from Salvia divinorum: Identification of a Potent and Centrally Acting μ Opioid Analgesic with Reduced Abuse Liability. J Med Chem 2016; 59:11027-11038. [PMID: 27958743 DOI: 10.1021/acs.jmedchem.6b01235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Opioids are widely used to treat millions suffering from pain, but their analgesic utility is limited due to associated side effects. Herein we report the development and evaluation of a chemical probe exhibiting analgesia and reduced opioid-induced side effects. This compound, kurkinorin (5), is a potent and selective μ-opioid receptor (MOR) agonist (EC50 = 1.2 nM, >8000 μ/κ selectivity). 5 is a biased activator of MOR-induced G-protein signaling over β-arrestin-2 recruitment. Metadynamics simulations of 5's binding to a MOR crystal structure suggest energetically preferred binding modes that differ from crystallographic ligands. In vivo studies with 5 demonstrate centrally mediated antinociception, significantly reduced rewarding effects, tolerance, and sedation. We propose that this novel MOR agonist may represent a valuable tool in distinguishing the pathways involved in MOR-induced analgesia from its side effects.
Collapse
Affiliation(s)
- Rachel Saylor Crowley
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott, Lawrence, Kansas 66045, United States
| | - Andrew P Riley
- Department of Chemistry, The University of Kansas , Lawrence, Kansas 66045, United States
| | - Alexander M Sherwood
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott, Lawrence, Kansas 66045, United States
| | - Chad E Groer
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott, Lawrence, Kansas 66045, United States
| | - Nirajmohan Shivaperumal
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | - Miguel Biscaia
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | - Kelly Paton
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | - Sebastian Schneider
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Bronwyn M Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington , Wellington 6140, New Zealand
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas , 1251 Wescoe Hall Drive, 4070 Malott, Lawrence, Kansas 66045, United States
| |
Collapse
|
85
|
Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL, Schmid CL, Zhou L, Stahl EL, Cameron MD, Scarry SM, Aubé J, Jones SR, Martin TJ, Bohn LM. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci Signal 2016; 9:ra117. [PMID: 27899527 PMCID: PMC5231411 DOI: 10.1126/scisignal.aai8441] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Agonists targeting the kappa opioid receptor (KOR) have been promising therapeutic candidates because of their efficacy for treating intractable itch and relieving pain. Unlike typical opioid narcotics, KOR agonists do not produce euphoria or lead to respiratory suppression or overdose. However, they do produce dysphoria and sedation, side effects that have precluded their clinical development as therapeutics. KOR signaling can be fine-tuned to preferentially activate certain pathways over others, such that agonists can bias signaling so that the receptor signals through G proteins rather than other effectors such as βarrestin2. We evaluated a newly developed G protein signaling-biased KOR agonist in preclinical models of pain, pruritis, sedation, dopamine regulation, and dysphoria. We found that triazole 1.1 retained the antinociceptive and antipruritic efficacies of a conventional KOR agonist, yet it did not induce sedation or reductions in dopamine release in mice, nor did it produce dysphoria as determined by intracranial self-stimulation in rats. These data demonstrated that biased agonists may be used to segregate physiological responses downstream of the receptor. Moreover, the findings suggest that biased KOR agonists may present a means to treat pain and intractable itch without the side effects of dysphoria and sedation and with reduced abuse potential.
Collapse
Affiliation(s)
- Tarsis F Brust
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Susy A Kim
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason L Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cullen L Schmid
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Lei Zhou
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael D Cameron
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
86
|
Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59:8381-97. [PMID: 27556704 DOI: 10.1021/acs.jmedchem.6b00748] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.
Collapse
Affiliation(s)
- András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Gina F Marrone
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Travis C Palmer
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ankita Narayan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Márton R Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Steven G Grinnell
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joan J Subrath
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Evelyn Warner
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Sanjay Kalra
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jeremy Pagirsky
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jessica M Medina
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jin Xu
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ying-Xian Pan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jay P McLaughlin
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|
87
|
Broad J, Maurel D, Kung VWS, Hicks GA, Schemann M, Barnes MR, Kenakin TP, Granier S, Sanger GJ. Human native kappa opioid receptor functions not predicted by recombinant receptors: Implications for drug design. Sci Rep 2016; 6:30797. [PMID: 27492592 PMCID: PMC4974614 DOI: 10.1038/srep30797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
If activation of recombinant G protein-coupled receptors in host cells (by drugs or other ligands) has predictive value, similar data must be obtained with native receptors naturally expressed in tissues. Using mouse and human recombinant κ opioid receptors transfected into a host cell, two selectively-acting compounds (ICI204448, asimadoline) equi-effectively activated both receptors, assessed by measuring two different cell signalling pathways which were equally affected without evidence of bias. In mouse intestine, naturally expressing κ receptors within its nervous system, both compounds also equi-effectively activated the receptor, inhibiting nerve-mediated muscle contraction. However, whereas ICI204448 acted similarly in human intestine, where κ receptors are again expressed within its nervous system, asimadoline was inhibitory only at very high concentrations; instead, low concentrations of asimadoline reduced the activity of ICI204448. This demonstration of species-dependence in activation of native, not recombinant κ receptors may be explained by different mouse/human receptor structures affecting receptor expression and/or interactions with intracellular signalling pathways in native environments, to reveal differences in intrinsic efficacy between receptor agonists. These results have profound implications in drug design for κ and perhaps other receptors, in terms of recombinant-to-native receptor translation, species-dependency and possibly, a need to use human, therapeutically-relevant, not surrogate tissues.
Collapse
Affiliation(s)
- John Broad
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, Dépt de Pharmacologie Moléculaire, UMR 5203 CNRS-U 661 INSERM, Univ Montpellier I &II, 141, 34094 Montpellier, France
| | - Victor W S Kung
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gareth A Hicks
- Tioga Pharmaceuticals, 9393 Towne Centre Drive, Suite 200, San Diego, California, USA
| | - Michael Schemann
- Human Biology, TU München, D-85350 Freising-Weihenstephan, Germany
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Terrence P Kenakin
- Dept of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Dépt de Pharmacologie Moléculaire, UMR 5203 CNRS-U 661 INSERM, Univ Montpellier I &II, 141, 34094 Montpellier, France
| | - Gareth J Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
88
|
Scarry SM, Lovell KM, Frankowski KJ, Bohn LM, Aubé J. Synthesis of Kappa Opioid Antagonists Based On Pyrrolo[1,2-α]quinoxalinones Using an N-Arylation/Condensation/Oxidation Reaction Sequence. J Org Chem 2016; 81:10538-10550. [PMID: 27399050 DOI: 10.1021/acs.joc.6b01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The quinoxaline and quinoxalinone family of nitrogen heterocycles is present in molecules of therapeutic relevance for diverse applications ranging from infectious diseases to neuroscience targets. Here, we describe a general synthetic sequence to afford pyrrolo[1,2-α]quinoxalinones from commercially available starting materials and their use in preparing potential kappa opioid receptor antagonists. The biological data obtained from the latter set of compounds is briefly presented and discussed.
Collapse
Affiliation(s)
- Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
| | - Kimberly M Lovell
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute , 130 Scripps Way, #2A2, Jupiter, Florida 33458, United States
| | - Kevin J Frankowski
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
| | - Laura M Bohn
- Departments of Molecular Therapeutics and Neuroscience, The Scripps Research Institute , 130 Scripps Way, #2A2, Jupiter, Florida 33458, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina , 125 Mason Farm Road, CB 7363, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
89
|
Opioid κ Receptors as a Molecular Target for the Creation of a New Generation of Analgesic Drugs. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Ogawa S, Watanabe T, Moriyuki K, Goto Y, Yamane S, Watanabe A, Tsuboi K, Kinoshita A, Okada T, Takeda H, Tani K, Maruyama T. Structural optimization and structure–functional selectivity relationship studies of G protein-biased EP2 receptor agonists. Bioorg Med Chem Lett 2016; 26:2446-2449. [DOI: 10.1016/j.bmcl.2016.03.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023]
|
91
|
Rose JH, Karkhanis AN, Chen R, Gioia D, Lopez MF, Becker HC, McCool BA, Jones SR. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens. Int J Neuropsychopharmacol 2016; 19:pyv127. [PMID: 26625893 PMCID: PMC4886667 DOI: 10.1093/ijnp/pyv127] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.
Collapse
MESH Headings
- Alcohol Drinking/adverse effects
- Alcohol Drinking/metabolism
- Alcohol Drinking/physiopathology
- Alcohol Drinking/psychology
- Alcohol-Induced Disorders, Nervous System/metabolism
- Alcohol-Induced Disorders, Nervous System/physiopathology
- Alcohol-Induced Disorders, Nervous System/psychology
- Analgesics, Opioid/pharmacology
- Animals
- Anxiety/metabolism
- Anxiety/physiopathology
- Anxiety/psychology
- Behavior, Animal/drug effects
- Compulsive Behavior
- Disease Models, Animal
- Dopamine/metabolism
- Dopaminergic Neurons/metabolism
- Dose-Response Relationship, Drug
- Ethanol
- In Vitro Techniques
- Male
- Mice, Inbred C57BL
- Narcotic Antagonists/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Substance Withdrawal Syndrome/psychology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Jamie H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Dominic Gioia
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Marcelo F Lopez
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Howard C Becker
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker)
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (Dr Rose, Dr Karkhanis, Dr Chen, Mr Gioia, Dr McCool, and Dr Jones); Charleston Alcohol Research Center (Drs Lopez and Becker), Department of Psychiatry (Drs Lopez and Becker), and Department of Neurosciences (Dr Becker), Medical University of South Carolina, Charleston, South Carolina; RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina (Dr Becker).
| |
Collapse
|
92
|
Ogawa S, Watanabe T, Sugimoto I, Moriyuki K, Goto Y, Yamane S, Watanabe A, Tsuboi K, Kinoshita A, Kigoshi H, Tani K, Maruyama T. Discovery of G Protein-Biased EP2 Receptor Agonists. ACS Med Chem Lett 2016; 7:306-11. [PMID: 26985320 DOI: 10.1021/acsmedchemlett.5b00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/03/2016] [Indexed: 01/14/2023] Open
Abstract
To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors.
Collapse
Affiliation(s)
- Seiji Ogawa
- Department of Chemistry,
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | | | | | | | | | | | | | | | | | - Hideo Kigoshi
- Department of Chemistry,
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | | | | |
Collapse
|
93
|
New approaches to treating pain. Bioorg Med Chem Lett 2016; 26:1103-19. [DOI: 10.1016/j.bmcl.2015.12.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|
94
|
Rankovic Z, Brust TF, Bohn LM. Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 2016; 26:241-250. [PMID: 26707396 PMCID: PMC5595354 DOI: 10.1016/j.bmcl.2015.12.024] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
G protein coupled receptors have historically been one of the most druggable classes of cellular proteins. The members of this large receptor gene family couple to primary effectors, G proteins, that have built in mechanisms for regeneration and amplification of signaling with each engagement of receptor and ligand, a kinetic event in itself. In recent years GPCRs, have been found to interact with arrestin proteins to initiate signal propagation in the absence of G protein interactions. This pinnacle observation has changed a previously held notion of the linear spectrum of GPCR efficacy and uncovered a new paradigm in GPCR research and drug discovery that relies on multidimensionality of GPCR signaling. Ligands were found that selectively confer activity in one pathway over another, and this phenomenon has been referred to as 'biased agonism' or 'functional selectivity'. While great strides in the understanding of this phenomenon have been made in recent years, two critical questions still dominate the field: How can we rationally design biased GPCR ligands, and ultimately, which physiological responses are due to G protein versus arrestin interactions? This review will discuss the current understanding of some of the key aspects of biased signaling that are related to these questions, including mechanistic insights in the nature of biased signaling and methods for measuring ligand bias, as well as relevant examples of drug discovery applications and medicinal chemistry strategies that highlight the challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Zoran Rankovic
- Discovery Chemistry and Research Technologies, Eli Lilly and Company, 893 South Delaware Street, Indianapolis, IN 46285, USA.
| | - Tarsis F Brust
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, and Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
95
|
Molecular switches of the κ opioid receptor triggered by 6'-GNTI and 5'-GNTI. Sci Rep 2016; 6:18913. [PMID: 26742690 PMCID: PMC4705513 DOI: 10.1038/srep18913] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
The κ opioid receptor (κOR) is a member of G-protein-coupled receptors, and is considered as a promising drug target for treating neurological diseases. κOR selective 6'-GNTI was proved to be a G-protein biased agonist, whereas 5'-GNTI acts as an antagonist. To investigate the molecular mechanism of how these two ligands induce different behaviors of the receptor, we built two systems containing the 5'-GNTI-κOR complex and the 6'-GNTI-κOR complex, respectively, and performed molecular dynamics simulations of the two systems. We observe that transmembrane (TM) helix 6 of the κOR rotates about 4.6(o) on average in the κOR-6'-GNTI complex. Detailed analyses of the simulation results indicate that E297(6.58) and I294(6.55) play crucial roles in the rotation of TM6. In the simulation of the κOR-5'-GNTI system, it is revealed that 5'-GNTI can stabilize TM6 in the inactive state form. In addition, the kink of TM7 is stabilized by a hydrogen bond between S324(7.47) and the residue V69(1.42) on TM1.
Collapse
|
96
|
Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization. Biochem J 2015; 473:497-508. [PMID: 26635353 DOI: 10.1042/bj20141471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/03/2015] [Indexed: 12/28/2022]
Abstract
Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated following U50,488H and etorphine respectively. Thus KOPR internalization requires receptor phosphorylation above a certain threshold, and higher-order KOPR phosphorylation may be disproportionally important.
Collapse
|
97
|
Kenakin T. The Effective Application of Biased Signaling to New Drug Discovery. Mol Pharmacol 2015; 88:1055-61. [PMID: 26138073 DOI: 10.1124/mol.115.099770] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/02/2015] [Indexed: 01/14/2023] Open
Abstract
The ability of agonists to selectively activate some but not all signaling pathways linked to pleiotropically signaling receptors has opened the possibility of obtaining molecules that emphasize beneficial signals, de-emphasize harmful signals, and concomitantly deemphasize harmful signals while blocking the harmful signals produced by endogenous agonists. The detection and quantification of biased effects is straightforward, but two important factors should be considered in the evaluation of biased effects in drug discovery. The first is that efficacy, and not bias, determines whether a given agonist signal will be observed; bias only dictates the relative concentrations at which agonist signals will appear when they do appear. Therefore, a Cartesian coordinate system plotting relative efficacy (on a scale of Log relative Intrinsic Activities) as the ordinates and Log(bias) as the abscissae is proposed as a useful tool in evaluating possible biased molecules for progression in discovery programs. Second, it should be considered that the current scales quantifying bias limit this property to the allosteric vector (ligand/receptor/coupling protein complex) and that whole-cell processing of this signal can completely change measured bias from in vitro predictions.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
98
|
Molenveld P, Bouzanne des Mazery R, Sterk GJ, Storcken RPM, Autar R, van Oss B, van der Haas RNS, Fröhlich R, Schepmann D, Wünsch B, Soeberdt M. Conformationally restricted κ-opioid receptor agonists: Synthesis and pharmacological evaluation of diastereoisomeric and enantiomeric decahydroquinoxalines. Bioorg Med Chem Lett 2015; 25:5326-30. [PMID: 26411794 DOI: 10.1016/j.bmcl.2015.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
All diastereoisomeric decahydroquinoxalines representing conformationally restricted analogs of κ agonists U-50,488 and GR-89,696 have been prepared. Cis/trans configured compound 7 is by far the highest binding diastereoisomer with a Ki of 0.35 nM. Racemates 4, 6, and 7 were separated into enantiomers. (+)-(4aR,5S,8aS)-Configured enantiomer 7b was identified as a high affinity (Ki=0.25 nM) κ ligand with high selectivity over μ and δ receptors. It acts as full agonist with an EC50 value of 2.0 nM in the [(35)S]GTPγS assay, while enantiomer 7a showed an EC50 value of 1000 nM.
Collapse
Affiliation(s)
- Peter Molenveld
- Mercachem, Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | - Geert Jan Sterk
- Mercachem, Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | - Reshma Autar
- Mercachem, Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | - Bram van Oss
- Mercachem, Kerkenbos 1013, NL-6546 BB Nijmegen, The Netherlands
| | | | - Roland Fröhlich
- Organisch-Chemisches Institut der Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Michael Soeberdt
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Sudbrackstraße 56, D-33611 Bielefeld, Germany.
| |
Collapse
|
99
|
Butelman ER, Kreek MJ. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders. Front Pharmacol 2015; 6:190. [PMID: 26441647 PMCID: PMC4561799 DOI: 10.3389/fphar.2015.00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022] Open
Abstract
Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University , New York, NY, USA
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University , New York, NY, USA
| |
Collapse
|
100
|
Kenakin T. Gaddum Memorial Lecture 2014: receptors as an evolving concept: from switches to biased microprocessors. Br J Pharmacol 2015; 172:4238-53. [PMID: 26075971 PMCID: PMC4556465 DOI: 10.1111/bph.13217] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 12/17/2022] Open
Abstract
This review is based on the JR Vane Medal Lecture presented at the BPS Winter Meeting in December 2014 by T. Kenakin. A recording of the lecture is included as supporting information and can also be viewed online here: https://www.youtube.com/watch?v=xrP81AQ8l-8. Pharmacological models used to describe drug agonism and antagonism have evolved over the past 20 years from a parsimonious model describing single active and inactive receptor states to models of multiconformational receptor systems modified by ligand conformational selection. These latter models describe the observed, presently underexploited, pharmacological mechanism of ligand-directed biased signalling. Biased signals can be quantified with transduction coefficients (ΔΔLog(τ/KA) values), a scale grounded in the Black/Leff operational model; this enables the optimization of biased profiles through medicinal chemistry. The past decades have also brought the availability of new technologies to measure multiple functional effects mediated by seven transmembrane receptors. These have confirmed that drugs can have many efficacies, which may be collaterally linked, that is there is no linear sequence of activities required. In addition, new functional screening assays have introduced increasing numbers of allosteric ligands into drug discovery. These molecules are permissive (they do not necessarily preclude endogenous signalling in vivo); therefore, they may allow better fine tuning of pathological physiology. The permissive quality of allosteric ligands can also change the quality of endogenous signalling efficacy ('induced bias') as well as the quantity of signal; in this regard, indices related to ΔΔLog(τ/KA) values (namely ΔLog(αβ) values) can be used to quantify these effects for optimization in the drug discovery process. All of these added scales of drug activity will, hopefully, allow better targeting of candidate molecules towards therapies.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of MedicineChapel Hill, NC, USA
| |
Collapse
|